
Computational flux

Rob i n Mi lne r

Univers i ty of Cambr idge , C o m p u t e r Labora to ry

Lecture summary

The lecture will be about a simple graphical model for mobile com-
puting.

Graphical or geometric models of computing are probably as old
as the stored-program computer, possibly older. I do not know
when the first flowchart was drawn. Though undeniably useful,
flowcharts were denigrated because vital notions like parametric
computing -the procedure, in Algol terms- found no place in them.
But a graphical reduction model was devised by Wadsworth [15]
for the lambda calculus, the essence of parametric (functional)
computing. Meanwhile, Patti nets [13] made a breakthrough in un-
derstanding synchronization and concurrent control flow. Later, the
chemical abstract machine (Chain) [2] -employing chemical anal-
ogy but clearly a spatial concept- clarified and generalised many
features of process calculi.

Before designing CCS, I definedflowgraphs [9] as a graphical pre-
sentation offlow algebra, an early form of what is now called struc-
tural congruence; it represented the static geometry of interactive
processes. The pi calculus and related calculi are all concerned
with a form of mobility; they all use some form of structural con-
gruence, but are also informed by a kind of dynamic geometrical
intuition, even if not expressed formally in those terms.

There are now many such calculi and associated languages. Exam-
pies are the pi calculus [11], the fusion calculus [12], the join cal-
culus [5], the spi calculus [1], the ambient calculus [3], Pict [14],
nomadic Pitt [16], explicit fusions [6]. While these calculi were
evolving, in the action calculus project [10] we tried to distill their
shared mobile geometry into the notion of action graph. This cen-
tred around a notion of molecule, a node in which further graphs
may nest. All action calculi share this kind of geometry, and are
distinguished only by a signature (a set of molecule types) and a
set of reaction rules. The latter determine what configurations of
molecules can react, and the contexts in which these reactions can
take place.

Such a framework does not necessarily help in designing and
analysing a calculus for a particular purpose. It becomes useful
when it supplies non-trivial theory relevant to all, or a specific class

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
POPL'01 1/01 London, UK
© 2001 ACM ISBN 1-58113-336-7 /01 /0001 ... 65.00

of, calculi. Most process calculi are equipped with a behavioural
theory - often a labelled transition system (LTS), or a reaction (=
reduction) relation, together with a trace-based or (bi)simulation-
based behavioural preorder or equivalence. Developing this theory
is often hard work, especially proving that the behavioural relation
is preserved by (some or all) contexts. Recently [8] we have defined
a simple categorical notion of reactive system, and shown that un-
der certain conditions an LTS may be uniformly derived for it, in
such a way that various behavioural relations -including the fail-
ures preorder and bisimilarity- will automatically be congruential
(i.e. preserved by contexts). We have also shown [4] that a substan-
tial class of action calculi satisfy the required conditions. Thus we
approach a non-trivial general theory for those calculi which fit the
framework, as many do.

This work has encouraged us to base the theory on a simpler notion:
a linear action graph, one in which edges may not fork or merge;
an example is shown in Fig. 1. These graphs are a generalisation
of Lafont's interaction nets [7]. They consist just of nodes (with
many ports) and edges, but with a locality -i.e. a forest structure-
imposed upon nodes quite independently of the edge wiring. This
notion has grown out of action calculi but is also inspired by the
Chain of Berry and Boudol [2], the ambient calculus of Cardelli
and Gordon [3], the language Nomadic Pitt of Sewell and Woj-
ciechowski [16], and the fusion concept of Parrow and Victor [12]
further developed by Gardner and Wischik [6]. The intuition is that
nodes have locality, wires (per se) don't. A node and its (nodal)
contents can be an ambient, a physical location, a A-abstraction,
a program script, an administrative region A node without
contents can be a date constructor, a cryptographic key, a merge or
copy node, a message envelope

In the lecture I shall outline the basic behavioural theory of shallow
linear graphs -those without nesting. I hope to indicate how this
behavioural theory extends smoothly to nested graphs, and how
the reaction rules in these can conveniently represent action-at-a-
distance - a fiction which is essential in a higher level model of
(say) the worldwide web. I shall also discuss how the non-linear
theory may be recovered, by a form of quotient. This is work in
progress.

Acknowledgement I would like to thank my colleagues Luca
Cattani, Philippa Gardner, Jamey Leifer and Peter Sewell for their
co-operation, inspiration and patience.

220

/
Fig. 1: A linear action graph

References

[1] Abadi, M. and Gordon, A.D. (1997), A calculus for cryp-
tographic protocols: the spi calculus. Proc. 4th ACM Con-
ference on Computer and Communications Security, ACM
Press, 36-47.

[2] Berry, G. and Boudol, G. (1992), The chemical abstract
machine. Journal of Theoretical Computer Science, Vol 96,
pp217-248.

[3] Cardelli, L. and Gordon, A.D. (2000), Mobile ambients.
Foundations of System Specification and Computational
Structures, LNCS 1378, 140--155.

[4] Cattarti, G.L., Leifer, J.J. and Milner, R. (2000),. Con-
texts and Embeddings for dosed shallow action graphs.
University of Cambridge Computer Laboratory, Techni-
cal Report 496. [Submitted for publication. Available at
http://www.cam.cl, ac.uk/usors/jj121 .]

[5] Fournet, C. and Oonthier, G. (1996), The reflexive Chain and
the join calculus. Proc. 23rd Annual ACM Symposium on
Principles of Programming Languages, Florida, pp372-385.

[6] Gardner, P.A. and Wischik, L.G. (2000), Explicit fusions.
Proc. MFCS 2000. LNCS 1893.

[7] Lafont, Y. (1990), Interaction nets. Proc. 17th ACM Sympo-
sium on Principles of Programming Languages (POPL 90),
pp95-108.

[8] Leifer, J.J. and Milner, R. (2000), Deriving bisimulation con-
gruences for reactive systems. Proc. CONCUR2000. [Avail-
able at http : //www. cam. el. ac. uk/users /j j 121 .]

[9] Milner, R. (1979), Flowgraphs and Flow Algebras. Journal of
ACM, 26,4,1979, pp794-818.

[10] Milner, R. (1996), Calculi for interaction. Acta Informatica
33, 707-737.

[11] Milner, R., Parrow, J. and Walker D. (1992), A calculus of
mobile processes, Parts I and II. Journal of Information and
Computation, Vol 100, ppl--40 and pp41-77.

[12]

[13]

[14]

[15]

[16]

Parrow, J. and Victor, B. (1998), The fusion calculus: expres-
siveness and symmetry in mobile processes. Proc. LICS'98,
IEEE Computer Society Press.

Petri, C.A. (1962), Fundamentals of a theory of asynchronous
information flow. Proc. IFIP Congress '62, Noah Holland,
pp386--390.

Pierce, B.C. and Turner, D.N. (2000), Pict: A program-
ruing language based on the pi-calculus. In Proof Language
and Interaction: Essays in Honour of Robin Milner, ed.
G.D.Plotkin, C.P.Stirling and M.Tofte, MIT Press, pp455-
494.

Wadsworth, C.E (1971), Semantics and pragmatics of the
lambda-calculus. Dissertation, Oxford University.

Wojciechowski, ET. and Sewell, P. (1999), Nomadic Pict:
Language and infrastructure design for mobile agents. Proc.
ASA/MA '99, Palm Springs, California.

221

