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Abstract

Parallel programs display two fundamentally different

kinds of execution behavior: synchronous and asyn-

chronous. Some methodologies, such as distributed

data structures, are best suited to the construction

of asynchronous programs. In this paper, we propose

a methodology for synchronous parallel programming

based on the notion of a coordination structure, a di-

rect representation of the multidimensional dataflow

patterns common to synchronous programs. We intro-

duce Delirium, a language in which one can concisely

express many useful coordination structures.

1 Introduction

We are proposing a new methodology for writing par-

allel programs based on the idea of coordination struc-

tures. Coordination structures are a direct representa-

tion of the multi-dimensional data flow patterns com-

mon to a large class of parallel programs. We will begin

by defining that class of programs. After introducing

coordination structures and showing how to use them

as a basis for parallel programming, we will describe

Delirium, a coordination language which supports con-

cise, declarative expression of coordination structures.
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All parallel programs have a communication pat-

tern that characterizes the exchange of information

and synchronization among the sub-computations of

the program. A communication pattern has some con-

nectivity and may possess the property of uniqueness.

The connectivity determines which sub-computations

can communicate. If a communication pattern has

uniqueness, then any given pair of sub-computations

can communicate only once (and only in one direc-

tion).

Parallel programs can exhibit two fundamentally dif-

ferent kinds of communication pattern: synchronous

and asynchronous. We define synchronous programs

to be those whose communication patterns have both

uniqueness and deterministic connectivity. Another

way to understand synchronous programs is in terms

of an execution graph. An execution graph is simply a

dataflow graph [1] where each node is a stateless sub-

computation. Each unique pair of sub-computations in

the communication pattern is an arc in the program’s

execution graph (see figure 1 for an example).

If all execution instances of a program can be sum-

marized by an execution graph, that program is syn-

chronous. Summarization of asynchronous programs

requires a more general model based on a message

graph (see figure 1). Like execution graphs, a mes-

sage graph shows which sub-computations exchange

information during the computation. The differences

between these two types of graphs are:

1. Exactly one data item travels along each arc of an

execution graph; multiple items may travel along

arcs in a message graph.
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I possible communication patterns of the program for a given
input
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Figure 1: Execution vs. Message Graphs

A node in an execution graph corresponds to a

state-less function; anode inamessage graph cor-

responds to a process with local state.

simple example of a problem with only asyn-

chronous solutions is the Dining Philosophers. A

more interesting example is the Delirium runtime

system [22]. Fast fourier transform [27], and the ray

tracer discussed below, are good examples of problems

with useful synchronous solutions.

Having identified a program as synchronous or asyn-

chronous, the programmer must choose a notation for

expressing it. One purpose of the Delirium project is

to investigate whether a single notation can support

concise and efficient solutions for both types of prob-

lems.

A variety of languages, including SR [4], Sloop [18],

and Linda [13], can express asynchronous solutions

to problems which also have good synchronous solu-

tions. Using such languages, one can construct proto-

cols [2, 7] or distributed data structures [10] which re-

strict the interactions between cooperating processes.

These methodologies simplify the construction of cor-

rect asynchronous programs. However, the do not

eliminate non-deterministic communication patterns,

which are hard to debug, and hard to implement effi-

ciently [21, 20, 17].

For problems with good synchronous solutions, an

alternative is to use a functional language. Such

languages support deterministic communication pat-

terns but are unable to directly express asynchronous

programs3. One might argue that a language which

can not express asynchronous programs is too restric-

tive.

2Distributed data structures are a class of protocols.

3 Given a stream of random numbers, a progmmm er could

write a simulator that supported a truly asynchronous model.

However, we are only interested in concise, efficient solutions.

The thesis of this paper, however, is that the best

methodologies for writing synchronous programs are

irreconcilably different from methodologies for writ-

ing asynchronous programs. We propose a method-

ology y, coordination structures, which leads to concise,

efficient synchronous programs. We show how to im-

plement this methodology using a declarative, deter-

ministic functional language. By declarative, we mean

that the connectivity of the program’s communication

pattern is clear from the program text. In contrast,

languages based on distributed data structures elabo-

rate their communication patterns procedurally, and

thus the pattern that emerges is dependent on the lan-

guage’s underlying evaluation model.

The remainder of this paper has the following orga-

nization. Sect ion 2 describes coordination structures,

showing their usefulness as a methodology for writing

synchronous programs. Section 3 introduces the idea

of a coordination language and argues for the linguistic

decoupling of coordination from computation. Section

4 discusses Delirium, a coordination language that sup-

ports the construction of concise, efficient synchronous

programs. Section 5 presents the Delirium implemen-

tation of a medium-sized application. Section 6 dis-

cusses related work.

2 Coordination Structures

We are proposing a methodology for implementing

synchronous parallel programs that is based on co-

ordination structures. A coordination structure is a

(structured) collection of coordination items. Coordi-

nation items can be understood as individual ordering

dependencies within a program. Imagine the dataflow

graph for the following expression:

let x = f(<exprl>)

in g(x)

In a normal strict functional language, x is a name

that corresponds to the result of evaluating the appli-

cation off to <exprl>. A different way to understand

x, however, is that it expresses an ordering dependency.

To evaluate the application of g, one must first have

evaluated the application of f. Think of x as a pipe

that connects an application of f to an application of

g, through which data can flow. Each such pipe is a

coordination item.

A parallel computation can be expressed as a multi-

stage pipeline of coordination structures. At each stage

in the pipeline, a function is applied to the data flowing

through each member in the collection of data pipes.

Following a function application, the order of items

(data pipes) within the coordination structure may be

198



4444
Coordination Item —

Merge Operator _

‘il n--’

Figure 2: Coordination Structure for Mergesort

permuted to create the appropriate data organization

for the next stage of the pipeline.

For example, a useful primitive for many parallel al-

gorithms is binary reduction. A binary reduction takes

N data items and applies some associative binary op-

eration to successive pairs, yielding a group of N/2

results, The same operation is performed repeatedly

until there is only one value left. Many algorithms

are based on binary reduction, including, for exam-

ple, merge sort, The pipeline for merge sort is shown

in figure 2 and consists of log(N) applications of the

merge operator. If the original N values flow into the

pipeline as a vector of pipes, the first step is to divide

the pipes into N/2 pairs. Next, the program applies an

instance of the merge operator to each of these pairs

in parallel. One pipe flows out of each merge operator,

so the cross section of the pipeline has been reduced to

N/2 coordination items. The grouping and function

application are done repeatedly, until at the end only

a single pipe flows out of the pipeline and it contains

the sorted list.

It “is important to note that the coordination struc-

ture of the application as a whole looks like a tree,

even though the data that moves through the pipes

is probably organized into an entirely different data

structure (like a list). We believe that an algorithm

is much clearer if the coordination structure is linguis-

tically decoupled from the underlying data structure.

A binary reduction always looks like a tree, regardless

of whether the structure being operated on is a set, a

list, a tree, or an array.

Section 5 describes an application with a complex

coordination structure and shows a Delirium realiza-

tion of this structure. Many classes of algorithms

have good synchronous solutions which can be ex-

pressed as coordination structures. A few examples

are: wavefront algorithms (including many types of dy-

namic programming—see appendix), algorithms based

on communication over trees (including the Delirium

compiler [30] ), and algorithms based on convolutions

over grids (such as Laplace’s equation and successive

over-relaxation [27]). A significant proportion of nu-

merical scientific programs fall into one of these cate-

gories [3].

Because coordination structures directly support

data parallel operations, they encourage a program-

ming style that incorporates techniques found in SIMD

programs. However, SIMD architectures impose syn-

chronization requirements which narrow their applica-

tion domain. As illustrated by the application case

study in [21], the class of data parallel problems with

useful synchronous solutions is significantly larger than

the class of problems with SIMD solutions [14],

3 A Case for Coordination Lan-

guages

Many parallel language proposals assume that people

write parallel programs from scratch. Practical ex-

perience [22] and common sense both contradict this

assumption.

When parallelizing an application, a programmer of-

ten begins with a working version in a sequential lan-

guage. Typically, the programmer’s environment in-

cludes useful debugging, profiling, and optimization

(or vectorization) tools for this sequential language.

In this situation, people don’t rewrite their code, they

restructure it. They decompose the program into sub-

computations that could run in parallel, and then they

write new code to coordinate the sub-computations,

Usually the coordination code relies on low level syn-

chronization primitives, such as locks or message pass-

ing, because no higher level of abstraction is available.

We believe that coordination among sequential sub-

computations should be the basic function performed

by a parallel programming environment. A coordha-

tion language performs only this function, giving the

programmer the opportunity to express computation

in the most convenient notation available.

4 Delirium

Existing coordination languages, such as Linda and

Sloop, are embeddecJ they consist of a set of asyn-

chronous coordination primitives which are accessed

through statements scattered throughout a host lan-

guage program.

Delirium is the first example of an embedding coor-

dination language [22]. We call it an embedding lan-

guage because a Delirium program specifies a frame-
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work for accomplishing a task in parallel; sequen-

tial sub-computations called operators are embedded

within that framework. To guarantee that a Delirium

program will execute deterministically, one need only

ensure that operators do not maintain state across in-

vocations.

We believe that embedding coordination languages

such as Delirium offer significant advantages for the

expression of parallelism. One can express all the

glue necessary to coordinate a mid-sized application

on a single page of Delirium. This organizing princi-

ple makes parallelization easier. Instead of scattering

coordination throughout a program, creating a set of

ill-defined sub-computations, a Delirium programmer

precisely defines sequential operators and embeds these

operators within a coordination framework.

Each of these operators is callable directly from

Delirium with the same syntax as a function invoca-

tion. Operators can be written in any language, in-

cluding traditional imperative languages like C or For-

tran. This allows the programmer to take advantage

of existing tools, libraries, and coding strategies.

The Delirium environment currently runs on the Se-

quent Symmetry, Cray-2, Cray Y-MP, and the BBN

Butterfly TC2000. We have developed an efficient run

time system for executing Delirium which generally

adds less than three percent overhead to the running

time of an application. On the Butterfly, the runtime

system uses the Tarmac distributed shared memory

toolkit to manage caching of data passed between op-

erators [19].

The environment includes an optimizing compiler

(written in Delirium) [30], various tools for analyz-

ing and improving execution speed, and a visualization

tool for coordination structures. These tools support

the incremental parallelization of an existing program.

The program can be decomposed into a set of oper-

ators; when an operator is too expensive to execute

sequentially, it is further decomposed into component

pieces which can be computed simultaneously.

4.1 Basic Delirium

At heart, Delirium is a straight-forward functional

language which supports first class functions, recur-

sion, iteration, let-bindings, and conditional expres-

sions. All functions are evaluated strictly. There are no

computation primitives in the language; all real work

is accomplished within operators that are defined in a

different language.

Here is a sample Delirium program which solves

the eight queens problem, expressing backtracking di-

rectly:

maino

let board = empt y.board ( )

in show_ solut ions (do_it (board, 1))

do.it (board, column)

let hi = try(board, column, 1)

h2 = try(board, column,2)

h3 = try(board, column, 3)

h4 = try(board, column,4)

h5 = try(board, column,5)

h6 = try(board, column,6)

h? = try(board, column,?)

h8 = try(board, column,8)

in merge (hi, h2, h3, h4, h5, h6, h7, h8)

try(board, column, row)

let new.board = add_queen(board, column, row)

in if is-valid (new_board)

then if is_equal(column,8)

then new_board

else do_it(new_board, incr(column))

else O

The code uses the operators is-equal, is_

valid, add-queen, show.-solut ions, and empty_

board. Because each of these does not involve much

computation, theoverhead for expressing all the back-

tracking inparallel issignificant4. Asimple solution to

reducing overhead is to express only two levels of the

recursion in Delirium, calling a recursive C operator

to descend the rest of the search tree. The modified

version redefines try to be:

try(board, column, row)

let new_board = add-queen(board, column jrow)

in if is-valid_ op(new_board) then

if is_equal(column,2) then

do_it_op(new_board, incr(column) )

else do_i.t(new_board, incr(column))

else O

This version, run on eight Sequent processors,

seven times faster than a sequential C program,

is

4.2 Support for Coordination Struc-

tures

This section describes how one can build coordination

structures using Delirium transforms. Each applica-

tionofa transform creates a structure which connects

two successive stages inapipelined computation.

Names in Delirium refer to either integers, functions,

transforms or n-dimensional arrays of untyped values.

40n twelve processors, this version took three seconds versus

five seconds for the sequential version.

200



Atransformis a rule which replaces a set of input ar-

rays by a result arra~ the result array represents some

permutation (with possible copying) of the values in

the input arrays. Transforms have two parts, a re-

shape statement and a set of wiring rules. The wiring

rules describe how the transform will permute its input

arrays. The reshape statement determines the shape of

the transform’s result. It also requires that the shapes

of the transform’s input arrays conform to an input

pat tern. Application of a transform to an array that

does not match the transform’s input pattern results

in a runtime error.

The following grammar describes the syntax of

transforms:

transform ::= heading reshape-stint

[wiring-rules] (jiI1-constant]

heading ::= identifier ‘(‘ identifier-list ‘)’

identifier-list ::= identifier L, y ideniijier-!isi

I identifier

reshape-stint ::= result-shape C<-’ input-pattern

input-pattern ::= subscript-expr

result-shape ::= subscript -expr

wiring-rules ::= ‘with’wiring-rule-list

wiring-rule-list ::= wiring-rule wiring-rule-list

~ wiring-rule

wiring-rule ::= lsubscript-expr C=p rsubscript-expr

jill-constant ::= ‘fill’ number

lsubscript-expr ::= identifier ‘[’ simple- expr-list ‘] Y

simple -ezpr-list ::= simp!e-expr C, 7 simple -expr-list

~ simple-expr

simple -expr ::= number ~ identifier

rsubscript-ezpr ::= subscript-ezpr ~ number

subscript-ezpr :z= identifier ‘ 1? index- expr-list ‘1’

indez-expr-list ::= indez-expr C, p index- ezpr-list

~ indez-expr

index-expr ::= expr

ezpr ::= any Delirium expression (should yield

an integer at runtime)

The operator ‘=’ in a wiring rule is read “depends

on”. Each wiring rule specifies how a section of the

transform’s result depends on its input5. For example,

the transform shown below groups into pairs adjacent

elements of a one-dimensional input array:

adj scent (P)

C [n, 2] <-P [n]

with

C[i, j]=P[i+j]

5For wiring rules in which the left and right subscript expres-

sions refer to different arrays, ‘=’ is semantically equivalent to an

assignment. At present, this is the only kind of rule permitted

in a transform.

The reshape statement, C [n, 2] <-P [n], contains the

input pattern P [n]. This pattern matches any one-

dimensional array, binding the name P to that array.

The reshape statement declares that the result of the

transform will be a two-dimensional array, C.

The single wiring rule of this transform maps suc-

cessive (overlapping) pairs of adjacent elements from

P into the corresponding columns of C. In general, the

left-hand side (lhs) of the wiring rule specifies some

elements of the transform’s result. Array subscripts

appearing on the lhs must be either index variables

or constants. An index variable is an identifier which

represents the entire range (with zero origin) of index

values along a particular dimension of the result array.

Index variables must be unique within a wiring rule

and consistent within a transform’s set of wiring rules.

To be consistent, a given index variable must always

refer to the same dimension of the result.

The right-hand side (rhs) of a wiring rule must be

either a constant or a selection of some elements from

one of the transform’s input arrays. Array subscripts

appearing on the rhs can contain arbitrary arithmetic

expressions. Index variables bound on the lhs of a

wiring rule can appear in its rhs. If an rhs subscript

expression does not specify a valid index of the input

array, the value of the entire rhs expression is deter-

mined by the fill constant of the transform. When

defining transforms containing such rhs expressions,

the programmer must explicitly specify a fill constant.

The semantics of a set of wiring rules are captured

by the following algorithm:

for each wiring rule

for each value in the range of each index variable

compute the lhs expression

if the indicated element of the result haa

already been specified

then report error

else assign the value of the rhs expression

to this element

To understand how transforms work, imagine the

dataflow graph of a computation to be a set of ribbon

cables. These cables have a male and a female plug,

both n-dimensional, and wires which connect each in-

put of the female plug to one or more outputs of the

male plug. The male plugs correspond to Delirium ar-

rays. Female plugs correspond to the input patterns

of transforms; they determine what shapes of input ar-

rays can “plug into” the transform. The wiring rules

of the transform constitute a schematic for creating a

new male plug.

A computation is just a series of transformations,

applied to the program’s input “wires”. For complete-

ness, we should generalize the ribbon cable analogy so

that, at any point, one can bifurcate a cable such that
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it has two male ends (since a program may copy an

array).

The only thing that remains is to specify how actual

work gets done. To do this, we introduce the primitive

map, which applies a function to groups of elements in

Delirium arrays. Depending on how it is applied, map

groups array elements in different ways; this flexibility

is necessary to support functions with multiple array

arguments and multiple return values. The simplest

way to use map is to apply a single argument, single

return value function to one array. The result is an

array of the same shape as the input array, where each

element in the new array is computed by applying the

function to the corresponding element of the original

one.

If map applies a function that returns r results, the

dimensionality of the output array is correspondingly

increased. An n x m array, for example, would be

transformed into an n x m x r array. Element (8, 10,2)

is the third return value of the function when it is

applied to element (8, 10) of the input array.

There are two ways to use map with multiple argu-

ment functions. The first is to apply an n argument

function to n arguments. All the arguments must con-

form, meaning that they must either be arrays with

the same shape, or scalars, which are automatically

replicated (and coerced into the array type). For ex-

ample, if a four argument single return value function

is applied to two m x q arrays and two scalars, the

result would be an m x q array where each element is

computed by applying the function to the two scalars

and the two corresponding array elements.

The other way to handle multiple inputs is to get

them all from a single dependency array. In this case,

the programmer applies an n-element function to an

array whose lowest-numbered dimension is n. If the

function has r return values, the map operation will

change the size of the array’s lowest-numbered dimen-

sion from n to r. For example, if a three argument,

two return value function is applied to a 20 x 3 depen-

dency array, the result array will be of shape 20 x 2.

The two elements in row ten of the result array are the

two values returned by the function when it is applied

to the three elements in row ten of the original array.

To summarize, map can apply a function to either

one or n dependency arrays. In the first case, the input

arity of the function must match the lowest-numbered

dimension of the input array. In the second case, the

input arit y must be n. The lowest-numbered dimen-

sion of the output array will be the output arity of the

function.

Note that the reshaping effect of map can be de-

scribed as a transformation. The full semantics of

map cannot be expressed in a transform, however, be-

cause transforms can only build coordination struc-

tures. They are not able to apply functions to data

flowing through a coordination structure. With this re-

striction, Delirium linguistically enforces a decoupling

between coordination and computation. Normal trans-

forms create patterns of dataflow. The map transform

applies a function across a pattern.

To demonstrate how map is used in practice, here is

Delirium code that applies a function of two arguments

to each pair of adjacent elements in a vector. The first

step is to transform the vector into a two-dimensional

array where each two-element column contains adja-

cent elements from the vector. Once the intermediate

array is constructed, a simple map operation performs

the computation:

adj scent (group, P)

C [n, groupl <-P [n]

with

C[i, j]= P[i+j]

f(a, b)

op(a, b)

f -on-adj scent (vector)

map(f, adjacent (2, vector) )

This example generalizes the definition of adjacent

to group by an arbitrary number (rather than just by

pairs). In the example, vector is a one-dimensional ar-

ray, f and f -on-adj scent are functions, and adj scent

is a transform. The identifier op refers to a functional

operator defined in a computational language (see

the above description of basic Delirium). Note that

adjacent makes use of an integer argument group. If

a program passes an array in this argument position,

it will generate a runtime type error.

4.3 Current Research

4.3.1 Expression of Coordination Structures

While the current transform mechanism is sufficient

for the specification of any coordination structure, it is

oriented toward building these structures one pipeline

stage at a time. Coordination structures built this

way are easy to understand and manipulate because

they can be represented as relationships among n-

dimensional arrays. To represent a general coordina-

tion structure, we need a more flexible data structure,

such as a directed graph. Some coordination struc-

tures, such as wavefront computations, can be em-

bedded in arrays. For such structures, it is useful in

practice to support both views. Transforms expecting

arrays should be able to take array-embedded coor-

dination structures as arguments. In other contexts,
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programmers need to be able to express a direct mod-

ification to the array-embedded graph,

We have developed multi-stage transforms which

provide this flexibility. Multi-stage transforms also in-

clude a notion of recurrence, Recurrence relations are

resolved into coordination structures that can be ma-

nipulated explicitly or implicitly (as array-embedded

graphs) by transforms. A future report will describe

both the semantics and compilation of multi-stage

transforms.

Most current Delirium applications use a different

strategy for expressing recurrences. Prior to the devel-

opment of multi-stage transforms, we provided a recur-

rence notation similar to Crystal [11] which program-

mers could use as an alternative to writing recurrences

as iterations over transforms. Crystal is a system that

converts computations expressed as recurrence equa-

tions into a systolic architecture, At an intermediate

step in this conversion, the Crystal compiler derives

a set of linear combinations that express the commu-

nication inherent in the given recurrence, There is a

straightforward mapping from such sets to Delirium

transforms.

4.3.2 Discovery of Coordination Structures

Delirium is a notation for the expression of coordina-

tion structures. However, it does not directly support

the discovery of coordination structures inherent in ex-

isting code. We are developing a workbench which

supports this activity through analysis of sequential G

and Fortran programs. The analysis tool can also as-

sist in decomposing a program into sets of Delirium

operators.

5 A Delirium Example

This section presents a case study of an application

which can be parallelized using a synchronous commu-

nication pattern. The study demonstrates that Delir-

ium programs can be both concise and efficient.

The UNIGRAFIX ray tracer is a 10,000 line C pro-

gram developed at UC Berkeley [23]. A parallel version

of this ray tracer has been implemented in C on the

Sequent Symmetry [9], using the notion of replicated

worker processes [32]. The pattern of data dependen-

cies in this program is complex for two reasons, First,

the program breaks scan lines into subsections with a

fixed number of pixels. Second, the program uses an

antialiasing strategy involving averaging across multi-

ple scan lines. These two properties combine to create

a computation with a three-dimensional data depen-

dency graph.

The C language solution to this problem is based

on distributed data structures. Specifically, the C pro-

Init

Grid

Figure 3: First Stage of Ray Tracing Computation

gram creates a set of queues, one for each averaging

operation. Each worker process polls one of the work

queues, waiting for a complete set of data to accumu-

late on the front of the queue. This solution requires

500 lines of C (with references to locking primitives).

It completely obfuscates the underlying communica-

tion pattern of the algorithm. Even in a language like

Linda, one has no choice but to express the commu-

nication pattern of this algorithm indirectly through a

distributed data structure.6

The coordination structure of the ray tracing task

as a whole is a five stage pipeline, where the stages are

init, grid, super-sample, filter, and output. The

Delirium strategy for constructing this pipeline is to

create a transform to represent each stage.

The first stage is init, which generates a database

describing the image being rendered. A reference to

the database is handed to each of n x m instances of

the grid function. The first rerouting stage of the

pipeline takes the single pipe emerging from the init

function and branches it into an n x m array of pipes

all containing the database reference (see figure 3).

The super-sampling stage computes a value for each

two by two block of grid values. Figure 4 is a two-

dimensional representation of its three-dimensional co-

ordination structure, using cubes to represent the

grid functions and pyramids for super-sample. The

filter stage computes a value for each three by three

block of super-sample values. All the resulting values

are passed to the output stage where they are pro-

cessed linearly.

Here is a Delirium realization of the ray tracer’s co-

ordination structure:

6The Linda ~oordin~tion code required 165 ~nes.
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Figure 4: Second Stage of Ray Tracing Computation

replicate (n, m,value)

C [n ,111]<-value

with

C [n ,ml =value

maino

let

database=ini.t (“scene-database-file” )

grid-points=

map(grid,replicate(lJSCAliLIIIES,

lJPIXELS,database) )

samples=

350
t

. .. . . . . . . . . .. . . . . . . . . .. .. . . . . . . .. . . . . . . . . .. . . . . . . . .

\

300
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Figure5: Performance of Ray TkwerPrograms

Inthe absenceof this property, one could define the

two-dimensional adjacent transform as follows:

flatten(P)

C[n*ml<-P[n,ml

with

C[i]=P[i/n,i mod n]

adjacent4D(group ,P)
map(super-sample,adjacent(2,gri.d-points) ) C[n,m,groip,group] <-PCn,m]

image=map(fi.lter ,adjacent(3, samples))

in output(image)

This example uses the transform adjacent de-

scribed above. It also introduces a new transform,

replicate, whose purpose is to change a scalar value

into a two-dimensional array. The function init re-

turns a reference to a complex scene database; how-

ever, replicate treats the reference to this datastruc-

ture ss a scalar, since interpretation of the database

takes place only within the computational code.

The example takes advantage of aspecial property

of one-dimensional transforms. Ifa one-dimensional

transform is applied to a multi-dimensional array, the

transform is generalized to apply along all dimensions

of the array. To compute the result array in this case,

the transform is applied to successive dimensions of

its k-dimensional input array, yieldingk result arrays.

The result arrays are then concatenated along their

lowest-numbered dimension, yielding the single array

that is the final result of the transform.

with

C[i, j,k,l]=P[i+k, j+l]

adjacent (group, P)

f latten(adjacent4D (group ,P) )

Figure 5 compares the performance of this Delirium

program with programs written in C and Linda for the

same application. The Delirium program for the ray

tracer runs 14% faster than the version in which the

coordination is expressed in C and 22% faster than an

optimized Linda version. One strategy that allows the

Delirium run time system to implement transforms ef-

ficiently is called summarization. Due to their regular

structure, transforms can often be subdivided into sec-

tions of optimal grain size. Figure 6 shows the effect

of different subdivisions on the ray tracer’s execution

time.
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6 Related Work

6.1 Functional Languages

One can achieve the organizing effects of coordination

structures using higher-order functions. For example,

one could write a function that groups pairs of adjacent

elements in a vector:

AP. Af.

construct array A

with range i = O to /ength(P) – 1

such that A[i] = f(P[i], P[i + 1])

To realize the same degree of parallelism as the

equivalent Delirium transform, this higher-order func-

tion must be implemented in a functional language

which has lazy aggregate construction and strict func-

tion applications. By lazy aggregate construction, we

mean that an array can be used before all its elements

are computed. Combining this property with strict

function application, a functional language could r~

alize the multi-dimensional, pipelined communication

pattern created by Delirium transforms.

6.1.1 Strict Functional Languages

Most dataflow languages, including VAL [24] and

SISAL [25], are evaluated strictly. These languages

have strict aggregate construction, and so they can not

implement Delirium transforms. The language Par-

ALFL [15], though not a dataflow language, also has

strict arrays; however, one could implement coordina-

tion structures inefficiently in ParALFL using its lazy

lists.

6.1.2 Lazy Functional Languages

Some dataflow languages, such as Id [5, 26], have lazy

aggregate construction as well as lazy function applica-

tion. To realize the parallelism of Delirium transforms,

a coordination structure built in Id would require strict

evaluation of function applications within lazy arrays.

This unintuitive evaluation strategy could be arranged

by a compiler that was designed to recognize coordina-

tion structures as a stylized idiom. In contrast, Delir-

ium adds the transform mechanism to an otherwise

strict language; using this mechanism, programmers

directly express the desired evaluation behavior.

6.1.3 Array Comprehensions

Anderson and Hudak discuss the construction of ‘lazy

arrays within a strict context” using a functional syn-

tax called array comprehensions [3]. One can use

such array comprehensions to implement coordination

structures. However, array comprehensions can con-

veniently express only those coordination structures

which can be embedded in arrays.

Like multi-stage transforms, array comprehensions

can express recurrences. We will provide a detailed

comparison between array comprehensions and multi-

stage transforms in a future report. We have found

that the complexity of compiling the Delirium recur-

rence notation into iterations over transforms is similar

to the complexity of compiling Haskell [16] array com-

prehensions for sequential machines.

6.2 Asynchronous Coordination

As was mentioned above, protocols [2, 7] and dis-

tributed data structures [10] are useful in asynchronous

languages because they place restrictions on the gen-

erality of communication patterns. Another approach

suggested by Guy Steele [31] limits the types of opera-

tions that cooperating processes can perform on shared

data.

For synchronous programs, Delirium’s coordina-

tion structures are a better methodology than these

asynchronous programming techniques. Coordination

structures have two main advantages: they are deter-

ministic and they express the program’s communica-

tion pattern declaratively, making it easier to deduce

from examination of the program text. We have com-

pleted a study [21] which demonstrates that for syn-

chronous applications, programs written in terms of co-

ordination structures are often more concise and more

efficient than programs written in terms of distributed

data structures.
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6.3 Aggregate primitives

6.3.1 Early Aggregate Languages

Delirium transformations have been heavily influenced

by APL [12], which introduced the idea of a pipeline

of functional transformations that modify an aggre-

gate structure. This idea was significantly elaborated

by FP [6], which provides a rich set of functional oper-

ators for creating new transformations. APL does not

have first class functions, and so can’t express coordi-

nation structures. FP’s functional operators are simi-

lar to Delirium transforms, but operate on a data ob-

ject that must model memory as well as coordination,

and are thus difficult to implement efficiently. Wa-

t er’s series expressions [33] also create pipelined com-

putations; however, like FP and APL, they provide a

fixed set of operators for modifying dataflow through

the pipeline. In contrast, Delirium transforms are a

general mechanism for creating dataflow modification

operators. The appendix lists some of the FP, series,

and APL functional operators, implemented as Delir-

ium transforms.

6.3.2 SIMD Languages

For many applications, data parallel operations are the

most likely source of massive parallelism. Concise and

efficient data parallel programs have been written for

SIMD multiprocessors. The class of data parallel prob-

lems with useful synchronous solutions is significantly

larger than the class of problems with SIMD solutions

[14]. This is because SIMD architectures impose syn-

chronization requirements which limit their apphca-

tion domain. Languages intended for SIh4D program-

ming, such as C* [29], incorporate these architectural

limitations into their semantics.

C* programs compiled for MIMD machines expe-

rience performance degradation for two reasons [28].

First, the compiler must insert barriers to synchronize

after each conditional branch within a data parallel

operation (and to synchronize after the whole opera-

tion). Second, if data parallel operations on an array

refer to other values within that array, the compiler

must pre-copy the array to ensure data consistency.

C* includes as primitives useful data parallel op-

erations such as scan [8]. In Delirium, one can use

transforms to specify the dataflow pattern for this and

many other such operations. For example, the Delir-

ium transform for general reduction is:

# combine sets up for function

# call on grouped elements

combine (group, P)

C [n/group, groupI <-P [n]

with

C [i, j] =P [i*group+j]

# this function performs a reduction

# the repeated assignment does not

# imply serialization of the loops

reduce(f ,group, P)

while (shapeof (P) [01 >1)

P=map(f, combine (group, P) )

7 Conclusion

We have presented a framework which classifies the

communication patterns of parallel programs into two

types: synchronous and asynchronous. Asynchronous

programs have inherently non-deterministic behavior.

The challenge with these programs is to discipline the

communication among a set of independent processes

so that this non-determinism is manageable. With

synchronous programs, communication is determinis-

tic, but often complex and multi-dimensional. The two

kinds of parallel programs map naturally onto differ-

ent implementation methodologies. Distributed data

structures are well-suited to the expression of asyn-

chronous programs. Synchronous programs can be

concisely and efficiently expressed in terms of coordi-

nation structures. We have proposed a language mech-

anism which supports the creation and manipulation of

such structures. We have used this mechanism to con-

struct concise and efficient implementations for several

applications.
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Appendix

Some APL, series, and FP functional operators imple-

mented as Delirium transforms:

# concatenates two arrays

# along lowest-numbered dimension

catenate (P, Q)

C [m+nl <-P [m] , Q [n]

# removes first S1 x s2 elements from P

drop(P, sl, s2)

#
#

C[n-si ,m-s2]<-P [n, m]

with

C[i, j]= P[i+sl, j+s21

APL outer product (function

supplied separately by map)

C[i, j,l]=Q[j]

# reshape for inner product

set-up-ip(P, Q)

P[m, n] ,Q[n, q]-> C[m, q,n,2]

with

C[i, j,k, O]= P[i, k]

c[i, j,k, i]= Q[k, j]

# perform inner product (see

# definition of reduce in text)

inner-product (plus-fn, times-fn, a ,b)

reduce (plus-f n,2, map(times-fn, set-up-ip(a, b)))

Recipe for dynamic programming:

# first N stages of 2D dynanic programming

dptop(P)

P [n] ->C [n, 2]

with

C[i, jl=P[i-j+ll

# second N stages

dpbottom(P)

adjacent(2,P)

outer-product (P,Q)

P[n],Q[m]->C[n,m,2]

with

C[i,j,O]=P[i]
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