
Sessional Dataflow
Short Paper

Dominic Duggan Jianhua Yao
Stevens Institute of Technology

dduggan@stevens.edu

Abstract
The purpose of sessional dataflow is to provide a compositional
semantics for dataflow computations that can be scheduled at
compile-time. The interesting issues arise in enforcing static flow
requirements in the composition of actors, ensuring that input and
output rates of actors on related channels match, and that cycles
in the composition of actors do not introduce deadlock. Ultimately
the purpose of sessional dataflow is to support dynamic operations
on subnets, ensuring that assumptions underlying static scheduling
are not violated by operations such as subnet update and recon-
figuration. This account focuses on a simplified case of sessional
dataflow, to draw out the key points of the approach.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent Programming—Parallel Program-
ming; D.3.2 [PROGRAMMING LANGUAGES]: Language
Classifications—Data-flow languages; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming
Languages—Operational semantics

General Terms Languages.

Keywords Dataflow, semantics, types.

1. Introduction
Dataflow has an honored tradition in declarative parallel program-
ming [9, 10]. It has renewed significance today, given the impor-
tance attached to deterministic parallelism as a way of coping with
the challenges of scalable parallel programming. Many of the ap-
plications of parallel processing are in stream processing, for ex-
ample of streaming multimedia data, again motivating interest in
dataflow processing. Part of the challenge of dataflow processing is
in scheduling the execution of dataflow graphs without unbounded
buffering of data between actors in the net. In signal processing,
synchronous dataflow has enjoyed some success for multi-rate ap-
plications, with many variations of the basic idea developed over
the years [11].

The purpose of sessional dataflow is to provide a composi-
tional semantics for dataflow computations that can be scheduled
at compile-time. To explain why compositionality is important,
in synchronous dataflow and its variants, a dataflow graph is de-
scribed in terms of atomic actors, and flow edges connecting them.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAMP ’12 January 28, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM [978-1-4503-1117-5/12/01]. . . $10.00

A compositional semantics allows both atomic actors, and subnets
resulting from the composition of actors, to be viewed uniformly as
dataflow actors. Compositionality is obviously important for scal-
ing dataflow programming. The interesting issues arise in enforcing
static flow requirements in the composition of actors, ensuring that
input and output rates of actors on related channels match, and that
cycles in the composition of actors do not introduce deadlock. Ul-
timately the purpose of sessional dataflow is to support dynamic
operations on subnets, including update and reconfiguration, while
ensuring that assumptions underlying static scheduling are not vio-
lated by these operations . In this account, we focus just on a sim-
plified case of sessional dataflow, to draw out the key points of the
approach.

2. Actors and Dataflow Nets
In this section, we provide an example of a limited form of static
dataflow that is expressive enough for our purposes for now.
So-called synchronous dataflow (SDF), more aptly named static
dataflow, assumes that on each actor “firing,” a statically fixed
number of inputs is consumed on each input channel and a stati-
cally fixed number of outputs is produced on each output channel.
Synchronous dataflow allows static scheduling of multirate appli-
cations. To simplify actor composition, and since multirate appli-
cations are a specific class of applications that may or may not be
useful for certain application domains, we restrict our semantics
further to single-rate applications. This means that a single input
is consumed on each input channel, and a single output produced
on each output channel, on each firing of an actor. This enables all
scheduling decisions to be made at compile time, and enables all
buffering of data between senders and receivers to be eliminated

An actor specification needs a few other aspects to be defined.
Although firing is atomic in SDF, our semantics for firing is im-
plemented in a C-like core language, that consumes and produces
messages one at a time. For modeling the states of an actor, we
use the notion of flowstate, that tracks the state of an actor during
a firing cycle. In addition, we need a specification of the input and
output channels of an actor, that will subsequently be coupled with
channels for other actors to form a dataflow network. An example
of a specification for an actor in our type system is provided by the
following:

actor interface IActor
{

in channel<float> a;
in channel<float> b;
out channel<float> c;
causality a < b, a < c;
flowstate ?a, ?b , !c.

}

47

(a) Composite Actor with Internal Parallelism

(b) Composite Actor with Input depending on
Output

Figure 1. Parallel Inputs and Outputs

This is the expression of an actor type in our system. The type
specifies input and output communication channels, and allowable
communications on those channels using a flowstate specification.
The flowstate rule in the example above requires that the actor
consume an inputs on a channel and an input on the b channel, and
produces an output on the c channel. In what order should these
inputs and outputs be performed? It is tempting to restrict firings so
that all inputs are consumed before any outputs are produced, but
once we compose actors into composite actors (dataflow nets), it
is no longer possible to ensure this. Even if we restricted actors to
only inputs or only outputs, but not a mixture of the two, we could
still have scenarios where the consumption of an input in one actor
depended on the production of an output in another actor. Therefore
we must allow for aribtirary interleavings of inputs and outputs,
while avoiding deadlock where for example an output channel and
input channel are linked to the same underlying channel.

Therefore we enrich actor interfaces with a notion of causalities.
This is demonstrated in the example above, where the causalities
specify that outputs on channel c depend causally on inputs on
channel a and channel b (a < c and b < c, respectively). In this
simple case, causalities flow from all inputs to the single output,
but more generally in a composite actor with parallel threads, there
will typically be more refined causal relationships.

Fig. 1(a) and Fig. 1(b) demonstrate two composite actors.
Fig. 1(a) provides a composite actor where two actors on the left
consume inputs in parallel, and these are then consumed in a partic-
ular order by the actor on the right. We define causalities to reflect
the fact that message sending is asynchronous, so in some sense the
outputs of an actor, once their causally preceding input events oc-
cur, may occur in an indeterminate order.Fig. 1(b) provides another
composite actor, one where the output on channel c must causally
precede the input on channel a, since the output on internal channel
d causally precedes the input on internal channel a. outputs are par-
allel despite the fact that they are produced by a single sequential
thread.

Our actor semantics is effectively a limited form of cyclostatic
dataflow [2]. In the latter, an actor has a finite state control logic,
and transitions between states of this logic on each firing. Its fir-
ing pattern then depends on the current state that it is in. Because

(a) Feedback Loop Re-
quiring a Delay

(b) Feedback Loop Not
Requiring a Delay

Figure 2. Causality and Feedback

we are providing specifications for input consumption and output
production at the level of individual communication steps, the se-
mantics of a “firing” in the traditional SDF sense is non-atomic, and
we are essentially tracking a finite state control logic in the process
of a firing. It is possible to extend this approach to full cyclostatis
dataflow, by embedding causality sets into flowstates, so that the
specification of an actor behavior transitions through “stages”, at
each of which it exhibits a particular firing behavior. We omit the
details in this introductory article.

The specifications of the input-output behavior make no refer-
ence to the actual values that are transmitted. For simplicity we
have assumed that the channel types are fixed, so that only values
of the declared type may be transmitted on a channel. In practice
it may be beneficial to relax this restriction, though we defer these
considerations to future work.

An implementation of this actor specification uses a conven-
tional programming language to define the actor behavior, in the
style of Kahn’s original proposal for dataflow networks:

actor Actor implements IActor
{

float x, y;
loop { x = a↑; y = b↑; c ↑= (x+y); }

}
The definition of the actor implementation inherits the interface

specification: input and output channels, causalities and flowstates.
The operation for reading from an input channel c is denoted by
c↑, while the operation of writing a value to an output channel
is denoted by c ↑= v. The flowstate in the actor specification
establishes behavior obligations for its execution, subject to the
constraints imposed by the causalities.

Fig. 2 clarifies the point of the causalities. In general the issue
is to detect when connecting two open channels in the same actor
may introduce a cycle in the dependencies between the channels.
To avoid this cycle which would lead to deadlock, the connecton
of the channels is required to introduce a “delay,” by filling the
buffer for the channel with default initial values. Fig. 2(a) illustrates
this, where the single output channel of an actor is connected to
its input channel. The actor first reads from the input channel a,
before outputing to the output channel b. Note that we do not try
to track data flow dependencies, our interest is in the control flow
dependency from the consumption of input on a to the production
of output on b. Suppose these two open channels are connected
to the same shared channel. We assume an obvious causality from
the output end of a shared channe to the input end, so this binding
will introduce the causality b < a. This will introduce a cycle in
the causalities, which we cannot allow. Therefore in this case the
connection of two channels a and b on the same underlying channel
must include a delay, as indicated by the diamond in Fig. 2(a).

In the example in Fig. 2(b), on the other hand, the appending
of data to the output buffer is done before input is performed.
This results in the causality b < a for the actor body. This does
not necessarily mean that data flows from the output event to the

48

input event, but there is at least a causal dependency, in that the
occurrence of the output event is a prerequisite for the occurrence
of the input event. If these input and output open channels are
connected using the same shared channel, then the output produced
on the output channel does indeed propagate to the input channel
to be consumed, but this is immaterial as far as scheduling is
concerned. The causality b < a that is added as a result of this
binding of channels b and a is basically a no-op, and no scheduling
cycle is introduced, so a delay is not necessary.

We have so far considered the “programming-in-the-small” as-
pects of ensuring that an actor satisfied its behavior specification.
We now consider the “programming-in-the-large” aspect of ensur-
ing that the composition of actors is in some sense well-formed.
This issue is greatly simplified by our assumption of single rate
actors.

In general, the approach to composition of actors is to provide a
binary connection operation for linking the output data channel on
one actor with the input data channel of another. We denote this op-
eration by connect(A.a,B.b). Here it is important to distinguish
between open channels and shared channels. An open channel is
one of the form described in the previous section, a channel that
is declared in an actor interface, and referred to in an actor body
by operations for consuming messages and appending messages to
message buffers.

For deterministic semantics, it is important that there be no non-
deterministic contention for access to a channel. For example, a
nondeterministic merge might be provided by allowing multiple
actors to send simultaneously to the same merge channel. Synchro-
nization on access to the channel, performed by the compiler and
runtime system, could ensure that the message append operations
are atomic. However the order in which messages are appended
would be nondeterministic, based on dynamic scheduling of actors
and interleaving of their multithreaded executions. While nondeter-
ministic merge is a useful operation in some cases, our intention is
to establish a baseline that ensures deterministic execution, before
considering later how to extend this with nondeterminism.

Our approach is to ensure exclusive access to a communication
channel between two actors, the one actor sending on that channel
and the other actor receiving on that channel. The connection op-
eration connect(A.a,B.b) creates a new private communication
channel, binds the a output channel on the A actor to the output part
of this new private channel, and binds the b input channel on the B
actor to the input part of this new private channel. We refer to such a
private channel as a shared channel. Since (for now) we provide no
way for an actor to send any of its communication channels to an-
other actor, exclusive access by a pair of actors to a shared channel
is ensured1.

What is the result of connecting actors? The semantics should
be compositional, so that the connection of two actors should be
indistinguishable to outside observers from a single actor. For syn-
chronous dataflow, the only part of the outside interface of note for
a combined actor is the remaining open channels after a connec-
tion, and the firing rates for those channels. In a multi-rate system,
connecting two actors with potentially different flow rates on the
different channels on which they are connected might require ad-
justment of their respective rates.

In the relatively simple semantics described in this article, we
avoid the problem of variable aliasing by not allowing aliased
references to actors. This is compatible with approaches such as
for example session types that similarly constrain the bindings of

1 Actor interfaces include polarity information about access to channels,
and the connection operation requires that the accesses by the actors be
complementary. It is indeed possible that the actors being connected are the
same. The connection operation requires knowledge of when it is the case
that the same actors are being connected, as we will see.

T ∈ Type ::= float | AS
| channel π | update AS

AS ∈ Actor sig ::= actsig(K,O,FS)
K ∈ Causalities ::= {} | {a < b} | K1 ∪K2

O ∈ Open channels ::= {} | O1 ∪O2

| {(c : c : channel π)}
π ∈ Polarity ::= + | - | ±
α ∈ Event ::= !a | ?a

ES ∈ Event set ::= {} | {α} | ES1] ES2

FS ∈ Flowstate ::= ES | (FS1;FS2)
| FS∗ | FSω

Figure 3. Abstract syntax of SSYNC Types

variables to resources whose usage is tracked by linear or affine
types. If we relax this restriction, then we must face the issue of
how to deal with scenarios such as the following:

IActor2 f (IActor A, IActor B)
{ return connect(A.a,B.b); }

How can we prevent a scenario such as f(A0,A0), for some actor
A0 that implements the IActor specification? This is a known
issue in type systems for safe resource management. However, for
the purposes of this article, we avoid these issues in the interests
of brevity by simply not providing a syntax for the copying of
references.

3. A Kernel Language
The syntax of types is provided in Fig. 3. For simplicity we assume
a single base type of float, for floating point values. Similarly
we assume that only floating point values are exchanged between
actors in each message exchange, so the channel type does not need
to describe the type of data exchanged on the channel. Although
the polyadic pi-calculus generalizes messages to include tuples
of values, this is not necessary in our current framework because
channels are private to a single sender and receiver. We therefore
do not need a mechanism for atomically sending several values,
whereas this is necessary in the pi-calculus because channels may
be shared between multiple senders and receivers. We do record
polarity information for a channel, which records whether it can be
used by that actor for input (polarity +), or for output (polarity -),
or both (polarity ±).

The type of interest is that of actors. An actor signature has
several parts, as we have seen:

1. A causality set K is a set of causality constraints between
events, of the form a < b, that reflects dependencies between
events.

2. A set of open channels O. The channel has two names: its in-
ternal name c by which it is identified internally in the actor,
and its external name c by which it is referenced when com-
posing with other actors. We distinguish these names in order
to allow renaming apart of internal channel names when actors
are composed, without affecting the external interface.

3. The flowstate of an actor records its expected firing behavior, as
recorded by occurrences of events in event sets. For simplicity
we assume single-rate systems, so in a given firing there is
just one communication along each channel in a firing. In an
extension of this system with synchronous dataflow, a flowstate
includes a multiplicity on each channel, recording how many
times it is used on a firing. In the extension with cyclostatic
dataflow, causality sets are embedded in event sets.

49

v ∈ Vals ::= n | a | x
s ∈ Stmt ::= (var x = e; s) Bind variables

| if (v) s1; else s2 Conditional
| while (v) s Loop
| loop s Infinite loop
| run v Run a network
| (s1; s2) Sequential

e ∈ Exp ::= f(v1, . . . , vk) Builtin
| v1 = v2 Assignment
| c ↑ Receive a message
| c↑=v Send a message
| actor(K,O,FS , s) Atomic actor
| connect(v1.c1, v2.c2) Connect two actors
| connectWithDelay(v1.c1, v2.c2)
| Connect with delay

Figure 4. Abstract syntax of SSYNC Statements

Fig. 4 provides the abstract syntax for programs in SSYNC.
There are three constructrs for defining actors: the definition of an
atomic actor, and two operations for connecting actors on comple-
mentary open channels, with and without a delay. The run opera-
tion runs a dataflow network for which all channels are bound.

4. Related Work and Conclusions
Sessional dataflow comes out of the realm of linear and affine type
systems for statically checking the safe usage of limited resources.
The approach of session types [8] is commonly motivated by its
support for safe Web services. In the simplest case, session types
are used to mediate the exchanges between two parties in a dyadic
interaction. Each session offers a “shared channel” (different from
our use of the terminology), essentially an service endpoint URL
that a client connects to. On connection, a new server thread is
forked and a private session channel is established between the
client and this thread. This channel has a behavioral type that is
essentially an abstract single-threaded process, that constrains the
communications between the parties. Since only the client and the
server share their private channel, the execution is in fact determin-
istic.

Although sessional dataflow might appear at first related to ses-
sion types, the connection is actually rather weak, because of the
nature of the interactions in dataflow. The closest our system comes
to a session types system is in the behavioral constraint on the be-
havior of an actor, in terms of matching the specified input and out-
put data rates on each firing specified on an actor interface. How-
ever this behaviorial specification only constrains a single actor,
and places no constraint on the behavior of its neighboring ac-
tors (upstream or downstream). Furthermore a session type spec-
ifies, for each participant in an interaction, a very precise single-
threaded behavior, in terms of data exchanged on the private ses-
sion channels at each point in the execution. In contrast, the be-
havioral specification for an actor in sessional dataflow is declara-
tive, specifying expected communications subject to causality con-
straints. Deniélou and Yoshida [7] describe a version of session
types that allows a dynamic number of participants in a session pro-
tocol. As with other approaches to session types, the approach is to
provide operational specifications of participant behaviors, using
a top-down approach where one reasons from the specified global
protocol to the behavior of individual participants. In contrast, the
sessional dataflow approach is bottom-up and declarative, specify-
ing declarative causality constraints on individual actors indepen-
dent of whatever interactions they are integrated into.

Another related line of work is in synchronous languages for
real-time and embedded systems. Such languages assume a “clock”
on all computations, with variables representing potentially infinite
streams of values, indexed by clock ticks. Here the most relevant
example for sessional dataflow is that of Lustre [4], a language that
is a dataflow language in the tradition of Lucid, [1], and is a syn-
chronous language in the sense of the synchronous languages such
as Esterel [3], but which we cannot call a synchronous dataflow
language for fear of confusing the reader. The constraints on the
synchronous languages preclude any need for buffering, since all
actors operate in lock step on the same clock. The theory of these
“synchronous,” “dataflow” networks has been described in terms
of synchronous Kahn networks [5], which have the property that
no buffering is required at all between actors, since all execution
is synchronous and governed by a common clock. This is clearly
a very strong restriction, albeit one that facilitates compilation of
programs to hardware circuits. The theory ofN -synchronous Kahn
networks [6] relaxes this restriction, allowing different actors to
have their own clock rates, and allowing buffering between actors
to match their clock rates. It is therefore very much related to the
approach of synchronous dataflow.

Our language for composing actors is simple, obviously so in
order to simplify the semantics. A more general operation for the
composition of several actors simultaneously can be added as syn-
tactic sugar. There are many extensions of the form of synchronous
dataflow that we have investigated for sessional dataflow, and it
appears plausible that all of these extensions can be applied to ses-
sional dataflow, since most of them translate into synchronous and
cyclostatic dataflow. However our interest is in other extensions for
sessional dataflow that go beyond synchronous dataflow.

References
[1] E. A. Ashcroft and W. W. Wadge. Lucid, the dataflow programming

language. Academic Press, 1985.
[2] G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. Cyclo-

static data flow. In International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), volume 5, pages 3255 –3258 vol.5,
May 1995.

[3] F. Boussinot and R. de Simone. The Esterel language. Proc. IEEE,
79:1270–1282, September 1991.

[4] F. Boussinot and R. de Simone. The synchronous data flow program-
ming language Lustre. Proc. IEEE, 79:1305–1320, September 1991.

[5] Paul Caspi and Marc Pouzet. Synchronous kahn networks. In in the
first ACM SIGPLAN international conference on Functional program-
ming (ICFP ’96), 1996.

[6] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti,
Florence Plateau, and Marc Pouzet. N-synchronous kahn networks:
a relaxed model of synchrony for real-time systems. In in ACM
International Conference on Principles of Programming Languages
(POPL ’06), pages 180–193. ACM Press, 2006.

[7] Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole ses-
sion types. In ACM Symposium on Principles of Programming Lan-
guages, pages 435–446, New York, NY, USA, January 2011. ACM.

[8] Mariangiola Dezani-Ciancaglini and Ugo De’Liguoro. Sessions and
session types: an overview. In Proceedings of the 6th international
conference on Web services and formal methods, WS-FM’09, pages
1–28. Springer-Verlag, 2010.

[9] Stephen A. Edwards. Languages for Digital Embedded Systems.
Kluwer Academic Publishers, 2000.

[10] Gilles Kahn. The semantics of a simple language for parallel pro-
gramming. In Information Processing 74: Proceedings of the IFIP
Congress, pages 471–475, Stockholm, Sweden, August 1974. North-
Holland.

[11] Edward Lee and David Messerschmitt. Synchronous data flow. Proc.
IEEE, 75(9):1235–1245, September 1987.

50

