
Dynamieally Bypassing Copy Rule Chains in Attribvtte ©rammars

Roger Hoover

Department of Computer Science
Cornetl Universi ty

Ithaca, New York 14853

A b s t r a c t

Attr ibute grammars require copy rules to
transfer values between a t t r ibute instances
distant in an at t r ibuted parse tree. We introduce
copy bypass a t t r ibute propagation that
dynamically replaces copy rules with nonlocal
dependencies, resulting in f~ster incremental
evaluation. .A evaluation s t ra tegy is used that
approximates a topological ordering of a t t r ibute
instances. The result is an efficient incremental
evatuator that allows multiple subtree
replacement on any noncircular a t t r ibute
grammar.

1o0 I n t r o d u c t i o n

In a standard a t t r ibute grammar, a semantic
equation may only refer to a t t r ibute values of the
same production instance in the corresponding
context free grammar. If a semantic equation
generates a value that is to be used by an
attribute instance distant in the tree, the value
must be propagated through semantic equations
whose only purpose is to move the value to the
next production in the parse tree. These a t t r ibute
instances are referred to as copy attributes and
their defining semantic equations are called copy
rules. The repeated computation of these copy
attr ibutes during incremental evaluation is
necessary if the value at the beginning of the copy

This work is sponsered in part by a grant from IBM

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright
no~iceand the title of the publication and its date appear°
and notice is given that copying is by permission of the
Association f})r Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific permission

© 1985 ACM°O-89791q75-Xq/86~O0t4 $00,75

chain changes. The t ime required %r an
incremental evaluater to copy these values is
substantial .

instead of propagating at t r ibute values through
copy rule chains, we wish to transfe.,r a t t r ibute
values directly from their creators to their users
by means of nonlocat dependencies. Copy bypass
a t t r ibute propagation dynamical ly replaces copy
rule chains in an a t t r ibuted g rammar with copy
bypass (CB) dependencies.

We present algorithms that install C[{
dependencies, perform change propagation over
CB dependencies, and remove CB dependencies
that become invalid after a t ree modification.

[rt order to perform incremental evaluat ion after
a modification, we need an incremental evatuator
that works in the presence of nonlocal
dependencies. We introduce an incremental
graph evaluator that has this property.
Approximate topological ordering maintains a
locally accurate topological order of the graph
that is used for evaluation priority.

We have implemented these two strategies in the
Synthesizer Generator [RT84]. While a
controlled performance evaluat ion has not yet
been done, our initial results are quite promising.
When performing incremental evaluat ion in a
syntax directed Pascal editor, copy bypass
propagation significantly reduces the time
necessary to update symbol table and other f~.r
reaching changes. For extended editing sessions,
extra evaluations caused by incorrect topological
ordering information is negligible, typically
averaging around 2% of necessary evaluations.
[n the worst cases that we have observed, this
rate remains well under 50%. The overall
performance of this evaluation s t ra tegy is similar

I4

to our implementation of the evaluation strategy
for ordered attribute grammars [K80, Y83]. Our
strategy, however, is not limited to a subclass of
attribute grammars. Any attribute grammar,
including those with nonlocal dependencies, can
be incrementally evaluated.

[n Section 2.0 of this paper, we argue that
bypassing copy rule chains is desirable and we
discuss previous work in the area. In Section 3.0
we introduce copy bypass attribute propagation
and give an incremental update algorithm that
maintains Cg dependencies. We introduce an
evaluation scheme in Section 4.0 that allows us to
perform change propagation in the presence of
nonlocal dependencies. In Section 5.0 we
combine copy bypass attribute propagation with
approximate topological ordering for a complete
incremental update algorithm. Section 8.0 gives
two methods of reducing the storage costs of copy
bypass propagation. Time and space bounds are
discussed in Section 7.0.

2.9 Motivation and Previous Work

Numerous evaluation algorithms have been
published t~r incrementally updating attribute
grammars after changes. Some of these
algorithms, i.e. [RTD83, R84], can be applied to
any noncircular attribute grammar, but others,
[Y83, JF85], are restricted to subset classes of
attribute grammars. Many of these algorithms
are optimal in the sense that they run in time
O(IAff'ectedl), where Affected is the set of attribute
instances whose values change with a
modification of the attributed tree. This running
time is achieved by forcing the evaluation of
attributes to be in topological order with respect
to the attribute dependency graph.

By eliminating propagation over copy rule
chains, we can reduce the size of Affected. Since
the copy rule portion of Affected can be
arbitrarily large, CB propagation can perform an
incremental update faster than these
conventional update algorithms.

Consider the attribute grammar in Figure I.
Copy rules are indicated by = c-

An attributed parse tree for let a = 5 in a + 4 + 8
ni is shown in Figure 2. Notice how the symbol
table is needlessly copied into the declaration of a
and bow it is copied through the tree in order for

S : : = g T::=let D i n e ni
S.val = E.val T.val =c E.val
E.st = Q D.st =cT,st

E.st = update(T.st,D.df)

E: :=T
g.val =c T.val
T.st =c E.st

T::=id
T.val = lookup(T.st,id)

T:: = int
E I : :=E2+T T.val = valueoffint)

El.val = E2.val
+T,val D::=id = E

E2.st =c El.st D.df = [id,g.val]
T.st =c El.st E.st =c D.st

Figure I

the value of a to be determined, if we were to
graft the subtree under the first E nonterminal
into another parse tree where st is not empty, a
conventional evaluator would update all of these
copy attributes. In our implementation, the
attributed tree for a 500 line Pascal program to
format text files [KP81] contains some 5400 copy
chains, approximately half of which are
terminated by uses. During incremental
evaluation, copy bypass propagation allows us to
avoid evaluating copy chains not terminated by
uses, and bypass all others.

Efforts have been made to extend the attribute
grammar formalism by allowing nonlocal
dependencies. In [J84, JF85] attribute grammars
are extended to allow nonloeal productions. The
dependencies created by these productions,
however, must be explicitly specified in the
grammar and cannot be used to eliminate all copy
rule chains. In [DRZ85], dependencies are
established by the transmission of messages
between attributes. While these explicitly
specified dependencies are established between
attribute instances remote in the parse tree,
unconditionally forwarded messages are
analogous to copy rules and the method requires
propagation over them. During incremental
evaluation, copy bypass propagation avoids
propagation ove~ copy chains by creating implicit
nontocal dependencies.

The introduction of" nonlocal dependencies
complicates the attribute evaluation process,
especially if these dependencies are created
dynamically. Although the algorithms of [KSO,
~/84] have been extbnded G" a subdass o[

15

nontocal dependencies [RMT86], this subclass
does not include all nonlocal dependencies needed
to bypass copy rule chains, tn [JF85] and in
[DRZ85], an analysis is made of possible
dependencies and attributes are given a priority
number that specifies their evaluation order. If
this order cannot be statically determined, the
attribute grammar cannot be evaluated by the
strategy. [JF85] allow the evaluation of some
grammars that fail this test if a traversat order of
the tree is maintained. [DRZ85] observe that a
topological ordering would allow all grammars to
be evaluated, but do not give an algorithm for
maintaining one. Approximate topological
ordering uses a heuristic approximation of the
true topological order and can evaluate any
noneircular attribute grammar.

3°0 Copy bypass ARribute Propagat ion

dependencies can be removed after a tree
modification. The process of reestablishing (;~
dependencies is discussed in Section 3.3.

3,1 The [nser t lon ofcB Dependenc ie s

Upon the initial attribution of the tree, we give
each copy attribute a special value, called a C}~
value, instead of the value of its semantic
equation. A CS vafue is a pair c<msisting of the
{ocation where its true value can be found, a~.d a
pathkey, a string that specifies the path taken
from this location. Let a be the last attribute
instance in acopy rule chain. When the value a is
needed to compute the value of its successor, we
create a CB dependency by placing the location of
a and the pathkey stored at a in a lookup tree at
the headof the chain. We order the CB lookup tree
by pathkey in lexigraphical order'.

Copy bypass attribute propagation is a method of
attribute propagation that allows copy rule
chains to be bypassed. Section 3.1 shows how
copy bypass (CS) dependencies are dynamically
inserted. In Section 3.2 we show how invalid CB

We define the following .functions for attribute
instance a. We will use these functions to specif[y
how the tree is attributed.

...... copy dependency

noncopy dependency

I

T Ss to vats

S ~vat 17

E ¢st @ val ~7

I

T ~St e ~val ~7

t [a,s]
j /

/

E /get in,S]

E get t ,5/ Set vai

a

Figure 2: Attributed Parse Tree for let a =5 in a +4 + 8 ni

• ~val ~z

-- \
T ~st [a,s] vaJ 8

4 8

16

value(a) The value of a t t r ibute instance a.
This is the cg value if a is defined
by a copy rule.

location(a) The location of attribute instance
a. Since this location uniquely
identifies a, we will sometimes use
the location of an at t r ibute in place
of its name.

suet(a) The set of attribute instances that
directly depend on attribute
instance a. This set does not
include any nonlocal dependencies.

indexb(a) We number the successor set of b
from 0 to }succ(b)l-1. This
flanction re turns the number of
attribute instance a in the
successor set of b. Since copy
at t r ibutes have only one
predecessor, we drop the subscript
and refer to index(a) fbr copy
attribute instance a.

concatb(k, a) Given an at t r ibute instance b that
a directly depends on, we
concatenate the indexb(a) onto the
end of a pa thkey k. We will drop
the subscript for copy attribute
instance a as we did for the index
function. Since we need to delimit
the index tYom the rest of the
pathkey, think of conca~(k,a) as
k]l jlindex(a).

We give values to at tr ibute instances as follows.

Say the semantic function that defines a is f. tf f
is a copy rule, we give a a cg value <loc. path>.
If b, the a t t r ibute instance being copied by f, does
not have a CB value, loc is the location of b and
path is the index number of a appended to the
empty string, if b has a CB value < Ib ,pb> ,
Ioc=Ib and path is computed by concatenating
the index number a to the end of pb.

If f is not a copy rule, a will have the value
defined by f If an argument b to f has a CB value
< / , p > , the value stored at location I is used. A
nonloeal dependency is then established from [to
b and stored under pathkey p in a lookup tree at i.

In. the future, when the value of g changes, we will
propagate this change directly to a.

Thus, when computing the value of the attr ibute,
we evaluate the CB semantic function (shown in
Figure 3) instead of evaluat ing f. The function
add CB dependency(I,b,p) inserts the pair
<location(b), p > in the Cg lookup tree at
a t t r ibute location L

function CB sem_fune(a : a t t r ibute instance)
{say the sere. rune. defining a is [(bl , ba)}
if is_copy ruleq) t hen

i f - , h a s Ca value(b1) t hen
r e tu rn (< location(b0, eoneat(e, a) >)

e lse
<l , p > a-value(b1);
r e tu rn (< l, concat(p, a) >)

else
r e t u rn (~ t rue val(50, ..., true val(bn)))

f u n c t i o n true_val(b : at t r ibute_instance)
if -~ has CB value(b) then re turn(value(b))
else

i f ~ h a s CB dependency(b) then
< I, p > e-value(b);
add CB dependency(1,b,p);
has CB dependency(b)~-trtae;

reSurn(t rue vat(l))

Figure 3

To incremental ly update a tree that has been
a t t r ibuted using the CB semantic function (Figure
3), we use simple change propagation and
propagate over both Ioeat and nonlocM
dependencies. The procedure propagate, shown
in Figure 4, takes the set of atl inconsistent
a t t r ibutes and consistently at t r ibutes the tree.
Note that this procedure requires that we be able
to determine the first element in evaluation set in
some topological order. In Section 4 we will show
how this can be replaced by an approximate
topological ordering.

Attributing the parse tree in Figure 2 using the
copy bypass semantic function results in the
attribute dependency graph shown in Figure 5.
In this figure, an integer before the name of an
attribute indicates its location. In the actual
implementation, the location is the address of the
storage cell containing the attribute. Note that
all copy chains have been bypassed by CB
dependencies. Although the CB dependencies

17

p r o c e d u r e propagate(S : set ofa t tmbutes)
while S a ~ do

a+-first in topological order(S);
S ~-.S - {a}

new value ~CB__sem_func(a);
if value(a) a newvatue t hen

value(a) ~-newvalue;
S ~-S U suce(a) U nonlocal _suet(a)

f unc t i on nonlocal succ(b : at t r ibute instance)
?¢-~-@;

if has CB lookup_t ree(b) then
for all c~ cB_lookup tree(b) d o

N*-NU succ(c) U nonlocal_succ(c);
re turn(N)

Figure 4

point to the last copy at t r ibute in the chain, the
evatuator propagates changes directly to their
successors. For e×ampte, the use of the identifier
a depends upon the at t r ibute where the symbol
table is modified.

3o~ Modi f i ca t ion ofChe A%r:ib~ated T r e e

We use multiple subtree replacement as our
model of tree modification, Given an a t t r ibuted
tree T with subtrees T1, T% ._, Tn, we replace fib,
T2, ..., Tn with TI', T~', Try' such that the root of
T i has the same nonterminal as the root of Ti'.
The nonterminals at the points of subtree
replacement are referred to as the intersection
nor~erminafs and their at t r ibute instances are
referred to as intersection a~tribt~fes. Note that we
are not restricted to subtree replacement, in
Section 4 we will introduce a more general
modification model based upon the division of the
at t r ibute dependency graph by a vertex cut set.

As it is done in [RTD83, R84], we replace the
inherited intersection a t t r ibute values with those
from the subtree and keep the synthesized
intersection attribute values from T. For
at t r ibute grammars in normal form, this confines
all inconsistent non copy a t t r ibutes to the
intersection nonterminal. Our change
propagation algorithm (Figure 4), however, does

. copy dependency S tval 17

noneopy dependency

E ~jst e ~vat 5,.o.o
CB dependency , ~ oo

T ~t.O ½val5,.o

/
/

D ~st t.o.o !

i

I

T ~st ~,.o.o.o,o

5

~t 2,,0

2val 55

j ~st 3,.o 9

E : gst 3 ,0 ,0 1 <.0 T st 3,.o.

~vat s 4

'b

wal 4 8

val 8

a

Figure ~' ' e " a. Parse 7 re ~ Attributed With CB Semantic Function

18

not require this.
determine which
inconsistent°

We need only to be able to
at tr ibute instances are

We are using location pointers to represent CB
dependencies. Thus, the above replacement
strategy will not confine all inconsistent copy
attr ibutes to the intersection nonterminal if one
of these pointers refers to the location of a
replaced value. Therefore, we must not only
replace the intersection at tr ibute values, but we
must insure that the replacing at tr ibutes have
the same locations as the attributes that they
replace~ If the implementat ion does not allow
this, all nontocal dependencies from the replaced
attr ibute are invalid and must be removed. This
is done by considering the copy rule successors of
such intersection at tr ibutes part of the
intersection in the fbllowing discussion.

Before we can perform the subtree replacement,
we must detect and remove any cg dependencies
that become invalid when each Ti is separated
from T. There are three cases in which a CB
dependency might be invalid.

1. The copy rule chain bypassed by the
dependency crosses the intersection.

2. The dependency ends at an intersection
attribute.

3. The dependency begins at an intersection
attribute.

These three cases are shown in Figure 6. Note
that these cases are not exclusive.

For each cB dependency of cases 1 and 2, there
must exist an intersection attr ibute x with a c g
value. If the inherited attributes come from Ti'
and the synthesized at tr ibutes come from T, none
of these dependencies will be valid after the
subtree replacement. Therefore. we must remove
them.

Sa) value(x) = < loc,path >. Any CB dependencies
that were created to bypass x must originate from
the attr ibute at location loc. Since we created the
pathkeys for these dependencies b y

concatenating additional path infbrmation to the
end of path, the pathkeys of any CB dependeacies
that, bypass x muss have path as a preflx~ It is
easy to see f¥om the? cm~struct[cr~ of the pathkeys

e at tr ibute instance

I intersection at tr ibute

loeat dependency

," ~ - ~ CB dependency

Figure g

that all other dependencies from toe will not have
path as a prefix. Therefore, we can remove all
ease 1 and 2 dependencies by deleting all Cg
dependencies that have pathkeys prefixed by path
from the CB lookup tree at loc. Since the lookup
tree is kept in texigraphical order, we can do this
operation by splitting the tree into three trees,
L~ <path, path_< L2 < successor(path)*, and
La >- successor(path). Joining L1 and La results in
the desired tree with all invalid dependencies
bypassing x removed.

Any remaining invalid dependencies must be of
case 3 and will have a CB lookup tree at an
intersection node x. If the grammar is in normal
form, all inherited attr ibutes will have cB
successors only in Ti' and they will remain valid.
Likewise, all synthesized attr ibutes will have CB
successors only in T. If the grammar is not in
normal form, we m u s t remove CB dependencies
that bypass any successors of x that violate
normal form. We do this exactly as we did for the
intersection attr ibutes in cases i and 2.

÷ ~ - . _

By successor e r a ~trmg s, we mean the next string m
lexigraphicat order that does not have s as a prefix 6re if no
such str ing exists, a final s t r inggrea te r than all s tr ings in
the language.

19

The algorithm to remove invalid dependencies is
shown in Figure 7. Non_normal form sure(x) is
the set of successm's of x defined in the same
production as x is defined.

tree, we must keep the set of such attributes in
the subtree until the replacement is done. When
this subtree is used in a subtree replacement, the
attribute set is added to the initial evaluation set.

procedure removeinva t iddependenc ies
(T: tree, Ti : subtree)

for all x~ attr instances(root(Ti)) do
if has CB value(x) then

< I, p > r-value(x);
C B t tee _re rnove ([, p)

else if has fib_lookup_tree(x) then
fbr ale bE non. normal_..form succ(x) do

if has cB value(5)then
< I, p> -value(55
CB_.tree remove(/, p);

procedureCB tree remove
([: attribute location, p : pathkey)

L ~cB_lookup__t roe (D;
split tree(L, p, Lt, L2);
sptito_tree(L2, successor(p), L2, L3);
remove tree(L2);
CB_jookup tree(D~join tree(L1, L 3)

Figure 7

3°3 Reestabl lshing CB Dependencies

The process of reestablishing CB dependencies
after a subtree replacement is automatic-i t takes
place as inconsistent CB values are propagated to
consistency by the propagation algorithm. Note
that it is possible for change propagation to
quiesce before the end of a copy rule chain is
reached. This can happen if either a subtree is
replaced with itself or if a replaced subtree
completes a previously established copy rule
chain. To reestablish the necessary CB
dependencies, we could force the evaluation of
inconsistent copy rule chains to the finish. With
some subtree replacements, this would require
that we unnecessarily traverse a potentially
l a t e set of copy attributes.

We avoid these unnecessary evaluations by
placing the destination attribute of all removed
CB dependencies into the proper inconsistent
attribute set To be able to do this, we must
detexmine the location of these attributes--either
in [~he main tree or in subtree T i. This is
necessary to determine the initial evaluation set
to give the propagate procedure (Figure 4). If the
~moved subtrees are to be swapped into another

2O

In our implementation, this location is
determined by observing the direction, into or out
of the subtree, of the copy chains crossing the
intersection. A copy chain crossing a multiple
number of times is indicated by multiple CB
values at the intersection that have the same
location pointer.

We form an ordered removal trees of these values
with respect to the partial order imposed by the
prefix relation on the pathkeys. Each totally
ordered removal chain in a renmvat tree
corresponds to the multiple intersection crossings
of a copy chain, each element of the removal chain
indicating an intersection crossing. The invalid
Cg dependencies indicated by the last CB value in
this removal chain must be located after the
intersection point in the copy chain where this CB
value was found.

Thus, we can identif~v the location of the
attributes pointed to by cB dependencies
bypassing the last element in the removal chain.
This process can be recursivety repeated for the
rest of the removal chain. Since the removal trees
are in prefix order', cB dependencies specified by
the CB values at the removal tree root, R, include
all dependencies specified by CB values in the rest
of the removal tree. Thus, the invalid dependency
removal from section 3.2 can be done top down.

The root of the removal tree specifies a subrange
to be removed from the dependency tree at the
copy chain head. Recursively, each child of R
then indicates a subrange to remove from its
parent's tree. The resulting dependency tree for
each node in the removal tree indicates the CB
dependencies to destinations after the
corresponding intersection point but before the
next intersection point. The locations of the
dependency destinations are then determined
from the copy chain direction at the intersection
point for each subtree.

[n our tests, this optimization resulted in a
reduction of a few percent in the total number of
attributes evaluated. The simple tree
modification algorithm is shown in Figure 8~

5

p r o c e d u r e modify_tree(T: tree,
S : subtree_pair_set)

inconsistent~Q;
for all <sctbtree, subtree'> ES do

remove invalid_dependencies(T, subtree);
replace_subtree(T, subtree, subtree');
for all b ~ attr_instances(root(s ubtree)) de

inconsistent ~-incons istentU { b }
U non norma t_form_succ(b);

propagate(inconsistent)

Figure 8

4.0 A p p r o x i m a t e Topologica l O r d e r i n g

Approximate topological ordering is a graph
evaluation strategy that relies upon a heuristic
approximation of a topological ordering of the
graph. In Section 4.1 we define the topological
ordering problem and discuss its application to
graph evaluation. Section 4.2 describes the
initial order assignment and attribution of the
graph. Correction of the assigned order is
described in Section 4.3. Section 4.4 gives the
incremental graph evatuator.

4ol Topological O r d e r i n g P r o b l e m and
G r a p h Eva lua t ion

For a directed acyclic graph G with nodes N and
SCN, we define findffirst to be the operation that
finds b~S such that b comes before all other nodes
of S in some topological ordering of G. We may
also perform mod graph ope rations which modify
the graph as follows. G is divided by vertex cut
set V into G', C and another graph component C'
is grafted in the place of C. This modification is
illustrated in figure 9. The effect on the attribute
dependency graph in an attributed tree. by
multiple subtree replacement is a special ease of
such a graph modification.

The topological ordering problem is to efficiently
perform repeated find_first operations
interspersed with an occasional rood graph
operation. It is difficult because it requires the
quick computation of a global property of the
graph--the topological order. A graph
modification can drastically change this order.

We wish to evaluate a semantic equation for each
node in a dependency graph. Given a solution to
the above problem, we could construct an
incremental graph evaluator by performing

G' C

G

C,

Figure 9

change propagation in topological order. Since
we could not evaluate a node before one of its
predecessors, we would never evaluate nodes
more than once. While we do not have a solution
to the topological ordering problem, we do have a
heuristic algorithm that approximates it. Our
approach is to maintain a locally accurate
topological ordering. This exploits the locality
property of change propagation. While we may
incorrectly order nodes distant in the graph,
nodes close to each other in the graph will be
ordered correctly.

4.2 ini t ial A t t r ibu t ion and O r d e r A s s i g n m e n t

We initially evaluate each node in the
dependency graph. We do this by performing a
topological sort of the graph, evaluating the nodes
in that order. As we perform this evaluation, we
assign an order number to each node. We want
these order numbers to be in topological order,
somewhat random, and to be distributed over a
range much greater than the number of nodes in
G ~Ve do this by assigning nodes with indegree 0
a very low order, and creating order numbers for
other nodes by appending random digits to the
real topological order. We have implemented this
order number as a 32 bit integer, tie first flo:g2n]
bits containing the initial topological order, the

21

rest random. The initial attribution algorithm is
shown in Figure 10.

p r o c e d u r e initial_attribution(G" graph)
n~m_order_bits ~-32;
random bits~n~tm_order_bits- [log2tG]t;
for all node (G db~

edges _left(node) ~inde gree(node);
S'~{node C G i indegree(nodet = 0};
top._order~O;
while 3b(S do

top._order~top order + 1;
if indegree(b) = 0 then order(b)~-i
else order(b)~-

shift_leR(top_order, random ..bits)
+ random(random_bits);

value(b)~-semantic_funcdon(b);
for all cE succ(5) do

edges_left(c) ÷-edges lef t(c) - 1;
if edges_left(c) = 0 then Se-SU{c};

Figure 10

4°3 Orde r Correct ion

We locally correct invalid order numbers as we
visit nodes in the graph. When grafting on a
component, we are faced with two order numbers
at the graft point. We choose the order number
that corresponds with the subgraph of any
predecessor. As we traverse the graph from b to c,
we compare the order numbers of 5 and c. If their
order numbering is not consistent with the
dependency of c on 5, we swap their order
numbers. Should we find that b and c have the
same order number, we form a slightly larger
random number for the order of c by adding a
random number half its bit length. While this
does not result in a correct topological order, the
inconsistency is limited to graft points and the
resulting order gradually corrects itself after
repeated evaluation° The algorithm is shown in
Figure t 1.

4.4 incremental Evaluat ion

Given a dependency graph G and a node set S
with inconsistent values, we reach a consistent
assignment by applying change propagation to
the elements of S, always evaluating the node in
S with the lowest order number first. While this
may lead to multiple evaluations of some nodes,
we locally fix the ordering of the propagation area
so that the order will be less likely to cause

22

n~unber 5ftu~-flog2(order(5))]/2;
order(c) *-.order(b)

+ random(n~unber f i ts) + I
else if order(t)>orderic) then

temp+-prdeffb);
order(b) e--.orde~ (c);
order(c) +-tempi

Figure t i

multiple ewduations in the
algorRhm is given in Figure t2.

future. This

~rocedure evaluate(S : priority queue)
while S ¢ @ do

b*-first(S);
of due h~e~-value{ 5);
vatuelb)+-sernantie equation(b);
if value(5) ~ oldvah~e then

for all c~ succ(5) do
fix .order numbers(5,@;
5~-SU{c}

F'igure t2

5.0 Copy bypass Propaga t ion
Approximate Topolo~cal Orde r ing

with

The propagate algorRhm in Figure 4 requires us
to determine the first element of the evaluation
set S in some topological order. To do this, we
implement S as a priority queue and draw out the
element with the lowest order number given by
the approximate topological ordering scheme.
There is a problem with this, however. Since we
are not guaranteed that we will always get the
topologically first element, we might evaluate a
semantic equation that has an inconsistent £B
value as an argument. This would create an
invalid CB dependency.

To avoid this problem, we keep two inconsistent
attribute sets. In the first set, $1, we place copy
attributes, and in the second set, $2, we [)lace all
noncopy attributes. Since no evaluation of an
attribute fl'om $2 can affect an evaluation from
$1, we can evaluate attributes from $1 when it is
not empty and f~om $2 when Si is empty and $2 is
not. Thus, all CB dependencies are in place when
the evaluation of noncopy attribute instances
cornmences. The final propagation, algorithm is
shown in Figure 13,

p r o c e d u r e propagate(S/ ,S2 : priority queue)
whi le ($t US2) * 0 d e

;if $1 * 0 t hen
a t - f i r s t (S t) ;
S I ~.S ~ - {a}

else
a~f i r s t (S2) ;
S2.-oS2.- {a};

newvat ue ~ c g sem_func(a);
~f value(a) v newvalue then

value(a)~-newvalue;
for atl b (suet(a) U nonlocat succ(a) do

fix_order numbers(a,b);
if is copy_attr(b) then

$1 ~S10{a}
e lse

S2~-S2U{a}
Figure 13

6o(} R e d u c i n g S t o r a g e R e q u i r e m e n t s

Two methods are given for the reduction of
storage requirements. Section 6.1 gives an
efficient pathkey storage algorithm that allows
us to represent most pathkeys with fixed length
integers. A method that allows Cg values to be
eliminated is discussed in Section 6.2

6.1 Eff ic ient P a t h k e y S to r age

An efficient method is needed for building and
storing pathkeys. We can compact the str ing by
using a binary representation for each successive
index and eliminate the delimiter by appending
the same number of bits for each of the successors
of at tr ibute instance a. We need rlog2(lsuec(a)l)?
bits to represent the choice. Note that we need no
bits to represent a copy if suet(a) is equal to 1.

Using bit manipulation functions, we define
concat to shift the previous path key
Flog2(lsucc(a)l)] bits to the left and then add the
bit pat tern for the next index.

concatb(k,a) = shift left(k, [log2(bucc(b)l)l)
+ index(a)

Since we must know the length of this string of
bits, we replace the null string s with 1 in the
function Cg semantic function in Figure 3.

To test if p is a prefix of k, we shift k right by the
difference in the number of bits of k and p. Say k

has length tk and p has length Ip. p is a prefix of k
iff lp <_ lkAshift right(k, lk - lp) = p.

To keep the CB lookup trees in order, we will need
to test pathkeys for lexigraphical order. Given
two pathkeys p~ and P2, with bit lengths I1 and 12,
we can test !exigraphical order as follows.

Pl = I P2 iff pl = P2
Pl <IP2 iff ll P~ I2Ashif~ r ight(pl , I i - I2) <P2

V I1 < 12Apl <- shift right(p2/2 - Ii)

This allows us to reduce the size of the pathkeys,
but it does not place a bound on the length of the
pathkey. Each time a copy rule chain splits, the
pathkey length will grow by the log of the split
factor. While this split factor is small in most
grammars, a bound on the pathkey length would
free us from allocating variable length storage.

We can place a bound on the length of the
pathkeys by introducing a -few nonlocal copy
dependencies into the at t r ibute dependency
graph, if creating a cg value for at t r ibute a
requires a pathkey longer than the maximum
length, we install a CB dependency from the
beginning of the copy chain to the predecessor p of
a. We then create a cI3 value for a as i fp were the
head of a chain. The functions true val (Figure
3) and nontocal succ (Figure 4) have the
necessary recursion to support these nontocal
copy rules.

6.2 E l imina t ion of A t t r i b u t e s Def ined by
Copy Ru les

Provided that we can determine the predecessors
of copy at t r ibute instances, we can entirely
eliminate the overhead of storing their Cg values
in the tree. This is done by propagating CB values
in the propagate procedure and by building CB
values upon demand.

When an inconsistent copy attribute is
encountered in the propagate procedure {Figure
4), we do not save its value. Instead, we insert its
successors into the evaluation set tagged with its
CB value. This value is used when the successor is

evaluated. This allows us to establish CB
dependencies without storing the CB va lues in the
tree. Notice that we do not want to insert the
consistent successors of noncopy at t r ibutes into

23

the evaluation set as this will cause the chains
which follow to be reevaluated.

When a subtree replacement is perftormed where
there is an intersection attribute defined by a
copy rule, we build the CB value. By tracing the
copy chain backwards~, we can locate the head of
the copy chain and build the path key" in reverse.
This gives us exactly what we would have stored
as the CB value of the inte:rsection attribute,
allowing us to remove invalid CB dependencies.

The time required to build this CB value is
O(,.*Copy Chain Length) for n intersection
attributes. This is the same as the time required
to install the new Cg dependencies after the
subtree modification.

The number of copy attribute instances is large.
While the space occupied by the cB values is
small, a great deal of storage could be saved if one
avoided allocating storage for these attribute
instances in addition to their values. This
requires the ability to navigate through the
attribute dependency graph using the underlying
context free grammar and the attribute
dependencies at each production.

Note that if the bounded length pathkey scheme
firom Sectior~ 6.1 is used, it is necessary to
dynamically allocate storage for the attribute
instances at the point where the pathkey length
exceeds the bound.

7°0 Time and Space Bounds

First we must create the nonlocal dependencies°
This is done as the attribute values initially
propagate through the tree. We have used self t
adjusting binary trees [ST85] to store the CB
dependencies at their origin, although any
con.catenable queue would give comparable
results. Say we have n nontocal dependencies
that originate f~rom m attribute instances each of
which have k nontocal dependencies. Adding
these nonlocat dependencies will cost us an
amortized time of O(nlog(h))

tf no noniocal dependencies are altered by the
subtree replacement, the incremental attribute
uvtate is done in O(tA/~ctedcBl*q*r) where
tA[fectedcBI =lA/)~?ctedi -ICopy AttributerJ, q is
the time required to remove the first element of
the priority queue, and r is the ratio of the total

24

number of choices made by the approximate
topological ordering scheme to the number of
correct choices. While the analysis of the
approximate topological ordering scheme is an
open problem, in our experience with attribute
grammars Ibr programming languages, the
priority queue rarely exceeds several hundred
elements and r is; typically between ~ and t.1.
Over extended editing sessions in our
implementation, the average r has been between
1.01 and 1.03.

What if nonlocat dependencies are a£i~cted by
tree modification? Say we have i such
dependencies originating at each of m attribute
instances. Let c be the average length of a copy
rule chaim [f we have eliminated the copy rule
attribute storage, we naust spend O(c) time to
rebuild each of O(m) Cg values. We can perf%rm
the Cg_tree_remove procedure {Figure 7) in
amortized O(log(k)) tirne. (This is O(log(k)+ i) if
we have to remove each tree element.) Thus the
cost of removing nonlocal dependencies aRer a
subtree replacement is O(m(c + log(k))L We then
need to reestablish O(m) CB dependencies, each
requiring O(c) copy attribute evaluations and
O(log(k)). time to insert them into the lookup tree.
Since ~n is bound by the number of attributes at
the intersection symbol, the running time of the
incremental evaluation is O((IAffectedcBI + c)*q*r
+ log(h)).

The number of CB values that need to be stored is
O(ICopyAttributest). Assuming pathkeys of
bounded length, this requires O(ICopy Attributesl)
storage. Since there is at least one copy attribute
instance for each nonlocal dependency, the
storage used by nonlocal dependencies and
pathkeys at creation attributes is also
O(tCopy Attributest). If the copy attribute storage
is eliminated, both of these storage requirements
become O(ICopy C Cminsl).

8o0 Summary

Copy bypass attribute propagation allows the
dynamic replacement of copy rules with nonlocal
dependencies. This is done by passing the
location of the value creator and a pathkey, an
encoding of the copy rule chain path, through the
tree. Incremental evaluation can then be done
using multiple subtree replacement. We can

store these pathkeys efficiently and place a bound
on their length.

Approximate topological ordering keeps a locally
correct approximation of the topological ordering
of a dependency graph. This allows us to
incrementally evaluate any noncircular attribute
grammar with nonloeal dependencies.

The result of the combination of these strategies
is an incremental evaluator for attribute
grammars that has an overall performance
comparable to the fastest evaluation schemes
[K80, Y83], yet can evaluate all noncireular
attribute grammars including those with
nonlocal dependencies.

A consequence of this implementation is that a
tree of the uses of aggregate values, such as
symbol tables, is maintained at points where the
value is modified. This tree is ordered by
pathkey. We currently have an implementation
that maintains two copies of this tree, one in
pathkey order, and the second in order of the
lookup key of the aggregate. When these
aggregate values change, the difference is
computed and propagation is done only to the
attributes which are affected. This will be
described in a future paper.

9.9 References

[DRZ851 Demers, Alan, Anne Rogers, and
Frank Kenneth Zadeck. Attribute
Propagation by Message Passing.
Proc. ACM SIGPLAN 85 Symposium
on Language Issues in Programming
Environments, Seattle, WA, June,
1985, pp. 43-59

[J841 Johnson, Gregory F~ An approach to
incremental semantics. TR 547,
University of Wisconsin, Madison,
July 1984.

[JF851 Johnson, Gregory F., and C. N.
Fischer. A meta-language and system
for nonlocal incremental attribute
evaluation in language, based editors.
Proc. of the 12th ACM Symposium on
Principles of Programming Languages,
New Orleans, LA, Jan 14-16, 1985 pp.
141-151.

[K80]

[KP81]

[R84]

[RMT86]

[RT84]

[RTD83]

[ST851

[¥831

25

Kastens, U. Ordered attribute
grammars. Acta tn f 13, 3, 1980, pp.
229-256.

Kernighan, Brian and P. J. Plauger.
Software Tools in Pascal. Addison-
Wesley, Reading, MA,1981.

Peps, Thomas. Generating Language-
based Environments. M.I.T Press,
Cambridge, MA, 1984.

Reps, Thomas, Carla Marceau, and
Tim Teitelbaum. Remote Attribute
Updating for Language-based Editors.
Proc. of the 13th ACM Symposium on
Principles of Programming Languages,
St. Petersburg, Florida, Jan 13-15,
1986

Peps, Thomas and Tim Teitelbaum.
The Synthesizer Generator. Proc. of
the ACM StGSOFT/SIGPLAN
Software Engineering Symposium on
Practical Software Development
Environments, Pittsburgh, PA, April
1984.

Peps, Thomas, Tim Teitelbaum, and
Alan Demers. Incremental context-
dependent analysis for language-based
editors. ACM Trans. Program. Lang.
Syst. 5, 3, July 1983, pp. 449-477.

Sleator, D. D. and R. E. Tarjan. Self-
adjusting Binary Search Trees. JACM
32, 3, July 1985, pp. 652-68g.

Yeh, Dashing, On Incremental
Evaluation of Ordered Attributed
Grammars. BIT23, 1983, 308-320.

