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Lecture summary 

The lecture will be about a simple graphical model for mobile com- 
puting. 

Graphical or geometric models of computing are probably as old 
as the stored-program computer, possibly older. I do not know 
when the first flowchart was drawn. Though undeniably useful, 
flowcharts were denigrated because vital notions like parametric 
computing -the procedure, in Algol terms- found no place in them. 
But a graphical reduction model was devised by Wadsworth [15] 
for the lambda calculus, the essence of parametric (functional) 
computing. Meanwhile, Patti nets [13] made a breakthrough in un- 
derstanding synchronization and concurrent control flow. Later, the 
chemical abstract machine (Chain) [2] -employing chemical anal- 
ogy but clearly a spatial concept- clarified and generalised many 
features of process calculi. 

Before designing CCS, I definedflowgraphs [9] as a graphical pre- 
sentation offlow algebra, an early form of what is now called struc- 
tural congruence; it represented the static geometry of interactive 
processes. The pi calculus and related calculi are all concerned 
with a form of mobility; they all use some form of structural con- 
gruence, but are also informed by a kind of dynamic geometrical 
intuition, even if not expressed formally in those terms. 

There are now many such calculi and associated languages. Exam- 
pies are the pi calculus [11], the fusion calculus [12], the join cal- 
culus [5], the spi calculus [1], the ambient calculus [3], Pict [14], 
nomadic Pitt [16], explicit fusions [6]. While these calculi were 
evolving, in the action calculus project [10] we tried to distill their 
shared mobile geometry into the notion of action graph. This cen- 
tred around a notion of molecule, a node in which further graphs 
may nest. All action calculi share this kind of geometry, and are 
distinguished only by a signature (a set of molecule types) and a 
set of reaction rules. The latter determine what configurations of 
molecules can react, and the contexts in which these reactions can 
take place. 

Such a framework does not necessarily help in designing and 
analysing a calculus for a particular purpose. It becomes useful 
when it supplies non-trivial theory relevant to all, or a specific class 
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of, calculi. Most process calculi are equipped with a behavioural 
theory - often a labelled transition system (LTS), or a reaction (= 
reduction) relation, together with a trace-based or (bi)simulation- 
based behavioural preorder or equivalence. Developing this theory 
is often hard work, especially proving that the behavioural relation 
is preserved by (some or all) contexts. Recently [8] we have defined 
a simple categorical notion of reactive system, and shown that un- 
der certain conditions an LTS may be uniformly derived for it, in 
such a way that various behavioural relations -including the fail- 
ures preorder and bisimilarity- will automatically be congruential 
(i.e. preserved by contexts). We have also shown [4] that a substan- 
tial class of action calculi satisfy the required conditions. Thus we 
approach a non-trivial general theory for those calculi which fit the 
framework, as many do. 

This work has encouraged us to base the theory on a simpler notion: 
a linear action graph, one in which edges may not fork or merge; 
an example is shown in Fig. 1. These graphs are a generalisation 
of Lafont's interaction nets [7]. They consist just of nodes (with 
many ports) and edges, but with a locality -i.e. a forest structure- 
imposed upon nodes quite independently of the edge wiring. This 
notion has grown out of action calculi but is also inspired by the 
Chain of Berry and Boudol [2], the ambient calculus of Cardelli 
and Gordon [3], the language Nomadic Pitt of Sewell and Woj- 
ciechowski [16], and the fusion concept of Parrow and Victor [12] 
further developed by Gardner and Wischik [6]. The intuition is that 
nodes have locality, wires (per se) don't. A node and its (nodal) 
contents can be an ambient, a physical location, a A-abstraction, 
a program script, an administrative region . . . . .  A node without 
contents can be a date constructor, a cryptographic key, a merge or 
copy node, a message envelope . . . . .  

In the lecture I shall outline the basic behavioural theory of shallow 
linear graphs -those without nesting. I hope to indicate how this 
behavioural theory extends smoothly to nested graphs, and how 
the reaction rules in these can conveniently represent action-at-a- 
distance - a fiction which is essential in a higher level model of 
(say) the worldwide web. I shall also discuss how the non-linear 
theory may be recovered, by a form of quotient. This is work in 
progress. 
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Fig. 1: A linear action graph 
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