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A b s t r a c t  

Attr ibute grammars  require copy rules to 
transfer values between a t t r ibute  instances 
distant in an at t r ibuted parse tree. We introduce 
copy bypass a t t r ibute  propagation that  
dynamically replaces copy rules with nonlocal 
dependencies, resulting in f~ster incremental  
evaluation. .A evaluation s t ra tegy is used that  
approximates a topological ordering of a t t r ibute  
instances. The result is an efficient incremental  
evatuator that allows multiple subtree 
replacement on any noncircular a t t r ibute  
grammar. 

1o0 I n t r o d u c t i o n  

In a standard a t t r ibute  grammar,  a semantic 
equation may only refer to a t t r ibute  values of the 
same production instance in the corresponding 
context free grammar.  If a semantic equation 
generates a value that  is to be used by an 
attribute instance distant  in the tree, the value 
must be propagated through semantic equations 
whose only purpose is to move the value to the 
next production in the parse tree. These a t t r ibute  
instances are referred to as copy attributes and 
their defining semantic equations are called copy 
rules. The repeated computation of these copy 
attr ibutes during incremental  evaluation is 
necessary if the value at the beginning of the copy 
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chain changes. The t ime required %r an 
incremental  evaluater  to copy these values is 
substantial .  

instead of propagating at t r ibute  values through 
copy rule chains, we wish to transfe.,r a t t r ibute  
values directly from their creators to their users 
by means of nonlocat dependencies. Copy bypass 
a t t r ibute  propagation dynamical ly replaces copy 
rule chains in an a t t r ibuted g rammar  with copy 
bypass (CB) dependencies. 

We present  algorithms that install C[{ 
dependencies, perform change propagation over 
CB dependencies, and remove CB dependencies 
that  become invalid after  a t ree modification. 

[rt order to perform incremental  evaluat ion after 
a modification, we need an incremental  evatuator  
that works in the presence of nonlocal 
dependencies. We introduce an incremental  
graph evaluator  that has this property. 
Approximate topological ordering maintains a 
locally accurate topological order of the graph 
that is used for evaluation priority. 

We have implemented these two strategies in the 
Synthesizer Generator [RT84]. While a 
controlled performance evaluat ion has not yet 
been done, our initial results are quite promising. 
When performing incremental  evaluat ion in a 
syntax directed Pascal editor, copy bypass 
propagation significantly reduces the time 
necessary to update symbol table and other f~.r 
reaching changes. For extended editing sessions, 
extra evaluations caused by incorrect topological 
ordering information is negligible, typically 
averaging around 2% of necessary evaluations.  
[n the worst cases that  we have observed, this 
rate remains  well under 50%. The overall 
performance of this evaluation s t ra tegy is similar 
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to our implementation of the evaluation strategy 
for ordered attribute grammars [K80, Y83]. Our 
strategy, however, is not limited to a subclass of 
attribute grammars. Any attribute grammar, 
including those with nonlocal dependencies, can 
be incrementally evaluated. 

[n Section 2.0 of this paper, we argue that 
bypassing copy rule chains is desirable and we 
discuss previous work in the area. In Section 3.0 
we introduce copy bypass attribute propagation 
and give an incremental update algorithm that 
maintains Cg dependencies. We introduce an 
evaluation scheme in Section 4.0 that allows us to 
perform change propagation in the presence of 
nonlocal dependencies. In Section 5.0 we 
combine copy bypass attribute propagation with 
approximate topological ordering for a complete 
incremental update algorithm. Section 8.0 gives 
two methods of reducing the storage costs of copy 
bypass propagation. Time and space bounds are 
discussed in Section 7.0. 

2.9 Motivation and Previous  Work 

Numerous evaluation algorithms have been 
published t~r incrementally updating attribute 
grammars after changes. Some of these 
algorithms, i.e. [RTD83, R84], can be applied to 
any noncircular attribute grammar, but others, 
[Y83, JF85], are restricted to subset classes of 
attribute grammars. Many of these algorithms 
are optimal in the sense that they run in time 
O(IAff'ectedl), where Affected is the set of attribute 
instances whose values change with a 
modification of the attributed tree. This running 
time is achieved by forcing the evaluation of 
attributes to be in topological order with respect 
to the attribute dependency graph. 

By eliminating propagation over copy rule 
chains, we can reduce the size of Affected. Since 
the copy rule portion of Affected can be 
arbitrarily large, CB propagation can perform an 
incremental update faster than these 
conventional update algorithms. 

Consider the attribute grammar in Figure I. 
Copy rules are indicated by = c- 

An attributed parse tree for let a = 5 in a + 4 + 8  
ni is shown in Figure 2. Notice how the symbol 
table is needlessly copied into the declaration of a 
and bow it is copied through the tree in order for 

S : : = g  T::=let  D i n e  ni 
S.val = E.val T.val =c E.val 
E.st = Q D.st =cT,st  

E.st = update(T.st,D.df) 

E: :=T 
g.val =c T.val 
T.st =c E.st 

T::=id 
T.val = lookup(T.st,id) 

T:: = int 
E I : :=E2+T T.val = valueoffint) 

El.val = E2.val 
+T,val D::=id = E 

E2.st =c El.st D.df = [id,g.val] 
T.st =c El.st E.st =c D.st 

Figure I 

the value of a to be determined, if we were to 
graft the subtree under the first E nonterminal 
into another parse tree where st is not empty, a 
conventional evaluator would update all of these 
copy attributes. In our implementation, the 
attributed tree for a 500 line Pascal program to 
format text files [KP81] contains some 5400 copy 
chains, approximately half of which are 
terminated by uses. During incremental 
evaluation, copy bypass propagation allows us to 
avoid evaluating copy chains not terminated by 
uses, and bypass all others. 

Efforts have been made to extend the attribute 
grammar formalism by allowing nonlocal 
dependencies. In [J84, JF85] attribute grammars 
are extended to allow nonloeal productions. The 
dependencies created by these productions, 
however, must be explicitly specified in the 
grammar and cannot be used to eliminate all copy 
rule chains. In [DRZ85], dependencies are 
established by the transmission of messages 
between attributes. While these explicitly 
specified dependencies are established between 
attribute instances remote in the parse tree, 
unconditionally forwarded messages are 
analogous to copy rules and the method requires 
propagation over them. During incremental 
evaluation, copy bypass propagation avoids 
propagation ove~ copy chains by creating implicit 
nontocal dependencies. 

The introduction of" nonlocal dependencies 
complicates the attribute evaluation process, 
especially if these dependencies are created 
dynamically. Although the algorithms of [KSO, 
~/84] have been extbnded G" a subdass o[ 
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nontocal dependencies [RMT86], this subclass 
does not include all nonlocal dependencies needed 
to bypass copy rule chains, tn [JF85] and in 
[DRZ85], an analysis is made of possible 
dependencies and attributes are given a priority 
number that specifies their evaluation order. If 
this order cannot be statically determined, the 
attribute grammar cannot be evaluated by the 
strategy. [JF85] allow the evaluation of some 
grammars that fail this test if a traversat order of 
the tree is maintained. [DRZ85] observe that a 
topological ordering would allow all grammars to 
be evaluated, but do not give an algorithm for 
maintaining one. Approximate topological 
ordering uses a heuristic approximation of the 
true topological order and can evaluate any 
noneircular attribute grammar. 

3°0 Copy bypass ARribute Propagat ion  

dependencies can be removed after a tree 
modification. The process of reestablishing (;~ 
dependencies is discussed in Section 3.3. 

3,1 The [nser t lon ofcB Dependenc ie s  

Upon the initial attribution of the tree, we give 
each copy attribute a special value, called a C}~ 
value, instead of the value of its semantic 
equation. A CS vafue is a pair c<msisting of the 
{ocation where its true value can be found, a~.d a 
pathkey, a string that specifies the path taken 
from this location. Let a be the last attribute 
instance in acopy rule chain. When the value a is 
needed to compute the value of its successor, we 
create a CB dependency by placing the location of 
a and the pathkey stored at a in a lookup tree at 
the headof the  chain. We order the CB lookup tree 
by pathkey in lexigraphical order'. 

Copy bypass attribute propagation is a method of 
attribute propagation that allows copy rule 
chains to be bypassed. Section 3.1 shows how 
copy bypass (CS) dependencies are dynamically 
inserted. In Section 3.2 we show how invalid CB 

We define the following .functions for attribute 
instance a. We will use these functions to specif[y 
how the tree is attributed. 

...... copy dependency 

noncopy dependency 

I 

T Ss to  vats 

S ~vat 17 

E ¢st @ val ~7 

I 

T ~St e ~val ~7 

t [a,s] 
j /  

/ 
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E get t ,5/ Set vai 

a 

Figure 2: Attributed Parse Tree for let a =5 in a +4 + 8 ni 
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value(a) The value of a t t r ibute  instance a. 
This is the cg value if a is defined 
by a copy rule. 

location(a) The location of attribute instance 
a. Since this location uniquely 
identifies a, we will sometimes use 
the location of an at t r ibute in place 
of  its name. 

suet(a) The set of attribute instances that 
directly depend on attribute 
instance a. This set does not 
include any nonlocal dependencies. 

indexb(a) We number the successor set of b 
from 0 to }succ(b)l-1. This 
flanction re turns  the number  of 
attribute instance a in the 
successor set of b. Since copy 
at t r ibutes  have only one 
predecessor, we drop the subscript 
and refer to index(a) fbr copy 
attribute instance a. 

concatb(k, a) Given an at t r ibute instance b that 
a directly depends on, we 
concatenate the indexb(a) onto the 
end of a pa thkey k. We will drop 
the subscript for copy attribute 
instance a as we did for the index 
function. Since we need to delimit 
the index tYom the rest of the 
pathkey, think of conca~(k,a) as 
k]l jlindex(a). 

We give values to at tr ibute instances as follows. 

Say the semantic function that  defines a is f. tf  f 
is a copy rule, we give a a cg value <loc. path>. 
If b, the a t t r ibute  instance being copied by f, does 
not have a CB value, loc is the location of b and 
path is the index number of a appended to the 
empty string, if b has a CB value < Ib ,pb> ,  
Ioc=Ib and path is computed by concatenating 
the index number  a to the end of pb. 

If f is not a copy rule, a will have the value 
defined by f If an argument  b to f has a CB value 
< / , p > ,  the value stored at location I is used. A 
nonloeal dependency is then established from [ to 
b and stored under pathkey p in a lookup tree at i. 

In. the future, when the value of g changes, we will 
propagate this change directly to a. 

Thus, when computing the value of the attr ibute,  
we evaluate  the CB semantic function (shown in 
Figure 3) instead of evaluat ing f. The function 
add CB dependency(I,b,p) inserts the pair 
<location(b), p >  in the Cg lookup tree at 
a t t r ibute  location L 

function CB sem_fune(a : a t t r ibute  instance) 
{say the sere. rune. defining a is [(bl .... , ba)} 
if is_copy ruleq) t hen  

i f - , h a s  Ca value(b1) t hen  
r e tu rn (  < location(b0, eoneat(e, a) > ) 

e lse  
<l ,  p >  a-value(b1); 
r e tu rn (  < l, concat(p, a) >)  

else 
r e t u rn (~ t rue  val(50, ..., true val(bn))) 

f u n c t i o n  true_val(b : at t r ibute_instance) 
if -~ has CB value(b) then  re turn(value(b))  
else 

i f ~ h a s  CB dependency(b) then  
< I, p > e-value(b); 
add CB dependency(1,b,p); 
has CB dependency(b)~-trtae; 

reSurn( t rue  vat(l)) 

Figure 3 

To incremental ly update a tree that  has been 
a t t r ibuted using the CB semantic function (Figure 
3), we use simple change propagation and 
propagate over both Ioeat and nonlocM 
dependencies. The procedure propagate, shown 
in Figure 4, takes the set of atl inconsistent 
a t t r ibutes  and consistently at t r ibutes  the tree. 
Note that  this procedure requires that we be able 
to determine the first element in evaluation set  in 
some topological order. In Section 4 we will show 
how this can be replaced by an approximate 
topological ordering. 

Attributing the parse tree in Figure 2 using the 
copy bypass semantic function results in the 
attribute dependency graph shown in Figure 5. 
In this figure, an integer before the name of an 
attribute indicates its location. In the actual 
implementation, the location is the address of the 
storage cell containing the attribute. Note that 
all copy chains have been bypassed by CB 
dependencies. Although the CB dependencies 
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p r o c e d u r e  propagate(S : set ofa t tmbutes)  
while  S a ~ do 

a+-first in topological order(S); 
S ~-.S - {a} 

new value ~CB__sem_func(a); 
if value(a) a newvatue t hen  

value(a) ~-newvalue; 
S ~-S U suce(a) U nonlocal _suet(a) 

f unc t i on  nonlocal succ(b : at t r ibute  instance) 
?¢-~-@; 

if has CB lookup_t ree(b) then  
for  all c~ cB_lookup tree(b) d o  

N*-NU succ(c) U nonlocal_succ(c); 
re turn(N)  

Figure 4 

point to the last copy at t r ibute  in the chain, the 
evatuator  propagates changes directly to their 
successors. For e×ampte, the use of the identifier 
a depends upon the at t r ibute  where the symbol 
table is modified. 

3o~ Modi f i ca t ion  ofChe A%r:ib~ated T r e e  

We use multiple subtree replacement  as our 
model of tree modification, Given an a t t r ibuted 
tree T with subtrees T1, T% ._, Tn, we replace fib, 
T2, ..., Tn with TI', T~', .... Try' such that  the root of 
T i has the same nonterminal as the root of Ti'. 
The nonterminals at the points of subtree 
replacement are referred to as the intersection 
nor~erminafs and their at t r ibute instances are 
referred to as intersection a~tribt~fes. Note that  we 
are not restricted to subtree replacement,  in 
Section 4 we will introduce a more general 
modification model based upon the division of the 
at t r ibute dependency graph by a vertex cut set. 

As it is done in [RTD83, R84], we replace the 
inherited intersection a t t r ibute  values with those 
from the subtree and keep the synthesized 
intersection attribute values from T. For 
at t r ibute grammars  in normal form, this confines 
all inconsistent non copy a t t r ibutes  to the 
intersection nonterminal.  Our change 
propagation algorithm (Figure 4), however, does 

. . . . . . .  copy dependency S tval 17 

noneopy dependency 

E ~jst e ~vat 5,.o.o 
CB dependency , ~ oo 

T ~t.O ½val5,.o 

/ 
/ 

D ~st t.o.o ! 

i 

I 

T ~st ~,.o.o.o,o 

5 

~t 2,,0 

2val 55 

j ~st 3,.o 9 

E : gst 3 ,0 ,0  1 <.0 T st 3,.o. 

~vat s 4 

'b 

wal 4 8 

val 8 

a 

Figure ~' ' e " a. Parse 7 re ~ Attributed With CB Semantic Function 
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not require this. 
determine which 
inconsistent° 

We need only to be able to 
at tr ibute instances are 

We are using location pointers to represent CB 
dependencies. Thus, the above replacement 
strategy will not confine all inconsistent copy 
attr ibutes to the intersection nonterminal  if one 
of these pointers refers to the location of a 
replaced value. Therefore, we must not only 
replace the intersection at tr ibute values, but we 
must insure that  the replacing at tr ibutes have 
the same locations as the attributes that  they 
replace~ If the implementat ion does not allow 
this, all nontocal dependencies from the replaced 
attr ibute are invalid and must be removed. This 
is done by considering the copy rule successors of 
such intersection at tr ibutes part of the 
intersection in the fbllowing discussion. 

Before we can perform the subtree replacement, 
we must detect and remove any cg dependencies 
that  become invalid when each Ti is separated 
from T. There are three cases in which a CB 
dependency might be invalid. 

1. The copy rule chain bypassed by the 
dependency crosses the intersection. 

2. The dependency ends at an intersection 
attribute. 

3. The dependency begins at an intersection 
attribute. 

These three cases are shown in Figure 6. Note 
that these cases are not exclusive. 

For each cB dependency of cases 1 and 2, there 
must exist an intersection attr ibute x with a c g  
value. If the inherited attributes come from Ti' 
and the synthesized at tr ibutes come from T, none 
of these dependencies will be valid after the 
subtree replacement. Therefore. we must remove 
them. 

Sa) value(x) = < loc,path >.  Any CB dependencies 
that were created to bypass x must  originate from 
the attr ibute at location loc. Since we created the 
pathkeys for these dependencies b y  

concatenating additional path infbrmation to the 
end of path, the pathkeys of  any CB dependeacies 
that, bypass x muss have path as a preflx~ It is 
easy to see f¥om the? cm~struct[cr~ of the pathkeys 

e at tr ibute instance 

I intersection at tr ibute 

loeat dependency 

,"  ~ - ~ CB dependency 

Figure g 

that  all other dependencies from toe will not have 
path as a prefix. Therefore, we can remove all 
ease 1 and 2 dependencies by deleting all Cg 
dependencies that  have pathkeys prefixed by path 
from the CB lookup tree at loc. Since the lookup 
tree is kept in texigraphical order, we can do this 
operation by splitting the tree into three trees, 
L~ <path, path_< L2 < successor(path)*, and 
La >- successor(path). Joining L1 and La results in 
the desired tree with all invalid dependencies 
bypassing x removed. 

Any remaining invalid dependencies must  be of 
case 3 and will have a CB lookup tree at  an 
intersection node x. If the grammar  is in normal 
form, all inherited attr ibutes will have cB 
successors only in Ti'  and they will remain valid. 
Likewise, all synthesized attr ibutes will have CB 
successors only in T. If the grammar is not in 
normal form, we m u s t  remove CB dependencies 
that  bypass any  successors of x that  violate 
normal form. We do this exactly as we did for the 
intersection attr ibutes in cases i and 2. 

÷ ~ - . _ 

By successor e r a  ~trmg s, we mean the next string m 
lexigraphicat order that does not have s as a prefix 6re if no 
such str ing exists, a final s t r inggrea te r  than all s tr ings in 
the language. 
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The algorithm to remove invalid dependencies is 
shown in Figure 7. Non_normal form sure(x) is 
the set of successm's of x defined in the same 
production as x is defined. 

tree, we must keep the set of such attributes in 
the subtree until the replacement is done. When 
this subtree is used in a subtree replacement, the 
attribute set is added to the initial evaluation set. 

procedure removeinva t iddependenc ies  
(T: tree, Ti : subtree) 

for all x~ attr instances(root(Ti)) do 
if has CB value(x) then 

< I, p > r-value(x); 
C B t tee _re rnove ([, p) 

else if has fib_lookup_tree(x) then 
fbr ale bE non. normal_..form succ(x) do 

if has cB value(5)then 
< I, p>  -value(55 
CB_.tree remove(/, p); 

procedureCB tree remove 
([ : attribute location, p : pathkey) 

L ~cB_lookup__t roe (D; 
split tree(L, p, Lt,  L2); 
sptito_tree(L2, successor(p), L2, L3); 
remove tree(L2); 
CB_jookup tree(D~join tree(L1, L 3) 

Figure 7 

3°3 Reestabl lshing CB Dependencies  

The process of reestablishing CB dependencies 
after a subtree replacement is automatic-i t  takes 
place as inconsistent CB values are propagated to 
consistency by the propagation algorithm. Note 
that it is possible for change propagation to 
quiesce before the end of a copy rule chain is 
reached. This can happen if either a subtree is 
replaced with itself or if a replaced subtree 
completes a previously established copy rule 
chain. To reestablish the necessary CB 
dependencies, we could force the evaluation of 
inconsistent copy rule chains to the finish. With 
some subtree replacements, this would require 
that we unnecessarily traverse a potentially 
l a t e  set of copy attributes. 

We avoid these unnecessary evaluations by 
placing the destination attribute of all removed 
CB dependencies into the proper inconsistent 
attribute set  To be able to do this, we must 
detexmine the location of these attributes--either 
in [~he main tree or in subtree T i. This is 
necessary to determine the initial evaluation set 
to give the propagate procedure (Figure 4). If the 
~moved subtrees are to be swapped into another 
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In our implementation, this location is 
determined by observing the direction, into or out 
of the subtree, of the copy chains crossing the 
intersection. A copy chain crossing a multiple 
number of times is indicated by multiple CB 
values at the intersection that have the same 
location pointer. 

We form an ordered removal trees of these values 
with respect to the partial order imposed by the 
prefix relation on the pathkeys. Each totally 
ordered removal chain in a renmvat tree 
corresponds to the multiple intersection crossings 
of a copy chain, each element of the removal chain 
indicating an intersection crossing. The invalid 
Cg dependencies indicated by the last CB value in 
this removal chain must be located after the 
intersection point in the copy chain where this CB 
value was found. 

Thus, we can identif~v the location of the 
attributes pointed to by cB dependencies 
bypassing the last element in the removal chain. 
This process can be recursivety repeated for the 
rest of the removal chain. Since the removal trees 
are in prefix order', cB dependencies specified by 
the CB values at the removal tree root, R, include 
all dependencies specified by CB values in the rest 
of the removal tree. Thus, the invalid dependency 
removal from section 3.2 can be done top down. 

The root of the removal tree specifies a subrange 
to be removed from the dependency tree at the 
copy chain head. Recursively, each child of R 
then indicates a subrange to remove from its 
parent's tree. The resulting dependency tree for 
each node in the removal tree indicates the CB 
dependencies to destinations after the 
corresponding intersection point but before the 
next intersection point. The locations of the 
dependency destinations are then determined 
from the copy chain direction at the intersection 
point for each subtree. 

[n our tests, this optimization resulted in a 
reduction of a few percent in the total number of 
attributes evaluated. The simple tree 
modification algorithm is shown in Figure 8~ 
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p r o c e d u r e  modify_tree(T: tree, 
S : subtree_pair_set) 

inconsistent~Q; 
for all <sctbtree, subtree'> ES do  

remove invalid_dependencies(T, subtree); 
replace_subtree(T, subtree, subtree'); 
for all b ~ attr_instances(root(s ubtree)) de 

inconsistent ~-incons istentU { b } 
U non norma t_form_succ( b); 

propagate(inconsistent) 

Figure 8 

4.0 A p p r o x i m a t e  Topologica l  O r d e r i n g  

Approximate topological ordering is a graph 
evaluation strategy that relies upon a heuristic 
approximation of a topological ordering of the 
graph. In Section 4.1 we define the topological 
ordering problem and discuss its application to 
graph evaluation. Section 4.2 describes the 
initial order assignment and attribution of the 
graph. Correction of the assigned order is 
described in Section 4.3. Section 4.4 gives the 
incremental graph evatuator. 

4ol Topological  O r d e r i n g  P r o b l e m  and  
G r a p h  Eva lua t ion  

For a directed acyclic graph G with nodes N and 
SCN, we define findffirst to be the operation that 
finds b~S such that b comes before all other nodes 
of S in some topological ordering of G. We may 
also perform mod graph ope rations which modify 
the graph as follows. G is divided by vertex cut 
set V into G', C and another graph component C' 
is grafted in the place of C. This modification is 
illustrated in figure 9. The effect on the attribute 
dependency graph in an attributed tree. by 
multiple subtree replacement is a special ease of 
such a graph modification. 

The topological ordering problem is to efficiently 
perform repeated find_first operations 
interspersed with an occasional rood graph 
operation. It is difficult because it requires the 
quick computation of a global property of the 
graph--the topological order. A graph 
modification can drastically change this order. 

We wish to evaluate a semantic equation for each 
node in a dependency graph. Given a solution to 
the above problem, we could construct an 
incremental graph evaluator by performing 

G' C 

G 

C, 

Figure 9 

change propagation in topological order. Since 
we could not evaluate a node before one of its 
predecessors, we would never evaluate nodes 
more than once. While we do not have a solution 
to the topological ordering problem, we do have a 
heuristic algorithm that approximates it. Our 
approach is to maintain a locally accurate 
topological ordering. This exploits the locality 
property of change propagation. While we may 
incorrectly order nodes distant in the graph, 
nodes close to each other in the graph will be 
ordered correctly. 

4.2 ini t ial  A t t r ibu t ion  and O r d e r  A s s i g n m e n t  

We initially evaluate each node in the 
dependency graph. We do this by performing a 
topological sort of the graph, evaluating the nodes 
in that order. As we perform this evaluation, we 
assign an order number to each node. We want 
these order numbers to be in topological order, 
somewhat random, and to be distributed over a 
range much greater than the number of nodes in 
G ~Ve do this by assigning nodes with indegree 0 
a very low order, and creating order numbers for 
other nodes by appending random digits to the 
real topological order. We have implemented this 
order number as a 32 bit integer, tie first flo:g2n] 
bits containing the initial topological order, the 
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rest random. The initial attribution algorithm is 
shown in Figure 10. 

p r o c e d u r e  initial_attribution(G" graph) 
n~m_order_bits ~-32; 
random bits~n~tm_order_bits- [log2tG]t; 
for all node (G db~ 

edges _left(node) ~inde  gree( node); 
S'~{node C G i indegree(nodet = 0}; 
top._order~O; 
while 3b(S  do 

top._order~top order + 1; 
if indegree(b) = 0 then  order(b)~-i 
else order(b)~- 

shift_leR(top_order, random ..bits) 
+ random(random_bits); 

value(b)~-semantic_funcdon(b); 
for all cE succ(5) do 

edges_left(c) ÷-edges lef t(c)  - 1; 
if edges_left(c) = 0 then Se-SU{c}; 

Figure 10 

4°3 Orde r  Correct ion 

We locally correct invalid order numbers as we 
visit nodes in the graph. When grafting on a 
component, we are faced with two order numbers 
at the graft point. We choose the order number 
that corresponds with the subgraph of any 
predecessor. As we traverse the graph from b to c, 
we compare the order numbers of 5 and c. If their 
order numbering is not consistent with the 
dependency of c on 5, we swap their order 
numbers. Should we find that b and c have the 
same order number, we form a slightly larger 
random number for the order of c by adding a 
random number half its bit length. While this 
does not result in a correct topological order, the 
inconsistency is limited to graft points and the 
resulting order gradually corrects itself after 
repeated evaluation° The algorithm is shown in 
Figure t 1. 

4.4 incremental  Evaluat ion 

Given a dependency graph G and a node set S 
with inconsistent values, we reach a consistent 
assignment by applying change propagation to 
the elements of S, always evaluating the node in 
S with the lowest order number first. While this 
may lead to multiple evaluations of some nodes, 
we locally fix the ordering of the propagation area 
so that the order will be less likely to cause 
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n~unber 5ftu~-flog2(order(5)) ]/2; 
order(c) *-.order(b) 

+ random(n~unber f i ts)  + I 
else if order(t)>orderic) then  

temp+-prdeffb); 
order(b) e--.orde~ (c); 
order(c) +-tempi 

Figure t i 

multiple ewduations in the 
algorRhm is given in Figure t2. 

future. This 

~rocedure evaluate(S : priority queue) 
while S ¢ @ do 

b*-first(S); 
of due h~e~-value{ 5); 
vatuelb)+-sernantie equation(b); 
if value(5) ~ oldvah~e then 

for all c~ succ(5) do 
fix .order numbers(5,@; 
5~-SU{c} 

F'igure t2 

5.0 Copy bypass Propaga t ion  
Approximate  Topolo~cal  Orde r ing  

with 

The propagate algorRhm in Figure 4 requires us 
to determine the first element of the evaluation 
set S in some topological order. To do this, we 
implement S as a priority queue and draw out the 
element with the lowest order number given by 
the approximate topological ordering scheme. 
There is a problem with this, however. Since we 
are not guaranteed that we will always get the 
topologically first element, we might evaluate a 
semantic equation that has an inconsistent £B 
value as an argument. This would create an 
invalid CB dependency. 

To avoid this problem, we keep two inconsistent 
attribute sets. In the first set, $1, we place copy 
attributes, and in the second set, $2, we [)lace all 
noncopy attributes. Since no evaluation of an 
attribute fl'om $2 can affect an evaluation from 
$1, we can evaluate attributes from $1 when it is 
not empty and f~om $2 when Si is empty and $2 is 
not. Thus, all CB dependencies are in place when 
the evaluation of noncopy attribute instances 
cornmences. The final propagation, algorithm is 
shown in Figure 13, 



p r o c e d u r e  propagate(S/ ,S2 : priority queue) 
whi le  ($t US2) * 0 d e  

;if $1 * 0 t hen  
a t - f i r s t (S t ) ;  
S I ~.S ~ - {a} 

else 
a~f i r s t (S2 ) ;  
S2.-oS2.- {a}; 

newvat ue ~ c g  sem_func(a); 
~f value(a) v newvalue then  

value(a)~-newvalue; 
for atl b (suet(a) U nonlocat succ(a) do  

fix_order numbers(a,b); 
if  is copy_attr(b) then  

$1 ~S10{a} 
e lse  

S2~-S2U{a} 
Figure 13 

6o(} R e d u c i n g  S t o r a g e  R e q u i r e m e n t s  

Two methods are given for the reduction of 
storage requirements.  Section 6.1 gives an 
efficient pathkey storage algorithm that allows 
us to represent  most pathkeys with fixed length 
integers. A method that allows Cg values to be 
eliminated is discussed in Section 6.2 

6.1 Eff ic ient  P a t h k e y  S to r age  

An efficient method is needed for building and 
storing pathkeys. We can compact the str ing by 
using a binary representation for each successive 
index and eliminate the delimiter by appending 
the same number  of bits for each of the successors 
of at tr ibute instance a. We need rlog2(lsuec(a)l)? 
bits to represent  the choice. Note that  we need no 
bits to represent  a copy if suet(a) is equal to 1. 

Using bit manipulation functions, we define 
concat to shift the previous path key 
Flog2(lsucc(a)l)] bits to the left and then add the 
bit pat tern for the next index. 

concatb(k,a) = shift left(k, [log2(bucc(b)l)l) 
+ index(a) 

Since we must  know the length of this string of 
bits, we replace the null string s with 1 in the 
function Cg semantic function in Figure 3. 

To test if p is a prefix of k, we shift k right by the 
difference in the number of bits of k and p. Say k 

has length tk and p has length Ip. p is a prefix of k 
iff lp <_ lkAshift right(k, lk - lp) = p. 

To keep the CB lookup trees in order, we will need 
to test pathkeys for lexigraphical order. Given 
two pathkeys p~ and P2, with bit lengths I1 and 12, 
we can test !exigraphical order as follows. 

Pl = I P2 iff  pl = P2 
Pl <IP2 iff ll P~ I2Ashif~ r ight(pl ,  I i -  I2) <P2 

V I1 < 12Apl <- shift right(p2/2 - Ii) 

This allows us to reduce the size of the pathkeys,  
but it does not place a bound on the length of the 
pathkey. Each time a copy rule chain splits, the 
pathkey length will grow by the log of the split 
factor. While this split factor is small in most 
grammars,  a bound on the pathkey length would 
free us from allocating variable length storage. 

We can place a bound on the length of the 
pathkeys by introducing a -few nonlocal copy 
dependencies into the at t r ibute dependency 
graph, if creating a cg value for at t r ibute a 
requires a pathkey longer than the maximum 
length, we install a CB dependency from the 
beginning of the  copy chain to the predecessor p of 
a. We then create a cI3 value for a as i fp  were the 
head of a chain. The functions true val (Figure 
3) and nontocal succ (Figure 4) have the 
necessary recursion to support these nontocal 
copy rules. 

6.2 E l imina t ion  of  A t t r i b u t e s  Def ined  by 
Copy  Ru les  

Provided that we can determine the predecessors 
of copy at t r ibute instances, we can entirely 
eliminate the overhead of storing their Cg values 
in the tree. This is done by propagating CB values 
in the propagate procedure and by building CB 
values upon demand. 

When an inconsistent copy attribute is 
encountered in the propagate procedure {Figure 
4), we do not save its value. Instead, we insert its 
successors into the evaluation set tagged with its 
CB value. This value is used when the successor is 

evaluated. This allows us to establish CB 
dependencies without storing the CB va lues  in the 
tree. Notice that  we do not want to insert the 
consistent successors of noncopy at t r ibutes  into 
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the evaluation set as this will cause the chains 
which follow to be reevaluated. 

When a subtree replacement is perftormed where 
there is an intersection attribute defined by a 
copy rule, we build the CB value. By tracing the 
copy chain backwards~, we can locate the head of 
the copy chain and build the path key" in reverse. 
This gives us exactly what we would have stored 
as the CB value of the inte:rsection attribute, 
allowing us to remove invalid CB dependencies. 

The time required to build this CB value is 
O(,.*Copy Chain Length) for n intersection 
attributes. This is the same as the time required 
to install the new Cg dependencies after the 
subtree modification. 

The number of copy attribute instances is large. 
While the space occupied by the cB values is 
small, a great deal of storage could be saved if one 
avoided allocating storage for these attribute 
instances in addition to their values. This 
requires the ability to navigate through the 
attribute dependency graph using the underlying 
context free grammar and the attribute 
dependencies at each production. 

Note that if the bounded length pathkey scheme 
firom Sectior~ 6.1 is used, it is necessary to 
dynamically allocate storage for the attribute 
instances at the point where the pathkey length 
exceeds the bound. 

7°0 Time and Space Bounds  

First we must create the nonlocal dependencies° 
This is done as the attribute values initially 
propagate through the tree. We have used self t 
adjusting binary trees [ST85] to store the CB 
dependencies at their origin, although any 
con.catenable queue would give comparable 
results. Say we have n nontocal dependencies 
that originate f~rom m attribute instances each of 
which have k nontocal dependencies. Adding 
these nonlocat dependencies will cost us an 
amortized time of O(nlog(h)) 

tf no noniocal dependencies are altered by the 
subtree replacement, the incremental attribute 
uvtate is done in O(tA/~ctedcBl*q*r) where 
tA[fectedcBI =lA/)~?ctedi -ICopy AttributerJ, q is 
the time required to remove the first element of 
the priority queue, and r is the ratio of the total 
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number of choices made by the approximate 
topological ordering scheme to the number of 
correct choices. While the analysis of the 
approximate topological ordering scheme is an 
open problem, in our experience with attribute 
grammars Ibr programming languages, the 
priority queue rarely exceeds several hundred 
elements and r is; typically between ~ and t.1. 
Over extended editing sessions in our 
implementation, the average r has been between 
1.01 and 1.03. 

What if nonlocat dependencies are a£i~cted by 
tree modification? Say we have i such 
dependencies originating at each of m attribute 
instances. Let c be the average length of a copy 
rule chaim [f we have eliminated the copy rule 
attribute storage, we naust spend O(c) time to 
rebuild each of O(m) Cg values. We can perf%rm 
the Cg_tree_remove procedure {Figure 7) in 
amortized O(log(k)) tirne. (This is O(log(k)+ i) if 
we have to remove each tree element.) Thus the 
cost of removing nonlocal dependencies aRer a 
subtree replacement is O(m(c + log(k))L We then 
need to reestablish O(m) CB dependencies, each 
requiring O(c) copy attribute evaluations and 
O(log(k)). time to insert them into the lookup tree. 
Since ~n is bound by the number of attributes at 
the intersection symbol, the running time of the 
incremental evaluation is O((IAffectedcBI + c)*q*r 
+ log(h)). 

The number of CB values that need to be stored is 
O(ICopyAttributest). Assuming pathkeys of 
bounded length, this requires O(ICopy Attributesl) 
storage. Since there is at least one copy attribute 
instance for each nonlocal dependency, the 
storage used by nonlocal dependencies and 
pathkeys at creation attributes is also 
O(tCopy Attributest). If the copy attribute storage 
is eliminated, both of these storage requirements 
become O(ICopy C Cminsl). 

8o0 Summary 

Copy bypass attribute propagation allows the 
dynamic replacement of copy rules with nonlocal 
dependencies. This is done by passing the 
location of the value creator and a pathkey, an 
encoding of the copy rule chain path, through the 
tree. Incremental evaluation can then be done 
using multiple subtree replacement. We can 



store these pathkeys efficiently and place a bound 
on their length. 

Approximate topological ordering keeps a locally 
correct approximation of the topological ordering 
of a dependency graph. This allows us to 
incrementally evaluate any noncircular attribute 
grammar with nonloeal dependencies. 

The result of the combination of these strategies 
is an incremental evaluator for attribute 
grammars that has an overall performance 
comparable to the fastest evaluation schemes 
[K80, Y83], yet can evaluate all noncireular 
attribute grammars including those with 
nonlocal dependencies. 

A consequence of this implementation is that a 
tree of the uses of aggregate values, such as 
symbol tables, is maintained at points where the 
value is modified. This tree is ordered by 
pathkey. We currently have an implementation 
that maintains two copies of this tree, one in 
pathkey order, and the second in order of the 
lookup key of the aggregate. When these 
aggregate values change, the difference is 
computed and propagation is done only to the 
attributes which are affected. This will be 
described in a future paper. 
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