
A Calculus of Higher Order Communicating Systems

Bent Thomsen
Department of Computing

Imperial College of Science and Technology
180 Queen’s Gate, London SW7 2BZ, England

Abstract

In this paper we present A Calculus of Higher Order Com-
municating Systems. This calculus considers sending and
receiving processes to be as fundamental as nondeterminism
and parallel composition.

The calculus is an extension of CCS [MilSO] in the sense
that ail the constructions of CCS are included or may be de-
rived from more fundamental constructs and most of the
mathematical framework of CCS carries over almost un-
changed.

Clearly CCS with processes as first class objects is a power-
ful metalanguage and we show that it is possible to simulate
the untyped X-calculus in CHOCS. The relationship between
CHOCS and the untyped X-calculus is further strengthened
by a result showing that the recursion operator is unneces-
sary in the sense that recursion can be simulated by means
of process passing and communication.

As pointed out by R. Milner in (MilSO], CCS has its limi-
tations when one wants to describe unboundedly expanding
systems as e.g. an unbounded number of procedure invo-
cations in an imperative concurrent programming language.
We show how neatly CHOCS may describe both call by value
and call by reference parameter mechanisms for the toy lan-
guage of chapter 6 in [Mi180].

1 Introduction

A calculus for computation should provide a mathematical
framework for the description of and reasoning about com-
puting systems all inside the calculus. To guide the human
mind when reasoning about the complex nature of nondeter-
ministic and concurrent systems R. Milner devised A Culcu-
lus of Communicating Systems as described in [Mi180] and

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 ACM 19890-89791-294-2/89/0001/0143 $1.50

later refined in [Mi183, HenMil851. This calculus is intended
to provide a minimal set of constructions for description
of nondeterministic and concurrent systems. According to
[Mi180], one of the original intentions of CCS was that it
should serve as the X-calculus of concurrent systems. Sub-
sequent research shows that it serves well as such for a large
range of applications. But, as already pointed out in [MilBO],
it has its limitations when one wants to describe unbound-
edly expanding systems as e.g. an unbounded number of
procedure invocations in an imperative concurrent program-
ming language.

We believe that this deficiency comes from the first order
nature of CCS although a later extension of CCS [Mi183],
allowing dynamic use of communication channels to be en-
coded by subscripts and value passing, may be used to take
care of the above problem. This solution has been further
refined in [EngNie86], where labels or portnames are con-
sidered as first class objects. Both these solutions seem low
level and far removed from the X-calculus analogy, since they
do not explicitly support any higher order constructions.

Higher order constructs arise in almost any branch of
theoretical computer science, since they yield elegant and
powerful abstraction techniques. But so far almost all the-
ories about nondeterministic and concurrent systems have
a first order nature. A few attempts to allow higher or-
der constructs in notions for description of nondeterministic
and concurrent systems have earlier been put forward such
as [KenSle83, AstReg8?]. Unfortunately these theories are
rather complicated and to some extent too informal and un-
developed, so their applications have been limited. Only re-
cently some more promising treatments of processes a3 first
class objects have been proposed [Bou88, Nie88, KenSle88,
Chr88). In [Bou88] a CCS-like language with special opera-
tors and process passing is used to describe the X-calculus.
[Nie88] presents a mixture of a typed X-calculus and a CCS-
like language with processes as first class objects. It is shown
how the types (including sorts of processes) of programs may
be used to detect certain errors statically. Both [KenSleSS]
and [Chr88] focus on formulating denotational semantics for
CCS respectively CSP with processes as communicable val-
ues .

In the following we put forward A Calculus of Higher Or-
der Communicating Systems which considers sending and re-
ceiving processes to be as fundamental as nondeterminism

143

and parallel composition. The calculus is an extension of
CCS in the sense that all the constructions of CCS are in-
cluded or may be derived from more fundamental constructs
and most of the mathematical framework of CCS carries
over almost unchanged. The calculus is given an operational
semantics by means of a labeled transition system [Plo81].
The fundamental bisimulation equivalence [Pa&l, Mi183] of
CCS - commonly accepted as the finest extensional or be-
havioural equivalence between processes one would impose
- is extended to take processes as communicable values into
account. Clearly CCS with processes as first class objects is
a powerful metalanguage and we show that it is possible to
simulate the untyped X-calculus in CHOCS. The relation-
ship between CHOCS and the untyped &calculus is further
strengthened because we do not need an explicit recursion
operator to obtain infinite behaviours, since the recursion
operator can be simulated by means of process passing and
communication.

The outline of this paper is as follows: In section 2 we
introduce the well&established notions of labeled transition
systems [Plo81] and bisimulation [Pa&l, Mi183] together
with the extensions necessary to take processes as communi-
cable values into account. In section 3 we present a language
for description of higher order communicating systems in-
cluding its operational semantics. Section 4 provides a range
of algebraic laws satisfied by the calculus. A main theorem
of this section is the simulation of recursion by means of
process passing and communication. We briefly comment
on the subject of sound and complete proof systems. In sec-
tion 5 we show how the untyped &-calculus may be encoded
in CHOCS. Section 6 contains an appIication of CHOCS
as a metalanguage defining the semantics of an imperative
toy language with parallel constructs first studied in [Mi180].
The main result of this section is the neat handling of pro-
cedures, both the call by value and the call by reference
parameter mechanisms. Finally section 7 contains some con-
cluding remarks. We comment on the denotational approach
to semantics for languages with processes as communicable
values and we outline the relationship between the approach
of [EngNie86] and CHOCS.

2 Transition Systems and Bisimu-

lat ion

We take the approach of many recent researchers, especially
R. Milner (see e.g. [Mi180, Mi183]), by defining the semantics
of concurrent systems by the set of experiments they offer to
an observer. Le. we use the model of labeled transition sys-
tems [Plo81] as a tool for defining the operational semantics
of concurrent systems.

Let Pr be a set of processes and Act a set of actions
which processes may perform. A derivation relation +C
Pr x Act x Pr defines the dynamic change of processes
as they perform actions. For (p, a,q) E---, we normally
write p L q which may be interpreted as: “the process
p can perform an action a and by doing so become the pro-
cess q”. We use the usual abbreviations as e.g. p 5 for

39 E Pr.p s q and p & for -3q E Pr.p -% q. The triple

P = (Pr, Act, -) constitutes the transition system of pro-
cesses. Based on the operational semantics given by the tran-
sition system, several equivalences and preorders have been
proposed in order to capture various aspects of the observa-
tional behaviour of processes. One of these is the equivalence
induced by the notion of bisimulation [Par81, MiI83].

Definition 2.1 A bisimulation R is a binary relation on
Pr such that whenever pRq and a E Act then:

(i) Whenever p 5 p’, then q -% q’
for some q’ with p’Rq’

(ii) Whenever q 5 q’, then p -% p’
for some p’ with p’Rq

Two processes p and q are said to be bisimulation equiv-
alent ifl there ezists a bisimulation R containing (p, q). In
this case we write p N q.

Now for R C_ Pr2 we can define B(R) as the set of pairs
(p, q) satisfying for all a E Act the clauses (i) and (ii) above.
From this definition it follows immediately that R is a bisim-
ulation just in case R E B(R). Also, B is easily seen to be
a monotone endofunction on the complete lattice of binary
relations (over Pr) under subset inclusion. Standard fixed
point results, due to Tarski [Tar55], yield that a maximal
fixed point for B exists and is defined as U{R 1 R C B(R)}.
This maximal fixed point actually equals -. Moreover, N is
an equivalence relation and even a congruence with respect
to the usual CCS process constructions [Mi180].

So far the set of actions has been uninterpreted. As we
shall see later we want to use the model of labeled transi-
tion systems to give semantics to a process language with
processes as communicable values.

In [MilSO] transitions of the form p % p’, where v is

some value, are used to give semantics to CCS with value
passing in communication. We shall pursue this idea and
from now on we shall consider labeled transition systems
p = (Pr, Act, -), where Act has the form Namesx {?, !} x

Pr U {T] and Names is an uninterpreted set referred to as

a set of portnames. p “?p: p” may be read as “p can receive
the process p’ at port a and in doing so become the process
,,n

P . p (I!p: p” may be read as “p can send the process p’
via port a and in doing so become the process p”“. Note
that instead of insisting on an abelian monoid structure on
the set Names of portnames as in [Mi183] we simply use the
CSP-like notation of ?, ! to indicate the input/output clirec-
tion of communication. A special symbol r not in Names
will be used to symbolize internal moves of processes and
p & p’ may be interpreted as “the process p can do an
internal or silent move and in doing so become the process

P “‘. Throughout this paper we shall use r to stand for any
action a?p, a!p or 7.

To capture the observational behaviour of processes capa-
ble of sending and receiving processes we extend the notion
of bisimulation. Bisimulation is commonly accepted as the
finest extensional or behavioural equivalence between

144

processes that one would impose and the equivalence corre-
sponds to a view where processes are black boxes only dis-
tinguishable by their interaction capabilities in different en-
vironments. Therefore the extension of bisimulation should
not distinguish between equivalent processes even when they
are sent or received in communication.

This is captured in the following definition:

Definition 2.2 A higher order bisimulation R is a binary
relation on Pr such that whenever pRq and r E Act then:

(i) Whenever p -% p’, then q -% q’
for some q’, r’ with r& and p’Rq’

(ii) Whenever q -% q’, then p -% p’
for some p’, r’ with rkr’ and p’Rq’

Where h = {(I-, r’) 1 (r = a?# & r’ = a?q” & p”Rq”) V (r =

a!p” & r’ = a!q” & p”Rq”) V (r = r’ = 7)).

Two processes p and q are said to be higher order bisimula-
tion equivalent ifi there ezists a higher order bisimulation R
containing (p, q). In this case we write p N q.

We may define ‘W(R) for R s Pr’ as the set of pairs (p, q)
satisfying clause (i) and (ii) above. It is easy to see that Ffj
is a monotone endofunction and that there exists a maximal
fixed point for 3-O. This equals N. If we interpret transitions

like p & p’ as p ‘?p’: p’ for any p” it is easy to see that any
bisimulation equivalent pair of processes is also higher order
bisimulation equivalent and we shall drop the higher order
prefix from now on. This justifies the ambiguous use of N
as well. In the above definition R takes care of extending R
to the processes passed in communication. As we shall see
later this has the effect that we do not distinguish between
equivalent processes passed in communication.

Proposition 2.3 N is an equivalence

When r-actions are interpreted as unobservable internal
actions the bisimulation equivalence between processes is too
distinctive. To refine the bisimulation equivalence we need
the following derived transition relations:

Definition 2.4

where p L-% p” means 3pl.p 2 p’&p’ -% p” and
&* is the n$exive and tmnsitive closure of L.

Intuitively we may read p % p” as “after a finite number
of internal actions p is in a state where it can receive a process
p’ on a and in doing so end up in a state p” after a finite
number of internal actions”.

Weak higher order bisimulation equivalence or observa-
tional equivalence may now be defined:

Definition 2.5 A weak higher order bisimulation R is a
binary relation on Pr such that whenever pRq and o E (Act\
(7)) U {E} then:

(i) Whenever p &- p’, then q % q’

for some q’, Q’ with o& and p’Rq’

(ii) Whenever q =%- q’, then p & p’

for some p’, o’ with o&’ and p’Rq’

Whereh= {(e,o’)I(o = a?p”&e’=a?q”&p”Rq”)V(~=
a!p” & Q’ = a!q” & p”Rq”) V (o = 8’ = E)} .
Two processes p and q are said to be weak higher order bisim-
ulation equivalent iff there ezists a higher order bisimulation
R containing (p,q). In this case we write p x q.

We may define MM?(R) for R E P? as the set of pairs

(P>!I) tfy g 1 sa is in c ause (i) and (ii) above. It is easy to see
that JVf3 is a monotone endofunction and that there exists
a maximal fixed point for VlFLJ. This equals X.

Proposition 2.6 M is an equivalence

Bisimulation equivalence is more distinctive than obser-
vational equivalence which is a direct consequence of the
following proposition.

Proposition 2.7 p N p’ +- p M p’

3 Syntax and Semantics

In this section we introduce the syntax and semantics of
a language for description of higher order communicating
systems together with its operational semantics. CHOCS
extends CCS as in [Mi180, Mi183, HenMi185] simply by al-
lowing processes to be both sent and received and equally
important; to be used when received.

Processes are built from the inactive process nil, two types
of action prefixing, often referred to as input guarding and
output guarding, (nondeterministic) choice, parallel compo-
sition, restriction, renaming and variables to be bound by
input prefix:

p ::= nil 1 a?x.p 1 a!p’.p 1 p -I- p’ 1 p 1 p’ I p\a I p[S] I x

where a E Names, S : Names-t Names and I E V (a set
of variables).

To avoid heavy use of brackets we adopt the following
precedence of operators: restriction > prefix > parallel com-
position > choice.
We denote by Pr the set of processes, i.e. the set of expres-
sions built according to the above syntax. Readers familiar
with CCS will notice that there is no recursion construct in
CHOCS. We shall later see (Theorem 4.10) how recursive
behaviours may be simulated using only process passing in
communication.

We focus on the process passing and leave out details
about other values. Pure synchronization may be obtained
by ignoring the processes being sent and received. We shall

145

prefixing: a?x.p p?p: p[p’/x] a!p’.p % p

choice:
p-f-‘p’ P LP’

-r
p+g--+ti !l+p-r-‘p’

P L P’ parallel: -
PI&p’l9

p a7p: PN q a!p: q,# p a!p: p,, q a7pI qN

P19~pNIQM P I Q -1-* p” I 9”

a?p’ p -+ p”
restriction: -- ,a#b

p o!p: p,,

p\b 1% #‘\b
,a#b

p I-t p”

p\b % p”\b Ab -I-, Ab

7 1 a!p’
renaming:

I;’ ‘.p. p” P - P” p L p”

zsw p”[S] p[S] so!p’ p/‘[S] Pm A P/M

Table 1: Operational semantics for CHOCS

use the sloppy notation a?+ and a!.p a.9 action prefixing for
pure synchronization. Other types of values may - with
little theoretical overhead -- be obtained simply by encod-
ing the values in pure synchronization using the approach
of [Mi183] by introducing a family of value indexed guards
and generalizing the (nondeterministic) choice operator. We
shall indeed use this technique in section 6 and we refer to
this section for further discussion.

Input guards are variable binders. This implies a notion
of free and bound variables.

Definition 3.1 We define the set offree variables FV(p) by
induction:

FV(niZ) =I 0

FV(a?x.p) q = FV(p) \ {x}

FV(a!p’.p) == FV(p) U FV(P’)

FV(p + p’) == FV(p) U FV(p’)
FV(p (P’) == FV(p) U FV(p’)

FV(p\a) == FV(p)

FV(p[Sl) == FV(P)
Iv(x) == {x}

A variable which is not fi-ee i.e. does not belong to FV(p)
is said to be bound in p.

The above definition may be rephrased as: x is free in p if z
is not contained in any subexpression a?x.p’. An expression
p is closed if FV(P) = 0. Closed expressions are referred to
as programs.

To allow processes received in communication to be used
we need a way of substituting the received processes for
bound variables.

Definition 3.2 The substitution p[q/x] is defined struc-
turally on p:

niZ[q/x] 3 nil

I

a%W2/4)

(a?y.p)[9/4 =
a?z.((p[z/yJ)[q/xl) for SOme z # Y

and z # x
and not free in

ify#x and

Y B FV(P)

q nor p otherwise

(a!p’.pN9/4 - 4p’[9/4hbd4
(P + P’)l9/4 = (Pbl4) + (p’w4

(P I P’)W4 f (PW4) I (P’bd4)

(p\aN9/4 = Md4)\a
(Pkm9l4 = (Pw4)[sl

This definition extends the definition of substitution given
in [Mi181] by allowing substitution in processes built us-
ing the parallel composition, restriction or renaming opera-
tors. To a certain extent this definition resembles the defini-
tion of substitution in the X-calculus as defined in [Bar85].
We shall pursue this further in a later section (see lemma
5.3). Note how substitution is straightforward only taking
care of change of bound variables, this is in contrast to the
very complicated definition of extended substitution given
in [EngNie86], where also change of ports restricted by \a is
taken into account.

The operational semantics of CHOCS is given in terms of
a labeled transition system.

146

Definition 3.3 Let -+ be the smallest subset ojPr x Act x
Pr, where Act = Names x {?,!} x Pr U {T}, dosed under

the rules of table 1.

A process guarded by input prefix has the capability of re-
ceiving any process. The received process is put into use by
substituting it for the bound variable. Readers familiar with
[Mi180] will recognize the similarities with the operational se-
mantics for input guarding in CCS with value passing. Par-
allel composition acts either asynchronously interleaved or
by synchronized message passing e.g. a?x.p (a!p’.p” can
perform a?q or a!p’ as well as r. The restriction and re-
naming operators have no effect on the processes sent or
received. This makes sense if we relate processes to running
programs in a multiprocessor system since here processes
sent as values are just programs sent to another processor.
When the received program runs as a process, this process
does not necessarily have to have the same restrictions on
its communication capabilities as the sending process. Of
course we could specify so as in e.g. (a!(p’\b).p)\b. This
is a matter of choice and other possibilities exist as e.g. in
the ECCS-language of [EngNieS6] where \a is treated as a
kind of binding operator. We do not want to do so since
this seems to complicate the theory unduly. One of the mo-
tivations for doing so in ECCS is to be able to give a static
account of the ports in use extracted from the program text.
But as the operational semantics of ECCS shows it is nec-
essary to introduce new portnames in the semantics which
reflects that it is not possible to give a static account anyway.
Also the connection between input prefix and restriction as
binders of portnames in communication is not at all clear.
We comment further on the relationship between ECCS and
CHOCS in the concluding section.

We may now relate the process constructions of CHOCS
to the underlying semantic equivalence -. The following
properties may be verified by straightforward constructions
of bisimulations.

Proposition 3.4 - is a congruence relation. That is:

1. a?x.p - a?x.q ijp[p’/x] N q[q’/x] for all p’ N q’.

2. a!p’.p N a!q’.q ijp N q and p’ N q’.

3. P+P’- q + q’ if p - q and p’ - q’.

4. p] p’ N q 1 q’ if p - q and p’ N q’.

5. p\a N q\a ifp - q.

6. PPI N #I if p N 9.

This property ensures that a compositional verification
strategy exists; If correctness of an implementation IMP with
respect to a specification SPEC is taken to be that of their
equivalence i.e. IMP - SPEC we may decompose the task
of verification by decomposing the IMP into subimplemen-
tations IMPI . . . IMP, combined by some operator 0 of the
language (i.e. IMP = O[IMPi . . . IMP,,]). We then have to
find subspecifications SPECi such that IMP; - SPECi and
show OISPECI . . . SPEC,] N SPEC. Then the result follows

from substitutivity of -. This strategy may be applied re-
peatedly until the task of verification is broken down into
manageable parts.

The observational equivalence M does not enjoy the prop-
erty of being a congruence with respect to the operators of
CHOCS. Although it satisfies I., 2., 4., 5. and 6. of proposi-
tion 3.4 it does not satisfy 3. which may be seen from the fol-
lowing counter example first presented in [Mil80]: r.nil M nil
but a!p.nil+ r.nil + a!p.nil + nil. We may obtain a congru-
ence using techniques presented in [Mi180] by defining p FY? q
iff VC.Cb] M C[q], where C is a context. Generally a context
is an expression with zero or more “holes” to be filled by an
expression. We write C[p] for C[] with p exchanged for [1.
We deliberately use the word exchange instead of substitute
since according to the definition of substitution (definition
3.2) change of bound variables is taken care of, whereas free
variables in p may become bound in C[p].

4 Equation al properties

As we saw in the previous section - is a congruence with
respect to the process constructions in CHOCS. Having es-
tablished this, it naturally leads to a series of identifications
of programs like: p] p’ - p’] p. Of course the left hand
side of this equation is a different program from that on the
right hand side, but we would expect to find their behaviour
equivalent, and this is in fact what the equation expresses.

The equational properties of N may yield a better under-
standing of the underlying semantics of CHOCS and for the
unexperienced user of the language it may turn out to be a
helpful way of understanding the language and the interplay
of its constructs. in the process algebraic framework the se-
mantics of the ACP-language [BerKlo84] is given entirely as
an equational theory in an algebraic setting. We shall not
do so, but in fact Prl - may be considered as an algebra:
e.g. (Pr/ -, +, nil) is an abelian monoid as justified by the
first three equations of table 2.

Using these rules we may prove properties about processes
without directly constructing a bisimulation. This approach
is often much more manageable and the two methods may
be combined when convenient. All the equational properties
of table 2 are easily established by bisimulations.

We have not listed any immediate interplay between (non-
deterministic) choice and parallel composition in table 2.
This is due to the fact that the two operators in general
do not commute, but there is a restricted interplay between
them:

Proposition 4.1 Let z = {x1.. .x,}, g = {yl . . . y,,} and
Zny# 0 then

if p=
and Q =
then p] q -

Ciai?Xi.pi + Cjaj!&.pj

xkbk?Yk.Qk + &br!q;.q~
.Gai?Xi.(pi 1 q) + Cjaj!J$.(pj 1 Q)+

zkbk?Yk.(P 1 Qk) t ClW.(p 1 ql)t

c(i,l)E{(i,l)I ai=bt)r~(~i[‘d/xi] 1 qI)+

C(ik)E{(j,k) I .j=bkl’.(Pj 1 ‘?k[Pj/Ykl) . . _. .
where Ciri.pi descrrbes the sum rl.pl + . . . + r,,.pn when

n > 0 and nil ijn = 0, knowing this notation is unambiguous
because of 1. and 2. of table 1.

147

1.
2.
3.
4.
5.
6.
7.
a.
9.

10.
11.
12.
13.
14.
15.
16.

17.

18.

p + p’ N p’ + P

P+P-P

P I P’ N P’ I P

(P t p’)\b - ~\b + P’\b

(P t P’WI - PKA + PVI
(P I P’WI N PM I P’H

P[S]IS’l N PW 0 Sl

PIId] N P

Table 2: Equational properties of -.

As a consequence of proposition 2.7 we know that M sat-
isfies the equations of table 2. Moreover M satisfies p M r.p.

Observational equivalence is not a congruence relation and
so the equational properties of M may be a bit uninterest-
ing, but we conjecture that I& satisfies the same equational
properties as wc of [Mi180] with the appropriate extension to
take process passing into account.

In [HenMil85] and [Mi181] equations like those given in
table 2 and proposition 4.1 are used to prove soundness for
sets of sound and complete proof systems for the finite re-
spectively regular sublangua.ges of CCS. We shall not do so
in this paper since we cannot hope for a complete axiomati-
zation of the properties of CHOCS; the reason for this will
become clear in the following sections.

We have deliberately chosen to refer to the set Names aa a
set of portnames emphasizing that process values are to be
thought of as communicated via ports. In any implementa-
tion of a system described in CHOCS it would be of great
importance to know certain facts about these names as e.g.
the number of different names, substitutivity of names etc.
We may ascribe a sort (a set of portnames) to each pro-
gram. To formally define the sort of a program we need a
bit of notation.

Definition 4.2 q is a derivative of p if p b’ q, where
p ----t q s 3r E Act.p 3 q and -+* is the reflexive and
transitive closure of -+.

Definition 4.3 For each 1, c Names, let PrL be the set

of processes p such that for any derivative q of p, if q 3

q” or q a!s: q” then a E L. Zf p E PAL we say p has sort L
(written p :: L).

We may see how the process constructions of CHOCS act
on sorts:

Proposition 4.4 1. Zfp::LandLCMthenp::M.

2. If a E L and p :: L then a?x.p :: L.

3. Zf a E L and p :: L then a!p’.p :: L for any p’.

4. Zf p :: L and p’ :: L then p + p’ :: L.

5. Zfp :: L and p’ :: L then p (p’ :: L.

6. Zf p :: L then p\a :: L \ {a}.

7. Zf p :: L then p[S] :: {S(a) 1 a E L}.

The following semantic function may be used to compute
the sort of a process:

Definition 4.5 dynamicsort : CHOCS -+ Names

dynamicsort =

{a E Names) 39, q’, q”.p ** q a?p: q” or p --+* q % q”}

This set is the minimal sort for an agent. The dynamic
sort is often not convenient since it can only be determined
dynamically. We are often satisfied by coarser - but easier
to compute - information which may be extracted from the
program text.

befinition 4.6 We define staticsort : CHOCS -+ Names
structurally on p:

staticsort(niZ)

staticsort(a?x.p)

staticsort(a!p’.p)

staticsort(p + p’)

staticsort(p 1 p’)

staticsort(p\a)

staticsort(p[S])

static.sort(x)

0

{a} U staticsort

{a} U staticsort

staticsort u staticsort

staticsort U staticsort

staticsort \ {a}

{S(a) 1 a E staticsort(

NiWIeS

Note how we need to “assume the worst” when encoun-
tering a variable. This is because we do not know the sort
of the processes which may be substituted for the variable.

In fact a7z.z 2 p for any p, and p may have any sort
which is reflected both in the dynamic sort and the static
sort of a?x.x. This “assuming the worst” resembles how
static approximations of dynamic properties of sequential
programming languages are made in the framework of ab-
stract interpretation (CouCou79]. “Assuming the worst” in
case of a variable implies that it is not necessary to calcu-
late the static sort of process values as may be seen from
the clause for output prefix, the sort of any process received
in communication will be covered by the static assumption
on variables. The information given by the static sort is
often too coarse aa in p = (a?x.x 1 a!(b!nil.nil).niZ)\a since
staticsort = Names\(a), whereas dynamicsort = {b}.
As a solution to this problem one could introduce a sort dec-
laration on each binding of variables and limit communica-
tion to processes of the prescribed sort. This would corre-
spond to type declarations in typed programming languages
like PASCAL. This is indeed the approach of [Nie88].

The dynamic sort and the static sort are of course related:

148

Proposition 4.7 dynamicsort G staticsort

staticsort = dynamicsort does not hold in general as
we saw above. But both staticsort and dynamicsort are
sound with respect to definition 4.3 of a sort for p. The
information calculated by our staticsort is very coarse, but
the definition of sort (and types of processes in general) of
[Nie88] presents a refined static sort where the sorts of pro-
cesses sent and received contributes to the calculation of the
sorts of processes, In general we cannot hope to show that
staticsort = dynamicsort since this is undecidable, even
without process passing, aa a consequence of [AusBou84].

We may now give some equational properties which only
hold under certain constraints on the sort.

Proposition 4.8 1. p\bNpifp::Landb#L

2. (p 1 p’)\b N p\b 1 p’\b ifp :: L, p’ :: M and 6 q! LnM

3. p\b N p[a/b]\a ifp :: L and a +! L

1. shows that restriction has no effect if the restricted
port does not belong to the sort of the agent. 2. shows
that restriction only distributes over communication if the
restriction does not involve the ports which the processes
are able to communicate via. 3. shows that the name of a
restricted port is not essential upto renaming. This property
corresponds to the notion of a-convertibility in [EngNieSG].

We have seen that almost all properties of CCS carry
over to CHOCS but since CHOCS includes higher order con-
structs one would expect to find it more powerful and indeed
it is. In CCS the recursion operator recx.p is the only op-
erator capable of introducing infinite behaviours. recz. is a
variable binder and FV and [/] have to be extended ac-
cording to this (see e.g. [Mi181]). In CCS recursive processes
have the following operational semantics:

p[rec x.p/x] 2 p’

ret x.p J+ p’

This inference rule basically says that a recursive process
has the same derivations as its unfoldings. In CHOCS we
can “program” a recursion construct to obtain infinite be-
haviours. To a certain extent this construct resembles the Y
combinator in the X-calculus.

Definition 4.9 Let Yz[] be the following context:

(a?x.([] 1 a!x.nil) (a!(a?x.([] 1 a!x.nil)).nil)\a

Theorem 4.10 ifp :: L and a $ L then Y,M N recx.7.p

PROOF: The proof of this theorem needs the following
property of substitution:

ifs # Y then ~b’l4b”l~l = ~[P”l~l[P’[P”l~ll~l

which is easily established by structural induction on p.
Then the relation:

R = {(q[recx.T.p/x], (q[a?x.(p I a!x.nil)/x] I

a!(a?x.(p) a!x.nil)).nil I \nil I ,:.) ni?\a)

I J’V(q) C (2) dm 2 0) m

is a bisimulation. This may be shown by induction on the
number of inferences used to establish any transition of q
observing the structure of Q. In the case where q has the form
a?y.q’ or ret y.q’ we need the above property of substitution.
The theorem then follows by choosing q z z. (The proof
follows the pattern of the proof of proposition 4.6 of [Mi183]).

This proof is limited to the case where at most z is free
in q. The extension to the case where there are other free
variables is routine, but demands for a definition of higher
order bisimulation for open terms (which is standard and
straightforward).

recx.p is not derivable in the sense of [Pra88] but it can
be closely mimicked by YJp] and Y,b] x recx.p, where M is
observational equivalence.

Example 4.11 Let p 3 b!.x then according to the inference
rules of definition 3.9 Yzb] has the following derivations:

Yzb] G (a?x.(b!.x (a!x.nil) I a!(a?x.(b!.x I a!x.nil)).nil)\a

b
(b!.(a?x.(b!.x 1 a!z.niI) I a!(a?z.(b!.x 1 a!s.niQ).niI 1 niQ\a

b!
(a?z.(b!.x (a!x.nil) I a!(a?x.(b!.x I a!x.nil)).nilI nil)\a

(b!.(a?x.(b!.x I a!x.nil) I a!(a?x.(b!.x I
nil I nil)\a

b!

a!x.nil)).nil) I nil I

Note how Yz[] needs a r-tnznsitior; I to unwind the “re-
cursion”. This resembles the unwinding of recursion in the
inference rule of recursion in TCCS [dNiHen87]: recx.p ?r)
p[recx.p/x], where ?+ may be read as A.

5 CHOCS and the X-calculus

CCS is a powerful language; It is capable of expressing all
Turing definable functions by encoding of Turing machines
(see [Mi183]). Since CCS is a sublanguage of CHOCS this
must be true for CHOCS as well. But the nature of CHOCS
is much closer to the &-calculus and in this section we shall
see how the untyped X-calculus may be encoded in CHOCS.

First we recall the syntax of the untyped X-calculus as
described in [Bar85]:

Definition 5.1 The set of X-terms A is defined inductively
as follows:

1. XEA

2. M E A + (Ax.M) E A

149

3. M,NEA+(MN)EA

where x E V [a set of va:riables).

This language consists of variables, function abstraction
and function application. The X-calculus has a rich theory
as documented in e.g. [Bar85], consisting of concepts such
as conversion, reduction, theories and models.

A simple translation of the X-calculus may be given by
the following definition:

Definition 5.2 We define [] : A -+ CHOCS structurally:

1. [x] = x

2. [XXM] = i?x.i!gM;~.niz

3. [M N] = ([Ml[o/i] 1 o![N].o?x.x)\o

Note that for any M E A: [M] :: {i} and that application
only needs two communication channels. Since the function
]] : A + CHOCS has no additional arguments we may view
it as a definition of a set of derived operators in CHOCS.
Clause 3. shows how we may view parallel composition as a
generalization of function a.pplication. However, we need a
rather elaborate protocol to ensure that we do not mix argu-
ments in applications and ‘we therefore feed the arguments
sequentially. A tempting definition of the clause for appli-
cation is [M N] = (]M] 1 ;![N].n;Z)\;. Unfortunately this
definition does not work since the restriction \i prevents ap-
plication to other arguments as in e.g. M N N’. A different
approach is presented in [13ou88] where a special operator
takes care of this problem. ‘The cost of this is a complication
of the definition of equivalence between processes.

In the following we shall see that some of the most in-
teresting properties of the X-calculus are carried over via
the translation. First we make clear the connection between
substitution in the X-calculus and in CHOCS.
Lemma 5.3

[M[x := N]] E [M][[Nl/x]

where [z :=] is suBstitu#tion in the X-calculus as defined

Since [M] :: {i} f or all M E A we may use the properties
of table 2 and proposition 4.8 to infer the conclusion of this
proposition. q

The theory X as presented in [Bar851 is strongly related
to the translation [] : A + CHOCS and the properties of
CHOCS:

Theorem 5.5 ifX l- M = N then [M] M [NJ.

PROOF: By structure of X l- M = N 0
The converse does not hold in general, but M induces an

equality relation on A and it is straightforward to verify
that the relation R = {(M,N) / [M] R [N], M, N E A}
is a compatible congruence relation. Proposition 5.4 shows
that p = {((Xx.M)N,M[x := N]) 1 M,N E A) C R and
therefore =&=R. The notion of p-equality is important,
but in the standard theory of the X-calculus it is the notion
of head normal form, baaed on BGhm trees, which yields
the meaning of a X-term. Terms without a head normal
form are identified. But =n distinguishes more X-terms
than the standard theory since e.g. [xx.n] $ [D], where
n = (Xx.x x)(Xx.x x). In general we do not have the full n-
conversion i.e. X l- Xx.M x = M if x # FV(M) but if M has
the form Xy.M’ we have [Xx.(Xy.M’) x] M [Xz.M[y := x]] M
[M] which is easy to establish using the properties of table 2
and proposition 5.4. This restricted version of q-conversion
is close to the restricted version valid in the Lazy-X-calculus
of [Abr88]. Furthermore connections to the Lazy-&calculus
are strengthened by the following proposition:

Proposition 5.6 [a] N recx.r.x N Yc[x]

This shows that the standard unsolvable term fI of the
X-calculus yields a divergent process in CHOCS, i.e. a pro-
cess only capable of performing an infinite series of inter-
nal moves. Whether the above suggested connections to
the Lazy-X-calculus can be further strengthened is an open
question being investigated for the moment.

in definition 2.1.15 of [Bar851 and [/xl is substitution in
CHOCS according to definition 3.2.

6 CHOCS as a rnetalanguage

PROOF: By structural induction on M. q
Using this lemma we may show that ,&-conversion in the

X-calculus is “preserved” by the translation:

Proposition 5.4

[(Ax.M)N:[M [M[x := N]l

PROOF: We demonstratce how the left hand side of this
equation may do an initial series of internal r-moves to a
process equivalent to the right hand side.

[(Xx.M)N] = ((i?x.i![M].niI)[o/i] 1 ~![N].o?x.x)\o

17

((i!([M][[N]/x]).nil)[o/i] 1 o?x.x)\o

L

In this section we shall study how CHOCS may be used ifs a
metalanguage in the definition of the semantics of program-
ming languages. The study is a case analysis of a simple im-
perative toy language, called P, first studied in [MilSO]. The
meaning of the language P is given in a phrase-by-phrase
style resembling denotational language definitions though we
shall not give any semantic domains. The language P is de-
vised in such a way that a programmer is partly protected
from unwanted deadlocks. This is obtained through a disci-
plined way of communication between components sharing
some resources. In [MilSO] R. Milner points out the diffi-
culties of describing procedures in P using CCS. It is not
obvious that CCS or the extension of CCS justified by the
developments in [Mi183] can describe concurrent procedure
invocations satisfactory. In [EngNie86] U. Engberg and M.
Nielsen show how CCS with labels as first class objects may
be used to describe concurrent procedure invocations, unfor-
tunately their solution is very complicated and it does not
look like procedure descriptions of sequential programming

150

languages. We show how procedures in P may be handled
straightforward in a way resembling how procedures in se-
quential imperative languages are handled in denotational
descriptions based on the X-calculus. Most of the defini-
tions not concerning procedures may be found in [Mil80],
but for the sake of completeness we present the full language
definition.

To allow for other values than process values in CHOCS
we use the technique of [Mi183] and introduce a D-indexed
family of actions a?d, a!d, d E D for each value domain
D. Due to the fact that only finite sums of processes can
be handled in the version of CHOCS presented in this pa-
per we restrict our attention to finite value domains as
e.g. the set of booleans and finite subsets of the inte-
gers. We let (~?=.p abbreviate CdEDa?d.p{d/z} where {d/z}
means exchanging all occurrences of I in p by d as e.g.
a?,.P!,.nil{d/z} = C &Da?d.~!d.,d. we shall Use the fOl-

lowing construct from [Mi183]: If b is a boolean valued ex-
pression in I then let o?=.(if b then p else p’) be encoded by
&~kbcx?~.p $ &ED~~~(Y?~.$. We should not confuse a?,.~
with a?x.p since the first is a convenient short hand notation
and the latter is part of the CHOCS syntax.

The toy language P

Programs of P are built from declarations D, expressions E
and commands C, using assignments to program variables
X. Some set of functions F is assumed and for the cause
of simplicity we do not consider types of expressions. P has
the following abstract syntax:

Declarations:
D::=varXID;DIp rot P(value X, result X’) is C

Expressions:
E ::= X 1 F(EI, . . . , En)

Commands:
C ::= X := E C; C 1 if E then C else C’ 1
while E do C I C par C’ 1 input X I output E I
skip 1 begin D; C end I call P(E,X)

Table 3: Syntax of P

In the study of concurrent programming languages a ques-
tion of interest is how to evaluate programs like:

begin
var X;
x := 0;
(X:=X+lparX:=X+l);
output x
end

The semantics presented here will yield the answers 1 or
2. Readers are referred to [Mil80] for a discussion of an
alternative specification to rule out the answer 1.

To give a smooth definition of the semantics of P we need
some auxiliary definitions.

To each variable X we associate a register Regx. Gener-
ally it follows the following pattern:

Lot = a?,.Reg(.)

Reg(y) = a?,.Reg(z) + 7!v.Reg(,)

and thus for X we will have Loc,y = Loc[ax 7x/a 71.
Initially we write in a value, thereupon we can read this
value on 7 or overwrite the contents of Lot via a. We have
written the above definition in an equation style to make
it more readable. The proper CHOCS definition is: Lot =
(a?,.h!,.niZ 1 Reg)\h where Reg = YR,[h?,.(cY?,.h!,.Reg +
7!,.h!,.Reg)] / YK,,[h?,.h!,.Keep]. The second component
of this process takes care of the parameters in the recursion
of the above equations. (This is in fact a general technique
for simulating the parameterized recursion of [Mil83]). We
also associate a register to each procedure P. It may be
defined in the same way as above with s substituted with I.

To each n-ary function symbol F we associate a function
f which is represented by:

b, = PI&. . . . pn?zn.~!~(rl...=n).ne’Z

Constants will thus be represented as e.g. btrue = ~!~~,,~.nil
The result of evaluating an expression is always communi-
cated via p. It is therefore useful to define:

P Tes2& P’ = (P I P’)\p

We shall adopt the protocol of signalizing successful ter-
mination of commands via 6 and it therefore convenient to
define:

dune = b!.nil

P before P’ = (p[Pl4 I P?.p’)\P (P new)

pparp’=

(p[6,/6] 1 p’[&/6] 1 61?.62?.done + 62?.61?.dme)\61\52

(462 new)

We may now give the semantics of P by the transla-
tion into CHOCS shown in table 4. In the equation for
[begin D; C end] we let \LD abbreviate restriction with re-
spect to 0: and 7 channels for all variables and procedures
declared in D. The procedure definition creates a location
to store the procedure process. The restriction \a~ ensures
that this process cannot be overwritten after the definition.
The procedure process needs two locations, one for each pa-
rameter. These locations are kept local by the restrictions
\ox\cr~\7~\7v. To ensure static binding of variables in a
procedure body the procedure process is embraced by a re-
naming of all read and write signals to variable locations.
This is done simply by tagging the signals with the name
of the procedure. The tagged signals are able to escape the
restriction \LD of any block except the block where the pro-
cedure is defined. The Transform process, located in the
block where the procedure is defined, transforms the tagged
signals back to untagged read and write signals. These will
of course effect the variable locations in this environment.
The value to the value parameter is communicated via ap,
and the result of the procedure is communicated via 7~“.

151

Declarations:

[var X] = Locx

ID; D’II = PII I [D’R
[Proc P(value .x, result Y is C] = ((Locp 1 op!((procedure process).nil))\op) 1 Transform

where procedure process =

(CC a~~?,.ax!,.done) before [C] before (7y??,.yp ,&done) I LOCX I Loc~)\~x\LY~\Yx\~~)IO~ ~&/(YxI 7x4

and Transform = YT~~~[CXI’Z~~?=.IYX~!=.T~Q~Z + C,yq~,?z.(7~,!s.Tran + Tran)]

Expressions:

[Xl = 7‘y?z.p!,.niz
IF+%,... > En)ll = (PUtbll~l I . . . I IE4~nl~l I b)\n + .. \~n

Commands:

[X := E] = I[E] result (p?z.crX?,.done)

[C; C’] = [C] before [C’]

[if EthenCelse C’] = [E] result p?=.(if I then [Cl e/se [C’j)

[while E do C] = Y,[[E] result p?,.(if z then ([Cl before W) else done)]

[C par C’] = [C] par [C’]

[input X] = L?,.crx!,.done

]output E] = QE] result (p?,.o!,.done)

[skip] = done

[begin D; C end] = (ID] ([C])\L,

[call P(E, Z)] = [El result ((p?z.cx’pv!z.done)

par (-YP?=) par (rp,?...az!s.done))\(yp,\yp”

Table 4: Semantics of I’

These signals are not affected by the embracing renaming.
The procedure call first evaluates the argument then reads
the location Locp to get a copy of the procedure process.
Note how each procedure process is self-contained with lo-
cal environments for the parameters. If a recursive call to
the procedure P occurs in the body C a new copy of the pro-
cedure process will be obtained. This is true for concurrent
activations of the same procedure as well and we have:

[begin proc P(val.ue X, result Y) is C;

call P(E, Z) par call P(E’, 2’) end]

z

[begin var X; var Y; X := E; C; Z := Y end

par begin var X; var Y; X := E’; C; 2 := Y’ end]

[Proc P(ref X) is C] =

((Locp 1 cup!(procedure process).nil)\cyp)) Transform

where
procedure process = [Cj[cxp. +yp,,/(~x 7x][a$, y$/cuxl 7x’].

Icall W)ll = ~P?~.(z~Y 7~yylw, 7~~1)
Note how this parameter mechanism works; We just link the
register associated with the parameter in the call with the
procedure process via renaming. This is obtained by the
inner renaming in the procedure body which ensures that
read and write signals to the formal parameter escape the
outer renaming. This has the effect that they are linked to
the actual parameter in the calling environment.

which may be verified by expanding the semantic clauses. 7 Concluding Remarks
Another common parameter mechanism used in impera-

tive programming languages is the call by reference mecha-
nism. This mechanism may be modelled in CHOCS by the
following semantic definitions:

The denotational approaches of [KenSleSS] and (Chr88] are
very complicated. Both are formulated in a category thee-
retical setting and the main purpose of both papers are to

152

establish functors describing the properties of process pass-
ing. A lot of effort is put into assuring that these functors
can be used together with standard domain constructors and
in recursive domain equations. We believe that it is not nec-
essary to establish special functors for this purpose and that
standard domain theory is sufficient to give denotational se-
mantics for languages with processes as first class objects.
In [Abr87a] S. Abramsky shows how it is possible to give
both an operational semantics and a denotational semantics
together with a logic for description of properties and to link
all three approaches together in a unifying framework. This
framework is used in [Abr87b] by applying methods of deno-
tational semantics to problems concerning nondeterminism
and concurrency, and it is shown how Hennessy-Milner Logic
(HML), the Plotkin power domain and labeled transition
systems can be unified in the description of nondeterminis-
tic and concurrent processes. Our preliminary investigations
show that there is an extension of HML characterizing the
extended version of bisimulation given in definition 2.2. If
we extend the transition systems used aa the underlying se-
mantics for CHOCS with a divergence predicate in the style
of [Wa188], it is possible to relate these with the semantic do-
main D Z P’(&A~~ D x D + I&A&D x D), where P” is the
Plotkin power domain with the empty set augmented and
c aeAct is generalized coproduct. The partial order of this
domain coincides with higher order bisimulation extended
to take divergence into account, again following the ideas of
[Wal88]. It is a topic for further research if this domain and
the extended version of HML can be unified in the framework
of [Abr87a].

Another direction for further research is how the notion
of processes as first class objects relates to the modelling
of dynamic use of communication channels as suggested in
[Mil83b] or the more refined treatment of portnames as first
class objects in ECCS as described in [EngNie86]. Our pre-
liminary investigations point in the direction that the two
approaches are expressively equivalent. It is possible to go
from CHOCS to ECCS using a technique resembling imple-
menting functional languages in imperative languages with
GOT0 statements and one can go from ECCS to CHOCS
using a kind of continuation style semantics. However, fur-
ther investigations into the correctness of the two approaches
are necessary. We feel that ECCS is much closer to a ma-
chine level or assembly language level of computations of
dynamic process communication and that one should con-
sider CHOCS as a specification language abstracting away
the complicated nature of the dynamic use of communica-
tion channels, analogous to using procedures as a clean way
of using GOT0 statements in imperative programming lan-
guages.

CHOCS as a metalanguage and a specification language
in general has to be tried out on many more examples before
any conclusions of its usability can be drawn, but as the ex-
ample given in this paper suggests it is expressively powerful
and it has shown to be of theoretical interest. Application
of CHOCS to more “real life” concurrent systems will show
how these systems can be treated and hopefully demonstrate
that these can be treated as cleanly as the treatment of the
&calculus and the toy language P.

Acknowledgement

I thank the referees for pointing me in the direction of the
work by D. Austry and G. Boudol and for making me aware
of the fact that my first definition of procedures in the se-
mantics of P described dynamic binding. I would also like to
thank everybody who has commented on previous informal
presentations of this-material; This includes comments by S.
Abramsky, J. Andersen, S. Brookes, M. Dam, K. G. Larsen,
L. Leth, R. Milner, F. Nielson, L. Ong, I. Phillips, A. Skou,
B. Steffen and A. Stoughton.
I am grateful to The Danish Natural Science Research Coun-
cil; The Danish Research Academy; Institute of Mathemat-
ics, Arhus University and Department of Mathematics and
Computer Science, Aalborg University Centre for providing
me with fundings for my research.

References

[Abr87a] S. Ab ramsky: Domain Theory in Logical Form,
Proceedings of LICS 87. Full version submitted
to Annals of Pure and Applied Logic, 1987.

[Abr87b] S. Abramsky: A Domain Equation For Bisimula-
tion, Unpublished manuscript, Dept. Computing,
Imperial College, London 1987.

[Abr88] S. Abramsky: The Lazy Lambda Calculus, to ap-
pear in Declarative Prg. ed. D. Turner, Addison
Wesley, 1988.

(AusBou841 D. Austry & G. Boudol: AZg&e de Processus et
Synchmnisation, Theoretical Computer Science
30(l) pp. 91-131, 1984.

[AstReg87] E. Astesiano & G. Reggio: SMoLS-Driven Con-
current Calculi, Proceeding from TAPSOFT 87,
Pisa, LNCS 249, Springer Verlag, 1987.

[Bar851 H. P. Barendreght: The Lambda Calculus - Its
Syntaz and Semantics, North-Holland 1985.

[BerKlo84] J. Bergstra & J. W. Klop: Process Algebra for
Synchronous Communication, Information and
Control 60, pp. 109-137, 1984.

[Bou88] G. Boudol: T awards a Lambda-Calculus for Con-
current and Communicating Systems, Research
Report nr. 885, INRIA Sophia Antipolis, Au-
tumn 1988.

[Chr88] P. Christensen: The Domain of CSP Processes,
incomplete draft, The Technical University of
Denmark, 1988.

[CouCou79] P. Cousot & R. Cousot: Systematic design of
Program Analysis Frameworks, In: Conf. Record
of the 6th ACM symposium on Principles of Pro-
gramming Languages 1979.

[dNiHen87] M. Hennessy & R. de Nicola: CCS without T ‘s,
Proceeding from TAPSOFT 8’7, Pisa, LNCS 249,
Springer Verlag, 1987.

153

[EngNie86] U. Engberg & M. Nielsen: A Culculus of Com-
municating Systems with Label Passing, DAIMI
PB-208 Aarhus University Computer Science De-
partment, 1986.

[HenMi185] M. H ennessy 8: R. Milner: Algebraic Laws for
Nondeterminism and Concurrency, Journal of
the Association for Computing Machinery, pp.
137-161, 1985.

[KenSle83] J. R. Kennaway & M. R. Sleep: Syntaz and In-
formal Semantics of DyNe, a Parallel language,
LNCS 207, Springer Verlag, 1983.

[KenSle88] J. R. Kennaway & M. R. Sleep: A Denota-
tional Semantics for First Class Processes, Draft,
School of Information Systems, University of
East Anglia, Norwich, U.K., August 1988.

[Mi180]

[Mi181]

[Mi183]

[Mi183b]

[NieS8]

[Par811

[PI0811

[Pra88]

[Tar551

[WalSS]

R. Milner: A lCalculus of Communicating Sys-
tems, LNCS 92,, Springer Verlag, 1980.

R. Milner: A Complete Inference System for a
Class of Regular Behaviours, University of Edin-
burgh 1981.

R. Mimer: Calculi for Synchrony and Asyn-
chrony, Theoretical Computer Science 25 (1983),
pp 269-310, North Holland.

R. Milaer: Parallel Combinator Reduction Ma-
chine, LNCS 207, Springer Verlag, 1983.

F. Nielson: The Typed &Calculus with First-
Class Processes, Technical Report ID-TR: 1988
43 ISSN 0902-2821, Department of Computer
Science, Technical University of Denmark, Au-
gust 1988.

D. Park: Concurrency and Automata on Infinite
Sequences, LNCS 104, Springer Verlag, 1981.

G. Plotkin: A Structural Approach to Opera-
tional Semantics, DAIMI FN-19 Aarhus Univer-
sity Computer Science Department 1981.

K. V. S. Prasad: Combinators and Bisimulation
Proofs for Restartable Systems, Ph. D Thesis, Ed-
inburgh University, 1988.

A. Tarski: A Lattice-Theoretical Fizpoint The-
orem and Its Applications, Pacific Journal of
Math. 5, 1955.

D. Walker: Bkimulation and Divergence, Proc.
of LICS 88, ISBN o-8186-0853-6.

154

