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Abstract 

In this paper we present A Calculus of Higher Order Com- 
municating Systems. This calculus considers sending and 
receiving processes to be as fundamental as nondeterminism 
and parallel composition. 

The calculus is an extension of CCS [MilSO] in the sense 
that ail the constructions of CCS are included or may be de- 
rived from more fundamental constructs and most of the 
mathematical framework of CCS carries over almost un- 
changed. 

Clearly CCS with processes as first class objects is a power- 
ful metalanguage and we show that it is possible to simulate 
the untyped X-calculus in CHOCS. The relationship between 
CHOCS and the untyped X-calculus is further strengthened 
by a result showing that the recursion operator is unneces- 
sary in the sense that recursion can be simulated by means 
of process passing and communication. 

As pointed out by R. Milner in (MilSO], CCS has its limi- 
tations when one wants to describe unboundedly expanding 
systems as e.g. an unbounded number of procedure invo- 
cations in an imperative concurrent programming language. 
We show how neatly CHOCS may describe both call by value 
and call by reference parameter mechanisms for the toy lan- 
guage of chapter 6 in [Mi180]. 

1 Introduction 

A calculus for computation should provide a mathematical 
framework for the description of and reasoning about com- 
puting systems all inside the calculus. To guide the human 
mind when reasoning about the complex nature of nondeter- 
ministic and concurrent systems R. Milner devised A Culcu- 
lus of Communicating Systems as described in [Mi180] and 
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later refined in [Mi183, HenMil851. This calculus is intended 
to provide a minimal set of constructions for description 
of nondeterministic and concurrent systems. According to 
[Mi180], one of the original intentions of CCS was that it 
should serve as the X-calculus of concurrent systems. Sub- 
sequent research shows that it serves well as such for a large 
range of applications. But, as already pointed out in [MilBO], 
it has its limitations when one wants to describe unbound- 
edly expanding systems as e.g. an unbounded number of 
procedure invocations in an imperative concurrent program- 
ming language. 

We believe that this deficiency comes from the first order 
nature of CCS although a later extension of CCS [Mi183], 
allowing dynamic use of communication channels to be en- 
coded by subscripts and value passing, may be used to take 
care of the above problem. This solution has been further 
refined in [EngNie86], where labels or portnames are con- 
sidered as first class objects. Both these solutions seem low 
level and far removed from the X-calculus analogy, since they 
do not explicitly support any higher order constructions. 

Higher order constructs arise in almost any branch of 
theoretical computer science, since they yield elegant and 
powerful abstraction techniques. But so far almost all the- 
ories about nondeterministic and concurrent systems have 
a first order nature. A few attempts to allow higher or- 
der constructs in notions for description of nondeterministic 
and concurrent systems have earlier been put forward such 
as [KenSle83, AstReg8?]. Unfortunately these theories are 
rather complicated and to some extent too informal and un- 
developed, so their applications have been limited. Only re- 
cently some more promising treatments of processes a3 first 
class objects have been proposed [Bou88, Nie88, KenSle88, 
Chr88). In [Bou88] a CCS-like language with special opera- 
tors and process passing is used to describe the X-calculus. 
[Nie88] presents a mixture of a typed X-calculus and a CCS- 
like language with processes as first class objects. It is shown 
how the types (including sorts of processes) of programs may 
be used to detect certain errors statically. Both [KenSleSS] 
and [Chr88] focus on formulating denotational semantics for 
CCS respectively CSP with processes as communicable val- 
ues . 

In the following we put forward A Calculus of Higher Or- 
der Communicating Systems which considers sending and re- 
ceiving processes to be as fundamental as nondeterminism 

143 



and parallel composition. The calculus is an extension of 
CCS in the sense that all the constructions of CCS are in- 
cluded or may be derived from more fundamental constructs 
and most of the mathematical framework of CCS carries 
over almost unchanged. The calculus is given an operational 
semantics by means of a labeled transition system [Plo81]. 
The fundamental bisimulation equivalence [Pa&l, Mi183] of 
CCS - commonly accepted as the finest extensional or be- 
havioural equivalence between processes one would impose 
- is extended to take processes as communicable values into 
account. Clearly CCS with processes as first class objects is 
a powerful metalanguage and we show that it is possible to 
simulate the untyped X-calculus in CHOCS. The relation- 
ship between CHOCS and the untyped &calculus is further 
strengthened because we do not need an explicit recursion 
operator to obtain infinite behaviours, since the recursion 
operator can be simulated by means of process passing and 
communication. 

The outline of this paper is as follows: In section 2 we 
introduce the well&established notions of labeled transition 
systems [Plo81] and bisimulation [Pa&l, Mi183] together 
with the extensions necessary to take processes as communi- 
cable values into account. In section 3 we present a language 
for description of higher order communicating systems in- 
cluding its operational semantics. Section 4 provides a range 
of algebraic laws satisfied by the calculus. A main theorem 
of this section is the simulation of recursion by means of 
process passing and communication. We briefly comment 
on the subject of sound and complete proof systems. In sec- 
tion 5 we show how the untyped &-calculus may be encoded 
in CHOCS. Section 6 contains an appIication of CHOCS 
as a metalanguage defining the semantics of an imperative 
toy language with parallel constructs first studied in [Mi180]. 
The main result of this section is the neat handling of pro- 
cedures, both the call by value and the call by reference 
parameter mechanisms. Finally section 7 contains some con- 
cluding remarks. We comment on the denotational approach 
to semantics for languages with processes as communicable 
values and we outline the relationship between the approach 
of [EngNie86] and CHOCS. 

2 Transition Systems and Bisimu- 

lat ion 

We take the approach of many recent researchers, especially 
R. Milner (see e.g. [Mi180, Mi183]), by defining the semantics 
of concurrent systems by the set of experiments they offer to 
an observer. Le. we use the model of labeled transition sys- 
tems [Plo81] as a tool for defining the operational semantics 
of concurrent systems. 

Let Pr be a set of processes and Act a set of actions 
which processes may perform. A derivation relation +C 
Pr x Act x Pr defines the dynamic change of processes 
as they perform actions. For (p, a,q) E---, we normally 
write p L q which may be interpreted as: “the process 
p can perform an action a and by doing so become the pro- 
cess q”. We use the usual abbreviations as e.g. p 5 for 

39 E Pr.p s q and p & for -3q E Pr.p -% q. The triple 

P = (Pr, Act, -) constitutes the transition system of pro- 
cesses. Based on the operational semantics given by the tran- 
sition system, several equivalences and preorders have been 
proposed in order to capture various aspects of the observa- 
tional behaviour of processes. One of these is the equivalence 
induced by the notion of bisimulation [Par81, MiI83]. 

Definition 2.1 A bisimulation R is a binary relation on 
Pr such that whenever pRq and a E Act then: 

(i) Whenever p 5 p’, then q -% q’ 
for some q’ with p’Rq’ 

(ii) Whenever q 5 q’, then p -% p’ 
for some p’ with p’Rq 

Two processes p and q are said to be bisimulation equiv- 
alent ifl there ezists a bisimulation R containing (p, q). In 
this case we write p N q. 

Now for R C_ Pr2 we can define B(R) as the set of pairs 
(p, q) satisfying for all a E Act the clauses (i) and (ii) above. 
From this definition it follows immediately that R is a bisim- 
ulation just in case R E B(R). Also, B is easily seen to be 
a monotone endofunction on the complete lattice of binary 
relations (over Pr) under subset inclusion. Standard fixed 
point results, due to Tarski [Tar55], yield that a maximal 
fixed point for B exists and is defined as U{R 1 R C B(R)}. 
This maximal fixed point actually equals -. Moreover, N is 
an equivalence relation and even a congruence with respect 
to the usual CCS process constructions [Mi180]. 

So far the set of actions has been uninterpreted. As we 
shall see later we want to use the model of labeled transi- 
tion systems to give semantics to a process language with 
processes as communicable values. 

In [MilSO] transitions of the form p % p’, where v is 

some value, are used to give semantics to CCS with value 
passing in communication. We shall pursue this idea and 
from now on we shall consider labeled transition systems 
p = (Pr, Act, -), where Act has the form Namesx {?, !} x 

Pr U {T] and Names is an uninterpreted set referred to as 

a set of portnames. p “?p: p” may be read as “p can receive 
the process p’ at port a and in doing so become the process 
,,n 

P . p (I!p: p” may be read as “p can send the process p’ 
via port a and in doing so become the process p”“. Note 
that instead of insisting on an abelian monoid structure on 
the set Names of portnames as in [Mi183] we simply use the 
CSP-like notation of ?, ! to indicate the input/output clirec- 
tion of communication. A special symbol r not in Names 
will be used to symbolize internal moves of processes and 
p & p’ may be interpreted as “the process p can do an 
internal or silent move and in doing so become the process 

P “‘. Throughout this paper we shall use r to stand for any 
action a?p, a!p or 7. 

To capture the observational behaviour of processes capa- 
ble of sending and receiving processes we extend the notion 
of bisimulation. Bisimulation is commonly accepted as the 
finest extensional or behavioural equivalence between 
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processes that one would impose and the equivalence corre- 
sponds to a view where processes are black boxes only dis- 
tinguishable by their interaction capabilities in different en- 
vironments. Therefore the extension of bisimulation should 
not distinguish between equivalent processes even when they 
are sent or received in communication. 

This is captured in the following definition: 

Definition 2.2 A higher order bisimulation R is a binary 
relation on Pr such that whenever pRq and r E Act then: 

(i) Whenever p -% p’, then q -% q’ 
for some q’, r’ with r& and p’Rq’ 

(ii) Whenever q -% q’, then p -% p’ 
for some p’, r’ with rkr’ and p’Rq’ 

Where h = {(I-, r’) 1 (r = a?# & r’ = a?q” & p”Rq”) V (r = 

a!p” & r’ = a!q” & p”Rq”) V (r = r’ = 7)). 

Two processes p and q are said to be higher order bisimula- 
tion equivalent ifi there ezists a higher order bisimulation R 
containing (p, q). In this case we write p N q. 

We may define ‘W(R) for R s Pr’ as the set of pairs (p, q) 
satisfying clause (i) and (ii) above. It is easy to see that Ffj 
is a monotone endofunction and that there exists a maximal 
fixed point for 3-O. This equals N. If we interpret transitions 

like p & p’ as p ‘?p’: p’ for any p” it is easy to see that any 
bisimulation equivalent pair of processes is also higher order 
bisimulation equivalent and we shall drop the higher order 
prefix from now on. This justifies the ambiguous use of N 
as well. In the above definition R takes care of extending R 
to the processes passed in communication. As we shall see 
later this has the effect that we do not distinguish between 
equivalent processes passed in communication. 

Proposition 2.3 N is an equivalence 

When r-actions are interpreted as unobservable internal 
actions the bisimulation equivalence between processes is too 
distinctive. To refine the bisimulation equivalence we need 
the following derived transition relations: 

Definition 2.4 

where p L-% p” means 3pl.p 2 p’&p’ -% p” and 
&* is the n$exive and tmnsitive closure of L. 

Intuitively we may read p % p” as “after a finite number 
of internal actions p is in a state where it can receive a process 
p’ on a and in doing so end up in a state p” after a finite 
number of internal actions”. 

Weak higher order bisimulation equivalence or observa- 
tional equivalence may now be defined: 

Definition 2.5 A weak higher order bisimulation R is a 
binary relation on Pr such that whenever pRq and o E (Act\ 
(7)) U {E} then: 

(i) Whenever p &- p’, then q % q’ 

for some q’, Q’ with o& and p’Rq’ 

(ii) Whenever q =%- q’, then p & p’ 

for some p’, o’ with o&’ and p’Rq’ 

Whereh= {(e,o’)I(o = a?p”&e’=a?q”&p”Rq”)V(~= 
a!p” & Q’ = a!q” & p”Rq”) V (o = 8’ = E)} . 
Two processes p and q are said to be weak higher order bisim- 
ulation equivalent iff there ezists a higher order bisimulation 
R containing (p,q). In this case we write p x q. 

We may define MM?(R) for R E P? as the set of pairs 

(P>!I) tfy g 1 sa is in c ause (i) and (ii) above. It is easy to see 
that JVf3 is a monotone endofunction and that there exists 
a maximal fixed point for VlFLJ. This equals X. 

Proposition 2.6 M is an equivalence 

Bisimulation equivalence is more distinctive than obser- 
vational equivalence which is a direct consequence of the 
following proposition. 

Proposition 2.7 p N p’ +- p M p’ 

3 Syntax and Semantics 

In this section we introduce the syntax and semantics of 
a language for description of higher order communicating 
systems together with its operational semantics. CHOCS 
extends CCS as in [Mi180, Mi183, HenMi185] simply by al- 
lowing processes to be both sent and received and equally 
important; to be used when received. 

Processes are built from the inactive process nil, two types 
of action prefixing, often referred to as input guarding and 
output guarding, (nondeterministic) choice, parallel compo- 
sition, restriction, renaming and variables to be bound by 
input prefix: 

p ::= nil 1 a?x.p 1 a!p’.p 1 p -I- p’ 1 p 1 p’ I p\a I p[S] I x 

where a E Names, S : Names-t Names and I E V (a set 
of variables). 

To avoid heavy use of brackets we adopt the following 
precedence of operators: restriction > prefix > parallel com- 
position > choice. 
We denote by Pr the set of processes, i.e. the set of expres- 
sions built according to the above syntax. Readers familiar 
with CCS will notice that there is no recursion construct in 
CHOCS. We shall later see (Theorem 4.10) how recursive 
behaviours may be simulated using only process passing in 
communication. 

We focus on the process passing and leave out details 
about other values. Pure synchronization may be obtained 
by ignoring the processes being sent and received. We shall 
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prefixing: a?x.p p?p: p[p’/x] a!p’.p % p 

choice: 
p-f-‘p’ P LP’ 

-r 
p+g--+ti !l+p-r-‘p’ 

P L P’ parallel: - 
PI&p’l9 

p a7p: PN q a!p: q,# p a!p: p,, q a7pI qN 

P19~pNIQM P I Q -1-* p” I 9” 

a?p’ p -+ p” 
restriction: -- ,a#b 

p o!p: p,, 

p\b 1% #‘\b 
,a#b 

p I-t p” 

p\b % p”\b Ab -I-, Ab 

7 1 a!p’ 
renaming: 

I;’ ‘.p. p” P - P” p L p” 

zsw p”[S] p[S] so!p’ p/‘[S] Pm A P/M 

Table 1: Operational semantics for CHOCS 

use the sloppy notation a?+ and a!.p a.9 action prefixing for 
pure synchronization. Other types of values may - with 
little theoretical overhead -- be obtained simply by encod- 
ing the values in pure synchronization using the approach 
of [Mi183] by introducing a family of value indexed guards 
and generalizing the (nondeterministic) choice operator. We 
shall indeed use this technique in section 6 and we refer to 
this section for further discussion. 

Input guards are variable binders. This implies a notion 
of free and bound variables. 

Definition 3.1 We define the set offree variables FV(p) by 
induction: 

FV(niZ) =I 0 

FV(a?x.p) q = FV(p) \ {x} 

FV(a!p’.p) == FV(p) U FV(P’) 

FV(p + p’) == FV(p) U FV(p’) 
FV(p ( P’) == FV(p) U FV(p’) 

FV(p\a) == FV(p) 

FV(p[Sl) == FV(P) 
Iv(x) == {x} 

A variable which is not fi-ee i.e. does not belong to FV(p) 
is said to be bound in p. 

The above definition may be rephrased as: x is free in p if z 
is not contained in any subexpression a?x.p’. An expression 
p is closed if FV(P) = 0. Closed expressions are referred to 
as programs. 

To allow processes received in communication to be used 
we need a way of substituting the received processes for 
bound variables. 

Definition 3.2 The substitution p[q/x] is defined struc- 
turally on p: 

niZ[q/x] 3 nil 

I 

a%W2/4) 

(a?y.p)[9/4 = 
a?z.((p[z/yJ)[q/xl) for SOme z # Y 

and z # x 
and not free in 

ify#x and 

Y B FV(P) 

q nor p otherwise 

(a!p’.pN9/4 - 4p’[9/4hbd4 
(P + P’)l9/4 = (Pbl4) + (p’w4 

(P I P’)W4 f (PW4) I (P’bd4) 

(p\aN9/4 = Md4)\a 
(Pkm9l4 = (Pw4)[sl 

This definition extends the definition of substitution given 
in [Mi181] by allowing substitution in processes built us- 
ing the parallel composition, restriction or renaming opera- 
tors. To a certain extent this definition resembles the defini- 
tion of substitution in the X-calculus as defined in [Bar85]. 
We shall pursue this further in a later section (see lemma 
5.3). Note how substitution is straightforward only taking 
care of change of bound variables, this is in contrast to the 
very complicated definition of extended substitution given 
in [EngNie86], where also change of ports restricted by \a is 
taken into account. 

The operational semantics of CHOCS is given in terms of 
a labeled transition system. 
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Definition 3.3 Let -+ be the smallest subset ojPr x Act x 
Pr, where Act = Names x {?,!} x Pr U {T}, dosed under 

the rules of table 1. 

A process guarded by input prefix has the capability of re- 
ceiving any process. The received process is put into use by 
substituting it for the bound variable. Readers familiar with 
[Mi180] will recognize the similarities with the operational se- 
mantics for input guarding in CCS with value passing. Par- 
allel composition acts either asynchronously interleaved or 
by synchronized message passing e.g. a?x.p ( a!p’.p” can 
perform a?q or a!p’ as well as r. The restriction and re- 
naming operators have no effect on the processes sent or 
received. This makes sense if we relate processes to running 
programs in a multiprocessor system since here processes 
sent as values are just programs sent to another processor. 
When the received program runs as a process, this process 
does not necessarily have to have the same restrictions on 
its communication capabilities as the sending process. Of 
course we could specify so as in e.g. (a!(p’\b).p)\b. This 
is a matter of choice and other possibilities exist as e.g. in 
the ECCS-language of [EngNieS6] where \a is treated as a 
kind of binding operator. We do not want to do so since 
this seems to complicate the theory unduly. One of the mo- 
tivations for doing so in ECCS is to be able to give a static 
account of the ports in use extracted from the program text. 
But as the operational semantics of ECCS shows it is nec- 
essary to introduce new portnames in the semantics which 
reflects that it is not possible to give a static account anyway. 
Also the connection between input prefix and restriction as 
binders of portnames in communication is not at all clear. 
We comment further on the relationship between ECCS and 
CHOCS in the concluding section. 

We may now relate the process constructions of CHOCS 
to the underlying semantic equivalence -. The following 
properties may be verified by straightforward constructions 
of bisimulations. 

Proposition 3.4 - is a congruence relation. That is: 

1. a?x.p - a?x.q ijp[p’/x] N q[q’/x] for all p’ N q’. 

2. a!p’.p N a!q’.q ijp N q and p’ N q’. 

3. P+P’- q + q’ if p - q and p’ - q’. 

4. p ] p’ N q 1 q’ if p - q and p’ N q’. 

5. p\a N q\a ifp - q. 

6. PPI N #I if p N 9. 

This property ensures that a compositional verification 
strategy exists; If correctness of an implementation IMP with 
respect to a specification SPEC is taken to be that of their 
equivalence i.e. IMP - SPEC we may decompose the task 
of verification by decomposing the IMP into subimplemen- 
tations IMPI . . . IMP, combined by some operator 0 of the 
language (i.e. IMP = O[IMPi . . . IMP,,]). We then have to 
find subspecifications SPECi such that IMP; - SPECi and 
show OISPECI . . . SPEC,] N SPEC. Then the result follows 

from substitutivity of -. This strategy may be applied re- 
peatedly until the task of verification is broken down into 
manageable parts. 

The observational equivalence M does not enjoy the prop- 
erty of being a congruence with respect to the operators of 
CHOCS. Although it satisfies I., 2., 4., 5. and 6. of proposi- 
tion 3.4 it does not satisfy 3. which may be seen from the fol- 
lowing counter example first presented in [Mil80]: r.nil M nil 
but a!p.nil+ r.nil + a!p.nil + nil. We may obtain a congru- 
ence using techniques presented in [Mi180] by defining p FY? q 
iff VC.Cb] M C[q], where C is a context. Generally a context 
is an expression with zero or more “holes” to be filled by an 
expression. We write C[p] for C[ ] with p exchanged for [ 1. 
We deliberately use the word exchange instead of substitute 
since according to the definition of substitution (definition 
3.2) change of bound variables is taken care of, whereas free 
variables in p may become bound in C[p]. 

4 Equation al properties 

As we saw in the previous section - is a congruence with 
respect to the process constructions in CHOCS. Having es- 
tablished this, it naturally leads to a series of identifications 
of programs like: p ] p’ - p’ ] p. Of course the left hand 
side of this equation is a different program from that on the 
right hand side, but we would expect to find their behaviour 
equivalent, and this is in fact what the equation expresses. 

The equational properties of N may yield a better under- 
standing of the underlying semantics of CHOCS and for the 
unexperienced user of the language it may turn out to be a 
helpful way of understanding the language and the interplay 
of its constructs. in the process algebraic framework the se- 
mantics of the ACP-language [BerKlo84] is given entirely as 
an equational theory in an algebraic setting. We shall not 
do so, but in fact Prl - may be considered as an algebra: 
e.g. (Pr/ -, +, nil) is an abelian monoid as justified by the 
first three equations of table 2. 

Using these rules we may prove properties about processes 
without directly constructing a bisimulation. This approach 
is often much more manageable and the two methods may 
be combined when convenient. All the equational properties 
of table 2 are easily established by bisimulations. 

We have not listed any immediate interplay between (non- 
deterministic) choice and parallel composition in table 2. 
This is due to the fact that the two operators in general 
do not commute, but there is a restricted interplay between 
them: 

Proposition 4.1 Let z = {x1.. .x,}, g = {yl . . . y,,} and 
Zny# 0 then 

if p= 
and Q = 
then p] q - 

Ciai?Xi.pi + Cjaj!&.pj 

xkbk?Yk.Qk + &br!q;.q~ 
.Gai?Xi.(pi 1 q) + Cjaj!J$.(pj 1 Q)+ 

zkbk?Yk.(P 1 Qk) t ClW.(p 1 ql)t 

c(i,l)E{(i,l)I ai=bt)r~(~i[‘d/xi] 1 qI)+ 

C(ik)E{(j,k) I .j=bkl’.(Pj 1 ‘?k[Pj/Ykl) . . _. . 
where Ciri.pi descrrbes the sum rl.pl + . . . + r,,.pn when 

n > 0 and nil ijn = 0, knowing this notation is unambiguous 
because of 1. and 2. of table 1. 
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1. 
2. 
3. 
4. 
5. 
6. 
7. 
a. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 

17. 

18. 

p + p’ N p’ + P 

P+P-P 

P I P’ N P’ I P 

(P t p’)\b - ~\b + P’\b 

(P t P’WI - PKA + PVI 
(P I P’WI N PM I P’H 

P[S]IS’l N PW 0 Sl 

PIId] N P 

Table 2: Equational properties of -. 

As a consequence of proposition 2.7 we know that M sat- 
isfies the equations of table 2. Moreover M satisfies p M r.p. 

Observational equivalence is not a congruence relation and 
so the equational properties of M may be a bit uninterest- 
ing, but we conjecture that I& satisfies the same equational 
properties as wc of [Mi180] with the appropriate extension to 
take process passing into account. 

In [HenMil85] and [Mi181] equations like those given in 
table 2 and proposition 4.1 are used to prove soundness for 
sets of sound and complete proof systems for the finite re- 
spectively regular sublangua.ges of CCS. We shall not do so 
in this paper since we cannot hope for a complete axiomati- 
zation of the properties of CHOCS; the reason for this will 
become clear in the following sections. 

We have deliberately chosen to refer to the set Names aa a 
set of portnames emphasizing that process values are to be 
thought of as communicated via ports. In any implementa- 
tion of a system described in CHOCS it would be of great 
importance to know certain facts about these names as e.g. 
the number of different names, substitutivity of names etc. 
We may ascribe a sort (a set of portnames) to each pro- 
gram. To formally define the sort of a program we need a 
bit of notation. 

Definition 4.2 q is a derivative of p if p b’ q, where 
p ----t q s 3r E Act.p 3 q and -+* is the reflexive and 
transitive closure of -+. 

Definition 4.3 For each 1, c Names, let PrL be the set 

of processes p such that for any derivative q of p, if q 3 

q” or q a!s: q” then a E L. Zf p E PAL we say p has sort L 
(written p :: L). 

We may see how the process constructions of CHOCS act 
on sorts: 

Proposition 4.4 1. Zfp::LandLCMthenp::M. 

2. If a E L and p :: L then a?x.p :: L. 

3. Zf a E L and p :: L then a!p’.p :: L for any p’. 

4. Zf p :: L and p’ :: L then p + p’ :: L. 

5. Zfp :: L and p’ :: L then p ( p’ :: L. 

6. Zf p :: L then p\a :: L \ {a}. 

7. Zf p :: L then p[S] :: {S(a) 1 a E L}. 

The following semantic function may be used to compute 
the sort of a process: 

Definition 4.5 dynamicsort : CHOCS -+ Names 

dynamicsort = 

{a E Names ) 39, q’, q”.p ** q a?p: q” or p --+* q % q”} 

This set is the minimal sort for an agent. The dynamic 
sort is often not convenient since it can only be determined 
dynamically. We are often satisfied by coarser - but easier 
to compute - information which may be extracted from the 
program text. 

befinition 4.6 We define staticsort : CHOCS -+ Names 
structurally on p: 

staticsort(niZ) 

staticsort(a?x.p) 

staticsort(a!p’.p) 

staticsort(p + p’) 

staticsort(p 1 p’) 

staticsort(p\a) 

staticsort(p[S]) 

static.sort(x) 

0 

{a} U staticsort 

{a} U staticsort 

staticsort u staticsort 

staticsort U staticsort 

staticsort \ {a} 

{S(a) 1 a E staticsort( 

NiWIeS 

Note how we need to “assume the worst” when encoun- 
tering a variable. This is because we do not know the sort 
of the processes which may be substituted for the variable. 

In fact a7z.z 2 p for any p, and p may have any sort 
which is reflected both in the dynamic sort and the static 
sort of a?x.x. This “assuming the worst” resembles how 
static approximations of dynamic properties of sequential 
programming languages are made in the framework of ab- 
stract interpretation (CouCou79]. “Assuming the worst” in 
case of a variable implies that it is not necessary to calcu- 
late the static sort of process values as may be seen from 
the clause for output prefix, the sort of any process received 
in communication will be covered by the static assumption 
on variables. The information given by the static sort is 
often too coarse aa in p = (a?x.x 1 a!(b!nil.nil).niZ)\a since 
staticsort = Names\(a), whereas dynamicsort = {b}. 
As a solution to this problem one could introduce a sort dec- 
laration on each binding of variables and limit communica- 
tion to processes of the prescribed sort. This would corre- 
spond to type declarations in typed programming languages 
like PASCAL. This is indeed the approach of [Nie88]. 

The dynamic sort and the static sort are of course related: 
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Proposition 4.7 dynamicsort G staticsort 

staticsort = dynamicsort does not hold in general as 
we saw above. But both staticsort and dynamicsort are 
sound with respect to definition 4.3 of a sort for p. The 
information calculated by our staticsort is very coarse, but 
the definition of sort (and types of processes in general) of 
[Nie88] presents a refined static sort where the sorts of pro- 
cesses sent and received contributes to the calculation of the 
sorts of processes, In general we cannot hope to show that 
staticsort = dynamicsort since this is undecidable, even 
without process passing, aa a consequence of [AusBou84]. 

We may now give some equational properties which only 
hold under certain constraints on the sort. 

Proposition 4.8 1. p\bNpifp::Landb#L 

2. (p 1 p’)\b N p\b 1 p’\b ifp :: L, p’ :: M and 6 q! LnM 

3. p\b N p[a/b]\a ifp :: L and a +! L 

1. shows that restriction has no effect if the restricted 
port does not belong to the sort of the agent. 2. shows 
that restriction only distributes over communication if the 
restriction does not involve the ports which the processes 
are able to communicate via. 3. shows that the name of a 
restricted port is not essential upto renaming. This property 
corresponds to the notion of a-convertibility in [EngNieSG]. 

We have seen that almost all properties of CCS carry 
over to CHOCS but since CHOCS includes higher order con- 
structs one would expect to find it more powerful and indeed 
it is. In CCS the recursion operator recx.p is the only op- 
erator capable of introducing infinite behaviours. recz. is a 
variable binder and FV and [ / ] have to be extended ac- 
cording to this (see e.g. [Mi181]). In CCS recursive processes 
have the following operational semantics: 

p[rec x.p/x] 2 p’ 

ret x.p J+ p’ 

This inference rule basically says that a recursive process 
has the same derivations as its unfoldings. In CHOCS we 
can “program” a recursion construct to obtain infinite be- 
haviours. To a certain extent this construct resembles the Y 
combinator in the X-calculus. 

Definition 4.9 Let Yz[ ] be the following context: 

(a?x.([ ] 1 a!x.nil) ( a!(a?x.( [ ] 1 a!x.nil)).nil)\a 

Theorem 4.10 ifp :: L and a $ L then Y,M N recx.7.p 

PROOF: The proof of this theorem needs the following 
property of substitution: 

ifs # Y then ~b’l4b”l~l = ~[P”l~l[P’[P”l~ll~l 

which is easily established by structural induction on p. 
Then the relation: 

R = {(q[recx.T.p/x], (q[a?x.(p I a!x.nil)/x] I 

a!(a?x.(p ) a!x.nil)).nil I \nil I ,:. ) ni?\a) 

I J’V(q) C (2) dm 2 0) m 

is a bisimulation. This may be shown by induction on the 
number of inferences used to establish any transition of q 
observing the structure of Q. In the case where q has the form 
a?y.q’ or ret y.q’ we need the above property of substitution. 
The theorem then follows by choosing q z z. (The proof 
follows the pattern of the proof of proposition 4.6 of [Mi183]). 

This proof is limited to the case where at most z is free 
in q. The extension to the case where there are other free 
variables is routine, but demands for a definition of higher 
order bisimulation for open terms (which is standard and 
straightforward). 

recx.p is not derivable in the sense of [Pra88] but it can 
be closely mimicked by YJp] and Y,b] x recx.p, where M is 
observational equivalence. 

Example 4.11 Let p 3 b!.x then according to the inference 
rules of definition 3.9 Yzb] has the following derivations: 

Yzb] G (a?x.(b!.x ( a!x.nil) I a!(a?x.(b!.x I a!x.nil)).nil)\a 

b 
(b!.(a?x.(b!.x 1 a!z.niI) I a!(a?z.(b!.x 1 a!s.niQ).niI 1 niQ\a 

b! 
(a?z.(b!.x ( a!x.nil) I a!(a?x.(b!.x I a!x.nil)).nilI nil)\a 

(b!.(a?x.(b!.x I a!x.nil) I a!(a?x.(b!.x I 
nil I nil)\a 

b! 

a!x.nil)).nil) I nil I 

Note how Yz[ ] needs a r-tnznsitior; I to unwind the “re- 
cursion”. This resembles the unwinding of recursion in the 
inference rule of recursion in TCCS [dNiHen87]: recx.p ?r) 
p[recx.p/x], where ?+ may be read as A. 

5 CHOCS and the X-calculus 

CCS is a powerful language; It is capable of expressing all 
Turing definable functions by encoding of Turing machines 
(see [Mi183]). Since CCS is a sublanguage of CHOCS this 
must be true for CHOCS as well. But the nature of CHOCS 
is much closer to the &-calculus and in this section we shall 
see how the untyped X-calculus may be encoded in CHOCS. 

First we recall the syntax of the untyped X-calculus as 
described in [Bar85]: 

Definition 5.1 The set of X-terms A is defined inductively 
as follows: 

1. XEA 

2. M E A + (Ax.M) E A 
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3. M,NEA+(MN)EA 

where x E V [a set of va:riables). 

This language consists of variables, function abstraction 
and function application. The X-calculus has a rich theory 
as documented in e.g. [Bar85], consisting of concepts such 
as conversion, reduction, theories and models. 

A simple translation of the X-calculus may be given by 
the following definition: 

Definition 5.2 We define [ ] : A -+ CHOCS structurally: 

1. [x] = x 

2. [XXM] = i?x.i!gM;~.niz 

3. [M N] = ([Ml[o/i] 1 o![N].o?x.x)\o 

Note that for any M E A: [M] :: {i} and that application 
only needs two communication channels. Since the function 
] ] : A + CHOCS has no additional arguments we may view 
it as a definition of a set of derived operators in CHOCS. 
Clause 3. shows how we may view parallel composition as a 
generalization of function a.pplication. However, we need a 
rather elaborate protocol to ensure that we do not mix argu- 
ments in applications and ‘we therefore feed the arguments 
sequentially. A tempting definition of the clause for appli- 
cation is [M N] = (]M] 1 ;![N].n;Z)\;. Unfortunately this 
definition does not work since the restriction \i prevents ap- 
plication to other arguments as in e.g. M N N’. A different 
approach is presented in [13ou88] where a special operator 
takes care of this problem. ‘The cost of this is a complication 
of the definition of equivalence between processes. 

In the following we shall see that some of the most in- 
teresting properties of the X-calculus are carried over via 
the translation. First we make clear the connection between 
substitution in the X-calculus and in CHOCS. 
Lemma 5.3 

[M[x := N]] E [M][[Nl/x] 

where [z := ] is suBstitu#tion in the X-calculus as defined 

Since [M] :: {i} f or all M E A we may use the properties 
of table 2 and proposition 4.8 to infer the conclusion of this 
proposition. q 

The theory X as presented in [Bar851 is strongly related 
to the translation [ ] : A + CHOCS and the properties of 
CHOCS: 

Theorem 5.5 ifX l- M = N then [M] M [NJ. 

PROOF: By structure of X l- M = N 0 
The converse does not hold in general, but M induces an 

equality relation on A and it is straightforward to verify 
that the relation R = {(M,N) / [M] R [N], M, N E A} 
is a compatible congruence relation. Proposition 5.4 shows 
that p = {((Xx.M)N,M[x := N]) 1 M,N E A) C R and 
therefore =&=R. The notion of p-equality is important, 
but in the standard theory of the X-calculus it is the notion 
of head normal form, baaed on BGhm trees, which yields 
the meaning of a X-term. Terms without a head normal 
form are identified. But =n distinguishes more X-terms 
than the standard theory since e.g. [xx.n] $ [D], where 
n = (Xx.x x)(Xx.x x). In general we do not have the full n- 
conversion i.e. X l- Xx.M x = M if x # FV(M) but if M has 
the form Xy.M’ we have [Xx.(Xy.M’) x] M [Xz.M[y := x]] M 
[M] which is easy to establish using the properties of table 2 
and proposition 5.4. This restricted version of q-conversion 
is close to the restricted version valid in the Lazy-X-calculus 
of [Abr88]. Furthermore connections to the Lazy-&calculus 
are strengthened by the following proposition: 

Proposition 5.6 [a] N recx.r.x N Yc[x] 

This shows that the standard unsolvable term fI of the 
X-calculus yields a divergent process in CHOCS, i.e. a pro- 
cess only capable of performing an infinite series of inter- 
nal moves. Whether the above suggested connections to 
the Lazy-X-calculus can be further strengthened is an open 
question being investigated for the moment. 

in definition 2.1.15 of [Bar851 and [ /xl is substitution in 
CHOCS according to definition 3.2. 

6 CHOCS as a rnetalanguage 

PROOF: By structural induction on M. q 
Using this lemma we may show that ,&-conversion in the 

X-calculus is “preserved” by the translation: 

Proposition 5.4 

[(Ax.M)N:[ M [M[x := N]l 

PROOF: We demonstratce how the left hand side of this 
equation may do an initial series of internal r-moves to a 
process equivalent to the right hand side. 

[(Xx.M)N] = ((i?x.i![M].niI)[o/i] 1 ~![N].o?x.x)\o 

17 

((i!([M][[N]/x]).nil)[o/i] 1 o?x.x)\o 

L 

In this section we shall study how CHOCS may be used ifs a 
metalanguage in the definition of the semantics of program- 
ming languages. The study is a case analysis of a simple im- 
perative toy language, called P, first studied in [MilSO]. The 
meaning of the language P is given in a phrase-by-phrase 
style resembling denotational language definitions though we 
shall not give any semantic domains. The language P is de- 
vised in such a way that a programmer is partly protected 
from unwanted deadlocks. This is obtained through a disci- 
plined way of communication between components sharing 
some resources. In [MilSO] R. Milner points out the diffi- 
culties of describing procedures in P using CCS. It is not 
obvious that CCS or the extension of CCS justified by the 
developments in [Mi183] can describe concurrent procedure 
invocations satisfactory. In [EngNie86] U. Engberg and M. 
Nielsen show how CCS with labels as first class objects may 
be used to describe concurrent procedure invocations, unfor- 
tunately their solution is very complicated and it does not 
look like procedure descriptions of sequential programming 
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languages. We show how procedures in P may be handled 
straightforward in a way resembling how procedures in se- 
quential imperative languages are handled in denotational 
descriptions based on the X-calculus. Most of the defini- 
tions not concerning procedures may be found in [Mil80], 
but for the sake of completeness we present the full language 
definition. 

To allow for other values than process values in CHOCS 
we use the technique of [Mi183] and introduce a D-indexed 
family of actions a?d, a!d, d E D for each value domain 
D. Due to the fact that only finite sums of processes can 
be handled in the version of CHOCS presented in this pa- 
per we restrict our attention to finite value domains as 
e.g. the set of booleans and finite subsets of the inte- 
gers. We let (~?=.p abbreviate CdEDa?d.p{d/z} where {d/z} 
means exchanging all occurrences of I in p by d as e.g. 
a?,.P!,.nil{d/z} = C &Da?d.~!d.,d. we shall Use the fOl- 

lowing construct from [Mi183]: If b is a boolean valued ex- 
pression in I then let o?=.(if b then p else p’) be encoded by 
&~kbcx?~.p $ &ED~~~(Y?~.$. We should not confuse a?,.~ 
with a?x.p since the first is a convenient short hand notation 
and the latter is part of the CHOCS syntax. 

The toy language P 

Programs of P are built from declarations D, expressions E 
and commands C, using assignments to program variables 
X. Some set of functions F is assumed and for the cause 
of simplicity we do not consider types of expressions. P has 
the following abstract syntax: 

Declarations: 
D::=varXID;DIp rot P(value X, result X’) is C 

Expressions: 
E ::= X 1 F(EI, . . . , En) 

Commands: 
C ::= X := E C; C 1 if E then C else C’ 1 
while E do C I C par C’ 1 input X I output E I 
skip 1 begin D; C end I call P(E,X) 

Table 3: Syntax of P 

In the study of concurrent programming languages a ques- 
tion of interest is how to evaluate programs like: 

begin 
var X; 
x := 0; 
(X:=X+lparX:=X+l); 
output x 
end 

The semantics presented here will yield the answers 1 or 
2. Readers are referred to [Mil80] for a discussion of an 
alternative specification to rule out the answer 1. 

To give a smooth definition of the semantics of P we need 
some auxiliary definitions. 

To each variable X we associate a register Regx. Gener- 
ally it follows the following pattern: 

Lot = a?,.Reg(.) 

Reg(y) = a?,.Reg(z) + 7!v.Reg(,) 

and thus for X we will have Loc,y = Loc[ax 7x/a 71. 
Initially we write in a value, thereupon we can read this 
value on 7 or overwrite the contents of Lot via a. We have 
written the above definition in an equation style to make 
it more readable. The proper CHOCS definition is: Lot = 
(a?,.h!,.niZ 1 Reg)\h where Reg = YR,[h?,.(cY?,.h!,.Reg + 
7!,.h!,.Reg)] / YK,,[h?,.h!,.Keep]. The second component 
of this process takes care of the parameters in the recursion 
of the above equations. (This is in fact a general technique 
for simulating the parameterized recursion of [Mil83]). We 
also associate a register to each procedure P. It may be 
defined in the same way as above with s substituted with I. 

To each n-ary function symbol F we associate a function 
f which is represented by: 

b, = PI&. . . . pn?zn.~!~(rl...=n).ne’Z 

Constants will thus be represented as e.g. btrue = ~!~~,,~.nil 
The result of evaluating an expression is always communi- 
cated via p. It is therefore useful to define: 

P Tes2& P’ = (P I P’)\p 

We shall adopt the protocol of signalizing successful ter- 
mination of commands via 6 and it therefore convenient to 
define: 

dune = b!.nil 

P before P’ = (p[Pl4 I P?.p’)\P (P new ) 

pparp’= 

(p[6,/6] 1 p’[&/6] 1 61?.62?.done + 62?.61?.dme)\61\52 

(462 new ) 

We may now give the semantics of P by the transla- 
tion into CHOCS shown in table 4. In the equation for 
[begin D; C end] we let \LD abbreviate restriction with re- 
spect to 0: and 7 channels for all variables and procedures 
declared in D. The procedure definition creates a location 
to store the procedure process. The restriction \a~ ensures 
that this process cannot be overwritten after the definition. 
The procedure process needs two locations, one for each pa- 
rameter. These locations are kept local by the restrictions 
\ox\cr~\7~\7v. To ensure static binding of variables in a 
procedure body the procedure process is embraced by a re- 
naming of all read and write signals to variable locations. 
This is done simply by tagging the signals with the name 
of the procedure. The tagged signals are able to escape the 
restriction \LD of any block except the block where the pro- 
cedure is defined. The Transform process, located in the 
block where the procedure is defined, transforms the tagged 
signals back to untagged read and write signals. These will 
of course effect the variable locations in this environment. 
The value to the value parameter is communicated via ap, 
and the result of the procedure is communicated via 7~“. 

151 



Declarations: 

[var X] = Locx 

ID; D’II = PII I [D’R 
[Proc P(value .x, result Y is C] = ((Locp 1 op!(( procedure process ).nil))\op) 1 Transform 

where procedure process = 

(CC a~~?,.ax!,.done) before [C] before (7y??,.yp ,&done) I LOCX I Loc~)\~x\LY~\Yx\~~)IO~ ~&/(YxI 7x4 

and Transform = YT~~~[CXI’Z~~?=.IYX~!=.T~Q~Z + C,yq~,?z.(7~,!s.Tran + Tran)] 

Expressions: 

[Xl = 7‘y?z.p!,.niz 
IF+%,... > En)ll = (PUtbll~l I . . . I IE4~nl~l I b)\n + .. \~n 

Commands: 

[X := E] = I[E] result (p?z.crX?,.done) 

[C; C’] = [C] before [C’] 

[if EthenCelse C’] = [E] result p?=.(if I then [Cl e/se [C’j) 

[while E do C] = Y,[[E] result p?,.(if z then ([Cl before W) else done)] 

[C par C’] = [C] par [C’] 

[input X] = L?,.crx!,.done 

]output E] = QE] result (p?,.o!,.done) 

[skip] = done 

[begin D; C end] = (ID] ( [C])\L, 

[call P(E, Z)] = [El result ((p?z.cx’pv!z.done) 

par (-YP?=) par (rp,?...az!s.done))\(yp,\yp” 

Table 4: Semantics of I’ 

These signals are not affected by the embracing renaming. 
The procedure call first evaluates the argument then reads 
the location Locp to get a copy of the procedure process. 
Note how each procedure process is self-contained with lo- 
cal environments for the parameters. If a recursive call to 
the procedure P occurs in the body C a new copy of the pro- 
cedure process will be obtained. This is true for concurrent 
activations of the same procedure as well and we have: 

[begin proc P(val.ue X, result Y) is C; 

call P(E, Z) par call P(E’, 2’) end] 

z 

[begin var X; var Y; X := E; C; Z := Y end 

par begin var X; var Y; X := E’; C; 2 := Y’ end] 

[Proc P(ref X) is C] = 

((Locp 1 cup!( procedure process ).nil)\cyp) ) Transform 

where 
procedure process = [Cj[cxp. +yp,,/(~x 7x][a$, y$/cuxl 7x’]. 

Icall W)ll = ~P?~.(z~Y 7~yylw, 7~~1) 
Note how this parameter mechanism works; We just link the 
register associated with the parameter in the call with the 
procedure process via renaming. This is obtained by the 
inner renaming in the procedure body which ensures that 
read and write signals to the formal parameter escape the 
outer renaming. This has the effect that they are linked to 
the actual parameter in the calling environment. 

which may be verified by expanding the semantic clauses. 7 Concluding Remarks 
Another common parameter mechanism used in impera- 

tive programming languages is the call by reference mecha- 
nism. This mechanism may be modelled in CHOCS by the 
following semantic definitions: 

The denotational approaches of [KenSleSS] and (Chr88] are 
very complicated. Both are formulated in a category thee- 
retical setting and the main purpose of both papers are to 
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establish functors describing the properties of process pass- 
ing. A lot of effort is put into assuring that these functors 
can be used together with standard domain constructors and 
in recursive domain equations. We believe that it is not nec- 
essary to establish special functors for this purpose and that 
standard domain theory is sufficient to give denotational se- 
mantics for languages with processes as first class objects. 
In [Abr87a] S. Abramsky shows how it is possible to give 
both an operational semantics and a denotational semantics 
together with a logic for description of properties and to link 
all three approaches together in a unifying framework. This 
framework is used in [Abr87b] by applying methods of deno- 
tational semantics to problems concerning nondeterminism 
and concurrency, and it is shown how Hennessy-Milner Logic 
(HML), the Plotkin power domain and labeled transition 
systems can be unified in the description of nondeterminis- 
tic and concurrent processes. Our preliminary investigations 
show that there is an extension of HML characterizing the 
extended version of bisimulation given in definition 2.2. If 
we extend the transition systems used aa the underlying se- 
mantics for CHOCS with a divergence predicate in the style 
of [Wa188], it is possible to relate these with the semantic do- 
main D Z P’(&A~~ D x D + I&A&D x D), where P” is the 
Plotkin power domain with the empty set augmented and 
c aeAct is generalized coproduct. The partial order of this 
domain coincides with higher order bisimulation extended 
to take divergence into account, again following the ideas of 
[Wal88]. It is a topic for further research if this domain and 
the extended version of HML can be unified in the framework 
of [Abr87a]. 

Another direction for further research is how the notion 
of processes as first class objects relates to the modelling 
of dynamic use of communication channels as suggested in 
[Mil83b] or the more refined treatment of portnames as first 
class objects in ECCS as described in [EngNie86]. Our pre- 
liminary investigations point in the direction that the two 
approaches are expressively equivalent. It is possible to go 
from CHOCS to ECCS using a technique resembling imple- 
menting functional languages in imperative languages with 
GOT0 statements and one can go from ECCS to CHOCS 
using a kind of continuation style semantics. However, fur- 
ther investigations into the correctness of the two approaches 
are necessary. We feel that ECCS is much closer to a ma- 
chine level or assembly language level of computations of 
dynamic process communication and that one should con- 
sider CHOCS as a specification language abstracting away 
the complicated nature of the dynamic use of communica- 
tion channels, analogous to using procedures as a clean way 
of using GOT0 statements in imperative programming lan- 
guages. 

CHOCS as a metalanguage and a specification language 
in general has to be tried out on many more examples before 
any conclusions of its usability can be drawn, but as the ex- 
ample given in this paper suggests it is expressively powerful 
and it has shown to be of theoretical interest. Application 
of CHOCS to more “real life” concurrent systems will show 
how these systems can be treated and hopefully demonstrate 
that these can be treated as cleanly as the treatment of the 
&calculus and the toy language P. 
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