=

An Interprocedural Data Flow Analysis Algorithm+

Jeffrey M. Barth

Computer Science Division, EECS
University of California, Berkeley
Berkeley, California 94720

Abstract:

A new interprocedural data flow analysis algo-
rithm 1is presented and analyzed. The algorithm
associates with each procedure in a program infor-
mation about which variables may be modified, which
may be used, and which are possibly preserved by a
call on the procedure, and all of it subecalls. The
algorithm is sufficiently powerful to be used on
recursive programs and to deal with the sharing of
variables which arises through reference parame-
ters. The algorithm is uniqgue in that it can com=-
pute all of this information in a single pass, not
requiring a prepass to compute calling relation-
ships or sharing patterns. A lower bound for the
computational complexity of gathering interpro-
cedural data flow information is derived and the
algorithm 1is shown to be asymptotically optimal.
The algorithm has been implemented and it is
practical for use even on quite large programs.

Introduction:

A great deal of recent research has been
devoted to developing algorithms for intrapro-
cedural global flow analysis. [6,9,15,16,19] These
methods generally assume that the semantics of
individual program statements are available. The
purpose of global flow analysis is to determine
what information is available at specific progranm
statements by propagating the semantics of indivi-
dual statements through the program in a manner
which reflects the control structure. 1In practical
applications of global flow analysis, such as pro-
gram optimization, verification, and documentation,
subroutine calls appear interspersed among program

statements. The semantic effects of subroutine
calls are not generally available. Traditionally,
optimizers have treated calls as demonous black

boxes which terminate the propagation of informa-
tion. The aim of interprocedural data flow
analysis is to summarize the semantic effects asso-
ciated with subroutine calls, permitting global

flow analysis to more effectively propagate infor-
mation through programs.
We will motivate the study of interprocedural

data flow analysis with an example code sequence:

X = (y/2z) + w;

u :z SOMEFUNCTION(x);

v o= y/2z;
+Research sponsored by National Science Foundation
Grant MCST4-07644-A02

119

Whether y/z can be considered a common subexpres-
sion depends on the information that SOMEFUNCTION
can not modify the values of y and z. This allows
the information "y/z is available" to be propagated
through the call on SOMEFUNCTION. There are a wide
variety of applications for interprocedural data
flow analysis, some of which are discussed in [5].

Interprocedural information that is wused at
the point of call of a subroutine has been called
"summary" data flow information. [11] With each
function call, a summary of the variables that may
be modified, that may be read, and that are possi-
bly preserved will be useful for intraprocedural
analysis. [14] Precise definitions for these three
data flow problems will appear in the section on
notation and problem definition.

difficulties asso-
‘information. In

There are three fundamental
ciated with gathering summary
order to summarize a procedure, P, 1its Dbody is
examined. If P calls another procedure, Q, then
the flow analysis of P requires a summary of Q. 1In
nonrecursive programs, there 1is some ordering in
which procedures can be examined which has the pro-
perty that called subroutines are always analyzed
in advance of the procedures which call them. This

ordering has been called the "reverse invocation
order"™ by Allen. [2] In the case of recursive
programs, there is no ordering with this property.

Thus, an interprocedural data flow analysis algo-
rithm which 1is to be used on recursive programs
must include some method of circumventing this dif-
ficulty.

The second fundamental problem that an inter-
procedural data flow analysis algorithm must cope
with arises in programming languages which allow
name or reference parameters. [10,12] Since these
mechanisms introduce storage sharing among dif-
ferent variables, called aliases, the determination
of which variables may be modified by a statement
is nontrivial. Suppose that r 1is a reference
parameter in a procedure P which contains

r = u+ vy
as a statement., The summary information for P must
reflect the fact that any variable potentially
shared with r may be modified. It is fairly obvious
that sharing can be analyzed by a prepass over the
program. If a list of variables which are poten-
tially shared with r is available, the processing
of the above statement is no longer problematical.
In order to perform the data flow analysis in a
single pass over the program this strategy is

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1977 ACM 0-12345-678-9…$5.00

inadequate since there is no reason to believe that
all the aliases of r will have been exposed before
a particular statement which modifies r 1is pro-
cessed.

Another difficulty associated with gathering
summary information for recursive programs is in
the correct treatment of variables. It 1is wunder-
stood that separately declared variables are dis-
tinct even if their spellings coincide, but there
is a more intrinsic problem. Recursive invocations
of a procedure, P, have separate copies, called
incarnations, off P's local variables. High quality
summary data flow information for a procedure, Q,
will not include the possibility that Q may modify
a variable local to P if the incarnation which may
be modified 1is not the same as the incarnation
addressable at the point of call.

The algorithm to be presented in this paper is
sufficiently powerful to collect summary data flow
information for recursive programs. It can be used
on programs with reference parameters and will deal
with different incarnations of variables local to
recursive procedures.

The data flow analysis technique described 1is

strictly one pass in nature and can be implemented
in the first (parsing) pass of a compiler. An
implementation is possible which utilizes bit vec-

tor operations, which are available as word opera-
tions on most hardware. The running time of the
algorithm is approximately the same as the running
time for transitive closure, which is shown to be a

lower bound for the problem under reasonable
assumptions. The algorithm simplifies in a natural
way for use in languages with naming structures

less general than Algol or for use on programs that
do not use recursion.

Before embarking on any further study of
interprocedural data flow analysis, it must be made
clear at what stage of an optimizing compiler this

information 1is gathered. Interprocedural data flow
information is used to determine that particular
optimizing transformations do not affect the
correctness of the program. Thus, it is necessary

first to compute the data flow information and then
to apply specific optimizations. In the case of
recursive programs, an entire pass over the program
may be necessary to expose the data flow informa-
tion. For these reasons, an optimizing compiler
should first compute summary data flow information
in a pass, and then attempt to find optimizing
transformations in subsequent passes.

Summary of previous work:
The concepts of interprocedural data flow
analysis have been developing for about 6 years.
The principal algorithms for computing summary
information are due to Spillman (1971), Allen
(1974), and Rosen(1975). f{2,14,18] Each of the
algorithms uses a different computational strategy.
In addition to this difference, each algorithm com-
putes somewhat different information. Spillman's
technique is only suitable for computing "modifies"

information, but does so for the complete PL/I
language.. Allen's method is usable for computing
"modifies", "uses", and "preserves" information,

but is poorly suited for use on recursive programs.

120

Rosen's method is the most highly sophisticated,
capable of ‘computing arbitrary flow problems with a

high degree of precision, even in programs with
complex sharing patterns.
These techniques span a continuum of computa-~

tional
information.

expense and expected

Which technique is
for a particular application will depend on the
value placed on the quality of information com-
puted. The present technique is computationally at
least as simple as the easiest of the algorithms
which preceded it. It does not produce information
as precise as Rosen's, and so will not be suitable
for the most demanding of applications (verifica-
tion). It does, however, attempt to stretch as far
as possible the precision of calculated information
within the constraints of computational efficiency.

guality of computed
most appropriate

The oldest interprocedural data flow
technique of which the author is aware was
developed by Thomas Spillman. {18] His paper,
published in 1971, deals with the issue of exposing
side effects of PL/I statements. Thus, the major
emphasis of the work is directed toward determining
the patterns under which variables share storage.
Included in this analysis are language features
such as call by reference parameters, pointer vari-
ables (possibly with offsets), and ON conditions.
His technigues are suitable for determining the
side effects of procedure call statements ("modi-
fies" summary information) and for this reason are
within the scope of interprocedural data flow
analysis.

analysis

Spillman's method works essentially as fol-
lows: Each procedure is codified into a bit vector
in which, loosely speaking, a bit represents the
information whether the variable corresponding to
its position is modified in the procedure. Bit
vectors for procedures are merged into one another
in the "reverse invocation order" (a procedure is
not processed if possible until all procedures
which it invokes are processed). Then, procedures
are processed in the invocation order (reverse of
above) to account for aliasing effects. If recur-
sion 1s detected 1in the program, the above steps
are iterated until the bits stabilize.

Cosmeticly, Spillman's method is the most
similar to the techniques presented in this paper.
We will use a similar representation of informa-
tion, but will be able to achieve substantially
better results in the computation of ‘'modifies"
information. In addition, we will use this kind of
representation to compute arbitrary data flow prob-
lems, which would not have been possible within the
conceptual framework available to Spillman.
Although Spillman's method only requires a single
pass over the program, it is not suitable for com-
puting arbitrary interprocedural data flow informa-
tion.

The interprocedural data flow analysis algo-
rithm developed by Frances Allen is the most widely
used. [2,8] Originally, the algorithm was limited
to nonrecursive programs for which there is
guaranteed to be a reverse invocation order. Each
procedure 1is subjected to global flow analysis
which determines its data flow properties given the

known data flow information each

statement.

associated with

Allen and Schwartz have extended this
algorithm to handle recursive programs. [3] The
essential idea is that a procedure, P, which calls
another procedure, Q, can be analyzed before Q if
one is willing to make worst case assumptions abhout
the data flow impact of Q. The information can be

basic

refined by reanalyzing P after a better approxima-
tion for Q has been computed.

Allen does not discuss the problem of dif-
ferent incarnations of variables in recursive pro-
grams. Her techniques do not naturally handle
sharing of variables because the order in which

is an order in which bind-
are always discovered after
the called procedure has been analyzed. The
prepass which gathers the calling information can
be used to collect sharing information [18], which
allows Allen's method to base its actions on the
most general sharing pattern for each given vari-
able.

procedures are examined
ings at calling sites

Other major work in interprocedursl data flow
analysis has been done by Rosen. [14,17] His
method works on recursive programs and produces
very precise information even in cases in which the
sharing patterns of variables vary depending on the
context. Unfortunately, his method 1is probably
impractically slow and complicated for all but the
most demanding of applications. The basic idea
exploited by Rosen is that when analyzing (using
global flow analysis) a procedure, P, with a call
on a subprocedure, Q, the information impact of Q
can be expressed in a formrula which summarizes P.
That is, the summary of P is »n ecuation with unk-
nowns for subprocedures called in P. Analyzing a
program yields a set of eguations which can be
solved simultaneously to obtain veseful data flow
information.

Sharing is handled by allowing formulas to be
parametric, in some sense, in a sharing pattern.
When an equation is used to summarize information
at a point of call, the particular bindings af thet
point of call are wused to refine the formula.
Incarnations of variables c¢an be kept apart by
renaming variables in equations as they are nrassed
back into the procedure which created them.

The technique wused by Rosen to solve the
simultaneous equations is a bit reduction strategy,
in which maximal information is at first assumed.
The equations are substituted into each other until
the information, which is monotonically decreasing,
stabilizes. He proves that the information thus
obtained is correct. A characteristic of this
method 1is that the iteration must be fully carried
out, because partial solutions are incorrect until
complete stabilization. Rosen proposes that the
equations may be simplified in advance by using
various symbolic execution strategies on the pro-
gram.

Notation and Problem Definition:

The approach taken to computing summary data
flow information by this author is that the process

121

is essentially one of computing relations over the
domain of procedures Xvariables. For example,
"modifies" is a relation between procedures and the

variables possibly modified as a summary effect of
their invocation. The interprocedural data flow
relations are computed by composition and transi-
tive closure of other relations which are easy to
construct from the source program. These easy to
construct relations are referred to as direct
relations since they are constructed directly from
the program without considering subcalls. Rela~

tions which represent summary data flow information
are referred to as gsummary relations.

The manner of presentation of the techniques
will be to define various relations. The notions
of correctness and precision will then be supplied
for summary relations. Formulas will show how to
compute summary relations from direct relations.
The correctness of the summary relations will be
verified based on the definitions of the direct
relations and the computational formula specified.
It will remain to show that the direct relations
can be computed to satisfy their definitions
easily. This can be accomplished by 1illustrating
an implementation of the data flow techniaques
(which is only very briefly sketched in this
paper) .

It will be convenient to introduce some nota-
tional conventions which will be used throughout
this paper. A formal definition of the summary
data flow information that we wish to compute will
then be presented.

We are considering the summary data flow prob-
lem for programs in Algol-like (static naming
structure) languages. A program is understood to
be reasonably well formed, i.e. there is no inac-
cessible code. Subroutines are called explicitly at
calling sites which are textually visible, rather
than being activated by the existence of some con-
dition. A variable 1s a declared entity whose
storage may be associated with subroutine entry.
That 1s, 1if a procedure is called recursively, a
particular variable may be associated with several
storage locations. Each such location is called an
incarnation of the variable.

Def:
a program to be analyzed.

Let PP be the set of procedures in
For the exam-

ples, assume that P, Q, R, and S are
members of PP.

Def: Let VV be the set of wvariables 1in
the program. For the examples, assume

that r, u, v, w, x, ¥y, and z are members
of VV. Separately declared variables are
distinct even if their spellings coin-
cide.

Def: A (binary) relation is a set of or-
dered pairs. In accordance with standard
notation, for relations A and B::

A% is the reflexive transitive
closure of A,

A+ is the transitive closure of 4,

A B is the composition of A and B,

~A i1s the set of pairs not in 4,

A and B is the set of pairs in
both A and B,
A or B is the set of pairs in
either A or B,
TRANS(A) is the transpose of A,
that is (a,a') € A iff
(a',a) & TRANS(4), and
(a,a') € A is written interchange-
ably with a A a' or (a,a') in A.

Def: Let CALL be a relation defined on
PP x PP. A pair (P,Q) is in CALL if pro-
cedure P contains a call on procedure Q.

Def: Let MUSTCALL be a relation defined
on PP x PP. A pair (P,Q) is in MUSTCALL
if procedure P contains a call on pro-
cedure Q on all paths of execution for
which P terminates normally. That is, a
call on P must always be followed by a
call on Q before P returns to its calling
site.

The notion of 'must" 1in contrast to "may"
which distinguishes MUSTCALL from CALL is suffi-
ciently important to warrant careful exposition. A
relation which contains "may" information only
expresses the possibility that the action suggested
by the relation name will occur in the executing
program. For example, (P,Q) € CALL states the pos-
sibility that P may call Q. In contrast to this,
"must" information is appropriate when a certainty
about the executing program is intended. If (P,Q)
6 MUSTCALL then the call on Q must be executed as a

subcall of P (in the case of normal termination of
P for which summary data flow information is mean-
ingful).

May information is usually used in the nega-

tive sense. The fact that (P,Q) & "CALL consti-
tutes definite information that P will not directly
call Q. The fact that (P,Q) & CALL does not imply
that P really will call Q, and so is of limited use
for extracting important information.

Def: Let DIRECTMOD be a relation defined
on PP x VV. A pair (P,x) is in DIRECTMOD
if procedure P contains a statement which
modifies the value of variable x. (may
information)

Def: Let DIRECTUSE be a relation defined
on PP x VV, A pair (P,x) is in DIRECTUSE
if procedure P contains a use of the
variable x. (may information)

Def: Let DIRECTNOTPRE be a relation de-
fined on PP x VV. A pair (P,x) is in
DIRECTNOTPRE if procedure P does not
preserve the value of variable x on any
path of execution for which P terminates
normally. That 1is, x must be set by an
invocation of P. (must information)

2122

All of the above relations are direct in the
sense that they contain information about effects
of procedures ignoring indirect effects due to sub-
calls. The remaining relations to be defined con-
tain summary information about the effects of pro-
cedures and associated subcalls.

Def: Let MOD, USE, and PRE be relations
defined on PP x VV which are the summary
information that we wish to calculate:

If (P,x) € "MOD then procedure
P, and any subcalls of P, will
not modify the value of the
variable x.

If (P,x) 6 “USE then procedure
P, and any subcalls of P, will
not use the variable x.

If (P,x) 6 "PRE then before P
returns, the variable x will
have been assigned.

MOD, USE, and PRE are relations which contain
may information. It will be more convenient to
calculate preserves information as must informa-
tion, so we define an additional summary data flow
relation:

Def: Let NOTPRE be a relation defined on
PP x VV. A pair (P,x) & NOTPRE implies
that before P returns, the variable x
will have been assigned. (NOTPRE is sim-
ply "PRE.)

The above definition of USE is slightly dif-
ferent from what 1is conventionally calculated in
summary data flow analysis. Under this definition,
if a variable is read it is considered a "use" of
the variable. Traditionally, it would only have
been considered a "use" if the value read from the
variable could have been the value at the point of
call. Obviously, if a pair (P,x) € ~“USE then the
value of x is also not used as a summary effect.
Thus, USE can be substituted for traditional "uses"

information in any application. Having made the
definition this way, however, prevents certain
pairs from being eliminated from USE. Specifi-
cally, consider the case in which a variable must

be assigned before each program read action on it.
By these definitions, there is no way to say that
the variable is used, but not its value.

It is understood that Summary information must
be correct with respect to any particular point of
call of a procedure. The summary data flow rela-
tions are defined on PP x VV, where VV is the set
of addressable incarnations of variables at the
point of call. The following example illustrates
why this interpretation of summary 4information is
critical:

P
Declare x;
Q
P();

x unconditionally assigned by P;
L__ Q();

It is wrong

to conclude that P NOTPRE x at its call

within Q, since the incarnation of x which is
addressable at this site 1is different from the
incarnation assigned by the call on P,

The relations defined above, and several to be
introduced in later sections, are summarized in
Table 1.

is essen-
of computing the summary data
flow relations. We must be somewhat careful in
specifying what 1is expected of an interprocedural
data flow analysis technigue because the defini-
tions of the relations do not exclude trivial (and
useless) solutions. Several evaluation criteria of
data flow analysis technigues will be necessary.

Interprocedural data flow analysis
tially the process

Def: We say that a summary data flow re-
lation, A, is correct at a particular

calling site for a procedure, P, if:

For may information - There 1is
no instance of the following
three conditions occurring
simultaneously for any vari-
able, x:

i. x 1s addressable at

the calling site

ii. (P,x) € "A

iii, The call on P may have
the summary effect A on the
incarnation of x addressable
at the time of call.

For must information - There is
no instance of the following
three conditions oceurring
simultaneously for any vari-
able, x:

i. x is addressable at

the calling site

ii. (P,x) € A

iii. the call on P may fail to
have the summary effect A on the
incarnation of x which was address-
able at the time of the call.

Def: We say that a summary data flow re-
lation, A, is correct if it is correct at
every calling site in the program.

We wish to define the precision of a calcu-~
lated relation to capture the concept of the amount
of definite information available. In particular,
for may information, the sparser the relation, the

123

more effects are known not to be possible. Rela-
tions have a natural partial ordering by set inclu-

sion., We define precision to be a meaningful com-
parator between related elements in the partial
order.

Def: We say that a correct summary data

flow relation is more precise than anoth-
er correctly calculated version of that
relation if:

For may information - the more
precise relation is a subset of
the pairs of the 1less precise
relation.

For must information - The more
precise relation is a superset
of the pairs of the 1less pre-
cise relation.

The notion of correct does not exclude the trivial
solutions of all pairs for may information and no

pairs for must information. These solutions are
correct, but are usually too imprecise to be use-
ful. It is too stiff a criterion to ask for the

most precise solution for a summary data flow rela-
tion, since the determination of this will be unde-
cidable in general.

Def: We say that a summary relation is
precise up to symbolic execution if

For may information - it is the
most precise information possi-
ble assuming that all condi-
tionally executed code is exe-
cutable and that all the vari-
ables in the program are
spelled distinctly.

For must information - it 1is
the most precise information
possible assuming that any path
of execution through procedures
is possible and that all vari-
ables in the program are
spelled distinctly.

The condition pertaining to pairwise distinct vari-
able spellings removes a degenerate case in several

Table 1

Direct/Summary/ May/
Relation Domain Program Independent Must
CALL PP x PP Direct May
MUSTCALL PP x PP Direct Must
DIRECTMOD PP x VV Direct May
DIRECTUSE PP x VV Direct May
DIRECTNOTPRE PP x VV Direct Must
MOD PP x VV Summary May
USE PP x VV Summary May
PRE PP x VV Summary May
NOTPRE PP x VV Summary Must
SCOPE PP x VV Program Independent
GENSCOPE PP x VV Program Independent
AFFECT Vv x VvV Direct May

proofs, and will be explained in the first such
instance.
The part of the definition pertaining to con-

ditional execution 1is somewhat different for may
and must relations. Clearly, if all paths through
a procedure are executable (the must condition),
then all conditionally executed code is executable
(the may condition). The converse is not true.
Consider this procedure:
P
Declare w;
Comment: w is local so that the
assignments can't affect
its value;

W o

IF
L_-IF
Even assuming that all conditionally executed
is executable, it would still be possible to con-
clude that neither x nor y is preserved by P (by
symbolically merging the THEN and ELSE parts of the
conditional statements). We wish, however, to con-

sider must information precise up to symbolic exe-
cution without requiring this kind of analysis.

someexpression;
= 0 THEN x := u+1 ELSE y := v+2;
0 THEN y := u+3 ELSE x := v+l;

=50

code

Ultimately what is required of an interpro-
cedural data flow analysis algorithm is that it
produce provable correct relations which are empir-
ically sufficiently precise. When a technique is
precise up to symbolic execution we may be confi-
dent that the information produced is of very high
quality. Specific results of testing the tech-~
niques developed here will be included in [5].

Properties of MOD, USE, and PRE:

The algorithm which will be presented computes
MOD and USE as may information, but will compute
NOTPRE as must information. To obtain PRE, the
complement of NOTPRE is calculated. This section
will partially justify the use of a different tech-
nique for computing PRE. There is a means of com-
puting PRE directly using a variation of the algo-
rithm presented here. An account of this appears
in [5].

Although MOD and PRE are both may information,

the manner in which they are collected intrapro-
cedurally differs. Consider straightline code:

X = u+ 1;

y iz v+ 1;
The first statement modifies x and the second
statement modifies y. The MOD information for the

two statements together is the union of the infor-

mation for each statement: they modify both x and
y. The first statement may preserve all variables
except x. The second may preserve all variables
except y. The PRE information for the two state-

ments together is the intersection of the preserves
information for each statement: they may preserve
all variables except x and y. In pictures, this is
summarized:

124

U N

MOD PRE

Now consider code which is conditionally executed:

IF booleanexpression THEN x := u + 1
ELSE y = v + 1;
In this case the union of the may information for

thé internal statements is the information for the
entire statement for both MOD and PRE. 1In pictures
this is summarized:

v/ \v/

For purposes of this paper, it must suffice to
say that the algorithm presented has a hidden
assumption that the information composition funec~
tion for straightline code is union. NOTPRE satis-
fies this requirement, with the disadvantage of
being must information, All forms of must informa-
tion require intersection among conditionally exe-
cuted statements:

U N

NOTPRE NOTPRE

Calculating MOD and USE, no sharing:

For simplicity in this section, we assume that

there 1s no mechanism, such as call by reference
parameters, for introducing sharing among vari-
ables. Formulas which use CALL, DIRECTMOD, and

DIRECTUSE to calculate MOD and USE are presented. A
series of formulas will be presented which calcu-
late summary data flow relations to differing lev-
els of precision. In order to distinguish the com-
puted relations, we will write, for example,
MOD/1.1 to be the MOD relation as calculated by
formula 1.1. Only the formulas for MOD are justi-
fied since the arguments in both cases are essen-~
tially the same.

Correct formulas for MOD and USE are
obtain:

ecasy to

MOD := CALL*¥ DIRECTMOD (1.1)

USE := CALL* DIRECTUSE (1.2)
Claim: MOD/1.1 is correct.

Justification: Since MOD is may informa-

tion, we must justify the absence of any

pair, (P,x), missing from the
relation. Suppose that
P 7 (CALL* DIRECTMOD) x. This says that
P, and all procedures callable from P
(directly or indirectly), do not contain
a statement which modifies x. From this
we conclude that P, in summary, does not
modify x.

computed

Although the above formulas are correct, they
are extremely conservative in their treatment of
variables., If any incarnation of x may be modified
by a subcall of P, then P MOD/1.1 x is calculated.
If the incarnation of x which is modified by the
subcall must be different from the one addressable
at the point of call of P, then the pair (P,x)
could have been eliminated from MOD, increasing the
precision of the information.

Refined formulas will be obtained for MOD and
USE by including Algol scoping rules in the calcu-~
lations. The techniques presented can be modified
to accommodate languages with less general static
naming structure.

Def':
static

The level of a procedure is the

depth at which the procedure is
defined. Declarations which occur any-
where within a procedure will be associ-
ated with the procedure invocation, rath-

er than with BEGIN block entry. The
level of a variable is the same as the

level of the procedure to which it is lo-

cal. (This differs somewhat from stan-
dard Algol terminology.) Global vari-
ables are at level 0, the lowest naming

level.

When comparing levels, it will usually be clearer
to refer to lower levels as outer and higher levels
as inner.

Def: Let SCOPE be a relation defined on
PP x VV. A pair (P,x) is in SCOPE iff
the level of x is strictly lower than the
level of P. That is, x is declared at a
outer level from P.

SCOPE is weaker than
since

an addressability relation,
it is possible that P SCOPE x, even though x

is not addressable within P. It is shown in [5]
that wusing SCOPE rather than an addressability
relation does not degrade the calculated summary

data flow information.

The following lemma will be used repeatedly in
Jjustifying formulas involving scoping rules:

Scoping Lemma: When computing summary data flow
information, a call (direct or indirect) on a level
n procedure, P, and all of its subcalls, can affect
addressable variables at the original point of call
only at levels O thru n-1.

Proof: P, and its subcalls, may be able
to address variables at levels which
exceed n=-1, but the variables at these

levels will be new incarnations and are
not addressable at the original calling
site. Under the rules of static scoping,
when a procedure is called, the variables

125

which are addressable in the called pro-
cedure are a subset (not necessarily
proper) of those addressable at the cal-

ling site, plus new incarnations of local
variables. 1In the body of P, the levels
0 thru n-1 contain variables addressable
at the original calling site, and level n
contains new incarnations of local vari-
ables for P. By applying the previous
observation inductively, subcalls of P
(direct or indirect) can only affect a
subset of the variables addressable in P
plus new incarnations of local variables
which were not addressable at the origi-
nal calling site.

Note that the above lemma is false in the
of reference parameters.

presence

Formulas 2.1 and 2.2 produce summary data flow
information which is more refined than that pro-
duced by formulas 1.1 and 1.2:

MOD := CALL* (DIRECTMOD and SCOPE) (2.1)

USE := CALL* (DIRECTUSE and SCOPE) (2.2)
Claim: MOD/2.1 is correct.

Justification: (omitted, see [51).

Formulas 2.1 and 2.2 reflect the observation
that actions on local variables never affect sum-
mary data flow information. These equations are
sufficiently powerful to process programs 1in
languages which do not allow the nesting of naming

levels except to distinguish locals and globals.
For such languages the relations computed are pre-
cise up to symbolic execution, a fact that will
follow as a corollary to a more general statement
which 1is proven later in this section. SIMPL-T, C,
and BLISS are languages which enforce this naming
limitation. [8,13,20]

A series of examples which illustrate program
skeletons will be useful in developing intuition as
to the precision of various formulas used in calcu-

lating summary data flow relations. We begin with
two examples for which formulas 2.1 and 2.2 are
more precise than formulas 1.1 and 1.2. For all
the examples, the reader 1is to assume that

subroutine calls are executed conditionally so that
nonterminating recursion is avoided.

P
Declare X;
x is modified;
P();
Example 1
The call on P does not modify the addressable
incarnation of x at the point of call. This is the

important case of direct recursion.

Declare x;

R
P();

x is modified;
RO);

L

Example 2

Here too, since X is local to P,
P "(DIRECTMOD and SCOPE) x. This example will fig-
ure in a later discussion.

Formulas 2.1 and 2.2 fail to produce data flow
information which is precise up to symbolic execu-
tion for the following example:

R

P
run

Q

Declare x;

R
x is modified;

R();

L_-P();

L—_Q(),

Example 3

The call on P within Q can not modify the currently
addressable incarnation of x as a consequence of
the scoping lemma. Plugging into formula 2.1,

P CALL Q
Q CALL R
R (DIRECTMOD and SCOPE) x

shows that P MOD/2.1 x. We generalize from this
example to produce these formulas:

MOD
USE

(CALL¥ DIRECTMOD) and SCOPE (3.1)
(CALL* DIRECTUSE) and SCOPE (3.2)

Formula 3.1 produces information for example 3
which 1is completely precise since P "SCOPE x. It
produces the same information as formula 2.1 on
example 1. Unfortunately, it fails to be as pre-
cise as formula 2.1 on example 2. Before develop-
ing formulas which are completely precise on all of
these examples, we pause to prove the correctness
of the third set of formulas.

Claim: MOD/3.1 is correct.
Justification: (omitted, see [51).

The desirable properties of all of these for-
mulas can be combined:

MOD := (CALL* (DIRECTMOD and SCOPE))

and SCOPE (4.1)
USE := (CALL* (DIRECTUSE and SCOPE))

and SCOPE (4.2)

These formulas produce precise data flow informa-
tion for all of the above examples.

Claim: MOD/4.1 is correct.
Justification: (omitted, see [5]).

Although it is possible to construct examples for
which formulas 4.1 and 4.2 are not precise up to
symbolic execution, these formulas are the ones
recommended for use in practice. Formula 4.1 fails
to be completely precise on this complicated exam-
ple:

Ts
Q .
Declare x;

——

P

S();

x is modified;

The call on P within Q can not modify the address-
able x thru the call on S but:

P CALL¥* R,
R (DIRECTMOD and SCOPE) x,
and P SCOPE x

so P MOD/4.1 x.

Completely characterizing the effects of scop-
ing rules on MOD and USE information will result in
formulas for them which are computationally less
efficient. It will be convenient to introduce some
notation for this characterization.

Def: A call chain is an ordered seguence
of procedures which are pairwise in the
CALL relation. Thus, P CALL* S as a
result of P CALL Q, Q CALL R, and
R CALL S results in P,Q,R,S as a call
chain.

Def: Let the ¢all c¢chain level be the
level of the outermost procedure in the
call chain. 1In the example above, the
call chain level is min(level P, level Q,
level R, level 8).

Def: Let MAXCHAINLEVEL be a |PP}| x |PP|
matrix of integers where rows and columns
are selected by supplying procedure
names. MAXCHAINLEVEL[P,Q] is the maximum
call chain level for all call chains from
P to Q.

Calculating MOD and USE can be accomplished with
these formulas:

MOD := { (P,x) | For some Q & PP,
P CALL* Q, Q DIRECTMCD x, and
level x < MAXCHAINLEVEL[P,Q] } (5.1)
USE := { (P,x) | For some Q € PP,
P CALL* Q, Q DIRECTUSE x, and)
level x < MAXCHAINLEVEL[P,Q] 3} (5.2)
The intuition which Jjustifies the use of the
maximum chain level in the formulas is that one may

only be certain that some pair, (P,x), is absent
from the computed MOD if the call chains which
result in the modificaticn of x all involve the

call of a procedure at a level at least as low as
x. If a call chain of maximum level contains a
procedure at a 1level as low as x, then all other
call chains must also.

Claim: MOD/5.1 is correct.

Proof: Suppose that P "MOD/5.1 x. For a
contradiction, assume that P does modify
the addressable x from some point of
call. Since P can modify x, there is
some call chain, C, beginning with P, and
ending with the procedure, Q, which
directly modifies x. The call chain lev-
el of C <= MAXCHAINLEVEL{P,Q] by the de-
finition of MAXCHAINLEVEL. The modifica-
tion by Q of the same incarnation of x
which is addressable at the call of P is
only possible if 1level x < call chain
level of C (by the scoping lemma). Thus,
the level of x < MAXCHAINLEVEL[P,Q] and
all three conditions of formula 5.1 are
satisfied, a contradiction.

Claim: Formula 5.1 calculates MOD precisely up to
symbolic execution.

Proof: We must show that the elimination
of any pair, (P,x), from MOD/5.1 results
in an incorrect summary relation (assum-
ing that all paths of conditional execu-
tion are executable). Suppose that
P MOD/5.1 x. Look at any calling site
for P. We know that there is some call
chain beginning with P and ending with a
procedure Q which modifies some incarna-
tion of x. Since all paths of condition-
al execution are executable, we may as-

sume that P calls Q through a call chain
of maximal level. Since the level of
this call chain exceeds the level of x,
we know that no incarnation of x is

created between the time P is called and
the time Q modifies some incarnation of
x. We also know that the variables ad-
dressable at the level of x from the cal-
ling site are the same as the variables
addressable at that level from Q (or in
particular, not only is x addressable at
the calling site of P , but it 1is the
same incarnation of x which is modified
by Q). We have proven that eliminating
(P,x) from MOD/5.1 produces incorrect in-
formation. (1)

(1) If the spelling of x were not distinet from

all other

variables, it might be possible that

at the calling site x "is on the run time stack"

but is not addressable because

a more local

127

Corollary: For languages like BCPL which do
allow the nesting of procedures, formula 2.1
precise up to symbolic execution.

not
is

Proof: All call chains in such languages
have a call chain level of 1. SCOPE
selects effects on global (level 0) vari-
ables. It follows that all calculated
pairs satisfy the three conditions of
formula 5.1.

Having studied formulas for MOD and USE which
are precise up to symbolic execution, we are in a
position to argue convincingly that formulas 4.1

and 4.2 should empirically be good heuristic
methods. Here once again are those formulas:
MOD := (CALL¥* (DIRECTMOD and SCOPE))
and SCOPE (4.1)
USE := (CALL* (DIRECTUSE and SCOPE))
and SCOPE (4.2)
We will claim, without proof that formula 4.1 is

the same as
MOD := { (P,x) | For some Q & PP,
P CALL* Q, Q DIRECTMOD x, and
level x < min(level P, level Q) }

Thus, formula 4.1 differs from the chain level cal-
culation only in cases in which MAXCHAINLEVEL[P,Q]
< min(level P, level Q). What this equation says

is that if the "highest" level chain (innermost)
from P to Q must go through some procedure less
deeply nested than either P or Q, then formula 4.1
fails to be as precise as formula 5.1. This is a
somewhat pathological condition which one can
expect to arise rarely in practice. This matter
has been studied empirically and the results are
presented in [5].

Calculating NOTPRE, no sharing:

It is possible to obtain formulas for calcu=-
lating NOTPRE from MUSTCALL and DIRECTNOTPRE. It
turns out that the calculation of this summary data
flow information involves very different considera-

tions than those which applied to MOD and USE. An
account of these methods appears in [5].
Sharing, MOD and USE:

The task of <collecting summary data flow
information is made somewhat more difficult by the

introduction of reference parameters into the
gram which is to be analyzed.
statement like:

pro-
A simple assignment

X = u+ 1;

can affect variables other than x. These aliasing
effects happen in two distinct ways, which we name
for future reference:

variable has the same spelling.

Declare Xx;
P(reference formal r)
r is modified;

P(x);

-

Refmod Effect

Modifying a reference parameter results in the
modification of the actual parameter bound to it.
In this example, we must determine that P MOD x.

Q

Declare Xx;

—

R(reference formal r)

P

x is modified;

L__?();
L‘-R(x);

Varmod Effect

Modification of a variable may result in the modif-

ication of reference parameters. Here, P MOD r
must be deduced.

In this section, we will study sharing effects
on the MOD relation. It should be understood that
all the reasoning applies equally well to USE
information.

The relation that will enable us to compute

summary data flow

sharing is:

information in the presence of

Def: Let AFFECT be a relation defined on
VV x VV. A pair (r,x) is in AFFECT iff
formal reference parameter r is directly
bound to actual parameter x at some point
of call.

A formula for MOD can now be obtained from
formula 1.1 which will be correct in the presence
of reference parameters:

MOD := CALL¥* DIRECTMOD AFFECT#¥

TRANS(AFFECT) * (12)

Intuitively, refmod effects are accounted for
by AFFECT*¥ and varmod effects are computed by
TRANS(AFFECT)#*. (2) To aid in the correctness proof
of formula 12, and for subsequent formulas in this
section, we use a lemma which requires the intro-
duction of a few new terms.

Def: Let {x | r AFFECT¥ x} be called the
set of actuals which may be aliased to r.

(2) Formulas are numbered to be consistent with
(5], thus formulas 6 through 11 do not appear in
this paper.

128

x TRANS(AFFECT)* r} be

Def: Let {r |
set, of formals which may be

called the
aliased to x.

The lemma will attempt to formalize a rather
simple idea which is best understood by looking at
a series of diagrams. Consider nodes of these

graphs to represent variables and directed arcs to
represent endpoints in the AFFECT relation. (A
reverse arrow represents endpoints in the

TRANS(AFFECT) relation.)

X

r u
Here we see a graph which is induced by a program
in which formal reference parameters r and u are
bound to actual parameter x. If both r and u are
bound to x simultaneously, modifying r modifies r,

x, and u. (The proof of the lemma contains an
example of a program in which this occurs.)

X y
F{\\r
This graph represents a program in which formal
parameter r takes either x or y as its actual
parameter. There is no way to bind both x and y to
the same incarnation of formal parameter r, hence

modifying x can not result in the modification of
y.

Aliasing Lemma: Altering a variable, r, may modify
its set of actuals, and variables which are in the
sets of formals of these actuals. No other vari-
able may be modified as a sharing effect of the
modification of r.

Proof': The examples which illustrate
refmod and varmod effects prove most of
the first sentence of this lemma. The

following example shows that formals of
actuals can be modified through sharing
effects:
Q
Declare x;
—
P(reference formal r)
r is modified;
.
R(reference formal u)
P(x);

R(x);

|

P modifies r.
of r (refmod).

This modifies
Since at the

X, an actual
calling site

of P within R, u is a formal of x, u is
modified by the call on P.
What remains to prove is that no other

kinds of effects can arise through shar-

ing. In particular, it must be shown
that no other actuals of formals can be
modified. That is, if

r AFFECT x and
r AFFECT u

that modifying x will not modify u. At
the moment that the program modifies the
value of x, it may be bound to some in-
carnation of the reference parameter r.
This incarnation of r can not be simul-
taneously bound to x, because the incar-
nation of r is associated with a particu-
lar call of the procedure to which it is
a formal parameter. Since x affected r
.{varmod), this call must have had actual
parameter x, not u.

The aliasing lemma relates to formula 12 in
that AFFECT#* TRANS(AFFECT)¥ has the impact of
widening the modification of a variable first to

its set of actuals and then widening this to the
sets of formals for these actuals. In a diagran,
modifying r results in the computation of the pos-
sible modifications of all the nodes in the shaded
region:

Claim: MOD/12 is correct.
Justification: Follows from aliasing lem-
ma and the proof of formula 1.1.

Combining aliasing effects and scoping con-
siderations 1is necessary for practical applica-
tions. It will turn out that the formulas derived
are quite wuniform in appearance, but the correct-
ness arguments are quite different at each step of
increasing complexity analogous to formulas 2.1,
3.1, and 4.1. For this reason, combining scoping
and aliasing considerations will be done in stages
which parallel the previous presentation of scop-
ing.

The notion of SCOPE must be recast because in
the presence of reference parameters, the modifica-
tion of a loecal variable (formal parameter) may
have global effects (see for instance the illustra-
tion of refmod effects). (3)

Def. Let GENSCOPE be a relation defined
on PP x VV which will generalize SCOPE. A
pair (P,x) is in GENSCOPE iff the level
of x is strictly less than the level of P

or x is a formal reference parameter of
some
(3) Recent work has resulted in an improved

method for combining aliasing and scoping con-
siderations. It is similar in spirit to the
technigue presented here, requires about the
same amount of computation, and results in more
precise information. It is, however, consider-
ably more complex to present and obscures the

intuitive notions emphasized here.

129

procedure.

This differs from SCOPE in that if x is a reference
parameter, the pairs (P,x) are automatically in
GENSCOPE for all procedures, P.

The first of the formulas which will combine
scoping considerations and sharing effects follows:

MOD := CALL* (DIRECTMOD and GENSCOPE)
AFFECT* TRANS(AFFECT)# (13)
Claim: MOD/13 is correct.

Justification: (omitted, see [5]).

Formula 13 is analogous to formula 2.1. The
next equation echoes formula 3.1:

MOD := ((CALL* DIRECTMOD) and GENSCOPE)

AFFECT* TRANS(AFFECT)#* (1)
Claim: MOD/14 is correct.

Justification: (omitted, see [5]).

Combining formulas 13 and 14 produces the
recommended formula for use on programs in
languages that allow Algol scoping and reference
parameters.

MOD := ((CALL¥* (DIRECTMOD and GENSCOPE)

and GENSCOPE)
AFFECT* TRANS(AFFECT)# (15)
Claim: MOD/15 is correct.

Justification: (omitted, see [5]).
Implementation:

One of the major advantages claimed for the
interprocedural data flow analysis algorithm
desecribed in this paper is its strictly one pass

nature. The idea behind the single pass implemen-
tation is that CALL, MUSTCALL, DIRECTUSE,
DIRECTMOD, DIRECTNOTPRE, and AFFECT are easily con-
structed from the program before any interpro-
cedural information 1is available. In particular,
since the order in which procedures are examined is
unimportant, it 1is not necessary to construct a
call graph in advance of performing intraprocedural

information gathering. It is also unnecessary to
analyze the possible sharing relationships in
advance, since they have nc effect on any of the

direct relations.

Complexity:

The computational complexity of the straight
forward a bit vector implementation for this algo-
rithm is quadratic in [PP{ + |VVi. Implementing
the algorithm on a machine with operations on words
of fixed size results in an algorithm of approxi-
mately cubic complexity. In this section, it will

be shown that, under certain reasonable assump=-
tions, this 1is asymptotically the best possible
algorithm for gathering summary data flow informa-
tion.

We will consider programs with no sharing and
no recursion. In order to rule out gathering
trivial summary information (no information), we
agsume that on a program with no loops, no condi-
tionals, no local variables, and no gotos, an algo-
rithm gathers information which is completely pre-
cise. The algorithm described has this property
for both may and must information. Under these
assumptions, it will be shown that computing sum-
mary information is asymptotically as complex as
computing reflexive transitive closure.

It is well known that the asymptotic complex-
ity of computing reflexive transitive closure is
the same as the complexity of boolean matrix multi-
plication. [1] Using a standard matrix represen-
tation for relations, the algorithm presented can
be made to run asymptotically as quickly as boolean

matrix multiplication and transitive closure, plus
the time necessary to scan the program once. Since
the program scan is inevitable for any conceivable

algorithm, it will be argued that, at least in
theory, the algorithm presented is the fastest pos-
sible.

The first observation necessary for the reduc-
tion to transitive closure is that the computa-
tional complexity of computing the reflexive tran-
sitive closure of a cycle free graph is the same as
the complexity for arbitrary graphs. The reader
may find a proof of this fact in the proof of
Theorem 5.6 in Aho, Hopcroft, and Ullman, although
they do not state this fact. [1]

Let M be an adjacency matrix for some acyclic
graph. The computation of the reflexive transitive
closure of M, M¥, can be embedded in any of the
summary data flow problems. We will produce a non-
recursive program with the property that MOD for
the program is an interpretation M*¥. The program
consists of procedures, Pi' which are of the fol-~
lowing form:

Xy is modified;

Call every procedure Pj for which M[i,j]=1;

It is quite obvious that Pi MOD x, iff M#¥[i,j] = 1.

The program is nonrecurSive bécause the graph
represented by M is acyeclic. Suppose that M is an
nxn matrix. The program constructed has
{PP{ = |VV] = n s0 the complexity of computing MOD
expressed in PP} + |VV]l 1is at least as great as
the complexity of computing M¥ expressed in n (up
to a constant factor).

It is particularly interesting to note that
processing procedures in nonrecursive programs

using the reverse irivocation order (Allen [2]) does
not lessen the computational complexity of the sum-
mary data flow problem.

130

Having shown that gathering summary data flow
information in the no sharing and nonrecursive case
is as complex as computing reflexive transitive
closure, it follows that the sharing and recursive
cases are at least as complex.

Coneclusion:

An implementation (written in PASCAL) for this
algorithm exists for PASCAL programs , and it
appears to be quite inexpensive to use. In the
most general of terms, the data flow analysis of a
medium or small program (up to 50 procedures and
300 variables) will take about one third of the
time it takes to compile the program using the
standard translator.

The implementation was run on the PASCAL
6000/3.4 compiler, which 1is a program with about
6800 lines of code, 140 procedures and 770 vari-

ables. [4,10] Performing the interprocedural data
flow analysis (for MOD, USE, and PRE) took somewhat
less time than it takes to compile the compiler.
The space required was about 10,000 (60 bit) words.

The use of interprocedural data flow analysis
in an optimizing compiler at these costs seems
practical. In a system which is attempting to gen-
erate program diagnostics or automatic documenta-
tion, these costs are quite small compared to the
surrounding system. The experience with this algo-
rithm convincingly shows that interprocedural data

flow analysis is well within what should be con-
sidered practical for use in programming language
systems.

Bibliography:

[1] Aho, Alfred V., Hoperoft, John E., and Ullman,
Jeffrey D. The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company,
Reading Mass. (1974).

[2] Allen, F. E. Interprocedural data flow
analysis, Proceedings IFIP Congress 1974, North

Holland Publishing Co,, Amsterdam (1974), 398-402.

[3] Allen, F. E. and Schwartz, J. T. Determining
the data relationships in a collection of pro-
cedures. (unpublished detailed summary).

(43 Ammann, Urs. Compiler for PASCAL 6000 - 3.4.

ETH, Institut Fuer Informatik, Zuerich (1974).
[5] Barth, Jeffrey M. A practical interprocedural
data flow analysis algorithm and its applications.
Ph.D., Dissertation, University of California,
Berkeley (in preparation).

[6] Graham, Susan L. and Wegman, Mark. A fast and
usually linear algorithm for global flow analysis.

Journal of the ACM, Vol.23, No. 1 (Jan 1976),
172-202.

[71 Gries, David. Compiler Construction for
Digital Computers. Wiley, New York (1971), 39.

[8] Hecht, Matthew S. and Shaffer, Jeffrey B.
Ideas on the design of a "quad improver" for
SIMPL-T, part I: overview and intersegment
analysis. Computer Science Technical Report
TR-405, University of Maryland, College Park
(August 1975).

[9] Hecht, Matthew $S. and Ullman, Jeffrey D.
Analysis of a simple algorithm for global flow
problems. Conference Record of the ACM
SIGACT/SIGPLAN Symposium on the Principles of
Programming Languages, Boston, Mass. (October
1973), 202-217.

[10] Jensen, Kathleen and Wirth, Niklaus. PASCAL
User Manual and Report. Springer Verlag Lecture

Notes in Computer Science No. 18, Berlin (1974).

{11] Lomet, David B. Data flow analysis in the
presence of procedure calls. 1BM Research Report
RC5728, Thomas J. Watson Research Center, Yorktown
Heights,New York (November 1975).

{12] Naur, Peter.
rithmic language
ACM (January 1963).

Revised
Algol-60.

report on the algo-
Communications of the

[13] Ritehie, Dennis M. C reference manual. Bell
Telephone Laboratories, Murray Hill, New Jersey
(1975).

[14] Rosen, Barry K. Data flow analysis for
recursive PL/I programs. IBM Research Report

RC5211, Thomas J. Watson Research Center, Yorktown
Heights, New York (January 1975). This report is
superceded by [17].

[15] Rosen, Barry K. High 1level data flow
analysis, part 1 (classical structured program-
ming). IBM Research Report RC5598, Thomas J. Watson
Research Center, Yorktown Heights, New York (August

131

1975) .

{16] Rosen, Barry K. High level data flow
analysis, part 2, (escapes and Jjumps). IBM Research
Report RC5744, Thomas J. Watson Research Center,
Yorktown Heights, New York (December 1975).

[17] Rosen, Barry K. Data flow analysis for pro-
cedural languages. IBM Thomas J. Watson Research
Center, Yorktown Heights, New York (1976).

[18] Spillman, T. C. Exposing side effects in a
PL/I optimizing compiler. Proceedings IFIP Confer-
ence 1971, North Holland Publishing Company,

Amsterdam (1971), 376~381.
[19] Tarjan, Robert E. Solving path problems on
directed graphs. Stanford University Computer Sci-
ence Department Technical Report STAN-CS-75-528,
Palo Alto, Ca. (November 1975).

[20] Wulf, William A., et. al. Bliss: a basic
language for implementation of system software for
the PDP-10. Carnegie Mellon University Computer

Science Department Report (1970).

