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Abstract
This article introduces an abstract interpretation framework that
codifies the operations in SAT and SMT solvers in terms of lattices,
transformers and fixed points. We develop the idea that a formula
denotes a set of models in a universe of structures. This set of mod-
els has characterizations as fixed points of deduction, abduction and
quantification transformers. A wide range of satisfiability proce-
dures can be understood as computing and refining approximations
of such fixed points. These include procedures in the DPLL family,
those for preprocessing and inprocessing in SAT solvers, decision
procedures for equality logics, weak arithmetics, and procedures
for approximate quantification. Our framework provides a unified,
mathematical basis for studying and combining program analysis
and satisfiability procedures. A practical benefit of our work is a
new, logic-agnostic architecture for implementing solvers.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Mechanical Theorem Proving; I.2.3 [Deduction and Theorem
Proving]: Deduction

Keywords Abstract interpretation; Logic; Decision Procedures

1. Reasoning and Abstraction
Static analyzers and satisfiability solvers represent practical tri-
umphs of computer science in the face of theoretical hardness re-
sults. Static analysis problems are typically undecidable yet ana-
lyzers compute information that is indispensable in compiler opti-
mization and program verification. The satisfiability problem for
several logics and theories is NP-hard but SAT and SMT solvers
handle large problem instances arising in practice. In this paper,
we introduce an abstract interpretation framework that makes ex-
plicit some fundamental similarities between the way undecidable
and NP-hard problems are solved in practice. This framework has
several applications including lattice-theoretic characterizations of
satisfiability algorithms [18, 19], the development of SMT solvers
based on abstract interpretation [26], and the generalization of sat-
isfiability algorithms to static analysis [3, 20].

Abstract interpretation is a lattice-theoretic framework for rea-
soning about fixed points [10, 13]. The idiomatic approach to ap-
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plying abstract interpretation to a problem is to characterise solu-
tions to the problem by fixed points, identify a space of fixed point
approximations, and design an algorithm to compute these approx-
imations. The application of abstract interpretation to static anal-
ysis can be understood in terms of the schema below. The box
on the left is called an abstract domain. It consists of a lattice
(A,v,u,t,⊥,>) with each element a of A representing a set
of program states. Each statement s in the programming language
defines four transformers. The predecessor transformer pres maps
a to states the program may have come from before executing s,
while the successor transformer posts maps a to states the program
may reach after executing s. The transformers p̃res and ˜posts cap-
ture must behaviour. Properties of programs are specified as fixed
points of such transformers.

A v u t ⊥ >
pres posts p̃res ˜posts
5� 5� 4� 4�

Fixed point iteration
Property check
Refinement

The box on the right represents procedures that use components
of the abstract domain to reason about fixed points. Iterative pro-
cedures are used to compute fixed points. These procedures may
use a widening (5�) or dual widening (5�) operator to accelerate
convergence. If the result is not precise enough, a narrowing (4�)
or dual narrowing (4�) operator is used to refine the result. The
architecture above achieves a valuable separation of concerns by
allowing the design and implementation of an abstract domain to
be independent of the fixed point approximation procedures.

Abstract satisfaction is a framework for applying fixed point
approximation to logical reasoning in the same manner that abstract
interpretation was first applied to static analysis [10]. Consider the
satisfiability problem for a logic. An SMT solver typically works
in a fragment T of the logic. Elements of T are represented using
data structures such as sets, partial functions, graphs, or matrices.
These elements are manipulated using techniques called constraint
propagation, decisions, learning and subsumption.

We show that a solver can be understood in terms of the schema
below, which closely resembles the structure of a static analyzer.
Elements of T , ordered by implication, form a lattice of approxima-
tions (T,⇒,u,t, false, true). A solver can use deduction to com-
pute facts implied by ϕ, or use abduction to compute facts that im-
ply ϕ. These operations define deduction and abduction transform-
ers (dedϕ and abdϕ), and their counterparts (cdedϕ and cabdϕ) for
contrapositive reasoning.

T ⇒ u t false true

dedϕ abdϕ cdedϕ cabdϕ
ext� ext� itp sep

Theory propagation
Conflict detection
Decisions and Learning
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Propagation and learning in solvers can be viewed as the appli-
cation of these transformers. Techniques like decisions, used by a
solver to improve precision, correspond to a relaxation of widening
called extrapolation (denoted ext� and ext�), while techniques like
subsumption and clause minimization correspond to a relaxation of
narrowing, which we call interpolation (denoted int� and int�).
Thus, despite external differences, there are fundamental similari-
ties between the internals of SAT and SMT solvers and static ana-
lyzers. We believe that making these similarities explicit has several
consequences that we discuss below.

Abstract Interpretation to SMT One consequence is a transfer
of techniques from abstract interpretation to SMT solvers. Solvers
have been extended with abstractions [4, 30] and joins [1] to im-
prove time and memory efficiency, and with widening [33] to aid in
guessing loop invariants. We show that the internal data structures
of SMT solvers are lattices, which means that these data structures
also support joins and widening. Crucially, we show that quanti-
fiers are transformers, which means that abstract quantifiers and
best abstract quantifiers are well defined notions. Thus, an abstract
interpretation perspective suggests a new, approximate approach to
deduction and quantifier elimination.

SMT to Static Analysis The main conclusion of our work is that
SMT solvers, like static analyzers, operate on imprecise abstrac-
tions. However, SMT solvers return precise results, which means
their algorithms can be understood as techniques for refining an
imprecise analysis. These techniques are based on properties of lat-
tices and can be used to refine static analyses. SMT solvers for de-
cidable logics implement refinement procedures that are guaranteed
to terminate (though termination proofs can be non-trivial). The
fundamental undecidability of static analysis problems precludes
the existence of terminating refinement procedures.

An insight we present in Section 4 is that deduction and ab-
duction in a logic coincide with reasoning about the postcondi-
tions and preconditions of conditional statements. Improvements
in deduction should lead to an improved handling of condition-
als in static analyzers. Moreover, preprocessing and inprocessing
techniques, which are responsible for recent performance improve-
ments in solvers can be lifted to static analysis constraints.

A Grand Unification A lofty goal, towards which this work is an
early step, is to achieve a uniform theoretical and practical treat-
ment of static analysis and SMT solving. Specifically, if both tech-
nologies can be understood in terms of lattices and transformers,
their similarities and differences can be studied using lattice theo-
retic techniques. The three different problems of combining static
analyzers, combining SMT solvers, and combining a static analyzer
with an SMT solver can be reduced to the single problem of com-
bining fixed point approximation procedures. Existing procedures
such as the reduced product, Nelson-Oppen, and DPLL(T), which
are now understood to be combination procedures [2, 11, 14], can
all be applied to the same task.

We anticipate practical benefits from carrying out a unifica-
tion programme. Decomposing a complex piece of software like
a static analyzer or an SMT solver into smaller blocks consisting
of lattice elements, transformers, and an iteration engine leads to a
mathematically justified modular design. We expect this modularity
to contribute to the development of extensible and programmable
solvers and analyzers, and reduce the performance and develop-
ment overheads involved in integrating different technologies.

2. Mathematical Preliminaries
We denote the complement of a set S as ¬S, and the set of all
subsets of S, as the powerset P(S). The function from x to f(g(x))

is denoted f ◦g, and a function f is treated as a set {a 7→ f(a), . . .}
when convenient.

Sequences We use sequences to simplify presentation. An m-
termed A-sequence is a function s̄ : {0, . . . ,m− 1} → A, whose
length m is denoted len(s̄). We write f(s̄) for the application
f(s0, . . . , sn−1) and leave implicit that s̄ has length n. Given a
function g : A → C, we write g[a 7→ c] for the function that
maps a to c and x distinct from a to g(x). We write a sequence
of substitutions g[a0 7→ c0][a1 7→ c1] · · · with pairwise distinct
elements ai as g[ā Z⇒ c̄].

Lattices A transformer is a monotone function on a lattice. A
lattice is bounded if it has a greatest element, called top and denoted
>, and has a least element called bottom and denoted⊥. A function
f on a lattice is reductive if f(x) v x for all x and is extensive if
f(x) w x for all x. A function is idempotent if f(f(x)) = f(x) for
all x. An upper closure is an idempotent and extensive transformer,
and a lower closure is an idempotent and reductive transformer.
The pointwise order f v g between functions from a set to a poset
holds if f(x) v g(x) holds for all x. The pointwise meet of f and
g, denoted f u g, where both functions map into a lattice is defined
as λx. f(x)ug(x). The pointwise join is similarly defined. The set
of transformers on a complete lattice form a complete lattice under
the pointwise order.

A lattice is distributive if every x, y and z satisfy xu (y t z) =
(x u y) t (x u z), which is equivalent to the identity obtained by
interchanging meets and joins. An element y on a bounded lattice
is the complement of x if xu y = ⊥ and xt y = >. Complements
may not exist and when they do, may not be unique. We use the
notation ¬x or ∼x for unique complements. Complements in a
distributive lattice are unique. A Boolean lattice is complemented
and distributive. The De Morgan dual of a function f on a Boolean
lattice is f̃ =̂ ¬ ◦ f ◦ ¬. The powerset lifting of f : A→ B is the
function f : P(A)→ P(B) that maps a set to its image under f .

The least and greatest fixed points of a monotone function f on
a complete lattice are denoted gfp(f) and lfp(f).

Galois Connections Let (L,v) and (M,4) be posets. Two func-
tions α : L→M and γ : M → L form a Galois connection if for
all x ∈ L and y ∈M , α(x) 4 y if and only if x v γ(y). A Galois
connection is written as L −−→←−−α

γ
M or (L,α, γ,M). The function

α is called the left adjoint and γ is called the right adjoint of the
Galois connection. In a Galois insertion, α is a surjection.

3. A Collecting Semantics for First-Order Logic
The phrase collecting semantics in abstract interpretation refers to
associating meaning to an object in terms of its properties. For ex-
ample, a trace property is a set of sequences of states and the col-
lecting trace semantics of a program, which is also the strongest
trace property the program satisfies, is the set of all program ex-
ecutions. In this section, we introduce a compositional, collecting
semantics for quantified first-order formulae. Our semantics allows
us to interpret a formula as an element of a lattice, so that abstract
interpretation of formulae, and of properties of formulae, is well
defined. The collecting semantics of a term is defined by lifting
the standard evaluation semantics of terms to sets of environments.
The collecting semantics of a formula is the set of models of the
formula. The Boolean operations of conjunction, disjunction and
negation have their standard interpretation as intersection, union
and set complement. Quantifiers are interpreted as transformers be-
tween structures over different sets of variables.

Of several lattice-theoretic semantics for quantified first-order
logics [38], we use a category-theoretic treatment due to Pitts [40].
A key feature of this treatment is to make the set of free variables
part of the syntax of a formula. The structure of the lattices over
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which a formula is interpreted are then determined by the syntax
of formula. Quantifiers define transformers between lattices over
different sets of free variables. See [38] for a discussion of the
challenges in giving a lattice-theoretic semantics to quantifiers.

Structural Rules We recall the structural rules for forming terms
and formulae. The signature of a first-order logic (Sig , ar) consists
of disjoint sets Sig = Pred ∪ Fun of predicate and function
symbols whose arity is ar : Sig → N. A nullary function symbol is
called a constant. We use P,Q,R to range over predicate symbols
and F,G,H to range over function symbols.

Let Vars be a set of variables and x, y, z range over variables.
A first-order context Γ is a finite sequence of variables in which
each variable occurs exactly once. We write [] for the empty se-
quence, Γ,Γ′ for sequence concatenation, and var(Γ) for the set
of variables in a context. In the case of many-sorted logic, a con-
text is a sequence of pairs, where each pair consists of a variable
and a sort. A context Γ′ is a subcontext of Γ if var(Γ′) ⊆ var(Γ).

The rules from [40] for forming terms-in-context are given
below. Henceforth, we abbreviate ‘terms-in-context’ to ‘terms’ for
convenience. In addition to standard rules for variable introduction
(VAR) and function composition (FUN), we use a rule (SEQ) for
forming a sequence of terms. The rule for function composition
has the side condition that ar(F ) is len(t̄). We leave such side
conditions implicit in the remaining rules.

VAR
x : Γ, x,Γ′

t̄ : Γ
FUN

F (t̄) : Γ

t0 : Γ · · · tn−1 : Γ
SEQ

t̄ : Γ

From these rules, we can derive the rules for complete substitu-
tion (CSUB) and weakening (WEAK) given below.

t : x̄ r0 : Γ′ · · · rn−1 : Γ′
CSUB

t[x̄ Z⇒ r̄] : Γ′
t : Γ

WEAK
t : Γ,Γ′

Terms-in-context are composed with predicate symbols and Boolean
operations to obtain formulae-in-context. We henceforth abbrevi-
ate ‘formula-in-context’ to ‘formula’. In the Boolean operator rule
below, op is one of true, false, ∨,∧ or ¬ applied to the appropriate
number of arguments.

t̄ : Γ
PRED

P (t̄) : Γ

ϕ : Γ ψ : Γ
OP

ϕ op ψ : Γ

The weakening rule for formulae is similar to that for terms. Quan-
tification changes the set of free variables in a formula and causes
contraction of a context.

ϕ : Γ, x,Γ′
∃-Q

∃x.ϕ : Γ,Γ′
ϕ : Γ, x,Γ′

∀-Q
∀x.ϕ : Γ,Γ′

The sets of terms and formulae in a context Γ are denoted TermΓ

and FormΓ, respectively. An atomic predicate is the composition
of a predicate symbol with terms and a literal is an atomic pred-
icate or its negation. A clause is a disjunction of literals and a
cube is a conjunction of literals. A formula in Conjunctive Nor-
mal Form (CNF) is a conjunction of clauses and one in Disjunctive
Normal Form (DNF) is a disjunction of cubes. The sets containing
these formulae are denoted LitΓ, ClauseΓ, CubeΓ, CNFΓ, and
DNFΓ, respectively. If not specified, the formulae we deal with
are quantifier-free.

Semantic Structures We now introduce a lattice-theoretic struc-
ture in which to interpret formulae. This structure consists of a
lattice and transformers and provides a template for implementing
SMT solvers based on abstract interpretation. Recall that the clas-
sical semantics of first-order logic is given by a Sig-interpretation
M = (Val , int), which consists of a universe Val and an in-
terpretation that maps each function symbol F to a function

int(F ) : Valar(F ) → Val and each predicate symbol P to a
relation int(P ) ⊆ Valar(P ).

An environment over Γ maps variables in Γ to values. Let
EnvΓ =̂ var(Γ) → Val be the set of environments over Γ.
The classical semantics of first-order logic is given by a relation
M, ε |= ϕ specifying when an environment satisfies a formula.

Categorical logic does away with environments by observ-
ing that EnvΓ → Val is isomorphic to Val len(Γ). First-order
hyperdoctrines significantly extend this observation to provide a
category-theoretic semantics for first-order logic [32, 40]. In Defi-
nition 1 below, we adapt the definition of a first-order hyperdoctrine
to powersets of environments. The reader may rightly baulk at the
length of the definition. One can view the classical and algebraic
definitions of semantics as making different tradeoffs. In the clas-
sical semantics, first-order structures have a succinct definition but
the definition of |= is verbose. In algebraic semantics, the definition
of a structure may appear involved, but (in our opinion) leads to a
succinctly defined semantics.

Each item in Definition 1 is required to provide semantics for
some aspect of first-order logic. The lattices of tuples P(Valn) rep-
resent the domains over which function symbols are interpreted.
The lattices of environments P(EnvΓ) represent the domains
over which terms-in-context are interpreted. We use the function
v -to-eΓ that maps values to environments to deal with substitution
into a term, and the function e-to-vΓ to deal with substitution into
a predicate. The existential and universal projection functions (epr
and upr ) give a concrete transformer semantics to quantifiers.

Definition 1. A collecting Sig-structure defined by a first-order
structureM = (Val , int) consists of the items below.

1. The lattices of tuples {(P(Valn),⊆) | n ∈ N}.
2. The lattices of environments (P(EnvΓ),⊆) for every context Γ.
3. For every context Γ = (x0, . . . , xn−1) of length n, there

are two translation functions for mapping between tuples and
environments.

v -to-eΓ : P(Valn)→ P(EnvΓ)

v -to-eΓ =̂ V 7→ {xi 7→ vi | v̄ ∈ V }
e-to-vΓ : P(EnvΓ)→ P(Valn)

e-to-vΓ =̂ E 7→ {{i 7→ vi | ε(xi) = vi} | ε ∈ E}

4. There is a weakening function for mapping environments from
a subcontext Γ of Γ′ to environments over Γ′.

wkΓ,Γ′ : P(EnvΓ)→ P(EnvΓ′)

wkΓ,Γ′ =̂ E 7→
{
ε′ | ε ∈ E, for all x in Γ, ε(x) = ε′(x)

}
5. For every subcontext Γ of Γ′ an existential projection eprΓ′,Γ

and a universal projection uprΓ′,Γ, in P(EnvΓ′)→ P(EnvΓ).

eprΓ′,Γ =̂ E 7→ {ε | wkΓ′,Γ(ε) ∩ E 6= ∅}
uprΓ′,Γ =̂ E 7→ {ε | wkΓ′,Γ(ε) ⊆ E}

6. A lifting of the interpretation of function symbols to sets.

cint(F ) : P(Valar(F ))→ P(Val)

cint(F ) =̂ V 7→ {int(F )(v̄) | v̄ ∈ V }

7. The relation int(P ) for each predicate symbol.

The existential and universal projection functions as defined
above eliminate arbitrary subcontexts. We only use them to elimi-
nate single variables and use the following abbreviations. We write
eprx and uprx for projections that extract a single variable by
mapping environments over the context Γ, x to those over x. Con-
versely, we write somex and allx for projections that eliminate
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a single variable by mapping environments over Γ, x to environ-
ments over Γ. We also write wkx for the weakening function from
environments over Γ to those over Γ, x.

Collecting Semantics The collecting semantics of terms and se-
quences of terms with respect to a classical interpretationM fol-
lows. We drop the subscriptM when no ambiguity arises.

J·KM : Termn
Γ → (P(EnvΓ)→ P(Valn))

The semantics function is defined inductively below. The semantics
of a term t with respect to a set of environments E is given by
evaluating t in each environment inE. The semantics of a sequence
of terms is a set of sequences of values. Substitution constructs a
sequence of values and lifts it to an environment.

Jx : ΓK =̂ E 7→ {ε(x) | ε ∈ E}

Jt̄ : ΓK =̂ E 7→ {v̄ ∈ Val len(t̄) | for some ε ∈ E,
vi ∈ Jti : ΓK(ε) for all 0 ≤ i < len(t̄)}

JF (t̄) : ΓK =̂ cint(F ) ◦ Jt̄ : ΓK

Jt[x̄ Z⇒ r̄] : ΓK =̂ Jt : Γ′K ◦ v -to-eΓ′ ◦Jr̄ : ΓK

Example 1 below demonstrates how to calculate the semantics of a
term in the presence of substitution. Observe that the term does not
have to be rewritten before being evaluated.
Example 1. Consider the term t =̂ x+2y[y 7→ 2x] derived below.

VAR x : x
WEAK x : x, y

VAR y : y
WEAK y : x, y

FUN
x+ 2y : x, y

VAR x : x
FUN

2x : x
CSUB

x+ 2y[x 7→ x, y 7→ 2x] : x

We interpret variables as natural numbers and + as addition. The
semantics of the term above is a function in P(Envx)→ P(N).

Jx+ 2y[x 7→ x, y 7→ 2x] : xK
= Jx+ 2y : x, yK ◦ v -to-ex,y ◦J(x, 2x) : xK
= Jx+ 2y : x, yK ◦ v -to-ex,y ◦λE. {(ε(x), 2ε(x)) | ε ∈ E)}
= Jx+ 2y : x, yK ◦ λE. {{x 7→ ε(x), y 7→ 2ε(x)} | ε ∈ E}
= Jx+ 2y : x, yK ◦ λE. {ε(x) + 4ε(x) | ε ∈ E}
= λE. {5ε(x) | ε ∈ E}

In short, a set of environments is mapped to values obtained by
multiplying the value of x by 5. C

The collecting semantics of terms is the standard evaluation
semantics (also called ‘forward interpretation’) implemented in
program analyzers. The semantics of quantifier-free formulae given
next is a ‘backward interpretation’ and is known [9] but is less
standard. The inverse Jt̄ : ΓK−1 : P(Val len(t̄)) → P(EnvΓ) is
defined as follows.

Jt̄ : ΓK−1 =̂ V 7→ {ε ∈ EnvΓ | Jt̄K(ε) ∩ V 6= ∅}

The semantics of a formula is given by a function J·KM : FormΓ →
P(EnvΓ) defined inductively below. Boolean operators have their
standard set-theoretic interpretation.

JP (t̄) : ΓK =̂ Jt̄ : ΓK−1(int(P )) Jtrue : ΓK =̂ EnvΓ

Jϕ ∨ ψ : ΓK =̂ Jϕ : ΓK ∪ Jψ : ΓK Jfalse : ΓK =̂ ∅
Jϕ ∧ ψ : ΓK =̂ Jϕ : ΓK ∩ Jψ : ΓK J¬ϕ : ΓK =̂ ¬Jϕ : ΓK

Quantifiers are interpreted using projection functions.

J∃x.ϕ : ΓK =̂ somex(Jϕ : Γ, xK) J∀x.ϕ : ΓK =̂ allx(Jϕ : Γ, xK)

Example 2. We extend Example 1 to illustrate the semantics of
quantification. Consider the formula

ϕ =̂ ∃x.x+ 2y[y 7→ 2x] = z

with = interpreted as equality over the natural numbers. The rela-
tion cint(=) is {(n, n) | n ∈ N} and the semantics of the formula
is a set of environments over z.

J∃x.x+ 2y[x 7→ x, y 7→ 2x] = z : zK

= somex ◦J(x+ 2y[x 7→ x, y 7→ 2x], z)K−1(cint(=))

= somex ◦(λE. {(5ε(x), ε(z)) | ε ∈ E})−1(cint(=))

= somex({ε | ε(z) = 5(ε(x))})
= {{z 7→ 5n} | n ∈ N}

As expected, z maps to multiples of 5. This example shows that the
semantics of a quantified formula can be calculated mechanically
by applying the appropriate transformers. If the concrete transform-
ers are replaced with abstract transformers, we can similarly calcu-
late an abstract semantics. C

The collecting semantics we have defined is consistent with the
classical semantics of first-order logic.

Theorem 2. For each formula ϕ : Γ in non-empty context Γ,
classical, first-order interpretationM and environment ε ∈ EnvΓ,
M, ε |= ϕ exactly if ε ∈ Jϕ : ΓKM.

We also refer to environments as structures. Let Γ be a non-
empty context. A structure ε is a model of ϕ if ε ∈ Jϕ : ΓK.
A formula ϕ is unsatisfiable in M if Jϕ : ΓKM is the empty set
and is satisfiable in M otherwise. We refer to satisfiability in a
structure as satisfiability for the rest of the paper.

A sentence is a formula in an empty context. The set of environ-
ments over the empty context is the empty set. If Jϕ : []KM is {∅},
we say that ϕ is true inM, and otherwise, ϕ is false inM.

4. Concrete Reasoning
The basic operations in logical reasoning can be viewed as giving a
dynamic interpretation to an implication ϕ ⇒ ψ. Deduction is the
process of deriving ψ from ϕ. Abduction is the process of deriving
ϕ from ψ. In classical logic, these processes have contrapositive
formulations: we can start with ¬ψ and attempt to deduce ¬ϕ, a
process we call contradeduction, or start with ¬ϕ and attempt to
abduce ¬ψ, a process we call contraabduction. In this section, we
model these processes using transformers and characterize proper-
ties of formulae as fixed points of these transformers. As with fixed
point characterisations of program correctness, these fixed points
are not meant to be computed but will be used to design fixed point
approximation algorithms.

The set of formulae that can be derived from a set of formulae
Φ using a set of rules R forms the deductive closure of Φ with re-
spect to R. Deductive closure and automated reasoning procedures
have characterizations in terms of Tarski’s consequence operator,
or as the transitive closure of a set of rewrite rules. An important
difference between these characterizations and ours is that we oper-
ate on sets of structures, so our notions of deduction and abduction
are semantic. Existing characterizations can be derived from ours
by abstract interpretation but we can also derive abstractions of de-
duction that operate on objects other than formulae.

4.1 Structure Transformers
A structure transformer for formulae in FormΓ is a function Tϕ :
P(EnvΓ) → P(EnvΓ). Structure transformers encode reasoning
about the models and countermodels of a formula. The deduction
transformer dedϕ which encodes reasoning about models of ϕ. In
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the definition below, we assume that the set-theoretic operations are
lifted pointwise to functions.

dedP (t̄)(X) =̂ X ∩ JP (t̄) : ΓK dedϕ∧ψ =̂ dedϕ ∩ dedψ

ded¬ϕ =̂ ¬Jϕ : ΓK dedϕ∨ψ =̂ dedϕ ∪ dedψ

The use of negation in defining ded¬ϕ is problematic in general
because lifting such a definition to abstractions requires a structure
that supports Boolean reasoning. We discuss this issue in greater
detail shortly.

The contradeduction transformer cdedϕ encodes contrapositive
reasoning and manipulates countermodels of ϕ. If dedϕ is used for
satisfiability checking, cdedϕ can be used for validity checking.

cdedP (t̄)(X) =̂ X ∩ ¬JP (t̄) : ΓK cdedϕ∧ψ =̂ cdedϕ ∪ cdedψ

cded¬ϕ =̂ ¬cdedϕ cdedϕ∨ψ =̂ cdedϕ ∩ cdedψ

The two transformers above reason forwards in that they start from
hypotheses and attempt to derive conclusions. The dual notion to
deduction is abduction, where we start from a conclusion and derive
the hypotheses under which that conclusion holds. For example if
we can abduce true from a formula ϕ, we know that ϕ is valid with
respect to a set of structures.

abdP (t̄)(X) =̂ X ∪ ¬JP (t̄) : ΓK abdϕ∧ψ =̂ abdϕ ∪ abdψ

abd¬ϕ =̂ cabdϕ abdϕ∨ψ =̂ abdϕ ∩ abdψ

Finally, we have a contraabduction transformer which models start-
ing from a conclusion and deriving the fallacies: hypotheses from
which that conclusion surely does not follow. A contraabduction
transformer can be used to prune the space of abductions.

cabdP (t̄)(X) =̂ X ∪ JP (t̄) : ΓK cabdϕ∧ψ =̂ cabdϕ ∩ cabdψ

cabd¬ϕ =̂ abdϕ cabdϕ∨ψ =̂ cabdϕ ∪ cabdψ

In addition to deduction and abduction, quantifier elimination is
fundamental to logical reasoning. The transformers somex and
allx model quantifier elimination and will henceforth be called
quantification transformers.

There are several symmetries between deduction and abduction,
which are preserved in our formulation. We make these properties
explicit in Theorem 3, below. The set-theoretic identities are not
necessarily satisfied by abstract transformers, which is why they
are not used as a definition. The characterizations of deduction and
abduction as closures extend the existing characterization of log-
ical consequence as a closure. The characterization of existential
quantification (wkx ◦ somex) as an upper closure, and of universal
quantification (wkx ◦ allx) as a lower closure, when combined with
the view of closure operators as abstractions [11], reiterates the
connection between quantification and abstraction used in model
checking [5]. The Galois connection between weakening and quan-
tification was first observed by Lawvere [32] and indicates that even
domains that do not support negation will support both existential
and universal quantification.

Theorem 3. Structure transformers have the following properties.
1. The transformers satisfy the identities below.

dedϕ(X) = (X ∩ Jϕ : ΓK) cdedϕ(X) = (X ∩ ¬Jϕ : ΓK)

cabdϕ(X) = (X ∪ Jϕ : ΓK) abdϕ(X) = (X ∪ ¬Jϕ : ΓK)

2. The transformers dedϕ and cdedϕ are lower closures.
3. The transformers cabdϕ and abdϕ are upper closures.
4. The composition wkx ◦ somex is an upper closure and wkx ◦ allx

is a lower closure.
5. The pairs of transformers (dedϕ, abdϕ), (cdedϕ, cabdϕ) and

(allx, somex) are De Morgan duals.
6. The pairs of transformers (dedϕ, abdϕ) (cdedϕ, cabdϕ) form

a Galois connection on (P(Env),⊆).

gfp(dedϕ) lfp(abdϕ)

gfp(cded¬ϕ) lfp(cabd¬ϕ)

Figure 1. The vertices represent deduction or abduction proce-
dures for checking satisfiability of ϕ or validity of ¬ϕ. The edges
represent combinations of deduction and abduction procedures.

7. The quantification transformers are related to weakening by the
following Galois connections.

(P(EnvΓ),⊆) −−−−→←−−−−
wkx

allx
(P(EnvΓ,x),⊆), and

(P(EnvΓ,x),⊆) −−−−−→←−−−−−
somex

wkx
(P(EnvΓ),⊆)

The Galois connections are useful for deriving equivalent for-
mulations of properties of a formula. For example, the mod-
els of ϕ are dedϕ(Env). A formula is unsatisfiable exactly if
dedϕ(Env) ⊆ ∅, which by the Galois connection, is equivalent to
Env ⊆ abdϕ(∅). In words, we can determine if a formula is unsat-
isfiable by trying to deduce false from ϕ or trying to abduce ϕ from
false. Similarly, a formula is valid exactly if cdedϕ(Env) ⊆ ∅, or
equivalently Env ⊆ cabdϕ(∅).

Since satisfiability corresponds to existence of a model, we can
equivalently define it in terms of existential quantification. Treating
quantifiers as transformers allows us to formalise techniques that
combine variable elimination and deduction.

4.2 Fixed Points for Satisfiability
We now show that properties of a formula can be characterized
by fixed points of structure transformers. Consider the process of
computing consequences of ϕ. We initially know nothing about ϕ,
which we can express as ϕ ⇒ true. A single step of a reasoning
algorithm may indicate that ϕ ⇒ ψ1. After k steps, the algorithm
may deduce that ϕ ∧ · · ·ψ1 ∧ ψk−1 ⇒ ψk. What we know about
the models of ϕ can be represented by the sequence JtK, Jψ1K,
. . . , Jψ1 ∧ · · ·ψkK. The process of deduction can thus be viewed
as a greatest fixed point computation, whose limit expresses the
maximal information we can derive about models of ϕ.

Fixed points of structure transformers represent brute force al-
gorithms. The greatest fixed point gfp(dedϕ) represents the se-
mantics of a solver that initially assumes that every structure is a
model ofϕ and then eliminates countermodels ofϕ. The fixed point
gfp(cdedϕ) represents a procedure that progresses by eliminating
countermodels of ϕ. The fixed point lfp(abdϕ) represents a proce-
dure that initially assumes ϕ has no countermodels and progresses
by finding countermodels of ϕ, while lfp(cabdϕ) does the same for
models of ϕ. The characterisation below first appeared in [18] and
is included here to include validity as the dual of satisfiability.

Theorem 4. The following statements are equivalent.
1. The formula ϕ is unsatisfiable.
2. The greatest fixed point gfp(dedϕ) is empty.
3. The least fixed point lfp(abdϕ) has all structures.
4. The formula ¬ϕ is valid.
5. The least fixed point lfp(cabd¬ϕ) has all structures.
6. The greatest fixed point gfp(cded¬ϕ) is empty.

In program analysis and model checking, combinations of
forward and backward analysis have advantages over a single
method [9, 28]. In logical reasoning, we can similarly combine
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the benefits of deduction and abduction. For instance, as shown
in [19], Conflict Driven Clause Learning (CDCL) combines deduc-
tion and abduction. The original Davis and Putnam algorithm [16]
combined deduction via ordered resolution and variable elimina-
tion with the pure literal rule. CDCL solvers that use the pure literal
rule for pre-/in-processing combine all three [21].

We define combinations of deduction and abduction transform-
ers below. The transformers are defined on P(Env)×P(Env) with
the lattice order shown alongside. For intuition about these com-
binations, consider a greatest fixed point iteration with the trans-
former daϕ, which combines deduction and abduction. The first
element is (Env , ∅), representing that every structure is a poten-
tial model and no structure is a potential countermodel. A single
application of daϕ yields (dedϕ(Env), abdϕ(∅)), which is a fixed
point. If ϕ is unsatisfiable, this fixed point is (∅,Env), represent-
ing that there are no models and every structure is a countermodel.
When using abstract transformers, a fixed point may not be reached
in a single step so iteration allows information to be transferred be-
tween deduction and abduction.

dcdϕ(X,Y ) =̂ (dedϕ(X ∩ Y ), cded¬ϕ(X ∩ Y )) ⊆ × ⊆
daϕ(X,Y ) =̂ (dedϕ(X ∩ ¬Y ), abdϕ(¬X ∪ Y )) ⊆ × ⊇
dcaϕ(X,Y ) =̂ (dedϕ(X ∪ Y ), cabd¬ϕ(¬X ∪ Y )) ⊆ × ⊇
cdaϕ(X,Y ) =̂ (cded¬ϕ(X ∩ ¬Y ), abdϕ(¬X ∪ Y )) ⊆ × ⊇
cdcaϕ(X,Y ) =̂ (cded¬ϕ(X ∩ ¬Y ), cabd¬ϕ(¬X ∪ Y )) ⊆ × ⊇
acaϕ(X,Y ) =̂ (abdϕ(X ∪ Y ), cabd¬ϕ(X ∪ Y )) ⊇ × ⊇

The dcdϕ transformer is based on Cousot’s forward-backward iter-
ation [9], but the other combinations are, to the best of our knowl-
edge, new. An additional possibility for reasoning about satisfia-
bility is to combine deduction with existential quantification (dsϕ)
and abduction with universal quantification (aaϕ). These are only
two of many possible combinations.

dsϕ(X,Y ) =̂ (dedϕ(X ∩ Y ),wkx ◦ somex(X ∩ Y )) ⊆ × ⊆
aaϕ(X,Y ) =̂ (abdϕ(X ∪ Y ),wkx ◦ allx(X ∪ Y )) ⊇ × ⊇
The application of these transformers to satisfiability is below.

Theorem 5. The following statements are equivalent.
1. The formula ϕ is unsatisfiable.
2. The fixed point gfp(daϕ) is (∅,Env).
3. The fixed point gfp(dcdϕ) is (∅, ∅).
4. The fixed point gfp(dcaϕ) is (∅,Env).
5. The fixed point gfp(cdaϕ) is (∅,Env).
6. The fixed point gfp(cdcaϕ) is (∅,Env).
7. The fixed point gfp(acaϕ) is (Env ,Env).
8. The fixed point gfp(dsϕ) is (∅, ∅).
9. The fixed point gfp(aaϕ) is (Env ,Env).

4.3 Connection to Programs
We now relate deduction and abduction transformers to transform-
ers generated by programs. Assume a first-order signature Sig and
variables Vars as before. We write assume(b), abbreviated to [b],
for an assumption statement with a quantifier-free formula b. The
operational semantics of the statement is below.

rel([b]) =̂ {(ε, ε) | ε ∈ JbK}
The context for a program is the set of variables in the program. The
operational semantics defines the four transformers below, which
are related to deduction and abduction in Theorem 6.

post [b] =̂ X 7→ X ∩ JbK ˜post [b] =̂ ¬ ◦ post [b] ◦ ¬
pre [b] =̂ X 7→ X ∩ JbK p̃re [b] =̂ ¬ ◦ pre [b] ◦ ¬

Theorem 6. For a quantifier-free test [ϕ] we have that dedϕ =
post [ϕ] and abdϕ = p̃re [ϕ].

The consequence of Theorem 6 is that the same transformers
can be used for deduction and abduction in an SMT solver or for
reasoning about conditionals in program analysis. Improvements
in solvers lead to improved reasoning about conditionals and vice
versa. Moreover, the Galois connection between deduction and
abduction is a special case of the classic Galois connection between
postcondition and precondition transformers [7].

What of assignments? A beautiful result of categorical logic
shows that substitution defines a transformer that has two adjoints,
which generalise universal and existential quantification [32].
Transformers for assignments are closely related to transformers
for quantification. Consequently, assignment transformers, which
are ubiquitous in program analysis, define approximate quantifi-
cation procedures. Improvements in quantifier elimination proce-
dures should lead to better transformers for assignments. Due to
space restrictions, we do discuss this connection further.

5. Abstract Reasoning
This section presents three ideas. The first is a standard application
of abstract interpretation to the collecting semantics of formulae:
if concrete transformers are replaced by abstract transformers, we
obtain sound but incomplete conclusions about the properties of
a formula. The second is the notion of an abstract reasoning do-
main, which provides the building blocks for SMT solvers based on
abstract interpretation in the same way that traditional abstract do-
mains are building blocks of program analyzers. The third idea is
that standard logical notions such as definability or completeness
are properties of a Galois connection between lattices of structures
and lattices of formulae.

Abstract Interpretation We recall essential notions of abstract
interpretation. Assume two posets C and A related by a Galois
connection between an abstraction function α : C → A and a
concretisation function γ : A → C. The fundamental fixed point
approximation theorem of abstract interpretation is below, with aF
representing the abstract transformer corresponding to F .

Theorem 7 ([7]). Let (C,α, γ,A) be a Galois connection be-
tween two complete lattices and F : C → C and aF : A → A
be transformers satisfying α ◦ F v aF ◦ α. Then, α(lfp(F )) v
lfp(aF ) and α(gfp(F )) v gfp(aF ).

In the case that C is a powerset lattice P(S), we call A overap-
proximating if X ⊆ γ(α(X)) for all X ⊆ S and underapproxi-
mating if γ(α(X)) ⊆ X for all X ⊆ S. An abstract transformer
aF : A → A is a sound overapproximation of a concrete trans-
former F : P(S) → P(S) if F ◦ γ ⊆ γ ◦ aF and is a sound
underapproximation if F ◦ γ ⊇ γ ◦ aF .

An abstract transformer aF is α-complete for F at c if it satis-
fies α(F (c)) = aF (α(c)) and is α-complete if α◦F = aF ◦α. We
say that f is α-fixed point complete if α(lfp(F )) = lfp(aF ). An
abstract transformer aF is γ-complete for F at a if γ(aF (a)) =
F (γ(a)) and is γ-complete if γ ◦ aF = F ◦ γ.

5.1 Abstract Interpretation of Formulae
We introduce abstract Sig-structures which are derived from col-
lecting Sig-structures by replacing concrete transformers with ab-
stract transformers. Evaluating a formula with respect to an abstract
Sig-structure allows us to approximate the semantics of a formula
in a predictable manner.

Definition 8. An abstract Sig-structure A consists of the follow-
ing complete lattices and transformers.

1. Abstract value lattices (aValn,v,u,t) for each n ∈ N.
2. Abstract environment lattices (aEnvΓ,v,u,t) for each Γ.
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3. Abstract translation functions av -to-eΓ : aValn → aEnvΓ

and ae-to-vΓ : aEnvΓ → aValn whenever len(Γ) = n.
4. An abstract weakening function awkΓ,Γ′ : aEnvΓ → aEnvΓ′

for each context Γ′ and subcontext Γ.
5. Projection functions aeprΓ′,Γ, auprΓ′,Γ : aEnvΓ′ → aEnvΓ,

for every subcontext Γ of Γ′.
6. An abstract interpretation aint(F ) : aValar(F ) → aVal1 and

its inverse ainv(F ) : aVal1 → aValar(F ) for every function
symbol F ∈ Sig .

7. An abstract interpretation aint(P ) ∈ aValar(P ) of every pred-
icate symbol P ∈ Sig .

Every abstract lattice above is related to the corresponding con-
crete lattice by a Galois connection (C,α, γ,A). We extend the
convention for collecting structures and write asomex and aallx
for elimination of a single variable.

The abstract semantics of terms and of formulae with respect to
an abstract Sig-structure is given by the functions below.

J·KA : Termn
Γ → aEnvΓ → aValn J·KA : FormΓ → aEnvΓ

We obtain these by replacing concrete transformers and semantics
by their abstract counterparts in the definition JKC given earlier. Ex-
isting abstract domains already implement several components of
Definition 8. These domains have abstract value and environment
domains. The abstract semantics of terms is called ‘forward ab-
stract interpretation of expressions’ and the abstract semantics of a
quantifier-free formula is called ‘backward abstract interpretation
of expressions’ in [8].

The abstract semantics of a quantifier-free ϕ overapproximates
the concrete semantics if Jϕ : ΓKC ⊆ γ(Jϕ : ΓKA). Underapprox-
imation is dually defined. Abstract domains in program analysis
need not have a representation of the empty set. For example, the
one-element abstraction is a sound overapproximation [10]. When
dealing with satisfiability, a representation of the empty set is nec-
essary to express that a formula is unsatisfiable. Soundness, as de-
fined below, includes this condition. The one-element abstraction
is not necessarily sound in the sense below.

Definition 9. An abstract Sig-structure A soundly overapprox-
imates a collecting Sig-structure C if every lattice in A satis-
fies γ(⊥) = ∅ and concrete and abstract transformers satisfy
F ◦ γ ⊆ γ ◦ aF . An abstract transformer aF is the best abstract
transformer if aF = α ◦ F ◦ γ.

When dealing with underapproximations, these definitions are
dualised. The soundness of abstraction for negation-free formulae
is given below. We discuss negation is more detail shortly.

Theorem 10. If A is a sound overapproximation of C and ϕ is
negation-free Jϕ : ΓKC ⊆ γ(Jϕ : ΓKA).

The Interval Domain We present an extended example of ab-
stractly interpreting quantified formulae over intervals. It is known
that interval propagation can be used reason about terms, but the ex-
ample we present shows that it also supports sound but incomplete
reasoning about quantifiers. The example also exhibits a difference
between abstract quantifiers and best abstract quantifiers.

The complete lattice of intervals (Intv ,v,u,t) is defined over
the set Intv =̂ {[a, b] | a ≤ b, a, b ∈ Z ∪ {−∞,∞}}, with ⊥
representing the empty interval and> being [−∞,∞]. The interval
structure I contains the items below.
1. The value lattices aValn are product lattices Intvn.
2. The interval environments aEnvΓ are var(Γ)→ Intv .
3. The weakening function extends an interval with the new vari-

able going to >.

awkΓ,Γ′ =̂ ε 7→ ε ∪
{
y 7→ > | y ∈ var(Γ) \ var(Γ′)

}

4. The projection functions are given below.

aeprΓ,Γ′ =̂ ε 7→
{
x 7→ ε(x) | x ∈ var(Γ′)

}
auprΓ,Γ′ =̂ ε 7→


{x 7→ ε(x) | x ∈ var(Γ′)} if
ε(y) = > for all y ∈ var(Γ) \ var(Γ′)

⊥ otherwise

Existential projection drops certain variables and universal pro-
jection is not ⊥ only if the variables being dropped are all >.

The interpretation of functions and predicates depends on the sig-
nature of the theory considered.
Example 3. We compute the abstract semantics JϕKIntv of the
formula ϕ =̂ x ≥ 5 ∧ x ≤ 10 ∧ y = 2 using the interval domain.

Jx ≥ 5K u Jx ≤ 10K u Jy = 2K = {x 7→ [5, 10], y 7→ [2, 2]}
The domain also supports abstract quantification.

J∃y.ϕK = asomey(JϕK) = {x 7→ [5, 10]}
J∀y.ϕK = aally(JϕK) = ⊥

Now consider ψ =̂ ϕ ∧ y = 3 whose semantics is JψKIntv =
{x 7→ [5, 10], y 7→ ⊥}. We have that

asomey(JψKIntv ) = {x 7→ [5, 10]} , but
α(somey(γ(JψKIntv ))) = α(somey(∅)) = ⊥

showing that the existential projection transformer we have defined
is not the best possible. C

Negation Theorem 10 only applies to negation-free formulae.
Example 4 illustrates the problem of formulae with negation.
Example 4. Consider a logic with unary predicates of the form x =
k interpreted over the integers. Consider the parity lattice Par =̂
({⊥,E,O,>} ,v), which represents even and odd numbers. Let
Jx = kKPar be E if k is even and be O otherwise. The complement
∼ in this lattice cannot be used to approximate negation. To see
why, consider evaluating ¬(x = 2) as ∼Jx = 2KPar , which is
∼E = O but γ(O) does not include all models of ¬(x = 2). The
only sound abstraction of negation is to map every element to>.C

More generally, in domains that allow for strict overapproxima-
tion of the semantics of a formula, the only sound abstract negation
will map every element to >. This problem only exists if the syn-
tax of formulae have arbitrary negation. If negation is limited to
atomic predicates, Definition 8 can be extended to include an ab-
stract interpretation aint(¬P ) of the negation of every predicate,
Definition 9 can be extended to require sound overapproximation of
negation of predicates, and Theorem 10 can be extended to formu-
lae in negation normal form. A similar restriction is applied when
model checking is combined with abstraction [5].

5.2 Abstract Reasoning Domains
We now identify the structure of an abstract domain for logical rea-
soning. In addition to a lattice that provides approximate seman-
tics of formulae and abstract transformers that provide approximate
semantics for logical operators, the domain includes operators for
inductive reasoning (in the sense of philosophical logic). Unlike
deductive and abductive reasoning, which are both sound with re-
spect to implication, inductive reasoning models generalization or
specialization which are not necessarily sound.

Widening and dual-widening operators implement inductive
reasoning in program analyzers. Craig interpolation is another tech-
nique used for generalisation [34]. Narrowing is a restricted form
of interpolation in a lattice because it maps a pair satisfyingA v B
to an element I satisfying A v I and I v B. Narrowing does not
have the syntactic constraints of Craig interpolation because the
lattice is not necessarily constructed from formulae. McMillan’s
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notion of interpolation, which we call separation, maps a pair sat-
isfying A u B v ⊥ to an I satisfying A v I and I u B v ⊥.
While interpolation and separation are inter-derivable on Boolean
lattices they are not in general, hence have distinct definitions.

Definition 11. A reasoning domain is an extension of an abstract
Sig structure with the following operations.

1. Abstract transformers adedϕ, acdedϕ, aabdϕ and acabdϕ for
deduction and abduction.

2. A unary, extensive function ext� : L → L called upwards
extrapolation and its dual ext� : L → L called downwards
extrapolation.

3. A partial, interpolation function itp : L × L → L, satisfying
x v itp(x, y) v y whenever x v y. The element itp(x, y) is
called an interpolant.

4. A partial, separation function sep : L × L → L, satisfying
x v sep(x, y) and sep(x, y) u y v ⊥ whenever x u y v ⊥.
The element sep(x, y) is called a separator.

We use the word ‘function’ and not ‘transformers’ above be-
cause the operations need not be monotone, as with widening [9].
Example 5. We apply abstract, interval deduction by computing
gfp(adedϕ) with ϕ =̂ x ≥ 5 ∧ x ≤ 10 ∧ y = 2x and E0 = >.

E1 = adedϕ(E0)

= Jx ≥ 5K(>) u Jx ≤ 10K(>) u Jy = 2xK(>)

= {x ∈ [5, 10], y 7→ [−∞,∞]}
E2 = adedϕ(E1)

= Jx ≥ 5K(E1) u Jx ≤ 10K(E1) u Jy = 2xK(E1)

= {x ∈ [5, 10], y 7→ [10, 20]} = gfp(adedϕ)

The fixed point is superfluous in the concrete but yields more
information in the abstract than one transformer application. C

The overapproximation and underapproximation conditions
given earlier provide the following abstract satisfaction theorem.

Theorem 12. Let O be an overapproximate reasoning domain
and U be an underapproximate one.

1. If γ(gfp(adedϕ)) = ∅ in O then ϕ is unsatisfiable.
2. If γ(lfp(aabdϕ)) = EnvΓ in U then ϕ is unsatisfiable.

5.3 Galois Connection of Syntax and Semantics
The first abstraction we identify is between syntax and semantics.
The Galois connection below has been observed in different set-
tings in the literature [32, 42]. We are not aware of this connection
being identified in the setting that we use.

Theories and Definability A theory is a set of formulae, each
called an axiom. A complete theory is a set of formulae closed
under implication. The theory of a set of structures S consists of
formulae which are true in every structure in S. A set of structures
S is definable if there exists a formula ϕ such that S = JϕK. These
notions lead to a Galois connection.

th : P(EnvΓ)→ P(FormΓ) st : P(FormΓ)→ P(EnvΓ)

th =̂ S 7→ {ϕ | S ⊆ JϕK} st =̂ Φ 7→
⋂
ϕ∈Φ

JϕK

Theorem 13. There is a Galois connection (P(Env),⊆) −−−→←−−−
th

st

(P(Form),⊇) between structures and formulae.

The superset order is chosen because we interpret a set of
formulae as their conjunction. The Galois connection allows us to
view formulae as abstractions of structures and is appropriate for

our goal of studying satisfiability. In a proof-theoretic investigation,
one may prefer to accord primacy to formulae and view structures
as abstractions. By the Galois connection, a complete theory Φ is
one satisfying th(st(Φ)) and a set of structures S is definable if
st(th(S)) = S.

Proof Systems The Galois connection of syntax and semantics
allows us to view proof rules as transformers on an abstract domain
of formulae and logical soundness and completeness as soundness
and completeness in the sense of abstract interpretation.

A proof rule is a relation between formulae. In a rule contain-
ing (ϕ0, . . . , ϕn−1, ϕn) the formulae ϕ0, . . . , ϕn−1 are called an-
tecedents and ϕn is the consequent. A proof system is a collection
of proof rules of possibly different arities. A unary rule is a set of
formulae, which are also called the hypotheses.

A formula ψ is derived from a set of formulae Φ using a proof
system, written Φ ` ψ, if ψ occurs in Φ or if ψ is derived from
ϕ0, . . . , ϕn−1 by applying an n-ary inference rule and the formulae
ϕ1, . . . , ϕn are derived from Φ. The deductive closure of a set of
axioms Φ with respect to a proof system ` is the set of all formulae
that can be derived from Φ with `. A proof system is deductively
sound if every ψ derived from Φ is in the theory of Φ. A proof
system is deductively complete if every ψ in the theory of Φ can be
derived from Φ. A refutation is a derivation of false.

A proof system ` defines a transformer adedϕ : P(Form) →
P(Form) from a set of formulae to its immediate consequences.

adedϕ =̂ Φ 7→ {ψ | there exist ϕi ∈ Φ ∪ {ϕ}
(ϕ0, . . . , ϕn−1, ψ) is in a proof rule }

The fixed point gfp(adedϕ) (with respect to the superset order)
contains all formulae derivable from ϕ. Since multiple applications
of proof rules are required to derive a conclusion, adedϕ is not
usually a closure operator. Properties of proof systems become
properties of the abstract transformer.

Lemma 14. A proof system ` is deductively sound exactly if
dedϕ ◦ st ⊇ adedϕ ◦ th and is deductively complete exactly if
th ◦ dedϕ ◦ st = gfp(adedϕ).

While deductive soundness corresponds to soundness in ab-
stract interpretation, deductive completeness is fixed point com-
pleteness, which is only one of several completeness notions [24].

6. Abstract Satisfaction Procedures
The framework in the previous section has already been applied
to characterize satisfiability procedures for propositional and first-
order logics in terms of the lattices and transformers. The method of
truth tables, propositional resolution, and Boolean Constraint Prop-
agation were formalized as greatest fixed points in [18]. The classic
DPLL algorithm was shown to be a fixed point refinement procedure
in [18], and CDCL was formalized as a combination of deduction
and abduction in [19]. The congruence closure algorithm for the
theory of equality with uninterpreted functions is a fixed point in
a lattice of partitions, and the application of the Bellman-Ford al-
gorithm for deciding difference logic is a fixed point in a lattice of
weighted graphs [2]. The DPLL(T) algorithm used in SMT solvers
was characterized as an approximate, reduced product construction
in [2]. Though different frameworks were used to give a lattice-
theoretic characterization of the Nelson-Oppen procedure [14] and
Stålmarck’s method [44], those procedures can also be formulated
in the language of this paper.

This section introduces a simple and systematic formulation of
the abstractions above. We introduce lattice-theoretic generaliza-
tions of CNF and DNF formulae. A wide range of lattices used in
practice, such as partial assignments, equality graphs, the intervals,
and binary implication graphs, admit such a representation. We

146



exhibit Galois connections showing that CNF and DNF and their
generalizations define semantic abstractions. Moreover, these lat-
tices support logical notions such as resolution, the pure literal rule,
and subsumption. We demonstrate that pre- and in-processing tech-
niques used in SAT solvers can be understood as abstract quantifica-
tion procedures. Thus, these procedures have a semantic justifica-
tion, abstract interpretation-based soundness proofs, and generalize
to program analysis.

Upwards and Downwards Closure We will use the notions of
upward and downward closure to generalise CNF and DNF formulae
to logics defined over posets.

A subset Q of a poset A is downwards closed if for every x in
Q and y in A, y v x implies that y is in Q. A downwards-closed
set is called a downset. The smallest downset containing Q is de-
noted Q�, and the downset of a singleton set {x} is denoted x�.
In examples, we denote a downset as the set of its maximal ele-
ments. The downset lattice over A, written (D(A),⊆,∩,∪), is the
set of downsets of A ordered by inclusion. Downsets strictly gen-
eralise powersets because the downset lattice with respect to the
identity relation is isomorphic to P(S). The dual notion to downset
is up-sets. The smallest up-set containing Q is Q�, and (U(A),⊇)
is the up-set lattice with intersection as join and union as meet.
Let min(Q) and max (Q) denote the minimal and maximal ele-
ments of a poset Q. These sets form antichains. When convenient,
we assume that up-sets are represented by minimal elements and
downsets by maximal elements.

An abstraction A of a powerset lattice is disjunctive if γ(a t
b) = γ(a)∪γ(b). Downset completion is an operation that enriches
an abstraction with disjunction [12]. The downset completion of A
is the lattice D(A) with the abstraction and concretisation functions
below. Unlike the standard treatment, we use downsets as underap-
proximating abstractions.

γD(A) : D(A)→ P(S) γD(A)(Q) =̂
⋃
{γ(x) | x ∈ Q}

αD(A) : P(S)→ D(A) αD(A)(P ) =̂ {x | γ(x) ⊆ P}

γU(A) : U(A)→ P(S) γU(A)(Q) =̂
⋂
{γ(x) | x ∈ Q}

αU(A) : P(S)→ U(A) αU(A)(P ) =̂ {x | γ(x) ⊇ P}
Consult [12] for proofs that the pairs of functions above form
Galois connections and that the domains are disjunctive. We can
dually define the up-set completion of a lattice. If a lattice A
overapproximates P(S), the downset completion overapproximates
P(S) and the up-set completion underapproximates P(S).

6.1 Generalised Cube Abstract Domains
There is some debate about whether the use of CNF representations
is beneficial or detrimental to solvers [43]. We believe that CNF is
advantageous for solvers because it leads to simple and efficient
data structures. We also believe there must be deeper, algebraic
properties of CNF that are advantageous to solvers. One reason is
because, as we observed earlier, CNF leads to a simpler treatment
of negation. Another is that several domains used in practice have
generalized CNF representations.

Consider a poset (gLit ,v) of generalised literals. One may
think of gLit as a set of semantically distinct formulae. We define
generalised cubes, clauses, CNF and DNF formulae by using up-sets
to form conjunctions and downsets to form disjunctions.

gClause =̂ (D(gLit),⊆) gCube =̂ (U(gLit),⊇)

gCNF =̂ (U(gClause),⊇) gDNF =̂ (D(gCube),⊆)

Since up- and downsets become powersets if the identity relation
is used as the order, standard cubes and clauses are special cases
of this definition. If gLit contains formulae, the concretisation
function for the poset A is the function st : gLit → P(EnvΓ)

(P(EnvΓ),⊆)

(gCNF ,⊇)

(CNF ,⊇) (gCube,⊇)

(Cube,⊇)

(P(EnvΓ),⊇)

(gDNF ,⊆)

(DNF ,⊆) (gClause,⊆)

(Clause,⊆)

Figure 2. Refinement order between the generalised CNF domains.

gLit gCube

({p,¬p | p ∈ Prop} ,=) Partial assignments

({x = y, x 6= y | x ∈ Vars} ,=) Equality graphs

({x <= y, x < y | x ∈ Vars} ,=) Difference graphs

({x ≤ k, x ≥ k | k ∈ N} ,⇒) Interval cubes

({m ∨ n |m,n ∈ Lit} ,=) Binary Implication Graphs

Table 1. Domains viewed as generalised clauses, cubes and CNF

from formulae to models. If a is a generalized literal, we write ∼ a
for a literal that satisfies γ(a) ∪ γ(∼ a) = >.

The relationship between these domains is depicted in the Hasse
diagram in Figure 2, where an upward line denotes an abstraction
relationship. Cubes constructed by powerset operations are over-
approximations of generalised cubes and CNF formulae, which are
in turn overapproximations of generalised CNF, which are overap-
proximations of environments. On the other hand, the dual con-
structions give us underapproximating domains of clauses, gener-
alised clauses, DNF and generalised DNF respectively.

Another property of this construction is that all domains ob-
tained are distributive because up-set and downset lattices are dis-
tributive [15]. As we show shortly, these domains are distributive
lattices but do not express disjunction. Table 1 lists domains that
have generalized cube descriptions.

Partial Assignments Consider a set of Boolean variables Prop, a
set of literals Lit and the identity relation. The lattice gCube is iso-
morphic to the lattice of partial assignments, the main data structure
in solvers based on DPLL. This domain was studied in [18].

Equality Graphs Consider generalized clauses over the literals
ELit = {x = y, x 6= y} with the identity relation on literals.
(Caution! Identity between literals is different from the equality
between variables.) Cubes over equality literals define equality
graphs, which are used in several solvers [36, 47]. Figure 3 depicts
a graph with elements representing literals highlighted at the top.
Two important operations in equality logic decision procedures
are transitive closure and cycle detection. We formalize transitive
closure by the transformer trans : U(ELit)→ U(ELit).

trans =̂ G 7→ G ∪ {x = y | x = z, z = y ∈ G}
Recall that a reduction operator is an abstract transformer ρ satis-
fying that γ(a) = γ(ρ(a)) for all a. Observe that transitive closure
is a reduction operator and the saturation of a graph with transitive
edges is a greatest fixed point.

A conflicting cycle in an equality graph contains only equalities
and exactly one disequality edge [36]. A graph with a conflicting
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disequality edgeequality edge

Figure 3. Equality graphs over three variables. The shaded ele-
ments at the top are literals and the shaded elements at the bottom
all concretise to the empty set.

cycle satisfies γ(G) = ∅. The shaded elements at the bottom of
Figure 3 all contain conflicting cycles and concretise to the empty
set. A similar abstract domain and reduction operation appear in
the logic of order and directed graphs in [31].

Interval Cubes Consider the set of single variable inequalities
(BLit = {x ≤ k, x ≥ k | k ∈ Z} ,⇒). which form a poset un-
der implication. The elements of BLit are light grey in Figure 4.
By representing intervals as cubes instead of pairs, we obtain a set-
based representation that supports proof rules such as resolution
and other algorithms in solvers that target clauses and cubes. Ex-
ample 6 illustrates how intervals can be manipulated using up-sets.
Example 6. The interval domain as defined in Section 5 is not
distributive because identities such as the one below fail.

([0, 1] t [6, 7]) u [3, 4] = [3, 4]

6= ([0, 1] u [3, 4]) t ([6, 7] u [3, 4]) = ⊥
Now consider intervals represented as up-sets. The meet in this
lattice is union and join is intersection, so it is trivially distributive.
We represent up-sets by their minimal elements.

({x ≥ 0, x ≤ 1} � ∩ {x ≥ 6, x ≤ 7} �) ∪ {x ≥ 3, x ≤ 4} �
= {x ≥ 0, x ≤ 7} � ∪ {x ≥ 3, x ≤ 4} � = {x ≥ 3, x ≤ 4} �

A similar calculation yields the expected interval for the other
interval expression. The cube representation expresses the same
concrete elements as the classic pair representation of intervals but
contains more redundancy. C

Binary Implication Graphs If the set of generalised literals con-
tains clauses of length 2 (such as {p,¬q}) ordered by equality, each
generalised literal represents two implications q ⇒ p and ¬p⇒ q,
which can be viewed as edges in a directed graph. The resulting
Binary Implication Graph abstract domain is used for preprocess-
ing in SAT solvers [29]. Though a lattice-based analysis has not
been previously applied to Binary Implication Graphs, we need not
explicitly define Galois connections or their approximation proper-
ties, as these follow from the cube representation. As with equality
graphs, transitive closure is a reduction.

The CNF Domains The generalized CNF domains show that CNF
formulae have a lattice structure that is usually not recognized. To
see the difference between gCNF and CNF , consider BLit . The
set {x ≥ 2, x ≤ 5, x ≤ 7} represents a clause but not a generalized
clause, while {x ≥ 2, x ≤ 5} � is a generalised clause.

Solvers use a variety of subsumption techniques to minimize
formulae without explicitly checking implication. The inclusion

>

〈x < 100〉

〈x < 99〉

〈y < 100〉

〈y < 99〉

〈x ≥ 0〉

〈x ≥ 1〉

〈y ≥ 0〉

〈y ≥ 1〉

〈x : [1, 98]〉〈x < 99, y < 99〉 〈x ≥ 1, y ≥ 1〉

〈x : [3, 9], y : [1, 6]〉〈x : [3, 7], y : [1, 4]〉 〈x : [7, 9], y : [4, 6]〉

〈x : 3, y : 1〉 〈x : 7, y : 4〉 〈x : 9, y : 6〉

⊥

Figure 4. The lattice of interval environments over two variables.
The shaded elements at the top represent the poset of literals while
elements at the bottom represent singleton values.

orders in Figure 2 correspond to subsumption notions and also
underapproximate implication. For instance, {{p} , {p, q}} and
{{p}} are logically equivalent but we can only show {{p}} ⊆
{{p} , {p, q}} using the lattice order. From the abstract interpreta-
tion perspective, subsumption is not a substitute for implication but
is fundamental to the lattice structure of CNF and DNF domains.

6.2 Abstract Transformers in Solvers
Generalized Unit Rule The unit rule in SAT solvers asserts that if
a cube represents a region of the search space and the cube falsifies
all but one literal in a clause, the remaining literal can be added
to the clause. The Abstract Conflict Driven Learning algorithm
(ACDCL) of [19] generalises the unit rule to abstract domains based
on the notion of complementable meet irreducibles. The unit rule
can be viewed as a technique for refining generalized cubes using
generalized clauses.

gunit : gClause → (gCube → gCube)

gunitθ =̂ π 7→ π ∪ {a} , where a ∈ θ, γ(π) ∩ γ(a) 6= ∅, and
for all b ∈ θ \ {a} , γ(π) ∩ γ(b) = ∅

We write gfpx(f) for the function that maps elements a to fixed
points gfp(f(a, x)) of a function f(y, x). The main observation
of [18] was that Boolean Constraint Propagation (BCP) is a fixed
point bcp(ϕ, x) =̂ gfpx(

d
θ∈ϕ gunitθ) defined pointwise over unit

rules. The generalized cubes in Table 1, when combined with the
generalized clauses, also support the unit rule and BCP.

Failed Literal Probing Failed literal probing [21, 22] is a prepro-
cessing technique in SAT solvers. The technique chooses literal a,
computes bcp(a, ϕ) and if the result is⊥, adds the singleton clause
{b} to ϕ, where b satisfies that γ(a)∪γ(b) = >. No action is taken
if the result is not bottom. Note that we have not only described
failed literal probing, but also its generalization to CNF domains.

Clause Dropping Variable elimination is a fundamental opera-
tion underlying quantifier elimination, deduction and syntactic sim-
plification of formulae. The simplest form of sound variable elim-
ination is to drop clauses from a CNF formula in which the target
variable occurs. This idea lifts directly to generalized CNF domains
if we drop constraints based on the literals they contain.

drop : gLit × gCNF → gCNF

dropp(ϕ) =̂ {C | {p,∼ p} ∩ C = ∅, C ∈ ϕ}
In general, dropp is an overapproximation of the deduction trans-
former. If p is a Boolean variable, dropp also overapproximates
existential quantification with respect to p.
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Resolution The resolution principle asserts that if C ∨ p and
¬p∨D are both satisfiable, so is C ∨D. The variable p is the pivot
and C ∨ D is the resolvent. Generalised CNF domains support a
generalization of resolution res : gLit × gCNF → gCNF .

res(p, ϕ) =̂ {C ∪D | C ∪ {p} , D ∪ {q} ∈ ϕ, γ(p) ∩ γ(q) = ∅}

Generalized CNF domains that apply this transformer can produce
resolution-style proofs, which is a first step towards combining
existing abstract domains with proof-theoretic techniques.
Example 7. The generalised CNF element

ϕ =̂ {{x ≥ 10, x ≤ 5} �, {x ≥ 7, x ≤ 13} �}

represents a conjunction of disjunctions of bounds. Standard inter-
val propagation will lose precision in the clauses, while standard
resolution does not apply because no constraint is the negation of
another. The result of generalized resolution with respect to the lit-
eral x ≥ 7 is res(x ≥ 7, ϕ) = {{x ≥ 10, x ≤ 13}}. Though
arithmetic techniques methods can deduce the same information,
generalised resolution is simple and suffices in this case. C

The Pure Literal Rule Clause dropping is a sound but incomplete
simplification technique because a formula ϕ that is unsatisfiable
might become satisfiable after clause dropping. The pure literal
rule, introduced in the original algorithm of Davis and Putnam [16]
can be understood as an application of clause dropping only in
situations where it does not change the satisfiability of a formula.
We formalize the pure literal rule for generalized CNF domains.

Recall that gLit is the set of generalized literals. We say that
a set of literals A is pure if for each a in A, no b satisfying
γ(a) ∩ γ(b) = ∅ is also in A. We assume that gLit is the disjoint
union of two pure sets P and N such that for each a in P , there
exists a b in N satisfying that γ(a)∩ γ(b) = ∅ and vice-versa. The
elements of P are positive literals and of N are negative literals.
Define a set {+,−} of polarities, a lattice of polarities P({+,−}),
and a lattice of polarity maps P → P({+,−}).

Polarity analysis of a generalized CNF formula ϕ computes a
polarity map ρ. such that ρ(`) is {+} or {−} if the generalized
literal ` only occurs positively or only negatively in ϕ, and is ∅ if `
does not occur in ϕ, and is {+,−} if ` occurs both positively and
negatively in ϕ. The polarity of a literal ` is {+} if a is in P , and
is {−} if ` is in N . The polarity map for a literal ` sends ` to its
polarity and sends all literals b 6= a to the empty set. The polarity
map for a generalized clause is the pointwise join of of polarity
maps of its literals. The polarity map of a generalized CNF element
is the pointwise join of of polarity maps of its clauses. Note that the
join is used in both cases.

The pure literal rule for a generalized CNF formula, applies
drop` to a formula ϕ only if the polarity map for ϕ does not send
the literal ` to {+,−}. The pure literal rule is a sound overapprox-
imation of the deduction transformer and is a refinement of clause
dropping. In propositional logic, the pure literal rule applied to a
variable p is also a sound abstraction of the existential quantifica-
tion transformer (wkp ◦ somep).

7. Discussion and Related Work
This paper contributes to a research programme that seeks to close
the gap between abstract interpretation techniques and deduction
algorithms, both in theory and practice. One direction of this pro-
gram is to use deduction algorithms to refine static analyses. Pre-
cision loss due to joins was reduced by boosting a static analysis
with unification [46], DPLL(T) [27], or CDCL [20]. Best abstract
transformers have been synthesized using satisfiability solvers [41],
and Stålmarck’s method [45], while [37] applied satisfiability tech-
niques to reduce precision loss in fixed point iteration.

Another direction in this programme is to characterize satisfi-
ability procedures as abstract interpretations. Boolean constraint
propagation was shown to be an abstract interpretation in [18], and
CDCL was generalized to combine deduction and abduction over
lattices in [19]. Stålmarck’s method was characterized as a tech-
nique for refining abstract transformers in [44]. The Nelson-Oppen
method for theory combination implemented in SMT solvers was
shown to be a special case of the reduced product of abstract do-
mains [14]. The DPLL(T) technique for reasoning about a theory by
combining a SAT solver with a theory solver was also shown to be
a special case of the reduced product in [2].

In addition to static analysis applications, these characteriza-
tions provide a new way for lifting solver algorithms to new logics.
For example, Stålmarck’s method was lifted to arithmetic in [45],
while CDCL was lifted to floating point logic in [26]. Note that
the Nelson-Oppen combination was lifted to abstract domains [25]
prior to the reduced product characterization.

Abstract satisfaction is lattice-theoretic in an attempt to align
with static analysis. If static analysis is ignored, the DPLL(T) frame-
work provides one generic approach to implementing decision pro-
cedures [23]. The separation of Boolean and theory reasoning in
DPLL(T) can be detrimental to performance and has driven the
search for other frameworks. Abstract DPLL [39], natural domain
SMT [6], generalized DPLL [35], and the model construction calcu-
lus [17] are attempts in this direction.

8. Conclusion
Abstraction is fundamental to practical reasoning about computa-
tionally intractable problems. Abstract interpretation has tradition-
ally been applied to reason about undecidable problems such as
checking semantic properties of programs. This paper introduced a
framework for applying abstract interpretation to problems that are
NP-hard but decidable, such as satisfiability.

This framework allows for novel perspectives of SMT algo-
rithms. Solvers can be viewed as abstract interpretation portfo-
lios, which combine several different, weak abstractions to achieve
a conclusive result. Moreover, while solvers use incomplete ab-
stractions they produce complete results. This is not due to brute-
force enumerations but clever, semantics-based refinement tech-
niques. Our framework makes some of these techniques explicit,
but more importantly provides a general vocabulary for studying a
wide range of satisfiability procedures.

While the focus of this paper has been theoretical, our goal is
to contribute to the practical state of the art. The original abstract
interpretation framework provided a simple recipe for constructing
static analyzers. Abstract satisfaction plays a similar role and pro-
vides a foundation for the development of programmable, lattice-
based SMT solvers.

There are three different axes for future work. One is to ap-
ply abstract interpretation to the implementation of SMT solvers by
constructing sound but incomplete solvers and abstract quantifica-
tion procedures from existing abstract domains. The second axis is
to lift techniques in SMT solvers to improve the precision and effi-
ciency of program analysis. The classic DPLL, DPLL(T), CDCL and
Stålmarck’s method have each been lifted to a single static analy-
sis problem, but more applications and evaluation are required to
understand their strengths in a static analysis context. Preprocess-
ing, subsumption, and sparsity techniques have all been integral to
improving the performance of solvers, and the connections in this
paper indicate that such techniques should lift to program analy-
sis as well. The final axis is to investigate new implementations of
abstract domains with interfaces rich enough to support SMT solv-
ing, static analysis, implication graph construction, and domain and
theory combinations. We look forward to these developments.
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