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Abstract
Over the last few years, in-lined reference monitors (IRM’s) have
gained much popularity as successful security enforcement mech-
anisms. Aspect-oriented programming (AOP) provides one elegant
paradigm for implementing IRM frameworks. There is a foreseen
need to enhance both AOP-style and non-AOP IRM’s with static
certification due to two main concerns. Firstly, the Trusted Com-
puting Base (TCB) can grow large quickly in an AOP-style IRM
framework. Secondly, in many practical settings, such as in the do-
main of web-security, aspectually encoded policy implementations
and the rewriters that apply them to untrusted code are subject to
frequent change. Replacing the rewriter with a small, light-weight,
yet powerful certifier that is policy-independent and less subject to
change addresses both these concerns.

The goal of this paper is two-fold. First, interesting issues en-
countered in the process of building certification systems for IRM
frameworks, such as policy specification, certifier soundness, and
certifier completeness, are explored in the light of related work. In
the second half of the paper, three prominent unsolved problems
in the domain of IRM certification are examined: runtime code-
generation via eval, IRM certification in the presence of concur-
rency, and formal verification of transparency. Promising directions
suggested by recent work related to these problems are highlighted.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: [Software/Program Verification]; D.4.6 [Operating Sys-
tems]: [Security and Protection—access controls]; F.3.1 [Logics
and Meanings of Programs]: [Specifying and Verifying and Rea-
soning about Programs—mechanical verification]; F.3.2 [Log-
ics and Meanings of Programs]: [Semantics of Programming
Languages—program analysis]

General Terms Languages, Security

Keywords Aspect-oriented programming, In-lined reference mon-
itors, Runtime verification, Static verification

1. Introduction
Over the last few years, in-lined reference monitoring (c.f., [10, 39,
46, 55]) has become increasingly popular as a software security en-
forcement mechanism. In-Lined Reference Monitors (IRM’s) [46]
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enforce safety policies by injecting runtime security guards directly
into untrusted binaries. The guards test whether an impending op-
eration constitutes a policy violation. If so, corrective action (e.g.,
premature termination) is taken to prevent the violation. The result
is self-monitoring code that can be executed safely without external
monitoring. A canonical example policy in the literature is one that
prohibits all network-send operations after the program has read
from a confidential file [46]. The IRM enforces the policy by track-
ing the history of security-relevant operations at runtime and con-
sulting it in runtime guards. The approach is both flexible and pow-
erful, being shown capable of enforcing policies not enforceable by
any purely static analysis [27].

Aspect-Oriented Programming (AOP) [35] has been identified
as a natural and elegant means of implementing IRM’s (e.g., [14,
15, 26, 47, 54]). Aspects encode an IRM’s implementation as a
collection of pointcuts, which identify potentially security-relevant
program operations, each paired with advice, which prescribes a
local code transformation sufficient to guard the operation. This lo-
calized code-rewriting approach has been shown to be sufficient to
enforce large, important classes of policies, including the safety
policies [27, 46] and some liveness policies [39]. Additionally,
AOP enjoys an extensive support system and tool base, making
it popular in many academic and industrial settings. An important
caveat to the approach is that there must be some way of preventing
circumvention of the injected guards by unrestricted control-flows
or corruption of the guard code by unrestricted memory accesses.
Such protection can be afforded by a type-safe bytecode language,
such as Java [10, 26], .NET [28], or ActionScript [49], or by apply-
ing a sandboxing mechanism such as program shepherding [37] or
software fault isolation [23, 40, 55].

As AOP-based IRM systems gain prominence, there is a fore-
seen need to enhance them with certification. This need arises due
to two main concerns: Firstly, the Trusted Computing Base (TCB)
of an AOP-style IRM framework can quickly become extremely
large as the size of the aspect library grows. When the IRM is in-
tended to apply to large classes of untrusted binaries rather than just
one particular application, the required generality makes them ex-
tremely difficult to write correctly, as past case-studies have demon-
strated [34]. Moreover, the TCB also includes the compiler, aspect-
weaver, and possibly other support tools that can be difficult to ver-
ify formally. This frustrates attempts to provide strong formal guar-
antees about the instrumented code produced by these systems.

Secondly, in many practical settings aspectually encoded policy
implementations and the rewriters that apply them to untrusted
code are subject to frequent change. A good example is the problem
domain of web ad applet security (c.f., [38, 48, 49]). As new
attacks appear and new vulnerabilities are discovered, these IRM
implementations rapidly change in their technical details (though
not in their high-level approach of guarding potentially dangerous
operations with dynamic checks). Thus, the considerable effort
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Figure 1. Certifying in-lined reference monitoring framework for
ActionScript Bytecode

that might be devoted to verifying formally one particular IRM
implementation quickly becomes obsolete when the IRM is revised
in response to a new threat.

Therefore, rather than proving that a particular IRM framework
correctly modifies all untrusted code instances, we instead consider
the challenge of machine-certifying individual instrumented code
instances with respect to the original policy and untrusted code
whence they were derived. Specifically, we would like to prove that,
for a given policy P , untrusted code instance e, and rewritten code
instance e′,

• Soundness: e′∈P ; i.e., rewritten code is policy-satisfying, and

• Transparency: if e ∈ P then e′ ≈ e, where ≈ denotes seman-
tic program-equivalence; i.e., the behavior of policy-satisfying
code is preserved across rewriting.

Figure 1 shows an example of a certifying in-lined reference mon-
itoring system for ActionScript Bytecode used in Adobe’s Flash,
Adobe Integrated Runtime (AIR), and related technologies [49].

The problem of certifying IRM’s differs substantially from the
more general problem of verifying the safety of arbitrary code.
This is because IRM certifiers need only be powerful enough to
provide rewriters a reasonable range of certifiable code to which to
map untrusted code instances. For example, while general-purpose
model-checkers are often very large (e.g., [30]), prior work has
shown that in the context of an IRM systems it is possible to create
extremely small, efficient model-checkers that are powerful enough
to verify large classes of IRM’s formally [16, 49]. The rewriters
for these model-checking IRM systems simplify the certifier’s task
when necessary by inserting extra dynamic guards that obviate
the proof of safety (at the expense of some additional runtime
overhead for the rewritten code). The verifier therefore need only
be sufficiently sophisticated to identify the dynamic checks used by
the IRM to guard dangerous operations, and verify that they are not
circumvented by unguarded control flows.

IRM certification also differs from proof-carrying code (PCC)
[43] in that PCC rewriters (certifying compilers) leverage source-
level information that is typically unavailable to binary rewriters.
For example, a certifying compiler may prove control-flow safety
by refining a general proof of source-language control-flow safety
down to the compiled object code, whereas a binary-level rewriter
lacks this source-level information. This has interesting implica-
tions for IRM certification because effective IRM certifiers must
support a different class of rewritten code—those that are reliably
implementable by binary-level IRM rewriters but not necessarily
typical of source-level rewriters. This interplay between rewriter
and certifier power leads to interesting research opportunities and
challenges, which we discuss here.

Our goal in this paper is two-fold: We begin by discussing some
interesting issues that we have encountered in the process of build-
ing certification systems for IRM frameworks, and explore related

works in the area. Section 2 discusses the problem of formulating
policy specification languages that are suitable for both automated
rewriting and automated certification, and that are also reasonable
for writing realistic policies. In Section 3, we explain soundness,
completeness, and their relationship in the context of IRM certifi-
cation. The intractability of full completeness leads to a definition
of P-verifiability, which captures the notion of an IRM certifier
that is sufficiently complete to allow certifiable IRM enforcement
of important classes of security policies.

In the second half of the paper, we present three prominent un-
solved problems in domain of IRM certification, and discuss why
these are particularly challenging: Section 4 considers the issue of
runtime code generation via eval. Section 5 discusses challenges
related to certifying IRM’s in the presence of concurrency, and Sec-
tion 6 considers the challenge of formally verifying transparency.
Related work that seems well-poised to address difficult facets of
these problems is highlighted.

2. IRM Policy Specification
Effective IRM certification requires a means of specifying policies
in a way that admits both effective enforcement by an IRM and sep-
arate, independent certification by a verifier. Different approaches
to this problem give rise to different notions of what it means to
certify an IRM against a policy.

One approach adopted by a large number of IRM systems is to
express not just policy enforcement as an aspect but the policies
themselves as aspects or in an aspect-like language (e.g., [1, 7, 10,
21, 24, 36]). A distinguishing characteristic of these specification
languages is that at least part of the specification consists of code
fragments (i.e., advice) that implements dynamic security checks,
violation-precluding interventions, or IRM state updates. These
fragments are woven into the untrusted code by the rewriter; the
specification therefore defines a code-transformation recipe.

While this approach lends itself to rewriting, it makes mean-
ingful certification difficult because rewriting becomes a subprob-
lem of certification and therefore leaks back into the TCB. This
is illustrated by recent work on IRM verification-by-contract [1],
which casts policy specifications as contracts that describe the in-
tended security-relevant behavior of the program. The contract is
essentially an aspect-oriented program; it consists of event clauses
that function as pointcuts, and after clauses that supply advice.
A rewritten program e′ is checked against such a contract R by a
process that essentially applies R to the original code e and tests
whether R(e) = e′.

However, this approach has three drawbacks: (1) Contracts con-
stitute a potentially significant addition to the TCB because they
must encode the essence of the rewriting algorithm. (2) The certi-
fier must therefore duplicate large portions of the rewriter in order
to compute R(e). (3) Verifying that the contract is sound returns
us to the original problem of proving that a general rewriting strat-
egy is sound in all cases—a problem that we argued in Section 1
is more difficult than IRM certification that verifies the safety of
rewritten code on a case-by-case basis. It is therefore unclear that
this approach constitutes a meaningful reduction to the TCB.

A viable alternative approach is to express policies as types, so
that certification can be formalized as type-checking [28]. How-
ever, the resulting policy language can be somewhat limiting in
practice. Our experience indicates that while certification is ex-
tremely elegant in such a system, it is not always easy to find types
that express realistic, high-level policies that constrain method ar-
gument values, field values, and relationships between object in-
stances within complex data structures. (But see related work on
low-level liquid types [45] that may offer creative solutions to some
of these problems.)
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A third approach is to specify policies purely declaratively us-
ing a temporal logic such as LTL, or an automaton encoding such as
security automata [3]. To express low-level binary program proper-
ties in such a language, atomic propositions and edge labels can be
written as pointcuts that identify security-relevant program opera-
tions. Past work on this has yielded formal denotational semantics
that reduce such specifications to pure program properties [26].

These specification languages seem well-suited as input to IRM
certification systems that decide soundness of rewritten code in-
dependently of the original untrusted code, and without the need to
duplicate the rewriter implementation within the certifier. Typically
the task of synthesizing a program that satisfies such a property is
more complex than verifying that an existing program satisfies the
property, mainly because the rewriter must support a much larger
domain (arbitrary untrusted code) than the domain supported by
the certifier (rewriter-supplied, self-monitoring code). Moreover,
the certifier in such a framework does not regard the original un-
trusted code, leading to less code duplication between the rewriter
and the certifier. There is therefore good reason to believe that such
certification constitutes a meaningful reduction to the TCB, and a
meaningful second line of defense.

Additionally, in a purely declarative policy specification lan-
guage the policies define what security property to enforce without
overspecifying how it is to be enforced. This characteristic allows
for a clear-cut separation between the IRM implementation and the
certifier, providing the former the choice of an optimal rewriting
strategy customized according to information available at rewrite-
time but not necessarily certification-time.

3. Certifier Soundness and Completeness
We preface our discussion of IRM certification challenges with
some preliminaries related to soundness and completeness of
rewriters and certifiers. This leads to a definition of P-verifiability
that relates the two in the context of a certifying IRM framework.

A total, computable, transparent rewriter R : M → M is said
to be sound with respect to a policy P ′ if and only if R(M) ⊆ P ′.
Adding certification to an IRM framework removes a rewriter from
the TCB, relieving us of the burden of proving rewriter soundness.
Instead, we introduce a certifier that rejects any unsafe rewriter
output on a case-by-case basis. Providing high assurance in this
new framework requires proving certifier soundness.

A certifier decides some other property P ⊆ M. The certifier
is sound with respect to policy P ′ if and only if P ⊆ P ′. That is,
sound certifiers accept only policy-adherent programs. Typically P
is a strict subset of P ′. Programs in P ′ − P are conservatively re-
jected; they are safe but unverifiable programs. Complete certifiers
satisfy P ′ ⊆ P . Thus, certifier soundness and completeness to-
gether imply that P ′ = P . However, for this to be true, policy P ′

must be statically decidable (because P is decidable). Thus, for any
non-trivial policy P ′, P is a strict subset and the certifier is sound
but not complete.

While full certifier completeness is therefore impossible to
achieve in the context of non-trivial policy languages, it is nev-
ertheless important to obtain a certifier that is sufficiently complete
to allow effective, certified rewriting of arbitrary binary code for a
reasonably large class of security policies (e.g., the safety policies).
We capture this idea a little more formally below.

Definition 1 (P-verifiable). Define M to be the universe of all
programs and assume program property P ⊆ M is statically
decidable. A property P ′ ⊇ P is P-verifiable if there exists a total,
computable, rewriter R : M → M that is transparent with respect
to P ′ and that satisfies R(P ′) ⊆ P . That is, R maps any program
satisfying P ′ to a member of P . A class of properties C ⊆ 2M is
P-verifiable if every member of C is P-verifiable.

Note that in the above definition, P is the property being verified
and P ′ is the property being enforced. Informally, we refer to P ′

as P-verifiable when there is a rewriter that enforces P ′ and whose
output can be certified by a verifier that decides P . Similarly, a class
C of policies is P-verifiable if a verifier for P suffices to certifiably
enforce all policies in C with one or more rewriters (possibly
different rewriters for different policies in C and different untrusted
programs in M). Definition 1 is useful because the suitability of an
arbitrary code analysis P for purposes of IRM certification can be
assessed by considering which policy classes are P-verifiable. This
provides a convenient and uniform means of connecting the IRM
certification problem to related work.

Past work on IRM systems without certification typically ar-
gues rewriter soundness informally, due to the difficulty of for-
mally verifying a full-scale rewriter implementation. For exam-
ple, the SASI system [22] includes an informal argument that all
control-flows that include potentially policy-violating operations in
rewritten code are protected by a guard operation derived from par-
tially evaluating a security automaton. In an AOP setting, the anal-
ogous proof involves showing correctness of the aspect-weaving
algorithm. However, formally proving that each guard operation
is adequate to preclude all policy-violations of the operations they
protect in arbitrary untrusted code is much harder. It essentially
means proving the correctness of the aspects that are woven—an
undecidable problem in general.

Work on certifying IRM’s [1, 28, 40, 49, 55] tries to make these
arguments more rigorous by formally proving soundness on a case-
by-case basis instead of proving soundness for the general rewriting
mechanism. Conspec [1] shifts the burden of proving that guard in-
structions are adequate to the contract-writer. The contract specifies
which guard instructions are required and where; it is trusted to en-
code an adequate implementation of the desired high-level policy.
PittSFIeld [40] and NaCl [55] have an extremely rigorous proof of
safety that rests on a machine-checkable ACL2 proof showing that
its guard instructions are adequate, but only for a very specific, lim-
ited control-flow and memory-safety policy. Mobile [28] can ver-
ify far more general temporal properties, but is limited in which
guards it can verify. It requires a specific dynamic state representa-
tion scheme with limited aliasing of security-relevant objects.

Model-checking approaches to IRM certification [16, 49] use
security automata [3] for constructing a lattice for abstract inter-
pretation. Policy violations are modeled as stuck states in the con-
crete small-step operational semantics, and the presented proof of
certifier soundness involves establishing that the abstract machine
is sound with respect to the concrete machine.

4. Runtime Code-Generation
The increasing ubiquity of runtime code generation constitutes one
of the most significant outstanding challenges for effective, real-
world IRM certification. A major class of examples are languages
adhering to the ECMA-262 standard [19] (e.g., JavaScript, Action-
Script, etc.), which supports the built-in function eval. The eval
function evaluates a (possibly dynamically generated) string argu-
ment as a program. Simply passing this runtime-generated code
through a second round of rewriting is not feasible for the majority
of IRM frameworks in which the rewriter is unavailable at runtime.
For example, web ad frameworks typically assume that ad pub-
lishers or distributors perform the more significant rewriting task,
whereas recipients simply certify.

While runtime code-generation is a consistent security concern
in the broader language-based security literature [13, 20, 44], the
majority of past IRM work assumes that such operations are suf-
ficiently rare to justify conservative rejection of runtime-generated
code, or sufficiently innocuous as to be safely ignored. Recent case
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studies have contradicted these assumptions, showing that non-
trivial, security-relevant use of eval is both widespread and a ma-
jor source of cross-site scripting and similar attacks [44]. We there-
fore consider rewriting and certification of eval to be a significant
but underdeveloped area of IRM research.

The main challenge from the verification perspective is that the
string input to eval is typically constructed from several compo-
nents, some of which are typically only available at runtime (e.g.,
user input). Static analysis of string inputs to eval is therefore
widely recognized as challenging. Many static analyses either ig-
nore it [4, 5, 31, 52], or supply a relatively inflexible dynamic mon-
itoring mechanism that does not generalize to non-trivial generation
of strings outside of a particular, fixed reference grammar [25, 32].

The hybrid static-dynamic monitoring approach of certifying
IRM’s seems potentially better suited to addressing this problem
than purely static analyses, but the certifier must be sufficiently
powerful to allow effective, flexible, yet provably sound rewriting
for these domains. Several static analyses seem potentially promis-
ing in this regard. Christensen et al. [11] extract context-free gram-
mars from Java programs and use a natural language processing
algorithm to compute regular grammars that generate each string
expression’s language of possible values. Thiemann [53] presents a
type system for analyzing string expressions, where type inferenc-
ing infers language inclusion constraints for each string expression.
The constraints are then viewed as a context-free grammar with a
nonterminal for each string-valued expression, and solved using al-
gorithms based on Earley’s parsing algorithm [18]. Minamide [42]
presents an analysis of string expressions based on a prior Java
string analyzer [11], but instead of transforming the extracted gram-
mar into a regular grammar, they use trancuders to define a context-
free grammar. Abstract parsing [17] strengthens the above by stat-
ically computing an abstract parse stack in an LR(k) grammar for
each security-relevant string. The abstract parse stacks retain struc-
tural information about dynamically generated strings that can be
checked by a tainting analysis or for inclusion in a reference gram-
mar to detect attacks.

The suitability of each of these approaches as the basis for IRM
certification can be posed as the following research question:

Question 1. For each static string analysis that decides a property
P , is the class of safety policies P-verifiable? That is, is there a
total, computable, transparent rewriter function R : M → M
such that for all safety policies P ′, R(P ′) ⊆ P?

In order for the safety policies to be P-verifiable, at any point
where the static decision algorithm conservatively rejects, there
must be a way to transform the code to include a statically verifiable
dynamic check that conditionally preserves or prohibits the unver-
ifiable behavior. Our intuition is that the existing work does not
yet support sufficiently powerful dynamic checks to achieve this. A
common inadequacy is the treatment of all conditional branching
as non-determinism. There is no obvious way for a rewriter to gen-
erate meaningful guard instructions that convince such a certifier
that the self-monitoring code is safe, since the content of the guard
code is mostly ignored by the static analysis.

One possible solution is the development of a dependently-
typed string analysis that can incorporate the test criteria of con-
ditional branches into reconstructed types. The dependent types
would expose information about program variables and the guard
predicates that consult them to the string analysis in order to
strengthen the resulting inferences. Such type-checking need not
(and indeed cannot) be complete in order to be an effective means
of certifying IRM’s. It need only support a sufficiently powerful set
of conditional tests that rewriters have useful options for inserted
guards. That is, it need only decide a sufficiently powerful property
P as to make safety properties P-verifiable.

5. Concurrency
A second major challenge area for certifying IRM’s is verifying
the enforcement of safety policies in a multi-threaded environment.
Consider the following code fragment that a standard IRM might
use to enforce a resource-bound policy on a security-relevant re-
source. That is, a rewriter might enforce the resource-bound policy
by replacing use resource() operations with the fragment below.

if (count < limit) {
use_resource();
count := count + 1;

}

Here, count is a state variable introduced by the rewriter to track
a conservative approximation of the security-relevant event history.

Clearly the above does not suffice to prevent policy-violations
in the presence of concurrency. To do so, concurrency-aware IRM’s
must add some form of synchronization. One naı̈ve approach is to
surround the guard code above with lock-acquire and lock-release
primitives so as to form a critical section. However, when the
bounded resource is itself asynchronous (e.g., an asynchronous I/O
operation) then this is unreasonably expensive. This situation is ex-
tremely common, so real-world IRM systems frequently implement
a variety of complex, non-standard synchronization strategies in
rewritten code (c.f. [9]).

Building a certifier for such IRM systems is a challenging task,
and in this section, we explore some of the reasons for this chal-
lenge. Related work in the area of general verification of concurrent
programs is vast and beyond the scope of this paper, but we here
focus on work most directly related to verification of IRM-style,
self-monitoring code—e.g., code that results from aspect-weaving.

There is a large body of related work on AOP dynamic detection
of race conditions and deadlocks (e.g., [6, 8, 29]). There has also
been some work done on dynamic detection of race conditions us-
ing aspects (c.f. [9]). Here, there is more hope for certifying that the
instrumented code satisfies the security policy since there is a neat
separation of concerns. Amongst certifying IRM’s, those that en-
force purely non-temporal policies (e.g., [40, 55]) can safely ignore
the concurrency issue because they need not maintain a history of
security-relevant events. ConSpec [1] leaves concurrency to future
work, while Mobile [28] supports only one form of synchronization
implemented as a trusted library. However, to our knowledge there
has not been previous work that certifies general synchronization
properties of IRM’s without implicitly trusting the synchronization
strategy by baking it into the trusted policy specification.

Building such a certifier would involve answering two major
questions. First, is it possible to design a universal certifier that can
machine-check programs instrumented with myriad different low-
level synchronization primitives implemented by IRM’s? Stated
more formally:

Question 2. When the language of a concurrent program domain
M is augmented with a sufficiently versatile collection of low-level,
trusted synchronization primitives, do the safety policies become
P-verifiable for some decidable property P?

The idea of “sufficiently versatile” is difficult to capture for-
mally, but intuitively it encompasses at least two requirements: (1)
The language must be flexible enough to afford rewriters a wide
range of effective options for implementing certifiable synchro-
nization strategies; these should include options for dynamically
detecting and ameliorating concurrency bugs in a way that the cer-
tifier can identify as provably sound. (2) The language must allow
for efficient synchronization of security-relevant events even when
the events themselves may be asynchronous program operations.

The second major question involves specification of security
policies. How should we specify security policies that involve po-
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tentially asynchronous, security-relevant events? Consider a canon-
ical sample IRM policy that enforces data confidentiality by pro-
hibiting all network-send operations after the program has read
from a confidential file [46]. In a concurrent setting, the temporal
notion of “after” is ambiguous and requires a more precise defini-
tion. When network-sends and file-reads are non-atomic, possibly
asynchronous operations, the policy must specify which interleav-
ings are permissible. Fine-grained nuances must be expressible in
order to formulate policies in a way that does not impose an undue
performance overhead for self-monitoring code.

Related work in this area falls into two broad groups. One in-
volves abstract concurrent policy specification languages such as
the Pi-Calculus [41]. The other involves more practical tools such
as aspect-oriented temporal assertions [50], tracematching [2], and
their applications for race detection [9]. Stolz et al. [50] present a
runtime verification framework for Java programs, where proper-
ties can be specified in LTL over AspectJ pointcuts. The work on
AspectJ tracematching [2] enhanced with Racer [9] would allow
for maintaining history in the presence of concurrent events.

Each group of work may provide important leads in answering
Question 2: the abstract languages may provide a suitable frame-
work for defining more formally the informal notion of “sufficient
versatility”, whereas the practical tools suggest useful concurrent
IRM implementation strategies that future work should pair with
corresponding static certification strategies.

Much past work on AOP for concurrent languages is devoted
to automatic detection and avoidance of deadlocks, livelocks, and
race conditions (e.g., [6, 8, 29]). While such flaws do not constitute
violations of safety policies, they do constitute possible liveness
policy violations. In addition, they break otherwise policy-adherent
program behaviors, and therefore violate rewriter transparency. Re-
liable, static detection of such violations is therefore of critical in-
terest to certifiers that prove transparency. We discuss this challenge
in the next section.

6. Behavior-Preserving Runtime Monitoring
Almost all certifying IRM systems focus exclusively on proving
soundness of rewritten code without considering the more diffi-
cult problem of proving transparency—i.e., that the behavior of
policy-satisfying code is preserved. While transparency failures
are often deemed less severe than policy violations, behavior-
preservation is nonetheless a practical concern for many users.
Indeed, in many mission-critical venues, non-transparency can be
considered a denial-of-service. Formal, automated certification of
transparency would therefore be a valuable contribution to the field.

Hamlen et al. [27] express transparency in terms of equivalence
classes of programs under equivalence relation ≈, where ≈ de-
notes semantic equivalence. Transparency demands rewriter clo-
sure over relation ≈; however, relation ≈ is left abstract. Chudnov
and Naumann [12] provide the first formal proof of transparency for
a real IRM. Their system enforces information flow properties and
therefore defines relation ≈ in terms program input-output pairs. In
lieu of automated certification they manually prove general trans-
parency of the rewriting algorithm.

Providing a definition of semantic equivalence that is appli-
cable to more complex systems whose behavior is not precisely
characterizable in terms of input-output behavior is difficult. For
example, it is possible to encode unique behaviors as unique types
(e.g., [51]), but the resulting equivalence relation is so strict as
to preclude most IRM’s that enforce history-based access-control
policies. This highlights the need for an equivalence relation that
successfully distinguishes code-transformations that affect only
policy-violating program behaviors from those that potentially af-
fect even policy-satisfying behaviors. The former should be ac-
cepted by a transparency-certifier, whereas the latter should not.

Jia et al. [33] recently introduced a dependently typed language
that does not need decidable type-checking and therefore decid-
able program equivalence. The language has a type system that is
parametrized by an abstract relation isEq(Δ, e, e′) that specifies
program equivalence. The relation holds when e and e′ are seman-
tically equivalent in a context Δ of assumptions about the equiva-
lence of terms. This suggests the following approach to certifying
IRM transparency:

Question 3. Is there a total, computable rewriter R : M → M
that yields well-typed code satisfying isEq(Δ0, e, R(e))?

Formulation of such a rewriter would allow for a certification
system that proves transparency of rewritten code through type-
checking, rather than merely soundness. This would provide the
first formal guarantees that rewriters for IRM systems do not cor-
rupt the behavior of policy-adherent code.

7. Conclusion
Static certification of IRM systems is an emerging challenge that,
if surmounted, offers to marry the power and flexibility of dynamic
policy enforcement with the strong formal guarantees of purely
static analysis. To formulate this challenge more rigorously, we
introduced a definition of P-verifiability that captures the notion
that a purely static certifier of some conservative program prop-
erty P suffices to allow provably secure enforcement of a more
general policy P ′ by an IRM. We further argued that meaning-
ful certification in these contexts requires IRM policy specification
languages that express program properties in a purely declarative
manner without overspecifying the policy’s implementation.

These motivating discussions led to a presentation of three out-
standing practical problems faced by developers of IRM systems
today: IRM certification in the presence of runtime code generation
(e.g., eval), certification of concurrent IRM code, and certification
of behavior-preservation (transparency).
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