
Partial Order Programming

Extended Abstract

D. Stott Parker

Computer Science Department
University of California

Los Angeles, CA 90024-1596
stott@cs.ucla.edu

ABSTRACT

We introduce a programming paradigm in which
statements are constraints over partial orders. A partial
order programming problem has the form

minimize 24

subject to u1 2 vl, 4 2 v2, . . .

where u is the goal, and u1 2 vl, u2 2 va, . . . is a col-
lection of constraints called the program. A solution of
the problem is a minimal value for u determined by
values for ut, vt, etc. satisfying the constraints. The
domain of values here is a partial order, a domain D
with ordering relation 7.

The partial order programming paradigm has interesting
properties:

(1)

(2)

(3)

It generalizes mathematical programming and also
computer programming paradigms (logic, func-
tional, and others) cleanly, and offers a foundation
both for studying and combining paradigms.
It takes thorough advantage of known results for
continuous functionals on complete partial orders,
when the constraints involve expressions using
only continuous and monotone operators. The
semantics of these programs coincide with recent
results on the relaxation solution method for con-
straint problems.

It presents a framework that may be effective in
modeling, or knowledge representation, of complex
systems.

‘%a work supd by a State of California MICRO - IBM La Angeles Scientific Center
grant. a State of California MICRO - Amjet Elcnm SysIemr gnnt, and ~hc Tanpram pro-
ject. DARPA c=mtmct F2960147-CMnZ

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 ACM 19890-89791-294-2/89/0001/0260 $1.50

1. Motivation
Consider the following three problems:

(1) Lap/ace’s Equation

Let Ui be the solution of the discretized approximation
to the equation

v2u = a2 iEu=o
ax2 '+ ay2 .

The discretization is given by a rectilinear grid G, with
boundary conditions defining u only on the boundary
points of G. Numbering the points in G as (ut, , . . ,u,)
arbitrarily, let left(i), right(i), up(i), and down(i) give the
neighbors of node i in the interior of the grid. A node i
on the boundary of G takes on a boundary value
Ui = bi. Each node i in the interior of G satisfies the
constraint

The problem is to find values for ul, . . . ,u,.

(2) Single-Source Shortest Path Problem

Consider a graph G = <V,E>, each of whose edges
<Vi,Vj> has an associated cost ak We assume here that
costs are all nonnegative. One node of G, called vo, is
distinguished as a source node. A path from Vi, to vim in
G is a sequence of edges

<Vil,Vi,>, <Viz,Vi~>, ’ ’ ’ ,<VCl.Vi,>

in E, and the cost of this path is

aili + ai2i3 + ’ ’ ’ + aimtim*

For every node Vi, the problem is to compute the node
cost Ui, which is the least cost of all paths between the
source vo and Vi. Hence, 4 = 0.

260

(3) Consistent Lheling Problem

We are given a graph G = <V,E>. Each node Vi is to be
‘labeled’ with one or more members of bi, which are
subsets of a finite label set A. These label sets are
sometimes called node constraints, written

Ui E bi

for each i, where Ui denotes the set of labels for vC

For each edge <Vi,Vp in G, we also have an arc con-
straint aV that is a subset of bi x bf Specifically, the
label sets Ui and Uj selected for nodes Vi and Vj must
obey the constraint

Ui S ajj M Uj

where the relational semijoin operation K is defined by

a#u = (xIcx,y>isina,andyisinu).

The problem is to produce label sets that obey all of the
node and arc constraints.

How are these three problems related? Each is commonly
given as an example of a problem that can be solved by
‘relaxation’. The notation used above suggests deeper simi-
larities, however. This paper is concerned with showing that
the problems are equivalent in a certain sense. Roughly,
each problem seeks the solution of a linear partial order pro-
gram. That is, each seeks a vector u solving the problem

I:;::; :: 2 Au + bI

for an appropriate partial order 2, matrix A, vector b, and
multiplication and addition operator:

(1) With Laplace’s equation, define the coefficient matrix
A = (a$ by

l/4 if i is an interior node and
ay =

I
j E (left(i),right(i),up(i),down(i) 1

0 otherwise

and boundary condition vector b = (bi) by

4 if i is a boundary node
bi =

I 0 otherwise.

Then the vector u = (UJ satisfies the matrix equation
u = AU + b. Since the matrix A is nonnegative, the
function f(u) = Au + b is monotonet. As it is also con-
tinuous, minimizing u such that u 2 Au + b is
equivalent to finding u such that u = Au + b (the least
fixed point of f).

This problem may be solved iteratively [6].
Specifically, given any finite initial values for the inte-
rior nodes, the equation above may be used as an
assignment, u := Au + b. Since A is nonnegative and
has spectral radius less than 1, the iteration always con-
verges (though possibly in an infinite number of steps).

t Recall that a functionf is morw~one with respect to a partial order L if
x L y implies f(x) E fi).

(3)

We

The single-source shortest path problem places con-
straints on the node costs ui. If 90 and Vi is a node
whose outgoing edges <Vi,Vi> have cost ak then

Ui 2 min
I

?I$ aii + U> aio
I

.

Since we seek the shortest path values, our problem
becomes

minimize cuo, . . . ,u,>
subject to u. 2 0

ui 2 Ill& ati + Uj (i&o). 1

Again the inequalities may be used to find a solution
iteratively. Given a suitable initial value (such as +=)
for Ui, 1 I i 5 n, we can use the equality above as an
assignment to obtain successive values of up The itera-
tion converges in a finite number of steps when the
costs aii are nonnegative, as we assumed above.

With consistent labeling, we can combine the constraints
for each node Vi into a single constraint

Ui S n bk

This problem is naturally presented as a maximization
problem with respect to the ordering s

or equivalently, a minimization problem with respect to
the reversal of s. (That is, we wish to minimize
<IQ, . . . ,un> with respect to the ordering C defined by
x 2 y iff n s y.) Once again, iterative solution is possi-
ble. Iterative approaches for consistent labeling have
come under increasing investigation recently [8].

see that the constraints of these three well-known prob-
lems can be expressed in the form

Ui ~ fj(“l, . . ’ ,‘“)

for some ordering C, where each fi is a function that is
monotone with respect to C. We use 2 here instead of r in
order to make direct connections with existing work on
monotone functions. Furthermore each of the problems
above is a linear inequality system. That is, for each prob-
lem there are binary operators H and p3 with which the prob-
lem can be expressed as

minimize u

subject to u 3 AEELWU a b

where ‘ERM’ is a generalized matrix product using q for
(commutative, associative) addition and q for multiplication
(as in the APL programming language). If X = (x$ and
Y = (yti) are matrices of sizes mxn and nxp. respectively,

261

the generalized matrix product Z = X IM Y is a matrix of
size mxp defined by

Zij =

For the examples above we have the foIlowing table:

q q 1

min + 2

Linearity is interesting not only because it provides a new
point of view here. Linearity also immediately suggests both
sequential and parallel algorithms for solving the problems.
The arsenal of known algorithms for solving linear algebraic
systems of this kind is vast and well understood [7]. By
casting our problems in linear format we can immediately
take advantage of this existing work.

Evidently these problems are not the only ones with this
structure. How should we generalize upon these three exam-
ples?

2. Partial Order Programming
Partial order programming is a computational paradigm that
expresses computation declaratively as statements of order-
ing. A partial order program P specifies a set of constraints
C of the form

u3v

where u and v are ‘objects’ and J is a given partial order.
Each program thus specifies:

(1) a domain D of values with partial order 2;
(2) a set B of objects, which contains D;
(3) a set of ordering constraints C.

Typically the constraints u 111 v are such that u is never a
value, while v can be a value. Programs with constraints of
this form are called reductive programs, and we will discuss
them shortly.
A partial order programming problem is then a statement of
the form

where g is a specific object, which we call the goal, and
P = <B,C,D,J> is a partial order program. A semantics for
the program P is an assignment of values in D to all of the
objects in B in a way that satisfies all constraints in C. A
solution of the programming problem is a semantics of P that
simultaneously minimizes the value assigned to the goal
object g. There may be no solutions, or more than one solu-
tion.

Consider the following example of a partial order program,
where the domain of values D is the set of all subsets of
(1,2,3) and is partially ordered by set inclusion with least
element 0:

minimize s
subject to s 2 t

s 2 (3)
f 2 iL2).

In this problem the objects B are (s,t) u D, and the
inequalities listed here give the ordering constraints C. The
unique solution of the problem is determined by the seman-
tics

s = (1.2,31
t = (1,2),

which gives the smallest possible value to s that is consistent
with the constraints.

262

3. Solving Partial Order Programming Problems
With partial order programming problems defined, the issue
of how to solve them arises immediately. After reviewing
some relevant definitions and Kleene’s fixed point theorem,
we present three progressively restrictive classes of partial
order programming problems, and show how they can be
solved. These classes cover the three examples shown ear-
lier.

3.1. Background
Definitions
A partial order is a pair CD& where 7 is a binary rela-
tionon D such that

(Pl) For all x in D, x 7 x.
(P2) For all x,y,z in D, if x 7y and y 7 z, then x 7 z.
(P3) For all x,y in D, if x 2 y and y 7 x, then x = y.

A preorder is a pair CD,& satisfying (Pl) and (P2).
The least element of D, if it exists, is written 1.

In a partial order CD&-, an upper bound of a subset S of D
is an element z in D such that for every x in S, z 2~. The
least upper bound of a set S, written u S, is the least z such
that z is an upper bound of S; by (P3) it is unique if it exists.

A directed set S in a partial order < D,I> is a nonempty sub-
set of D with the property that if x,y are arbitrary elements in
S, then there is another element z in S such that both z g x
andzly.

A complete partial order (cpo) is a partial order CD& in
which every directed set S of D has a least upper bound u S.

A function f : D+D on a cpo CD,& is called continuous
monotone if for every directed set S in D,

f(US) = Llm.

Readers familiar with domain theory will undoubtedly prefer
the terminology ‘continuous’ to ‘continuous monotone’,
finding ‘monotone’ redundant. We use the terminology ‘con-
tinuous monotone’ here to emphasize the monotonicity
requirement on the function, because real-valued continuous,
but non-monotone, functions can arise in problems like those
in the first section of this paper,

Theorem (Kleene)
Let f : D+D be a continuous monotone map on the cpo
CD,& with least element 1. Then f has a least fixed point
equal to

fixf = U{fk(L> I kE co)

where o is the set of natural numbers, and f k is f iterated k
times, i.e.,fk =f.fk--‘, andf’ is the identity.

3.2. Three Solvable Classes of Problems
We define three natural classes of partial order programming
problems.

(1)

(2)

(3)

Reductive Partial Order Programming

Reductive programs P = <B,C,D,& require the value
set CD,& to be a complete partial order with least ele-
ment 1. Furthermore each object u E B is required to
have a single constraint

u a C(u).

That is, these programs view C as a function from B to
B, rather than as a set of ordering constraints on pairs of
objects drawn from B. Additionally, C is required to be
the identity function on D.

Reductive partial order programs thus have constraints
only of the form u 2 v where u is not a value, but v may
be. Such programs can offer only lower bounds for an
object U.

Continuous Monotone Partial Order Programming

Continuous Monotone programs are Reductive programs
that have constraints oniy of the form

where fi is a symbol or expression denoting a specific
continuous monotone function on D.

The set of objects B here includes not only ‘atoms’ (or
‘variables’) Uir then, but also the ‘expressions’ construe-

tible from these atoms and a specified set of continuous
monotone functions. That is, we let B be a set of
expressions using these function symbols over a set of
atom A and the values in D, and let C represent reduc-
tion or evaluation among expressions in B. Thus C
defines a computation rule [9].

The partial order program definition given earlier is gen-
eral enough to encompass this extension, although here
the definition of a solution to a problem is made stricter,
since the objects and constraints have more structure
than before. Solutions must respect expressions. In
other words, the value a solution assigns to the expres-
sion f(ul, . . . ,u,J is required to be either I, or the
value we get by applying the function denoted by f to
the values the solution assigns to ~1, . . . ,un.

Semilinear Partial Order Programming

Semilinear programs are Continuous Monotone pro-
grams that have constraints of the form

where q and q are continuous monotone operators from
a semiring that is also a complete partial order with
least element 0. (In [lo] we show that a more general
semiring-like structure called a pointed continuous com-
plete ordered semimodule can be used here instead.)
Many Continuous Monotone programs can be ‘linear-
ized’ into Semilinear programs. This is not surprising in
retrospect, as monotonicity is a restriction very like
linearity.

263

3.3. Procedural Semantics and Assignment Refinement
The three classes of problems are important because we have
simpIe procedures for finding solution semantics for them.

First, it is not hard to show that solutions for all Reductive
problems can be found by repeated reduction. We go about
finding a value for any object u by constructing the sequence
C(u), c2w t?(u) of objects. This sequence then fsatisfies
the constraints

2 &u>.

Either for some eventual value k, &u) is a value v 4~ D, in
which case we can assign u the value v, or u can be assigned
the value 1. This assignment is always a solution to any
Reductive problem, since it assigns the least possible value to
each object. Furthermore the vahe for any goal object g can
be found simply by constructing its sequence.

Second, we can obtain solutions for all three problem classes
via relaxation. By relaxation we mean an iterative procedure
which, given an initial value (namely: I) for the objects in
B-D, repeatedly selects an unsatisfied constraint u 1 C(U)
and enforces it by replacing the current assignment for u with
the currently assigned value of the object given by C(u).
(‘Out of kilter’ constraints are thus brought ‘into kilter’.)
Repeated enforcement of the consaaint u 2 C(U) g:ives an
ascending sequence

of values for u. A consequence the Kleene fixed point
theorem presented at the beginning of this section is that for
the three dasses of partial order programs above, enforce-
ment of constraints in any ‘fair’ order (any order that eventu-
ally enforces all unsatisfied constraints) will ultimately pro-
duce a least solution.

‘Single-assignment’ semantics in programming languages
have recently grown in importance. Relaxation semantics
might be called ‘assignment rejnemenl: an assignment
u := v(@ made in a partial order program can be superceded
by u := v@+‘) provided that v(~+‘) 2 v@). In other words, we
can replace the value of an object with better and better
‘approximations’, or refinements, for the value of the object.
This idea appears to have applications in other programming
contexts.

Linearity is interesting not only because it provides a new
point of view, but also because it permits us to draw on
known algorithms for solving linear algebraic systems.
When A is a square matrix, the Semilinear programming pro-
gram

u 2 AEWU EB b

is solvable by elimination methods such as Gaussian or
Gauss-Jordan elimination. Work remains in understanding
how we can generalize on elimination methods. 25mrner-
mann [14] gives an excellent survey of work in this area.

4. Programming Paradigms
The examples in the first section show that partial order pm-
gramming has applications in relaxation computations. Also,
it clearly has a great deal to do with mathematical program-
ming. However, partial order programming can also be
treated as a computer programming paradigm.

For example, logic programs can be expressed as partial
order programs. All Horn rules are inequalities: the rule
H t G expresses precisely the constraint “truth(H)” 2
’ ‘zrurh(G)“. Logical implication (t) is just the ordering
true 2 false (i.e., true t false) on D = (true,false).
Full logic programs can be expressed as systems of inequali-
ties as follows. A collection of m 2 1 Horn rules

. . .

P(h 9 . * . , r,n,g 1 + G,,,

is logically equivalent to the combined rule

P(X, >. . . ,X,)t(Xl=tllA...AX,=t,,RG1)
v . . . v

(Xl=rmlA...hXn=tmAG,,,)

provided we include X = X t true. This combined rule
can be viewed as an ordering among terms. With it,
instances of the head of the rule can be rewritten to instances
of its body, which is an expression involving equalities and
other subgoals. The procedural semantics for logic program-
ming can then be viewed accurately as a process of rewriting
one goal to another that contains a reduced binding (reduced
system of equalities) as a disjunct. The rewriting process
combines the Prolog II reduction process for equations,
presented in section 3 of [2], and goal elimination, the
replacement of atomic subgoals by goals corresponding to the
bodies of rules. It is similar to the “surface deduction” pro-
cess developed by Cox and Pietrzykowski formally in [3],
extending Colmerauer’s work.

Rather than reproduce the reduction algorithm formally as a
function C, we give an example that should illustrate the pro-
cess clearly. With the convention above the standard
‘append’ predicate looks like

append(ABSIB) +
(A=[]AB=AB) V
(A = [X IL] A AB = [X ILB] A append(UUB)).

The goal append(Y,Z,[a]) is reducible to a binding with the
following sequence:

(Y=[l A Z=[al) V
(Y = [X1 IL,] h [al = [Xl ILBJ A append(&,ZJ&))

(Y=[] A Z=[a]) V
(Y = [x, iLll A x1 = a A LB1 = 11 A append&,ZCBl))

(Y=[] A Z=[al) V
(Y = [XIILI] A X1 = a A LB1 = [I A

((&=[I A Z=11) v
(L1 = [x2&l A 11 = [XZ I&l A append&Z&)))>

264

(Y=[] A Z=[aI) v
(Y = [X, IL,] A x1 = a A LB1 = II A

((L1=Il A Z=[l) v
(Ll = [X,&l A false A append&,ZLBz))))

(Y=[] A Z=[al) V
(Y = [xlIL1l A X1 = a A LB, = 13 A

((&=[I A z=ll) ”
fak- 1)

(Y=[J A Z=[al) V
(y=[X,l~,] hXt=a A LBt=II A &=I1 A Z=Il)

Partial order programming gives insights about different pro-
gramming paradigms by expressing them in terms of order-
ing. For example, van Emden [S] proposes an extension of
logic programming in which the semantics of a logic program
are generalized from true-false assignments to assignments
with attenuation factors, real values between 0 and 1, which
can be viewed as representing some kind of certainty factor.
The quantitative logic program

a coso- b&f
a tOSO- c&d
b t0.20-
C t0.45-

t0.30-
2 cl.oo-

;
COSO-
t0.90- e

has semantics assigning the object b the value (greatest lower
bound) 0.20, the object c the value max(0.45, 0.30) = 0.45,
and the object a the value

max(0.50 * min(0.20, 0.90*(0.50)),
0.50 * min(0.45, 1.00)) = 0.225,

because the ‘B’ operator is defined to operate like ‘min’ and
different clauses are combined with ‘max’. with the various
attenuation factors multiplied in.
The corresponding partial order program makes the semantics
of this program evident:

a 2 0.50 * min(b,f)
a 2 0.50 * min(c, d)
b 2 0.20
C 2 0.45

2 5 Y-2

; 5
0:so
0.90 * e.

This translation from quantitative logic programs to inequali-
ties is also sufficient to convert propositional logic programs
(quantitative programs like the one above, but where all
attenuation factors are 1.00) into systems of inequalities.

Other programming paradigms can be expressed as partial
order programs as well. Functional programming, and more
generally ‘reductive’ systems, can be expressed naturally in
terms of a reduction ordering. Relationships such as

(((hr . 1~ . 4 a) b> --$ ((ky . a> b>
(CAY . a) b) + a

can be viewed as part of the definition of a partial order +
(more precisely a preorder, since acyclicity of the ordering

may not be guaranteed). In some situations, this inequality
ordering can even be more natural than the ‘one-way equal-
ity’ relationship that is often associated with reduction rules.

A very rough tabular comparison can be made, then, to illus-
trate how other paradigms can be viewed as instances of par-
tial order programming:

Casting problems in a partial order programming framework
can give fresh perspective onto how programming paradigms
can be structured, and onto how different paradigms can be
combined. In addition, the relationship between basic fixed
point results in denotational semantics and relaxation problem
solving is made explicit. From the foregoing we can see that
relaxation solves those problems that can be cast in the for-
mat of a system of inequalities and goal

where f is a continuous monotone function, and the set D of
values used is a complete partial order with a least element
1. Here I is the order on D extended to a partial order of
vector component-wise domination on the space of vectors
over D.

Similarly, any recursive programming paradigm with least
fixed point semantics can be presented as partial order pro-
gramming. Least fixed point semantics assign to each pro-
gram K a continuous monotone functional T,: D --f D on
some space D of semantic “interpretations” of the program.
These interpretations are typically subsets of the input-output
relation defined by the program. The smallest interpretation I
satisfying I = T,(l) gives the least fixed point semantics for x
[9]. Given R then, the continuous monotone partial order
programming problem

1:;:: : 2 T.QI

where D is the set of interpretations of x ordered by 2, which
is inclusion among interpretations, B is the set of objects
(T%‘(x) I k E O, x = I or x E D) (which includes I), and C
is defined by T,. Any programming paradigm with least
fixed point semantics is in this abstract sense a special case
of partial order programming.

265

5. Prospects
This paper has informally introduced partial order program-
ming, and has illustrated the nature of the paradigm by offering
examples, by pointing out its basic semantic properties, and by
relating it to existing paradikpns. Clearly much more can be
said about the issues the paradigm raises, and a more thorough
analysis of many aspects discussed here can be found in [101.

Chandy and Misra point out in [l] that “the utility of any new
approach is suspect, especially when the approach departs radi-
cally from the conventional.” The remainder of this section
highlights some characteristics of partial order programming
that offer some further perspective on its potential.

5.1. Connection of Diverse Fields

The examples shown earlier demonstrate that problems in
diverse fields can be expressed naturally with the partial order
programming paradigm. The paradigm seems to have promise
for use in operations research, modeling, some types of AI pro-
gramming, and numerical problem solving. The blend of
numerical and symbolic problems suitable for description with
the paradigm is difficult to characterize at this point, but seems
to be useful. Some partial order programs correspond to sys-
tems of linear inequalities, using addition and multiplication
operators from some semiring or semimodule. Parallelism
seems to be extractable from these problems. Furthermore par-
tial order programming appears to embrace multiple program-
ming paradigms and integration of environments, including for
example fixed-point paradigms not discussed here [1,4,12].

5.2. Concurrency
Partial orders make natural models of concurrency in pro-
grams. Any sort of precedence or sequencing constraints gives
rise to a partial order. Recently interest has grown in applying
partial order models of concurrency. As Pratt remarks in [13],
some concepts of concurrency are definable only for partial
orders, the meaning of concurrency of two events in partial
order models does not depend on the granularity of atomicity
of the events, and partial order models are in certain cases
easier to reason about than linear models. Recently we have
shown [ll] that partial order programming can naturally cap-
ture specifications of directedness and argument typing in logic
programs. These results appear particularly advantageous for
stream processing programs.

5.3. Modeling and Knowledge Representation
Although we have not discussed the issue in this brief over-
view, the partial order programming the paradigm fits many
modeling (also known as knowledge representation) concepts
naturally. These concepts include inference, type hierarchies,
constraint satisfaction, hill-climbing, inexact reasoning,
spreading activation, etc. Ordering also underlies important
knowledge representation concepts such as composition, part-
of relationships and aggregation, spatial relationships, te.mporal
relationships, dependencies, causal relationships, pos!;ession,
strength of conviction, preference, utility, planning, pro-
cedures, reductive problem-solving, chains of reasoning, and
heuristics. Humans are very good at reasoning about order-
ing. In [lo] more evidence is offered on why partial order pro-
gramming may have advantages in modeling complex systems
and human reasoning.

Acknowledgement
In 1974 Dave Kuck posed the question to the author of how
to characterize the significance of the many incarnations of
the generalized matrix product. In 1983 Paul Eggert and the
author came up with the idea of ‘relaxation programming’.
This paper is a result of several years of subsequent rumina-
tions. The author is indebted to many colleagues for sugges-
tions that have corrected or improved the presentation here,
but particularly to Paul Eggert for his careful readings, great
ideas, and enthusiasm.

References

1.

2.

3.

4.

5.

6.

7.

a.

9.

10.

11.

12.

13.

14.

Chandy, K.M. and J. Misra, Parallel Program Design:
A Foundation, Addison-Wesley, Reading, MA, 1988.
Colmerauer, A., “Equations and Inequations on Finite
and Infinite Trees,” Proc. Intnl. Conf. on Fifth Genera-
tion Computer Systems (FGCS84), pp. 85-99, North-
Holland, Tokyo, November 1984.
Cox, P.T. and T. Pieazykowski, “Surface Deduction: a
uniform mechanism for logic programming,” Proc.
Symposium on Logic Programming, pp. 220-227, IEEE
Computer Society #636, Boston, 1985.
Dijkstra, E.W. and C.S. Scholten, “Termination Detec-
tion for Diffusing Computations,” Information Process-
ing Letters, vol. 11, no. 1, pp. 1-4, 29 August 1980.
van Emden, M.H., “Quantitative Deduction and Its Fix-
point Theory,” Journal of Logic Programming, vol. 3,
no. 1, pp. 37-53, April 1986.

Isaacson, E. and H.B. Keller, Analysis of Numerical
Methods, J. Wiley & Sons, New York, 1966. (Chapter
9, Section 2: Solution of Laplace Difference Equa-
tions.)
Kuck, D.J., The Structure of Computers and Computa-
tions, J. Wiley & Sons, New York, 1978.
Mackworth, A.K. and E.C. Freuder, “The Complexity
of Some Polynomial Network Consistency Algorithms
for Constraint Satisfaction Problems,” Artificial Intelli-
gence, vol. 25, pp. 65-74, 1985.
Manna, Z., Mathematical Theory of Computation,
McGraw-Hill, New York, 1974.

Parker, D.S., “Partial Order Programming,” Technical
Report CSD-870067, UCLA Computer Science Dept.,
Los Angeles, CA 90024-1596, 1987.
Parker, D.S. and R.R. Muntz, “A Theory of Directed
Logic Programs and Streams,” in Logic Programming,
ed. R.A. Kowalski, K.A. Bowen, pp. 620-650, MIT
Press, August 1988.
Pamas, D.L., “A Generalized Control Structure and Its
Formal Definition,’ ’ Comm. ACM, vol. 26, no. 8, pp.
572-581, August 1983.
Pratt, V., “Modelling Concurrency with Partial Orders,”
International J. Parallel Programming, vol. 15, no. 1,
pp. 33-71, 1986. Also Stanford Tech, Report STAN-
CS-86-1113, June 1986.
Zimmermann, U., Linear and Combinatorial Optimiza-
tion in Ordered Algebraic Structures, North-Holland,
New York, 1981. Annals of Discrete Mathematics, vol.
IO.

266

