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ABSTRACT 

We introduce a programming paradigm in which 
statements are constraints over partial orders. A partial 
order programming problem has the form 

minimize 24 

subject to u1 2 vl, 4 2 v2, . . . 

where u is the goal, and u1 2 vl, u2 2 va, . . . is a col- 
lection of constraints called the program. A solution of 
the problem is a minimal value for u determined by 
values for ut, vt, etc. satisfying the constraints. The 
domain of values here is a partial order, a domain D 
with ordering relation 7. 

The partial order programming paradigm has interesting 
properties: 

(1) 

(2) 

(3) 

It generalizes mathematical programming and also 
computer programming paradigms (logic, func- 
tional, and others) cleanly, and offers a foundation 
both for studying and combining paradigms. 
It takes thorough advantage of known results for 
continuous functionals on complete partial orders, 
when the constraints involve expressions using 
only continuous and monotone operators. The 
semantics of these programs coincide with recent 
results on the relaxation solution method for con- 
straint problems. 

It presents a framework that may be effective in 
modeling, or knowledge representation, of complex 
systems. 
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1. Motivation 
Consider the following three problems: 

(1) Lap/ace’s Equation 

Let Ui be the solution of the discretized approximation 
to the equation 

v2u = a2 iEu=o 
ax2 '+ ay2 . 

The discretization is given by a rectilinear grid G, with 
boundary conditions defining u only on the boundary 
points of G. Numbering the points in G as (ut, , . . ,u,) 
arbitrarily, let left(i), right(i), up(i), and down(i) give the 
neighbors of node i in the interior of the grid. A node i 
on the boundary of G takes on a boundary value 
Ui = bi. Each node i in the interior of G satisfies the 
constraint 

The problem is to find values for ul, . . . ,u,. 

(2) Single-Source Shortest Path Problem 

Consider a graph G = <V,E>, each of whose edges 
<Vi,Vj> has an associated cost ak We assume here that 
costs are all nonnegative. One node of G, called vo, is 
distinguished as a source node. A path from Vi, to vim in 
G is a sequence of edges 

<Vil,Vi,>, <Viz,Vi~>, ’ ’ ’ ,<VCl.Vi,> 

in E, and the cost of this path is 

aili + ai2i3 + ’ ’ ’ + aimtim* 

For every node Vi, the problem is to compute the node 
cost Ui, which is the least cost of all paths between the 
source vo and Vi. Hence, 4 = 0. 
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(3) Consistent Lheling Problem 

We are given a graph G = <V,E>. Each node Vi is to be 
‘labeled’ with one or more members of bi, which are 
subsets of a finite label set A. These label sets are 
sometimes called node constraints, written 

Ui E bi 

for each i, where Ui denotes the set of labels for vC 

For each edge <Vi,Vp in G, we also have an arc con- 
straint aV that is a subset of bi x bf Specifically, the 
label sets Ui and Uj selected for nodes Vi and Vj must 
obey the constraint 

Ui S ajj M Uj 

where the relational semijoin operation K is defined by 

a#u = (xIcx,y>isina,andyisinu). 

The problem is to produce label sets that obey all of the 
node and arc constraints. 

How are these three problems related? Each is commonly 
given as an example of a problem that can be solved by 
‘relaxation’. The notation used above suggests deeper simi- 
larities, however. This paper is concerned with showing that 
the problems are equivalent in a certain sense. Roughly, 
each problem seeks the solution of a linear partial order pro- 
gram. That is, each seeks a vector u solving the problem 

I:;::; :: 2 Au + bI 

for an appropriate partial order 2, matrix A, vector b, and 
multiplication and addition operator: 

(1) With Laplace’s equation, define the coefficient matrix 
A = (a$ by 

l/4 if i is an interior node and 
ay = 

I 
j E (left(i),right(i),up(i),down(i) 1 

0 otherwise 

and boundary condition vector b = (bi) by 

4 if i is a boundary node 
bi = 

I 0 otherwise. 

Then the vector u = (UJ satisfies the matrix equation 
u = AU + b. Since the matrix A is nonnegative, the 
function f(u) = Au + b is monotonet. As it is also con- 
tinuous, minimizing u such that u 2 Au + b is 
equivalent to finding u such that u = Au + b (the least 
fixed point of f). 

This problem may be solved iteratively [6]. 
Specifically, given any finite initial values for the inte- 
rior nodes, the equation above may be used as an 
assignment, u := Au + b. Since A is nonnegative and 
has spectral radius less than 1, the iteration always con- 
verges (though possibly in an infinite number of steps). 

t Recall that a functionf is morw~one with respect to a partial order L if 
x L y implies f(x) E fi). 

(3) 

We 

The single-source shortest path problem places con- 
straints on the node costs ui. If 90 and Vi is a node 
whose outgoing edges <Vi,Vi> have cost ak then 

Ui 2 min 
I 

?I$ aii + U> aio 
I 

. 

Since we seek the shortest path values, our problem 
becomes 

minimize cuo, . . . ,u,> 
subject to u. 2 0 

ui 2 Ill& ati + Uj (i&o). 1 

Again the inequalities may be used to find a solution 
iteratively. Given a suitable initial value (such as +=) 
for Ui, 1 I i 5 n, we can use the equality above as an 
assignment to obtain successive values of up The itera- 
tion converges in a finite number of steps when the 
costs aii are nonnegative, as we assumed above. 

With consistent labeling, we can combine the constraints 
for each node Vi into a single constraint 

Ui S n bk 

This problem is naturally presented as a maximization 
problem with respect to the ordering s 

or equivalently, a minimization problem with respect to 
the reversal of s. (That is, we wish to minimize 
<IQ, . . . ,un> with respect to the ordering C defined by 
x 2 y iff n s y.) Once again, iterative solution is possi- 
ble. Iterative approaches for consistent labeling have 
come under increasing investigation recently [8]. 

see that the constraints of these three well-known prob- 
lems can be expressed in the form 

Ui ~ fj(“l, . . ’ ,‘“) 

for some ordering C, where each fi is a function that is 
monotone with respect to C. We use 2 here instead of r in 
order to make direct connections with existing work on 
monotone functions. Furthermore each of the problems 
above is a linear inequality system. That is, for each prob- 
lem there are binary operators H and p3 with which the prob- 
lem can be expressed as 

minimize u 

subject to u 3 AEELWU a b 

where ‘ERM’ is a generalized matrix product using q for 
(commutative, associative) addition and q for multiplication 
(as in the APL programming language). If X = (x$ and 
Y = (yti) are matrices of sizes mxn and nxp. respectively, 
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the generalized matrix product Z = X IM Y is a matrix of 
size mxp defined by 

Zij = 

For the examples above we have the foIlowing table: 

q q 1 

min + 2 

Linearity is interesting not only because it provides a new 
point of view here. Linearity also immediately suggests both 
sequential and parallel algorithms for solving the problems. 
The arsenal of known algorithms for solving linear algebraic 
systems of this kind is vast and well understood [7]. By 
casting our problems in linear format we can immediately 
take advantage of this existing work. 

Evidently these problems are not the only ones with this 
structure. How should we generalize upon these three exam- 
ples? 

2. Partial Order Programming 
Partial order programming is a computational paradigm that 
expresses computation declaratively as statements of order- 
ing. A partial order program P specifies a set of constraints 
C of the form 

u3v 

where u and v are ‘objects’ and J is a given partial order. 
Each program thus specifies: 

(1) a domain D of values with partial order 2; 
(2) a set B of objects, which contains D; 
(3) a set of ordering constraints C. 

Typically the constraints u 111 v are such that u is never a 
value, while v can be a value. Programs with constraints of 
this form are called reductive programs, and we will discuss 
them shortly. 
A partial order programming problem is then a statement of 
the form 

where g is a specific object, which we call the goal, and 
P = <B,C,D,J> is a partial order program. A semantics for 
the program P is an assignment of values in D to all of the 
objects in B in a way that satisfies all constraints in C. A 
solution of the programming problem is a semantics of P that 
simultaneously minimizes the value assigned to the goal 
object g. There may be no solutions, or more than one solu- 
tion. 

Consider the following example of a partial order program, 
where the domain of values D is the set of all subsets of 
(1,2,3) and is partially ordered by set inclusion with least 
element 0: 

minimize s 
subject to s 2 t 

s 2 (3) 
f 2 iL2). 

In this problem the objects B are (s,t) u D, and the 
inequalities listed here give the ordering constraints C. The 
unique solution of the problem is determined by the seman- 
tics 

s = (1.2,31 
t = (1,2), 

which gives the smallest possible value to s that is consistent 
with the constraints. 
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3. Solving Partial Order Programming Problems 
With partial order programming problems defined, the issue 
of how to solve them arises immediately. After reviewing 
some relevant definitions and Kleene’s fixed point theorem, 
we present three progressively restrictive classes of partial 
order programming problems, and show how they can be 
solved. These classes cover the three examples shown ear- 
lier. 

3.1. Background 
Definitions 
A partial order is a pair CD& where 7 is a binary rela- 
tionon D such that 

(Pl) For all x in D, x 7 x. 
(P2) For all x,y,z in D, if x 7y and y 7 z, then x 7 z. 
(P3) For all x,y in D, if x 2 y and y 7 x, then x = y. 

A preorder is a pair CD,& satisfying (Pl) and (P2). 
The least element of D, if it exists, is written 1. 

In a partial order CD&-, an upper bound of a subset S of D 
is an element z in D such that for every x in S, z 2~. The 
least upper bound of a set S, written u S, is the least z such 
that z is an upper bound of S; by (P3) it is unique if it exists. 

A directed set S in a partial order < D,I> is a nonempty sub- 
set of D with the property that if x,y are arbitrary elements in 
S, then there is another element z in S such that both z g x 
andzly. 

A complete partial order (cpo) is a partial order CD& in 
which every directed set S of D has a least upper bound u S. 

A function f : D+D on a cpo CD,& is called continuous 
monotone if for every directed set S in D, 

f(US) = Llm. 

Readers familiar with domain theory will undoubtedly prefer 
the terminology ‘continuous’ to ‘continuous monotone’, 
finding ‘monotone’ redundant. We use the terminology ‘con- 
tinuous monotone’ here to emphasize the monotonicity 
requirement on the function, because real-valued continuous, 
but non-monotone, functions can arise in problems like those 
in the first section of this paper, 

Theorem (Kleene) 
Let f : D+D be a continuous monotone map on the cpo 
CD,& with least element 1. Then f has a least fixed point 
equal to 

fixf = U{fk(L> I kE co ) 

where o is the set of natural numbers, and f k is f iterated k 
times, i.e.,fk =f.fk--‘, andf’ is the identity. 

3.2. Three Solvable Classes of Problems 
We define three natural classes of partial order programming 
problems. 

(1) 

(2) 

(3) 

Reductive Partial Order Programming 

Reductive programs P = <B,C,D,& require the value 
set CD,& to be a complete partial order with least ele- 
ment 1. Furthermore each object u E B is required to 
have a single constraint 

u a C(u). 

That is, these programs view C as a function from B to 
B, rather than as a set of ordering constraints on pairs of 
objects drawn from B. Additionally, C is required to be 
the identity function on D. 

Reductive partial order programs thus have constraints 
only of the form u 2 v where u is not a value, but v may 
be. Such programs can offer only lower bounds for an 
object U. 

Continuous Monotone Partial Order Programming 

Continuous Monotone programs are Reductive programs 
that have constraints oniy of the form 

where fi is a symbol or expression denoting a specific 
continuous monotone function on D. 

The set of objects B here includes not only ‘atoms’ (or 
‘variables’) Uir then, but also the ‘expressions’ construe- 

tible from these atoms and a specified set of continuous 
monotone functions. That is, we let B be a set of 
expressions using these function symbols over a set of 
atom A and the values in D, and let C represent reduc- 
tion or evaluation among expressions in B. Thus C 
defines a computation rule [9]. 

The partial order program definition given earlier is gen- 
eral enough to encompass this extension, although here 
the definition of a solution to a problem is made stricter, 
since the objects and constraints have more structure 
than before. Solutions must respect expressions. In 
other words, the value a solution assigns to the expres- 
sion f(ul, . . . ,u,J is required to be either I, or the 
value we get by applying the function denoted by f to 
the values the solution assigns to ~1, . . . ,un. 

Semilinear Partial Order Programming 

Semilinear programs are Continuous Monotone pro- 
grams that have constraints of the form 

where q and q are continuous monotone operators from 
a semiring that is also a complete partial order with 
least element 0. (In [lo] we show that a more general 
semiring-like structure called a pointed continuous com- 
plete ordered semimodule can be used here instead.) 
Many Continuous Monotone programs can be ‘linear- 
ized’ into Semilinear programs. This is not surprising in 
retrospect, as monotonicity is a restriction very like 
linearity. 
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3.3. Procedural Semantics and Assignment Refinement 
The three classes of problems are important because we have 
simpIe procedures for finding solution semantics for them. 

First, it is not hard to show that solutions for all Reductive 
problems can be found by repeated reduction. We go about 
finding a value for any object u by constructing the sequence 
C(u), c2w . . . . t?(u) of objects. This sequence then fsatisfies 
the constraints 

2 &u>. 

Either for some eventual value k, &u) is a value v 4~ D, in 
which case we can assign u the value v, or u can be assigned 
the value 1. This assignment is always a solution to any 
Reductive problem, since it assigns the least possible value to 
each object. Furthermore the vahe for any goal object g can 
be found simply by constructing its sequence. 

Second, we can obtain solutions for all three problem classes 
via relaxation. By relaxation we mean an iterative procedure 
which, given an initial value (namely: I) for the objects in 
B-D, repeatedly selects an unsatisfied constraint u 1 C(U) 
and enforces it by replacing the current assignment for u with 
the currently assigned value of the object given by C(u). 
(‘Out of kilter’ constraints are thus brought ‘into kilter’.) 
Repeated enforcement of the consaaint u 2 C(U) g:ives an 
ascending sequence 

of values for u. A consequence the Kleene fixed point 
theorem presented at the beginning of this section is that for 
the three dasses of partial order programs above, enforce- 
ment of constraints in any ‘fair’ order (any order that eventu- 
ally enforces all unsatisfied constraints) will ultimately pro- 
duce a least solution. 

‘Single-assignment’ semantics in programming languages 
have recently grown in importance. Relaxation semantics 
might be called ‘assignment rejnemenl: an assignment 
u := v(@ made in a partial order program can be superceded 
by u := v@+‘) provided that v(~+‘) 2 v@). In other words, we 
can replace the value of an object with better and better 
‘approximations’, or refinements, for the value of the object. 
This idea appears to have applications in other programming 
contexts. 

Linearity is interesting not only because it provides a new 
point of view, but also because it permits us to draw on 
known algorithms for solving linear algebraic systems. 
When A is a square matrix, the Semilinear programming pro- 
gram 

u 2 AEWU EB b 

is solvable by elimination methods such as Gaussian or 
Gauss-Jordan elimination. Work remains in understanding 
how we can generalize on elimination methods. 25mrner- 
mann [14] gives an excellent survey of work in this area. 

4. Programming Paradigms 
The examples in the first section show that partial order pm- 
gramming has applications in relaxation computations. Also, 
it clearly has a great deal to do with mathematical program- 
ming. However, partial order programming can also be 
treated as a computer programming paradigm. 

For example, logic programs can be expressed as partial 
order programs. All Horn rules are inequalities: the rule 
H t G expresses precisely the constraint “truth(H)” 2 
’ ‘zrurh(G)“. Logical implication (t) is just the ordering 
true 2 false (i.e., true t false) on D = (true,false). 
Full logic programs can be expressed as systems of inequali- 
ties as follows. A collection of m 2 1 Horn rules 

. . . 

P( h 9 . * . , r,n,g 1 + G,,, 

is logically equivalent to the combined rule 

P(X, >. . . ,X,)t(Xl=tllA...AX,=t,,RG1) 
v . . . v 

(Xl=rmlA...hXn=tmAG,,,) 

provided we include X = X t true. This combined rule 
can be viewed as an ordering among terms. With it, 
instances of the head of the rule can be rewritten to instances 
of its body, which is an expression involving equalities and 
other subgoals. The procedural semantics for logic program- 
ming can then be viewed accurately as a process of rewriting 
one goal to another that contains a reduced binding (reduced 
system of equalities) as a disjunct. The rewriting process 
combines the Prolog II reduction process for equations, 
presented in section 3 of [2], and goal elimination, the 
replacement of atomic subgoals by goals corresponding to the 
bodies of rules. It is similar to the “surface deduction” pro- 
cess developed by Cox and Pietrzykowski formally in [3], 
extending Colmerauer’s work. 

Rather than reproduce the reduction algorithm formally as a 
function C, we give an example that should illustrate the pro- 
cess clearly. With the convention above the standard 
‘append’ predicate looks like 

append(ABSIB) + 
(A=[]AB=AB) V 
( A = [X IL] A AB = [X ILB] A append(UUB) ). 

The goal append(Y,Z,[a]) is reducible to a binding with the 
following sequence: 

(Y=[l A Z=[al) V 
( Y = [X1 IL,] h [al = [Xl ILBJ A append(&,ZJ&) ) 

(Y=[] A Z=[a]) V 
( Y = [x, iLll A x1 = a A LB1 = 11 A append&,ZCBl) ) 

(Y=[] A Z=[al) V 
(Y = [XIILI] A X1 = a A LB1 = [I A 

((&=[I A Z=11) v 
( L1 = [x2&l A 11 = [XZ I&l A append&Z&) ))> 
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(Y=[] A Z=[aI) v 
( Y = [X, IL,] A x1 = a A LB1 = II A 

((L1=Il A Z=[l) v 
( Ll = [X,&l A false A append&,ZLBz) ))) 

(Y=[] A Z=[al) V 
( Y = [xlIL1l A X1 = a A LB, = 13 A 

((&=[I A z=ll) ” 
fak- 1) 

(Y=[J A Z=[al) V 
(y=[X,l~,] hXt=a A LBt=II A &=I1 A Z=Il) 

Partial order programming gives insights about different pro- 
gramming paradigms by expressing them in terms of order- 
ing. For example, van Emden [S] proposes an extension of 
logic programming in which the semantics of a logic program 
are generalized from true-false assignments to assignments 
with attenuation factors, real values between 0 and 1, which 
can be viewed as representing some kind of certainty factor. 
The quantitative logic program 

a coso- b&f 
a tOSO- c&d 
b t0.20- 
C t0.45- 

t0.30- 
2 cl.oo- 

; 
COSO- 
t0.90- e 

has semantics assigning the object b the value (greatest lower 
bound) 0.20, the object c the value max( 0.45, 0.30 ) = 0.45, 
and the object a the value 

max( 0.50 * min( 0.20, 0.90*(0.50) ), 
0.50 * min( 0.45, 1.00 ) ) = 0.225, 

because the ‘B’ operator is defined to operate like ‘min’ and 
different clauses are combined with ‘max’. with the various 
attenuation factors multiplied in. 
The corresponding partial order program makes the semantics 
of this program evident: 

a 2 0.50 * min( b,f) 
a 2 0.50 * min( c, d ) 
b 2 0.20 
C 2 0.45 

2 5 Y-2 

; 5 
0:so 
0.90 * e. 

This translation from quantitative logic programs to inequali- 
ties is also sufficient to convert propositional logic programs 
(quantitative programs like the one above, but where all 
attenuation factors are 1.00) into systems of inequalities. 

Other programming paradigms can be expressed as partial 
order programs as well. Functional programming, and more 
generally ‘reductive’ systems, can be expressed naturally in 
terms of a reduction ordering. Relationships such as 

(((hr . 1~ . 4 a) b> --$ ((ky . a> b> 
(CAY . a) b) + a 

can be viewed as part of the definition of a partial order + 
(more precisely a preorder, since acyclicity of the ordering 

may not be guaranteed). In some situations, this inequality 
ordering can even be more natural than the ‘one-way equal- 
ity’ relationship that is often associated with reduction rules. 

A very rough tabular comparison can be made, then, to illus- 
trate how other paradigms can be viewed as instances of par- 
tial order programming: 

Casting problems in a partial order programming framework 
can give fresh perspective onto how programming paradigms 
can be structured, and onto how different paradigms can be 
combined. In addition, the relationship between basic fixed 
point results in denotational semantics and relaxation problem 
solving is made explicit. From the foregoing we can see that 
relaxation solves those problems that can be cast in the for- 
mat of a system of inequalities and goal 

where f is a continuous monotone function, and the set D of 
values used is a complete partial order with a least element 
1. Here I is the order on D extended to a partial order of 
vector component-wise domination on the space of vectors 
over D. 

Similarly, any recursive programming paradigm with least 
fixed point semantics can be presented as partial order pro- 
gramming. Least fixed point semantics assign to each pro- 
gram K a continuous monotone functional T,: D --f D on 
some space D of semantic “interpretations” of the program. 
These interpretations are typically subsets of the input-output 
relation defined by the program. The smallest interpretation I 
satisfying I = T,(l) gives the least fixed point semantics for x 
[9]. Given R then, the continuous monotone partial order 
programming problem 

1:;:: : 2 T.QI 

where D is the set of interpretations of x ordered by 2, which 
is inclusion among interpretations, B is the set of objects 
( T%‘(x) I k E O, x = I or x E D ) (which includes I), and C 
is defined by T,. Any programming paradigm with least 
fixed point semantics is in this abstract sense a special case 
of partial order programming. 
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5. Prospects 
This paper has informally introduced partial order program- 
ming, and has illustrated the nature of the paradigm by offering 
examples, by pointing out its basic semantic properties, and by 
relating it to existing paradikpns. Clearly much more can be 
said about the issues the paradigm raises, and a more thorough 
analysis of many aspects discussed here can be found in [ 101. 

Chandy and Misra point out in [l] that “the utility of any new 
approach is suspect, especially when the approach departs radi- 
cally from the conventional.” The remainder of this section 
highlights some characteristics of partial order programming 
that offer some further perspective on its potential. 

5.1. Connection of Diverse Fields 

The examples shown earlier demonstrate that problems in 
diverse fields can be expressed naturally with the partial order 
programming paradigm. The paradigm seems to have promise 
for use in operations research, modeling, some types of AI pro- 
gramming, and numerical problem solving. The blend of 
numerical and symbolic problems suitable for description with 
the paradigm is difficult to characterize at this point, but seems 
to be useful. Some partial order programs correspond to sys- 
tems of linear inequalities, using addition and multiplication 
operators from some semiring or semimodule. Parallelism 
seems to be extractable from these problems. Furthermore par- 
tial order programming appears to embrace multiple program- 
ming paradigms and integration of environments, including for 
example fixed-point paradigms not discussed here [1,4,12]. 

5.2. Concurrency 
Partial orders make natural models of concurrency in pro- 
grams. Any sort of precedence or sequencing constraints gives 
rise to a partial order. Recently interest has grown in applying 
partial order models of concurrency. As Pratt remarks in [13], 
some concepts of concurrency are definable only for partial 
orders, the meaning of concurrency of two events in partial 
order models does not depend on the granularity of atomicity 
of the events, and partial order models are in certain cases 
easier to reason about than linear models. Recently we have 
shown [ll] that partial order programming can naturally cap- 
ture specifications of directedness and argument typing in logic 
programs. These results appear particularly advantageous for 
stream processing programs. 

5.3. Modeling and Knowledge Representation 
Although we have not discussed the issue in this brief over- 
view, the partial order programming the paradigm fits many 
modeling (also known as knowledge representation) concepts 
naturally. These concepts include inference, type hierarchies, 
constraint satisfaction, hill-climbing, inexact reasoning, 
spreading activation, etc. Ordering also underlies important 
knowledge representation concepts such as composition, part- 
of relationships and aggregation, spatial relationships, te.mporal 
relationships, dependencies, causal relationships, pos!;ession, 
strength of conviction, preference, utility, planning, pro- 
cedures, reductive problem-solving, chains of reasoning, and 
heuristics. Humans are very good at reasoning about order- 
ing. In [lo] more evidence is offered on why partial order pro- 
gramming may have advantages in modeling complex systems 
and human reasoning. 

Acknowledgement 
In 1974 Dave Kuck posed the question to the author of how 
to characterize the significance of the many incarnations of 
the generalized matrix product. In 1983 Paul Eggert and the 
author came up with the idea of ‘relaxation programming’. 
This paper is a result of several years of subsequent rumina- 
tions. The author is indebted to many colleagues for sugges- 
tions that have corrected or improved the presentation here, 
but particularly to Paul Eggert for his careful readings, great 
ideas, and enthusiasm. 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

10. 

11. 

12. 

13. 

14. 

Chandy, K.M. and J. Misra, Parallel Program Design: 
A Foundation, Addison-Wesley, Reading, MA, 1988. 
Colmerauer, A., “Equations and Inequations on Finite 
and Infinite Trees,” Proc. Intnl. Conf. on Fifth Genera- 
tion Computer Systems (FGCS84), pp. 85-99, North- 
Holland, Tokyo, November 1984. 
Cox, P.T. and T. Pieazykowski, “Surface Deduction: a 
uniform mechanism for logic programming,” Proc. 
Symposium on Logic Programming, pp. 220-227, IEEE 
Computer Society #636, Boston, 1985. 
Dijkstra, E.W. and C.S. Scholten, “Termination Detec- 
tion for Diffusing Computations,” Information Process- 
ing Letters, vol. 11, no. 1, pp. 1-4, 29 August 1980. 
van Emden, M.H., “Quantitative Deduction and Its Fix- 
point Theory,” Journal of Logic Programming, vol. 3, 
no. 1, pp. 37-53, April 1986. 

Isaacson, E. and H.B. Keller, Analysis of Numerical 
Methods, J. Wiley & Sons, New York, 1966. (Chapter 
9, Section 2: Solution of Laplace Difference Equa- 
tions.) 
Kuck, D.J., The Structure of Computers and Computa- 
tions, J. Wiley & Sons, New York, 1978. 
Mackworth, A.K. and E.C. Freuder, “The Complexity 
of Some Polynomial Network Consistency Algorithms 
for Constraint Satisfaction Problems,” Artificial Intelli- 
gence, vol. 25, pp. 65-74, 1985. 
Manna, Z., Mathematical Theory of Computation, 
McGraw-Hill, New York, 1974. 

Parker, D.S., “Partial Order Programming,” Technical 
Report CSD-870067, UCLA Computer Science Dept., 
Los Angeles, CA 90024-1596, 1987. 
Parker, D.S. and R.R. Muntz, “A Theory of Directed 
Logic Programs and Streams,” in Logic Programming, 
ed. R.A. Kowalski, K.A. Bowen, pp. 620-650, MIT 
Press, August 1988. 
Pamas, D.L., “A Generalized Control Structure and Its 
Formal Definition,’ ’ Comm. ACM, vol. 26, no. 8, pp. 
572-581, August 1983. 
Pratt, V., “Modelling Concurrency with Partial Orders,” 
International J. Parallel Programming, vol. 15, no. 1, 
pp. 33-71, 1986. Also Stanford Tech, Report STAN- 
CS-86-1113, June 1986. 
Zimmermann, U., Linear and Combinatorial Optimiza- 
tion in Ordered Algebraic Structures, North-Holland, 
New York, 1981. Annals of Discrete Mathematics, vol. 
IO. 

266 


