
Formalizing a Correctness Property of
a Type-Directed Partial Evaluator

Noriko Hirota Kenichi Asai
Ochanomizu University

2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
{hirota.noriko,asai}@is.ocha.ac.jp

Abstract
This paper presents our experience of formalizing Danvy’s type-
directed partial evaluator (TDPE) for the call-by-name lambda cal-
culus in the proof assistant Coq. Following the previous approach
by Coquand and Ilik, we characterize TDPE as a composition of
completeness and soundness theorems of typing rules with respect
to the semantics. To show the correctness property of TDPE (i.e.,
TDPE preserves semantics), we further define a logical relation be-
tween residualizing and standard semantics, following Filinski. The
use of parametric higher-order abstract syntax (PHOAS) leads to a
simple formalization without being disturbed by fresh names cre-
ated during TDPE. Because of the higher-order nature of PHOAS,
it also requires us to prove manually a core property that corre-
sponds to the main lemma of logical relations, which appears to be
difficult to prove in Coq.

Categories and Subject Descriptors D.1.1 [Software]: Program-
ming Techniques—applicative (functional) languages; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—correctness
proofs; D.3.2 [Programming Languages]: Language Classifica-
tions—applicative (functional) languages; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—partial
evaluation; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—lambda calculus and related systems

General Terms Languages, Theory, Verification

Keywords type-directed partial evaluator, parametric higher-order
abstract syntax, proof assistant Coq

1. Introduction
Given a compiled representation of a program and its type, a type-
directed partial evaluator (TDPE) [6] (also known as normalization
by evaluation) returns the normal form of the source program. Un-
like standard partial evaluators [13] that operate on the source pro-
gram, TDPE does not inspect the internal structure of the program
and thus is very fast. It simply uses the compiled representation of
the input to extract its normal form using types as guidance. The
efficiency of TDPE is attractive as a fast optimizer for a compiler.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLPV ’14, January 21, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2567-7/14/01. . . $15.00.
http://dx.doi.org/10.1145/2541568.2541572

For example, Lindley [14] uses TDPE to optimize the SML.NET
compiler.

Despite the simplicity of the definition of TDPE, its correctness
property is not easy to establish. Filinski [7] showed the correctness
property of call-by-name TDPE using denotational semantics and
Kripke logical relations and extended it to arbitrary monadic effects
[8]. Fiore [9] studied TDPE from a categorical and algebraic view-
point. Similar approach is used to describe TDPE with sum types
by Balat et al. [1]. However, it is not easy to apply these results
to other languages. For example, the second author [15] proposed
TDPE for a lambda calculus with delimited control operators, shift
and reset [5] using shift and reset operators themselves, but its cor-
rectness property is still open; it is not at all clear how to apply
denotational or categorical arguments here, because one would re-
quire denotational or categorical theory for control operators.

An interesting line of research on the property of TDPE is
started by Coquand [4]. She showed a formalized proof of sound-
ness and completeness of a simply-typed lambda calculus with re-
spect to Kripke semantics. It turns out that the proof term of com-
pleteness coincides exactly to the reification function of TDPE.
This work is followed by Ilik [10–12] who formalized various kinds
of TDPE in the proof assistant Coq. The correspondence between
TDPE and completeness clarifies the internal workings of TDPE,
enabling easier formalization. Formalization of TDPE in a proof
assistant has an advantage that every detail of the proof is spelled
out and it can be basis for showing the correctness property of other
TDPE. However, the correspondence alone does not prove the cor-
rectness property of TDPE.

As a first step towards formalizing and proving the correctness
property of TDPE for shift and reset, this paper formalizes Filin-
ski’s proof for call-by-name TDPE in Coq. We characterize TDPE
as completeness of a calculus with respect to standard semantics
(rather than Kripke semantics), following the spirit of Coquand’s
work. We then extend it to cover the correctness property of TDPE,
which states that TDPE does not change the semantics of its input.

To avoid the variable renaming problem, we employ paramet-
ric higher-order abstract syntax (PHOAS), proposed by Washburn
and Weirich [16] and adapted to Coq by Chlipala [2, 3]. PHOAS en-
ables us to formalize the correspondence elegantly. In particular, we
do not have to worry about name generation required during TDPE.
When proving the correctness property of TDPE, however, we are
faced with a core property that corresponds to the main lemma of
logical relations. It appears to be difficult to prove this property in
Coq, as observed by Chlipala [2], due to the higher-order nature of
PHOAS. Instead, we manually prove the property to establish the
correctness property of TDPE.

The contributions of this paper are summarized as follows.

41

• We formalize the correctness property of TDPE in Coq. The
proof is simple. In particular, the generation of fresh variables
is automatically handled thanks to the use of PHOAS.

• The development is a non-trivial case study of PHOAS. We
point out its merit and weakness.

The paper is organized as follows. We introduce the PHOAS
representation of terms, normal forms, and neutral terms in the
next section. We then state soundness (Section 3) and completeness
(Section 4) of the typing derivation with respect to the semantics.
The correctness property of TDPE is shown in Section 5 and a pen-
and-paper proof of the property needed to show the correctness
property is presented in Section 6. We discuss related work in
Section 7.

The proof script is available from: http://pllab.is.ocha.
ac.jp/~asai/papers/plpv14.v

2. Terms
The terms we consider in this paper are the call-by-name simply-
typed lambda calculus. The types are defined by:

Inductive typ : Set := base : typ
| arrow : typ -> typ -> typ.

We will use metavariables A and B for values of type typ.
We represent terms over typ using the parametric higher-order

abstract syntax (PHOAS), proposed by Washburn and Weirich [16]
and adapted to Coq by Chlipala [2, 3]. We first define tm that is
parameterized over the representation of variables:

Inductive tm (var: typ -> Type) : typ -> Type :=
| tm_Var : forall A, var A -> tm var A
| tm_Lam : forall A B, (var A -> tm var B) ->

tm var (arrow A B)
| tm_App : forall A B, tm var (arrow A B) ->

tm var A -> tm var B.

Unlike the standard HOAS, the type of variables is parameterized
as a function var over a type. By not instantiating var to tm var
itself (with the same var), the negative occurrence of tm in its
definition is avoided, while keeping most of the benefits of HOAS.
The term is then defined by closing over var:

Definition TM A := forall var, tm var A.

We will use metavariables t and T for tm and TM, respectively.
When constructing a term of type tm, we omit writing var, A,

and B by declaring they are implicit arguments:

Arguments tm_Var [var A] _.
Arguments tm_Lam [var A B] _.
Arguments tm_App [var A B] _ _.

Using this representation, for example, an identity function and
the S combinator are represented as follows:

Example TM_id: TM (arrow base base) := fun var =>
tm_Lam (fun x => tm_Var x).

Example TM_s:
TM (arrow (arrow base (arrow base base))

(arrow (arrow base base)
(arrow base base))) := fun var =>

tm_Lam (fun x => tm_Lam (fun y => tm_Lam (fun z =>
tm_App (tm_App (tm_Var x) (tm_Var z))

(tm_App (tm_Var y) (tm_Var z))))).

The output of TDPE is in the βη-long normal form. We define
the normal form and a neutral term using PHOAS as follows:

Inductive nf (var: typ -> Type) : typ -> Type :=
| nf_Lam : forall A B, (var A -> nf var B) ->

nf var (arrow A B)
| nf_ne : ne var base -> nf var base
with ne (var: typ -> Type) : typ -> Type :=
| ne_Var : forall A, var A -> ne var A
| ne_App : forall A B, ne var (arrow A B) ->

nf var A -> ne var B.

Arguments nf_Lam [var A B] _.
Arguments nf_ne [var] _.
Arguments ne_Var [var A] _.
Arguments ne_App [var A B] _ _.

A normal form is either a neutral term of base type or a lambda
abstraction whose body is in normal form. A neutral term is either
a variable or a variable applied to normal forms. A neutral term
represents an irreducible term unless the head variable is instan-
tiated to an abstraction. Since only the neutral term of base type
is allowed as a normal form, the above definition produces η-long
normal forms. We will use metavariables f and e for nf and ne,
respectively.

We can also define NF and NE by closing over var, although we
will not use them in this paper.

Definition NF A := forall var, nf var A.
Definition NE A := forall var, ne var A.

A term of nf and ne can be injected to tm by the following two
functions:

Fixpoint tm_of_nf {var A} (f: nf var A) : tm var A :=
match f with

| nf_Lam _ _ f’ => tm_Lam (fun x => tm_of_nf (f’ x))
| nf_ne e’ => tm_of_ne e’

end
with tm_of_ne {var A} (e: ne var A) : tm var A :=

match e with
| ne_Var _ x => tm_Var x
| ne_App _ _ e’ f’ => tm_App (tm_of_ne e’)

(tm_of_nf f’)
end.

3. Soundness
The semantics of a type A is defined by the following predicate V
(for values) parameterized by the semantics b of the base type:

Fixpoint V b (A: typ) : Type := match A with
| base => b
| arrow A B => V b A -> V b B

end.

We interpret an arrow type from A to B as a Coq function from
values of type A to values of type B.

The soundness of typing derivation with respect to the semantics
is characterized by the following soundness theorem:

Theorem soundness: forall b {A}, tm (V b) A -> V b A.

It states that for any interpretation b for the base type, if A is
derivable using typing rules, A is true in the semantics. It can be
proved by simple induction on the typing derivation tm (V b) A.

The soundness theorem defines the semantics of a term t of type
A. In fact, the proof term of the soundness theorem is the standard
direct-style interpreter:

Fixpoint soundness b {A} (t: tm (V b) A) : V b A :=
match t with

| tm_Var _ x => x

42

| tm_Lam _ _ t1 => fun x => soundness b (t1 x)
| tm_App _ _ t1 t2 => (soundness b t1)

(soundness b t2)
end.

Given a typing derivation t for a type A, soundness computes the
compiled value of t represented as a Coq value.

The above soundness defines a call-by-name interpreter, be-
cause the metalanguage Coq allows full β reduction and thus can
be regarded as call by name. The call-by-name nature of the inter-
preter is traced back to the definition of V, where the denotation
of arrow type is defined as the Coq function type. It suggests that
if we want to formalize a TDPE for a call-by-value language (in
our future work), we need to define V in the continuation-passing
style to enforce call-by-value semantics in the call-by-name meta-
language.

Finally, the interpreter for a term T of type TM A can be defined
as follows:

Definition soundness2 b {A} (T: TM A) :=
soundness b (T (V b)).

4. Completeness
The core of TDPE is characterized by a function reify that maps
a semantic (compiled) value back to a normal form. It is formalized
mutually recursively with a function reflect:

Theorem reify: forall var A,
V (ne var base) A -> nf var A

with reflect: forall var A,
ne var A -> V (ne var base) A.

The first part of this theorem is the completeness theorem of a
typing derivation with respect to the semantics: for any value of
type V (ne var base) A, it constructs a typing derivation of
A (using only the normal form construction). We can prove this
theorem by induction on A. Alternatively, we can define the proof
terms for reify and reflect directly:

Fixpoint reify (var: typ -> Type) (A: typ) :=
match A return V (ne var base) A -> nf var A with

| base => fun v => nf_ne v
| arrow A B => fun v =>

nf_Lam (fun x =>
reify var B

(v (reflect var A (ne_Var x))))
end

with reflect (var: typ -> Type) (A: typ) :=
match A return ne var A -> V (ne var base) A with

| base => fun e => e
| arrow A B => fun e v =>

reflect var B (ne_App e (reify var A v))
end.

This definition exactly corresponds to Danvy’s original definition
[6] of reify (↓) and reflect (↑):

↓base v = v
↓A→B v = λx�. ↓B (v @ ↑A x�)

where x� is a fresh variable

↑base e = e
↑A→B e = λv. ↑B (e @ ↓A v)

Here, overlined constructs represent static terms (Coq functions)
and underlined constructs represent datatypes (nf_Lam, ne_App,
etc.). Danvy’s definition requires that the name x� is chosen fresh.
This name generation is handled in our Coq formalization simply

using PHOAS: nf_Lam is passed a Coq function with a bound
variable x, which is guaranteed to be fresh by the metalanguage
Coq.

Intuitively, reify transforms a semantic value of type A into
its syntactic normal form of type A. At first sight, it appears to be
impossible to do such a thing when A is a function type. We know it
has the form nf_Lam f for some f , but there appears to be no way
to find the shape of f . The parametricity comes to the rescue here.
If a value v has type α → A for an uninterpreted type variable α (in
our case, base) and arbitrary A, we know that v does not inspect
its argument. Thus, it is safe to apply v to a syntactic variable x� to
see what its body f looks like. Furthermore, since v will evaluate
its body to a normal form when applied, we obtain the body f of
v in normal form. This is why ↓ (reify) applies v to (a reflect of)
x�. The above story does not go well, if the argument of v is a
function. For that case, we need to properly lift the argument x� to
a higher-order value using ↑ (reflect), since it might be applied
in the body f .

Using soundness2 and reify, a term T of type A is normalized
to its normal form by first passing A and T to soundness2 (with b
being (ne var base) for an arbitrary var) to obtain the meaning
of T, and then by passing the result to reify together with A and
var to obtain its normal form.

In the definition (and the theorem), the choice of (ne var
base) as the base case b of V is crucial. Since reify regards
an input of type base uninterpreted as a normal form (a neutral
term to be more specific), reify does not work for an arbitrary b
but only for a normal form. At reification time, the value of type
base is interpreted as a neutral term. Filinski referred to it as the
residualizing interpretation [7]. In contrast, soundness works for
any b, which Filinski referred to as the evaluating interpretation.

As an example of how to use TDPE, consider the following term
representing λx. (λy. y) x of type TM (arrow base base):

Example TM_id’: TM (arrow base base) := fun var =>
tm_Lam (fun x =>

tm_App (tm_Lam (fun y => tm_Var y))
(tm_Var x)).

To obtain its normal form, we compute as follows for an arbitrary
var:

Eval compute in
(reify var (arrow base base)

(soundness2 (ne var base) TM_id’)).

= nf_Lam (fun x : var base => nf_ne (ne_Var x))
: nf var (arrow base base)

We observe that reduction under lambda is performed and a normal
form λx. x is obtained. Since we use typeful representation, we
can omit the type in reify and b in soundness2 and have them
inferred by Coq:

Eval compute in (reify var _ (soundness2 _ TM_id’)).

= nf_Lam (fun x : var base => nf_ne (ne_Var x))
: nf var (arrow base base)

5. Correctness
Although the theorem in the previous section shows that reify in
TDPE corresponds to the completeness of typing derivation of a
term (a normal form, in particular) with respect to the semantics, it
does not directly prove the correctness property of TDPE.1 In this

1 It would be interesting if we could use the parametricity argument to prove
the correctness of TDPE directly from the completeness result, but this is
beyond the scope of this paper.

43

section, we establish the correctness property of TDPE (i.e., the
semantics is preserved by TDPE) using a logical relation argument.

Define the following two relations:

Definition interp_nf b {A} (f: nf (V b) A)
(v: V b A) :=

soundness b (tm_of_nf f) = v.

Definition interp_ne b {A} (e: ne (V b) A)
(v: V b A) :=

soundness b (tm_of_ne e) = v.

The relation interp_nf b f v (interp_ne b e v) represents
that a normal form f (a neutral term e, respectively) of type A is
evaluated to a value v.

The goal of this section is to show the following theorem:

Theorem correctness: forall b A (T: TM A),
interp_nf b (reify (V b) A

(soundness2 (ne (V b) base) T))
(soundness2 b T).

For any well-typed term T of type A, the result of TDPE (obtained
by evaluating T and reifying the result) behaves the same as evaluat-
ing the original term T. Notice that two occurrences of soundness2
in the theorem are applied to different interpretation for the base
type. The first one uses (ne (V b) base), because the result is
passed to reify (which requires that base be interpreted as neu-
tral terms). In other words, T has to be evaluated under residualizing
interpretation here.

To prove this correctness theorem, we use the standard logical
relation argument. The logical relation R relates a reification-time
value e to a runtime value v and is defined as follows:

Fixpoint R b (A: typ) :=
match A
return V (ne (V b) base) A -> V b A -> Type with

| base => fun e v => interp_ne b e v
| arrow A B => fun e v => forall e’ v’,

R b A e’ v’ -> R b B (e e’) (v v’)
end.

It is defined by induction on the type A. For the base type, the
input e is related to v if e evaluates to v. Remember that when A
is base, e is a neutral term that is uninterpreted at reification time.
For a higher type, e and v are related if their application to related
arguments are also related.

The logical relation R b A e v can be regarded as an extension
of V b’ A where b’ is (ne (V b) base). If we take a slice of
R related to e, i.e., if we ignore v and interp_ne and regard
R b A e v as e: V b’ A, the above definition of R coincides
with the definition of V. The logical relation R extends V with the
information that e evaluates to v.

The correctness theorem we want to establish is divided into
two lemmas. The first one shows the relationship between the
completeness theorem and R.

Lemma reify_R: forall b A (v: V (ne (V b) base) A)
(f: V b A),

R b A v f -> interp_nf b (reify (V b) A v) f
with reflect_R: forall b A (e: ne (V b) A)

(v: V b A),
interp_ne b e v -> R b A (reflect (V b) A e) v.

This lemma is an extension of the completeness theorem and in-
cludes information on the interpretation of terms. For example,
reify_R states that v and the reification of v are evaluated to the
same value f. Similarly for reflect_R. As such, the proof of this
lemma goes much the same way as the completeness theorem (by

induction on type A). One complication is that we need to keep
track of how term constructions and interp_nf, interp_ne in-
teract with each other. We used the following helper propositions,
which are all proved easily.

Proposition interp_nf_ne: forall b
(e: ne (V b) base) v,

interp_ne b e v -> interp_nf b (nf_ne e) v.

Proposition interp_nf_Lam: forall b A B
(f: V b A -> nf (V b) B)
(v: V b (arrow A B)),

(forall v’, interp_nf b (f v’) (v v’)) ->
interp_nf b (nf_Lam f) v.

Proposition interp_ne_Var: forall b A (v: V b A),
interp_ne b (ne_Var v) v.

Proposition interp_ne_App: forall b A B
(e: ne (V b) (arrow A B)) e’ f f’,

interp_ne b e e’ ->
interp_nf b f f’ ->
interp_ne b (ne_App e f) (e’ f’).

These propositions enable us to regard terms in PHOAS much the
same way as the first-order representation most of the time. The
second one, interp_nf_Lam, characterizes how PHOAS represen-
tation of abstractions interacts with interp_nf.

We note here that the proof of interp_nf_Lam requires the
extensionality tactic, which states that two functions are equal
if they are always equal when applied to the same arguments. The
proposition interp_nf_Lam is in turn used in the proof of the
lemma reify_R for the function case: when v evaluates to f (i.e.,
R b A v f), the reification of v does not exactly evaluate to f
itself, but evaluates to a function that, when applied to an argument,
behaves the same as f. Thus, we need the extensionality tactic
to prove the correctness property of TDPE, although it was not
required for the soundness and completeness theorems.

The second lemma that we need for the proof of correctness of
TDPE is the main lemma of logical relations.

Lemma main: forall b A (T: TM A),
R b A (soundness2 (ne (V b) base) T)

(soundness2 b T).

It states the reification-time value and the standard value of the
same well-typed term T of type A are related. If this lemma is
proved, the correctness theorem can be simply proved by applying
the two lemmas:

Proof. intros. apply reify_R. apply main. Qed.

In words, the main lemma establishes its conclusion for any well-
typed term T, to which we can apply reify_R directly to obtain the
required correctness.

However, the main lemma appears to be unprovable in Coq. We
want to prove it by induction on the structure of T. However, T is
represented in PHOAS and is not inductive. To apply induction, we
have to unfold the definition of T. By unfolding soundness2 in the
main lemma, we obtain:

R b A (soundness (ne (V b) base)
(T (V (ne (V b) base))))

(soundness b (T (V b)))

Here, (T (V (ne (V b) base))) and (T (V b)) have type tm
(V (ne (V b) base)) and tm (V b), respectively, and are both
inductive. They are exactly the same term except for the interpre-
tation of base type. To factor out this property, we can define the
following modified main lemma:

44

Lemma main’: forall b A t1 t2,
related_term b t1 t2 ->
R b A (soundness (ne (V b) base) t1)

(soundness b t2).

where related_term is defined as follows:

Inductive related_term b : forall {A},
tm (V (ne (V b) base)) A -> tm (V b) A -> Type :=

| related_Var : forall A
(v: V (ne (V b) base) A) (v’: V b A),
R b A v v’ ->
related_term b (tm_Var v) (tm_Var v’)

| related_Lam : forall A B
(t: V (ne (V b) base) A ->

tm (V (ne (V b) base)) B)
(t’: V b A -> tm (V b) B),
(forall v v’, R b A v v’ ->

related_term b (t v) (t’ v’)) ->
related_term b (tm_Lam t) (tm_Lam t’)

| related_App : forall A B
(t1: tm (V (ne (V b) base)) (arrow A B))
(t1’: tm (V b) (arrow A B)) t2 t2’,
related_term b t1 t1’ ->
related_term b t2 t2’ ->
related_term b (tm_App t1 t2) (tm_App t1’ t2’).

The predicate related_term b t1 t2 means that the two terms,
t1 and t2, have the same structure and their subterms have suitable
relationship. The modified main’ lemma can be proved by induc-
tion on the proof of related_term b t1 t2.

It is then straightforward to prove main using main’, if we can
prove the following property. That is, the same term T instantiated
with different interpretation for base are related terms:

Property . related_term b (T (V (ne (V b) base)))
(T (V b))

This property appears to hold. The predicate related_term b
t1 t2 simply says that the two terms t1 and t2 have the same
structure and possess a suitable property. However, we were unable
to prove it in Coq because of the higher-order nature of the repre-
sentation of terms: we cannot induct on T because it is a function.
Instead, we establish it by a manual proof in the next section. Chli-
pala [2] assumes a similar axiom for proving the correctness of CPS
transformation using PHOAS.

6. Manual proof of the property
In this section, we prove the necessary property manually. We first
prove a general theorem that holds for open terms and derive the
property as its corollary.

Suppose that a well-typed term T contains free variables x1, . . . ,
xn of type A1, . . . , An, i.e., T contains a subterm tm_Var xi

where xi is a free variable in the metalanguage Coq. We write
T[ti/xi] for substituting a term ti for xi. We then prove the fol-
lowing theorem:

Theorem . If R b Ai ti t′i holds for all i, we have

related_term b (T[ti/xi] (ne (V b) base))
(T[t′i/xi] (V b)).

Proof. By induction on the structure of T. We utilize the fact that
the metalanguage Coq avoids name conflicts automatically.

(T is fun var => tm_Var xi) The goal is:

related_term b
((fun var => tm_Var ti) (ne (V b) base))

((fun var => tm_Var t′i) (V b))

which simplifies to:

related_term b (tm_Var ti) (tm_Var t′i).

From the definition of related_term, we need to show R b
Ai ti t′i, which holds by assumption.

(T is fun var => tm_Lam (fun x => t)) The goal is:

related_term b
((fun var =>
tm_Lam (fun x => t[ti/xi])) (ne (V b) base))

((fun var =>
tm_Lam (fun x => t[t′i/xi])) (V b))

which can be rewritten to:

related_term b
(tm_Lam (fun x =>

((fun var => t[ti/xi]) (ne (V b) base))))
(tm_Lam (fun x =>

((fun var => t[t′i/xi]) (V b)))).

From the definition of related_term, we need to show for any
t and t′ of type A such that R b A t t′,

related_term b
((fun x =>
((fun var => t[ti/xi]) (ne (V b) base))) t)

((fun x =>
((fun var => t[t′i/xi]) (V b))) t′)

which reduces to:

related_term b
((fun var => t[ti/xi, t/x]) (ne (V b) base))
((fun var => t[t′i/xi, t

′/x]) (V b))

which holds from the induction hypothesis.
(T is fun var => tm_App t1 t2) The goal is:

related_term b
((fun var =>
tm_App t1[ti/xi] t2[ti/xi]) (ne (V b) base))

((fun var =>
tm_App t2[t′i/xi] t2[t′i/xi]) (V b))

which can be rewritten to:

related_term b
(tm_App ((fun var => t1[ti/xi]) (ne (V b) base))

((fun var => t2[ti/xi]) (ne (V b) base)))
(tm_App ((fun var => t1[t′i/xi]) (V b))

((fun var => t2[t′i/xi]) (V b))).

From the definition of related_term, we need to show:

related_term b
((fun var => t1[ti/xi]) (ne (V b) base))
((fun var => t1[t′i/xi]) (V b))

and

related_term b
((fun var => t2[ti/xi]) (ne (V b) base))
((fun var => t2[t′i/xi]) (V b))

both of which hold from the induction hypotheses.

45

By instantiating the above theorem to the case where T is closed
(i.e., n = 0), we obtain the following corollary that we wanted to
prove.

Corollary . For any closed term T, we have
related_term b (T (V (ne (V b) base))) (T (V b)).

Thus, we can assume the following axiom, which is then used
to finish the proof of the main lemma.

Axiom T_related: forall b A (T: TM A),
related_term b (T (V (ne (V b) base))) (T (V b)).

7. Related Work
The proof shown in this paper closely corresponds to the proof
given by Filinski [7]. The values of types (V (ne (V b) base)
A) and (V b A) correspond to Filinski’s residualizing and evalu-
ating interpretation, respectively. Since Filinski handled name gen-
eration explicitly, he introduced Kripke semantics to keep track of
generated names. In our proof, name generation is all handled auto-
matically by the metalanguage Coq, allowing us to stay in the stan-
dard semantics. Filinski also handled static divergence. He allowed
infinite loop for the parts executed at TDPE time. This feature is
not supported in our formalization, because all the definable terms
in our language are simply typed.

Coquand [4] formalized a proof of soundness and complete-
ness in the proof editor ALF and observed that the completeness
corresponds exactly to TDPE. Subsequently, Ilik [10–12] formal-
ized TDPE for call by name, for call by value, and for call by
value with delimited control operators. Both Coquand and Ilik used
Kripke semantics to keep track of name generation. We followed
the same strategy for the first half of our formalization, but without
using Kripke semantics. Thanks to the simple formalization using
PHOAS, the extracted proof is simple and corresponds directly to
Danvy’s original TDPE. This is in contrast to the previous work
where the proof term was cluttered with bookkeeping operations
(such as name generation) and was often hard to decipher.

PHOAS was used to show correctness of program transforma-
tion in Coq [2, 3]. There, Chlipala observed that some property (like
our property on related_term) appears to be impossible to prove
in Coq and resorted to proving it outside of Coq. We followed this
approach to prove the property on related_term.

8. Conclusion
As an attempt toward establishing the correctness of TDPE for shift
and reset, we have formalized Filinski’s proof of correctness of call-
by-name TDPE in Coq. The use of PHOAS leads to a sufficiently
simple proof that can be a basis for showing the correctness prop-
erty of a more sophisticated TDPE.

The correctness of call-by-name TDPE itself is already estab-
lished by Filinski long time ago. In this sense, this paper does not
add any new facts about TDPE. Still, we believe our Coq formal-
ization is worthwhile because it serves as a good and rigorous ex-
planation of Filinski’s work which is not completely easy to follow;
it can be a basis for extension because of the simplicity of the proof
script; and it is a non-trivial case study of PHOAS.

In the future, we plan to extend this proof to handle call by
value as well as delimited control operators, and ultimately to
prove the correctness property of our TDPE for shift and reset [15].
One milestone for this goal is to transform the whole development
into a continuation-passing style (CPS). Filinski’s work [8] will
be a guide again. The initial development shows that it is not
straightforward to define CPS values by induction on the structure
of types, because the answer type is not a subterm of a type in
question. For example, the CPS transform of a type A is arrow
(arrow A B) B for any answer type B, but B is not a part of A. We

are currently investigating the possibility of fixing the answer type
to a particular pre-determined type.

References
[1] Balat, V., R. D. Cosmo, and M. Fiore “Extensional Normalization and

Type-Directed Partial Evaluation for Typed Lambda Calculus with
Sums,” Proceedings of the 31st ACM Symposium on Principles of
Programming Languages, pp. 64–76 (January 2004).

[2] Chlipala, A. “Parametric Higher-Order Abstract Syntax for Mecha-
nized Semantics,” Proceedings of the 13th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP’08), pp. 143–
156 (September 2008).

[3] Chlipala, A. Certified Programming with Dependent Types, available
from http://adam.chlipala.net/cpdt/.

[4] Coquand, C. “A Formalised Proof of the Soundness and Completeness
of a Simply Typed Lambda-Calculus with Explicit Substitutions”
Higher-Order and Symbolic Computation, Volume 15, Issue 1, pp.
57-90 (March 2002).

[5] Danvy, O., A. Filinski “Abstracting Control,” ACM Conference on
Lisp and Functional Programming, pp. 151–160 (June 1990).

[6] Danvy, O. “Type-Directed Partial Evaluation,” Conference Record
of the 23rd Annual ACM Symposium on Principles of Programming
Languages, pp. 242–257 (January 1996).

[7] Filinski, A. “A Semantic Account of Type-Directed Partial Evalua-
tion,” In G. Nadathur, editor, Principles and Practice of Declarative
Programming (LNCS 1702), pp. 378–395 (September 1999).

[8] Filinski, A. “Normalization by Evaluation for the Computational
Lambda-Calculus,” In S. Abramsky, editor, Typed Lambda Calculi
and Applications (LNCS 2044), pp. 151–165 (May 2001).

[9] Fiore, M. “Semantic Analysis of Normalisation by Evaluation for
Typed Lambda Calculus,” Proceedings of the 4th ACM SIGPLAN
International Conference on Principles and Practice of Declarative
Programming (PPDP’02), pp. 26–37 (October 2002).

[10] Ilik, D. Constructive Completeness Proofs and Delimited Control,
Ph.D. thesis, Ecole Polytechnique X (October 2010).

[11] Ilik, D. “Continuation-passing style models complete for intuitionistic
logic”, Annals of Pure and Applied Logic, Special issue: Classical
logic and computation 2010.

[12] Ilik, D. “A formalized type-directed partial evaluator for shift
and reset”, Control Operators and their Semantics, available from
http://arxiv.org/abs/1210.2094, 18 pages, (April 2013).

[13] Jones, N. D., C. K. Gomard, and P. Sestoft Partial Evaluation and
Automatic Program Generation, New York: Prentice-Hall (1993).

[14] Lindley, S. Normalisation by Evaluation in the Compilation of Typed
Functional Programming Languages, Ph.D. thesis, University of
Edinburgh (2005).

[15] Tsushima, K., and K. Asai “Towards Type-Directed Partial Evalu-
ation for Shift and Reset,” Proceedings of the 2009 Workshop on
Normalization by Evaluation, pp. 57–64 (August 2009).

[16] Washburn, G., and S. Weirich “Boxes Go Bananas: Encoding Higher-
order Abstract Syntax with Parametric Polymorphism,” Journal of
Functional Programming, Vol. 18, No. 1, pp. 87–140, Cambridge
University Press (January 2008).

46

