
“Look ‘Ma, No Hashing, And No Arrays Neither”

Jiazhen Cai 1 and Robert Paige 2

New York University/ Courant Institute

New York, NY 10012

and

University of Wisconsin

Madison, WI 53706

ABSTRACT

It is generally assumed that hashing is essential to many algorithms related to efficient compilation;

e.g., symbol table formation and maintenance, grammar manipulation, basic block optimization, and

global optimization. This paper questions this assumption, and initiates development of an efficient

alternative compiler methodology without hashing or sorting. Underlying this methodology are

several generic algorithmic tools, among which special importance is given to Multiset Discrimination,

which partitions a multiset into blocks of duplicate elements. We show how multiset discrimination,

together with other tools, can be tailored to rid compilation of hashing without loss in asymptotic per-

formance. Because of the simplicity of these tools, our results maybe of practical as well as theoretical

interest. The various applications presented culminate with a new algorithm to solve iterated strength

reduction folded with useless code elimination that runs in worst case asymptotic time and auxiliary

space linear in the maximum text length of the initial and optimized programs.

1. Introduction. with linear search time and a hash table. They also pro-

An important practical and theoretical question in

Computer Science is whether there are algorithms whose

worst case performance can match the expected perfor-

mance of solutions that utilize hashing. In the context of

this broader question, we initiate an investigation of

efficient compilation without hashing and, consequently,

raise some doubts about the prevailing view that hashing

(e.g., universal hashing [5]) is essential to the various

aspects of compilation from symbol table management

[2] to reduction in strength by hashed temporaries [6].

Aho, Sethi, and Unman [2] present only two data

structures for storing symbol tables - a linear linked list

pose these two data structures for methods to turn an

expression tree into a dag and the more general basic

block optimization of value numbering. Hashing is

involved in preprocessing for global optimization to per-

form constant propagation [22], global redundant code

elimination [4], and code motion [8]. The best methods

of strength reduction [3,6] rely on hashed temporaries to

obtain efficient implementations.

There are several reasons why hashing is used in

these applications. Hashing has O(1) expected time per-

formance and Iincar auxiliary space. The method of

Universal Hashing, due to Carter and Wegman [5], is

especially desirable, since the expected O(1) time is

independent of the input distribution. Universal hashing

is well suited to applications such as compilation, where

the hash tables do not persist beyond a single compilation

run. In the applications mentioned above hashing leads to

1.The research of this author was partially supported by National Science Foundation grant CCR-9002428.

2. The research of this author was partiatly supported by Office of Navat Research Grant No. NCKX314-90-J-1890.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying

is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

@ 1990 ACM 089791-419-8/90/0012/0143 $1.50 143

simple on-line algorithms supporting immediate

storage/access. Consequently, various phases of compi-

lation can be carried out incrementally with few passes

and with good space utilization.

However, liberal use of hashing incurs certain

costs. Even discounting the costs of collisions and

rehashing, the calculation of a single hash operation, say

((ax + b) mod N) mod m for input x and constants a, b

belonging to {O, N), is much greater that the cost of

an array or pointer access. Mairson proved that for any

‘minimal’ class of universal hash functions there exists a

bad input set on which every hash function will not per-

form much better than binary search [13]. The slow

speed of SETL, observed in the SETL implemented

ADA-ED compiler, has been attributed to an overuse of

hashing. And a hash table implementation involving an

array twice the size of the data set is another cost.

Arrays lack the benefits offered by linked lists - namely,

easy dynamic allocation, dynamic maintenance, and easy

integration with other data structures. Fhmlly, although

on-line algorithms are vital to incremental compilation,

batch processing may otherwise suffice.

In this paper we show that all of the hashed imple-

mentations of applications mentioned above can be

replaced by algorithms with matching or superior worst

case performance. This is achieved by using several sim-

ple algorithmic tools (that exclude sorting), the most

important of which is multiset discrimination; i.e.,

finding all duplicate values in a multiset. Multiset

discrimination is discussed for various types of elements

including pointers, stings, numeric constants, subtrees,

and dags. In this paper it is adapted to solve the follow-

ing probIems.

(i) Array or list-based Symbol tables can be formed

during lexical scanning with unit-time curser or

pointer storagelaccess.

(ii) Many grammar transformations can be imple-

mented efficiently using multiset string discrimina-

tion. In this paper we exhibit a new linear time left

factoring transformation based on a generalization

of Homer’s rule to mttltisets of strings. Simpler

forms of this “heuristic’ transformation were previ-

ously studied by Steams [19] and others (see also

[2, 12]) to turn non-LL context free grammars into

LL grammars.

(iii) An expression tree-to-dag transformation is imple-

mented without hashing in a simpler way than

before and in linear time and space. The numerous

applications include one in which any linear pat-

(iv)

(v)

(vi)

tern matching algorithm (e.g., [10]) can be turned

into an efficient nonlinear matching algorithm,

where each equality check takes unit-time.

A new hash-free basic block optimization by value

numbering [2, 7] is given, which leads to a faster

solution to the program equivalence problem used

in integration by Yang, Horwitz, and Reps [23,24].

Although the main parts of algorithms for global

constant propagation [22], global common subex-

pression detection [4], and code motion [8] do not

use hashing, the preprocessing portions for each of

these algorithms do. Such hashing can be elim-

inated without penrdty by efficient construction and

maintenance of the symbol table.

We regard the strength reduction transformation

presented by Cocke and Kennedy [6] to be the

most practical reduction in strength algorithm pub-

lished in the literature. Although the transforma-

tion due to Allen, Cocke, and Kennedy [3] is more

powerful (since it can reduce multivariate pro-

ducts) and analyzes control flow more deeply, this

algorithm can degrade performance by introducing

far too many sums in order to remove nests of pro-

ducts (as was shown in [14]).

We solve three progressively more complex ver-

sions of the Cocke and Kennedy transformation

without hashing and with superior worst case time

and space than the expected performance in previ-

ous hash-based solutions[6]. In particular, an algo-

rithm is presented to solve iterated strength reduc-

tion folded with useless code elimination in worst

case asymptotic time and auxiliary space linear in

the maximum text length of the initial and optim-

ized programs,

2. Partial Tool Kit for Algorithm Design Without

Hashing

There are many simple combinatorial problems for

which hashing seems like the natural, perhaps only, way

to obtain an efficient solution. These include such basic

computations as:

(i) set union, difference, and intersection;

(ii) multiset sting discrimination; i.e., finding all

duplicates in a multiset of stings;

(iii) computing ((x,y]: [x,y] e S x T)

Although hashing may seem like a panacea, it does incur

costs, and we should not overlook the many contexts in

which the preceding computations can be solved by an

144

efficient hash-free approach.

In [15] a different more general discussion of prin-

ciples underlying hash-free algorithms for simple set

operations is presented. Below we discuss a few sharper

techniques with a focus on multiset discrimination.

Unless otherwise stated, throughout this paper we will

assume that sets and multisets are implemented as linked

lists.

2.1. Multiset Discrimination of Pointers

We use the following notation for pointer manipu-

lation. If variable x contains a pointer to variable y,

expression x ~ retrieves the value stored in y, and ?X is a

pointer to the value stored in x.

Consider a multiset M of pointers to elements in a

set S. For each element (i.e., symbolic address) x in M,

we want to compute the set j (x T) of pointers to all ele-

ments in M with the same value as x, (Note here that x ?

is the value of the element in S that x points to.) Assume

that f (x ~) is initially nil. Multiset M can be partitioned

into blocks of duplicates using the following simple pro-

cedure

F:={] -- F will be the set underlying M
(for x e M) -- linear search through M

if f (x ~) = nil then
F:= F’u {x)

end if
f (XT) :=f (Xt) u {-TX]

end

2.2. Multiset Discrimination of Strings

Solving multiset discrimination of strings is

slightly more complicated. Let M be a multiset of n

variable-length strings over a k-symbol alphabet Z = {1,

.... k). Assume for convenience that each string ends

with a sentinel symbol O.

Starting with an initial partition P containing only

one block M, we can solve this problem by repeatedly

splitting blocks of P until all the duplicates are found.

For each strings we implement a currt?nt position where

the current symbol for s is stored. Initially the current

symbol for each string is the symbol in its first position.

A block is a set of pointe~ to strings in M. Once we

know that a block contains all duplicate strings we say

that the block is jinishe~ otherwise, we say the block is

unfinished. Partition P contains two parts - a set of

unfinished blocks initially containing the single block M,

and a set of finished blocks initially empty.

A partition refinement of P can be implemented

using a primitive operation split(B) that replaces block B

by new blocks, each containing pointem to stings with

the same current symbol. The technique implements a

variant of multiset discrimination of pointers that makes

use of an array of k + 1 buckets, where the i-th bucket

contains the new block with current symbol i. Any new

block found in the O bucket or containing only one

pointer to a string is finished; otherwise it is unfinished.

During execution of split(B), the current position is

incremented in each string belonging to a new unfinished

block. It is easy to implement sp/it(B) in time O (IB I)

and space O (IB I + k).

We can also implement split(B) exclusively with

lists and list processing. For each symbol i = O, 1, k

form a special list called the i-list with no elements,

Strings are represented as lists of pointers to i-lists.

Buckets can then be formed using these i-lists instead of

arrays, and multiset discrimination can be solved for

pointers as in the preceding subsection.

The following algorithm makes use of split(B) to

solve multiset discrimination of strings:

1. Form the initial partition P = (M).

2. Repeat Step 3 until all of the blocks in P are

finished.

3. Scan the set of unfinished blocks, and replace

each such block B by split (B).

The algorithm runs in O (m’) time and O (n +/c) space,

where m’ is the total length of the prefixes needed to dis-

tinguish the strings in M. Both the theoretical time

bounds and the simplicity of the implementation make it

superior to lexicographic sorting for solving multiset

discrimination.

Previously, the lexicographic sorting algorithm

found in Aho, Hopcroft, and Unman’s book [1] was used

to solve congruence closure [9] and also tree isomor-

phism [1]. Both these problems can be solved more sim-

ply by our solutions to multiset discrimination of strings.

Their sorting algorithm has the theoretical disadvantage

of an ~(m) complexity in time and auxiliary space,

where m is the totat length of all strings in M. Their

algorithm also has the practical disadvantage of a com-

plex multi-pass implementation.

The array-based version of multiset discrimination

of strings was used earlier by Paige and Tarjan to obtain

improved solutions to Iexicogmphic sorting [16] and

DFA minimization for one symbol alphabets [17]. The

implementation that uses pure list processing without

145

arrays has the advantage of easier memory management,

Both implementations are simple, and involve one pass

through the prefixes of the strings. Consequently, our

proposed applications may be practical.

2.3. Multiset Discrimination of Numeric Constants

Multiset discrimination of numeric constants can

be solved by treating these constants as strings over a k-

bit alphabet for arbitrary k. By treating character strings

as bit strings, we can also vary k to obtain space/time

tradeoffs in solving string discrimination.

3. Applications

3.1. Symbol Tables

Multiset discrimination of strings can be used

directly to implement a two-pass lexical scanner. First

the string is scanned to produce tokens and initial

pointers to symbol table entries. The symbol table is a

multiset of lexemes (implemented as a doubly linked

list), and an additional pass is needed to remove redun-

dant entries, and redirect pointers (the lexical values) to

distinct entries in the modified table. The performance is

linear time and space in the length of the input string.

Consequently, parsing and semantic analysis can proeced

without hashing, since these processes can store and

access the symbol table using pointers.

3.2. Fast Left Factoring

Left factoring is a context free grammar transfor-

mation that replaces productions of the form A -+ ~j3i i =

1 , . .. n by productions A -+ a C and C + pi i = 1, n,

where C is a new nonterminal added to the grammar. It

was studied by Stearns [19] and others [2, 12] as a tool

for turning non-LL grammars into LL grammars. They

did not describe optimal forms of factoring or algo-

rithmic details. By making an analogy with Homer’s

rule for polynomials, we can define a left factoring

transformation so that the new grammm has a minimal

number of new productions and cannot be further fac-

tored.

The algorithm proceeds by repeatedly partitioning

the set of grammar productions starting with an initial

partition P in which every set of productions with the

same left-hand-side nonterminal forms a block. The data

structure for P makes use of a set M of pointers to all the

right-hand-sides of productions in the grammar. This set

can be obtained by multiset discrimination of all the

right-hand-side strings. Each block is represented by a

subset B Q M, a nonterminal symbol A, and an interval [i,

]3, where the substring from the i-th to j-th symbol of

every string in B must be the same. Initially, for each

nonterminal A, P has a block containing the set of

pointers to all right-hand-sides rhs such that A -+ rhs is a

production, A is the grammar symbol for this block, and

[1,0] is the interval, which represents the empty string k.

In presenting the algorithm below we use the nota-

tion sij to denote the substring of string s from the i-th to

the j-th symbol; si denotes the subsrnng of s from the

i-th symbol to the last symbol of s. After initialization

the algorithm computes the new grammar Gas described

below:

G:={)
(while P#())

remove block [B, [i,j~, A] from P
--

-- find a left factor for strings in block B starting
-- from the ith position
-.

J:=j+l

split (B)

(case 1: B was not refined into more than one block
by split(B))

_-

-- part of a nonempty left factor is found for strings
-- in B
--

if sentinel O is reached then
--
-- every string in B is identically the left factor
-- rhSi,j_l

--

G := G U (A+ rhsi,,j_l }
else

--
-- rhsi.,j is part of the left factor yet to be found
--

add [B, [i,jl, A] to P
end if

end case 1
(case 2: B was refined into more than one block by

split (B))
-.

-- complete left factor is found for strings in B
--

if i = j then
.-

-- left factor is the empty string, and B must bean
-- initial block
--

C:= A --C represents nonterminal A
else

--
-- nonempty left factor is ~hij_l

--

146

create new nonterminal C
G:= G u {A+ rh~i,,j.l C)

end if
(for each new blockD that results from split(B))

.-

.- nothing more to factor

. .

ifitisa Oblockthen G:= Gu{C-+k)
--

-- D contains just a single string, which is the trivial

-- factor rhj,,

--

elseif ID I = 1 then G :=G u (C +rh~j,)
-.
-- try to find the left factor for strings in D
.-

elseif ID I >1, then add [D,~,j~ ,Cl to P
end if

end for
end case 2

end while

THEOREM 1. The preceding algorithm is correct

and runs in linear time in the sum of the grammar sym-

bols contained in all the input productions.

3.3. Multiset Discrimination of Trees and Applica-

tions

Suppose we have a forest of syntax trees produced

by syntactic analysis. Suppose also that the nodes of the

syntax tree contain pointers to symbol !able entries for

function symbols, constants, and variables. There are

various applications in which we want to find duplicate

subtrees. Multiset subtree discrimination can be solved

in a new way without hashing by combining multiset

string discrimination with muh.iset pointer discrimina-

tion.

Let T be a forest of n nodes. We identify each sub-

tree rooted in node j by a string of length 1 + the number

of children of j and with symbols ranging over the alpha-

bet (1, n). First we solve multiset pointer discrimina-

tion on the symbol table pointers in all the nodes of T,

Next, we assign successive integers, called local

numbers, starting with 1 to the distinct pointers of T. The

local number at each node j will be the initial symbol of

the string that identifies j.

To obtain the remaining symbols of the subtree

identifier, we exploit the idea that subtrees at different

heights must be distinct. This allows us m solve multiset

subtree discrimination separately for all nodes of the

same height bottom-up starting from the leaves to the

tree height d. That is,

(1)

(2)

(3)

(4)

Solve multiset string discrimination for the leaves,

and identify each distinct local number with new

numbers, called value numbers, with successive

values starting with 1.

For height i =2,3, d, repeat steps 3 and 4:

Identify each node j at height i with a string

formed from the local number of j followed by the

value numbers of the children of j.

Solve multiset string discrimination on the strings

described in step 3. This solves the multiset sub-

tree discrimination problem at height i. Then iden-

tify each distinct subtree at height i with new suc-

cessive value numbers, starting from the last value

number assigned to a subtree at height i- 1.

The preceding algorithm requires O(n) time and

space and is a great deal simpler than the previous best

algorithm based on lexicographic sorting. It can be used

to obtain new hash-free solutions to many applications

including tree-to-dag compression, turning an arbitrary

linear tree pattern matching algorithm [10] into a non-

linear matching algorithm [18], deciding structural

equivalence of type denotations [2], and many more.

3.4. Multiset Dag Discrimination and Acyclic Coar-

sest Partitioning

The solution to multiset tree discrimination extends

without modification to solve multiset discrimination for

dags with m edges and n nodes in time O (m) and space

O(n). Recall that this space bound improves the O(m)

space bound that could be obtained to solve this problem

using Aho, HopCroft, and Unman’s lexicographic sorting

algorithm [1]. We show how multiset dag discrimination

can be used to obtain an improved solution to acyclic

instances of the many-function coarsest partition prob-

lem.

The many-function coarsest partition problem,

used by Hopcroft to model the problem of DFA minimi-

zation [11], has applications in program optimization and

program integration. It can be formulated as follows.

Given a directed multi-graph (V, E ~, Ek) (where V is

the set of vertices, and E ~, E~ are sets of edges), and

an initial partition P = (VI, V=) of V, find a coarsest

refinement P’ of P such that for each block C in P’ and

each i = 1, ,.,, k, there exists a block CO in P’ such that

the image set Ei[C] G CO, where Ei[C] = {y: [x, Y l~Ei

and XG C). Here we assume that for each i = 1, k, the

outdegree of each vertex v ● V in (V, Ei) is at most 1.

147

An algorithm was given in[l 1] that solves this

problem in time @(k I V I log I V I) and space @(k Ill) in

the worst case, which is true even when the graph (V, E ~

v ... u Ek) is acyclic. However, when the graph (V, E 1

v .,. u Ek) is acyclic, we can solve the problem in time

and space O (k I V I) using a solution to multiset discrim-

ination for dags.

THEOREM 2. If (V, E ~ u ... u Ek) is acyclic, then

the many function coarset partition problem can be

solved by Hopcroft’s algorithm in time @(k I V I log I V I)

and space @(k ~V ~) in the worst case, and by multiset

dag discrimination in time O(k I V I) and space O(ltl).

3.5. The Sequence Congruence Problem

The sequence congruence problem [23, 24] arises

in the context of program integration. It asks how to par-

tition program components into classes whose members

have equivalent execution behaviors. The algorithm

presented in [23, 24] solves this problem in two phases:

the program components are first partitioned w.r.t the

flow dependence graph, and then refined w.r.t. the con-

trol graph. Hoperoft’s coarsest partition algorithm is used

in both phases, giving the O (m Ilogm 1 + m 210grn2) time

complexity, where m ~ and m ~ are the sizes of the flow

dependence graph and control graph respectively. Since

their control graph is essentially acyclic, the linear time

multiset dag discrimination method can be used for the

second phase to improve their time bound to

O(mllogml +m2).

3.6. Value Numbering Without Hashing

Value numbering is a standard optimization tech-

nique of determining equalities within basic blocks to

avoid redundant computations[2, 7]. Although the tech-

nique is mostly implemented with hashing, multiset

discrimination can be used to obtain an efficient imple-

mentation without hashing.

Consider a basic block B consisting of a sequence

of assignment statements s 1, ,.., Sk, each of the form lhs

:= rhs, where lhs is a variable, and rhs is either a con-

stant, a variable, or an expression of the form x op y.

Here, op is some binary operator, and x, y can be con-

stants or variables. Assume that B is lexically scanned,

and that variables and constants are represented by

pointers to a symbol table as described previously. We

want to assign an integer (i.e. a value number) to each

occurrence of an expression in the statements of B so that

if two occurrences of expressions have the same value

number, then they must have the same run-time value.

We compute value numbers in three steps as follow~

1. Construct an initial dag representation D = (V,

E ~, E2) of B, where the vertices of D represent the

values of subexpressions. Each vertex has a label

representing an approximate initial value. Leaves are

associated with variables and constants, and are labeled

by pointers to symbol table entries. Each internal vertex

is associated with a right-hand-side rhs of the form x op

y, and is labeled op.

We construct D by scanning the statements in B in

order frOms 1 tO sk. During this scan, the vertex nod? (v),

representing the current dag vertex for variable or con-

stant v, is accessed by pointer from the symbol table

entry for v, Initially node(v) is nil.

When scanning statement lhs := rhs, for each

right-hand-side argument x in which node (x) is nil,

assign a new vertex to node(x) labeled by a pointer to

the symbol table entry for x, If rhs is a variable or con-

stant y, then rhs is represented by vertex v=node (y),

Otherwise, if rhs is of the form x op y, then create a new

vertex v labeled op and having two children nook (x) and

node (y), representing the most recent value of x and y

respectively. The edge [v, node (x)] belongs to E 1, and

the edge [v, node (y)] belongs to E2. Finally, assign v to

node (lhs), so that lhs and rhs are represented by the

same vertex. Two different vertices of D may have the

same label and children during this step, but they will be

merged in the final step.

2. Propagate constants in D bottom up. If a vertex

w in D is labeled op and the labels for its two children

point to constants c 1 and C2, then label w with a pointer

to the computed value of c I op c z. Then delete the edges

leaving w from E ~ and E ~.

3. Compute the value numbers. We first partition

V based on the labels of its elements. Call the resulting

partition P ~. We solve the coarsest partition problem

with the input (V, E ~, E2) and P o by multiset dag

discrimination to get a final partition P = { B ~, Bt) of

V. Then for i = 1, t, we assign integer i to each ele-

ment of Bi as its value number.

Each of the abo~e steps can be done in lines time

without hashing. Note that greater accuracy can be

achieved by using explicit constant labels (instead of

pointers to constants), folding step 3 with step 2, and per-

forming multiset discrimination of all the constant labels

before performing step 3.

148

4. Reduction in Strength

The final three examples use the preceding tech-

niques to obtain new solutions to strength reduction with

worst case performance asymptotically better than the

expected performance of the previous best algorithms.

Ironically, the efficiency obtained seems to stem from

using batch techniques to implement strength reduction,

which itself uses incremental techniques to improve pro-

gram performance.

4.1. Basic Strength Reduction

First we consider a new hash-free algorithm that

implements Cocke and Kennedy’s strength reduction

transformation [6]. The algorithm runs in worst case

time/space linear in the length of the final program text,

which, as we shall show, can be as much as two orders of

magnitude better than their hash-based algorithm. Like

their algorithm we are careful not to compute the poten-

tially costly data flow relation,

Coeke and Kennedy’s transformation is concerned

with replacing hidden costs of linear polynomials

involved in the array access formula used in program-

ming languages like Fortmn or Algol. As was suggested

by Allen, Cocke, and Kennedy [3], the earlier transfor-

mation [6] can be improved by sharper analysis of con-

trol flow and taking safety of code motion into account.

However, such improvement is orthogonal to the solution

presented here.

The strength reduction transformation of [6] may

be defined as follows. Let L be a strongly conneeted

region of code. We assume that this code consists of

assignments to simple variables of the form z :=op (x,y)

or z :=op (x) and conditional branches with boolean

valued variables as predicates. We assume implicit

assignment to certain designated input variables, and

implicit output variables that are printecl whenever they

are assigned a new value. All concern for control flow is

simplified by taking a most conservative position that L

forms a cliquq i.e., that every two statements in L can be

executed one after the other.

If c is either a region constant variable of L or a

constant, and if t’ is a variable that is defined in L, then

product ixc is reducible if all definitions to i occurring in

L are among the following forms: i:= j, i:= -j, i:= j + k,

i:= j -k, i:= -j+ k, or i:= -j - k, where irneach such form

jxc and kxc must also be reducible. For each reducible

product ixc occurring in L, strength reduction transforms

Las follows:

(i)

(ii)

(iii)

(iv)

Replace each occurrence of ixc in L by a new vari-

able tiC uniquely associated with text expression

iXc.

If variable i is live on entry to L, then introduce

assignment tic := ixc in a unique entry block (a

detail we add to their transformation for correct-

ness), which must be entered before entering L.

Within L and just prior to each definition to i of the

forms either i :=* j or i :=* j * k, insert the code

tic :=* jxc or ti. :=* jxc f kxc respectively.

If any of the products introduced in step (iii) has

been previously elimimted by either code motion

or strength reduction, replace it by its associated

temporary variable. Remove all other products

introduced in step (iii) by either code motion or

recursive application of strength reduction as

appropriate.

Like Cocke and Kennedy we assume that strength

reduction is performed after redundant code elimination,

constant propagation, and code motion. Given a strongly

connected program region L as input, our solution shares

the first four steps of the Cocke and Kennedy algorithm;

i.e.,

(i)

(ii)

(iii)

(iv)

Compute the set RC of region constant variables of

L and a set Defs (v) of all definitions in L to each

variable v defined in L.

Compute the set IV of induction variables; that is,

the set of all variables x with definitions occurring

in L such that any product xxc would be reducible.

This procedure was also described by Cocke and

Schwartz [7].

Find the set Canals of all reducible products XXC

actually appearing in L, and the asswiated places

where they occur.

For each induction variable x, compute the set

Afct (x) = {x) u (y: y is a variable or constant on

the right-hand-side of any assignment to x in L).

The preceding steps can be performed in worst

case time and space linear in the program text. If Afct is

regarded as a binary relation and Afct* represents its

transitive closure, then the following fact immediately

follows from Cocke and Kennedy’s paper.

LEMMA 1. The set of all expressions removed from

L by strength reduction is defined by Rm = {jxc: ixc G

Canals, j ● Afct” (i)}.

Calculation of Rm is central to the implementation

of strength reduction, and it is important to observe three

149

sources of redundancy in computing this set naively.

(i) when ixc and jxc belong to Canals and Afct” (i) n

A@* (j) is nonempty;

(ii) when ixc ~ and jxcz belong to Cartds, c ~ G

Afct* (j), and Cz ● Afct* (i);

(iii) when two different products of constants evaluate

to the same constant

Because only the first source of redundancy can lead to

an asymptotic blowup in time and space, we avoid it dur-

ing the calculation of Rm. Because the other two sources

of redundancy only contribute constant factors in com-

plexity, we avoid them during a postpass cleanup. Our

approach combines multiset discrimination with data

structuring techniques.

It is at this point that our solution differs horn

Cocke and Kennedy. They go on to compute the transi-

tive closure Afct* in time @(n 3+m) using, say,

Warshall’s algorithm[21] (see also[l]), where n is the

number of variables and constants contained in Afct, and

m is the number of assignments to induction variables.

They also use a greedy strategy committed to hashing

each product removed by strength reduction. In contrast,

we compute the strong component decomposition of Afct

inverse (i.e., we consider decomposition of a graph with

directed edge i + j iff i = Afc((j)) in ~(m) time and

space using Tarjan’s algorithm [20]. The dag structure

Scd of this decomposition is used to efficiently compute

Rm in time O(final text length). The algorithm rests on

the following obvious face

LEMMA 2. Let Cs = {c: ixc e Cards). For each c

e Cs let Crops(c) be the set of strong components con-

taining some variable i for which ixc G Canals. If c is

any region constant variable or constant, then the set of

all expressions jxc removed by strength reduction is

defined by Rm (c) = {jxc: j belongs to a component of

Scd from which there is a path in Scd to any component

of Crops (c)J.

The remaining steps of the algorithm are given just

below:

(v) Compute the set CS using muh.iset pointer discrimi-

nation. At the same time, for each constant c = Cs,

form a set of pointers to strong components

Crops (c) as described in Lemma 2, and mark vari-

ables v within these components such that vxc

belongs to Canals.

(vi) Initialize an empty multiset Mrc of subtrees and an

empty multiset Mc of numeric constants. For each

constant c E Cs repeat steps (vii) and (viii)

(vii)

(viii)

(ix)

Compute the set ScdC = {v :vxceRm (c)) using a

depth-first-search through dag Scd in the reverse

direction of its edges and starting tiom components

belonging to Crops(c). Observe that for each

strong component of Scd, if it has no edges leading

in, then its entries are constants or Egion constant

variables; otherwise, its entries are induction vari-

ables. Link each induction variable v= ScdG to a

new symbol table entry containing unique

identifier tvc,and insert assignment t,C := vxc on

entry to L if v is live on entry to L. If v is marked,

indicating that vxc e Canals, then replace each

occurrence of vxc in L by a pointer to the symbol

table entry for t,C. Link each region constant vari-

able v~ Scdc to a new entry in A4rc containing sub-

tree VXC. For each constant c’= ScdC, if c is a region

constant variable, then link c’ to a new entry in

Mrc containing subtree CXC’; otherwise, link c’ to a

new entry in Mc containing the computed value of

Cxc’ .

For each induction variable v in ScdC and each

assignment to v in Defs (v), introduce update code

to tvcaccording to the definition of the strength

reduction transformation described earlier. Replace

products that are introduced within this update

code by references to the symbol table, ikfrc, or Mc

as is indicated by the links in Scdc.

Use multiset subtree discrimination and constant

discrimination to find duplicate region constant

expressions and constants in Mrc and Mc, and aug-

ment the symbol table with new variables for each

distinct item in i’vfrc and Mc. At the same time

readjust pointers inside L to the symbol table, and

insert an assignment t,,., := c 1xc z on entry to L

for each product c ~xc ~ e Mrc.

THEOREM 3. The preceding algorithm is correct

and has worst case time and space O(length of the jinal

program text).

4.2. Strength Reduction With Cleanup

Cocke and Kennedy noted that after strength

reduction is applied, it is necessary to apply global

cleanup transformations such as useless code elimination

(i.e., elimination of statements not contributing to the

output) and variable subsumption (i.e., eliminating use-

less copy operations). In this section we show how to

fold useless code elimination together with strength

reduction. Our hash-free solution runs in worst case time

and space linear in the sum of the lengths of the initial

150

and final program texts.

As before we assume that L is a strongly connected

region of code, and Defs (v) is a set of all definitions in L

to each variable v defined in L. Instead of computing

Canals directly, we compute the set 1%-odsof all products

appearing in L and the places where they occur. Also, the

set W of induction variables is not computed explicitly,

but is detected implicitly in a simpler way.

By a spoiler we mean any variable v for which

Defs (v) contains a definition not amongst the forms v :=

* j or v := i j * k. We compute the set Spoilers of all

such variables. Finally, we generalize relation Afcf so

that Afct (x) is defined for each variable x (and not just

induction variables) that is assigned within L. Let Afcti

denote Afc[inverse. As before we compute the strong

component decomposition dag Scd of Afcti.

Recall that those single node components of Scd

with no edges leading in contain only constants and

region constant variables. Also, any product xxcc Prods

is reducible (i.e., belongs to Canals) iff there is no path in

Scd from a spoiler to x, If we mark all strong com-

ponents containing spoilers, and mark all other com-

ponents reachable from these marked components, then

the unmarked portion of Scd corresponds precisely to the

data structure at the heart of the strength reduction algo-

rithm in the preceding subsection. Recall that the induc-

tion variables are all those variables contained in

unmarked strong components with edges leading in.

Consequently, we can proceed to solve strength

reduction starting with step (v) of the previous algorithm.

We now have an alternative linear time strength reduc-

tion algorithm, where the first four steps of Cocke and

Kennedy’s solution are simplified. This new algorithm

can also be extended to support efficient analysis for use-

less code.

Consider how the new strong component dag

ScdUW of the program loop L after strength reduction

differs from the initial dag ScdOld,

LEMMA 3. i. The subdag of Scd induced by

unmarked strong components and the subdag of Scd

induced by markxd strong components are both invariant

with respect to strength reduction. ii. The only new

components in ScdWWare ones containing only new tem-

poraries; the only edges incident to these components

are between them andfrom them to marked components.

iii. Edges only go from unmarked to marked com-

ponents, and these can only be deleted by strength reduc-
tion.

Proof Strength Reduction alters loop L in the fol-
lowing ways:

i Assignments are introduced within L to modify
compiler-generated temporaries t=. The right-
hand-side of any such assignment must contain
only compiler-generated temporaries. Hence,
these assignments carmot create new edges from
Scd.ld to any strong components in Scdw contain-
ing compiler-generated variables.

ii An assignment Z:=XXC appearing in L can be
replaced by assignment z :=tK. In this case, vari-
able z must be a spoiler that belongs to a marked
component Scdz~ ScdOld, and x must appear in an
unmarked component Scdx~ ScdO1d. Moreover,
there must be an edge from Scdx to Scdz. After
replacement, there would be an edge from the
strong component in ScdW containing t= toScdz.
If the edge count between Scdx and Scdg after
replacement becomes zero, indicating no assign-
ments in L from a right-hand-side variable in Scdx
to a variable in Scdz, then this edge is deleted in

Scd-. ■

Let inputs be the set of input variables, outputs be

the set of output variables, and controls be the set of

predicate variables of control statements. We will

assume that these variables are all useful, and that the

strong components of Scd containing them, which we

call the critical set crit, are also useful. The useful com-

ponents include crit and all strong components of Scd

that can reach the components in crit.

If we assume that all statements in L are initially

useful, then after strength reduction is applied to L once,

only induction variables, region constants, and constants

can become useless. Temporaries generated by strength

reduction must all be useful. Consequently, only the

replacement of products by temporaries can create use-

less code. And all statements that undergo such replace-

ment will be useful in the end.

Hence, we can modify steps (vii)-(ix) of the algo-

rithm in the previous subsection to facilitate useless code

elimination as follows. In step (vii), for each assignment

z :=VXC replaced by assignment z:=tvc,decrement the

edge count from Scd, to Scdz. If the edge count reaches

zero, then delete the edge from Scdv to Scdz. This is

implemented using a pointer linking a record for assign-

ment z :=VXC into the adjacency list for Std. Also, add

edges from t,.to z in Afcti. In step (viii) introduce a

new edge in Afcti for each assignment to a temporary

introduced, In step (ix) multiset discrimination will

determine the new vertices corresponding to new tem-

poraries in Afcti. Add a final step (x) in which the useful

components of Scd are computed. Within L all assign-

151

ments to variables not in useful components can be

removed.

By the preceding discussion we have

THEOREM 3, The preceding algorithm is correct

and has worst case time and space O(length of the initial

plus final program text).

4.3. Iterated Strength Reduction

Cocke and Kennedy noted that after strength

reduction is applied, the new compiler generated vari-

ables tvcand other variables can become new induction

variables, and new products defined in terms of these

variables can be removed by further applications of

strength reduction[6]. In this section we show how

iterated strength reduction folded with useless code elim-

ination can be solved in worst case time and space linear

in the maximum length of the initial and final program

texts,

Note, first of all, that iterated strength reduction

terminates, because each iteration except the last must

eliminate at least one product in the original strongly

connected region L. In order to achieve the promised

linear time complexity, we must be careful to generate

only temporaries that are not useless. We will also

exploit the observation that the portion of graph Afcti

involving only temporaries generated by strength reduc-

tion is an exact copy of the core part of Afcti invoIving

original program variables only. Consequently, a key

idea underlying the new algorithm will be to avoid alter-

ing the original graph and its strong component decom-

position Std. By attaching labels to the components of

Scd, we will be able to interpret these components as

being formed from either original program variables or

from temporaries generated in some ith application of

strength reduction.

Following Cocke and Schwartz[7], we say that a

temporary tvc, . . . ~, is available in program region L if,

whenever it is referenced during execution of L, it stores

the value of vxc ~x...xcj. BY default, [V = v, and [V is said

to be available in L if v is not useless. The main task of

the algorithm is to determine all the tempormies that

need to be kept available in L in order to eliminate all

candidate products. It is then straightforward to generate

the code to keep them available,

First consider the preprocessing. For iterated

strength reduction we relax our definition of spoiler to be

any variable z in which there is an assignment to z in L

that is not amongst the forms v := f j, v := t j i k, or

v :=jxc, where jxc is a candidate product,

Compute Scd as in the preceding subsection. We

say that a component of Scd is clean if it has no spoilers;

it is reducible if all its ancestors in Scd are clean. The set

Canals consists of all those products xxc occurring in L,

such that x belongs to a reducible component. It is

straightforward to compute the spoilers, the reducible

components, and Canals in a single topological search

through Scd in the direction of its edges. For each com-

ponent C, if it has no spoilers and if its predecessors are

all reducible, then it is reducible; otherwise it is not redu-

cible. The search continues until no more reducible com-

ponents can be detected.

Next consider analysis for all temporaries needed

to remove the products from Cards. We have the fol-

lowing observations:

LEMMA 4. Let C be a component in Scd, v G C,

ands = c ~ . . . Cj for j>(). (When j=t), thens is the empty

string, denoted by 1.)

1. If v, e C, then temporary tv~ is kept available if

ty,. is kpt available.

2. Ifs # A, then tv~ is kept available if either of the

following conditions hold: i. there exists a successor C ~

G Scd of C and an assignment u := dl x c ~ in L such

that u e C ~, dl e C, and tw=... .j is kept available; or ii.

there em”sts a successor C ~ e Scd of C and an assign-

ment u := dl op d2 in L such that op is not multiplica-

tion, u e C ~, dl G C, and tW is kept available.

Define labelc (C) to be the set of stingss such that

for all v G C, t,. is kept available. To determine all tem-

poraries to be kept available, we only need to compute

the set Zabe/c (C) for all C G Scd, For this purpose, we

also associate a set of strings labele with each edge e =

[C ~, C2] in Scd as follows: for each assignment v:= dl x

dz of a candidate product in L such that v G C2 and dl E

C ~, then dz is in labele (e); if e is associated with any

other kind of assignment, then 1 is in hzbele (e).

According to Lemma 4, we can compute the map-

ping labelc as following:

1. For each nonreducible component C, set

labelc (C)= (1].

2. Let ready be the set of minimal reducible com-

ponents;

3. While ready is not empty, select an arbitrary

component C and delete it from ready; then do steps 4, 5,

6;

152

4. Let succ (C) be the set of successors of C in Std.

Set labelc (C)= ~G$;C(c) (XIIX X C labele ([C, Ci]), S G
1

labelc (Ci)].

5. If C contains output variables or control vari-

ables, add k to labelc (C).

6. Mark C processed. Put the predecessors of C

whose successors are all processed into ready.

In order to keep temporaries available, following

actions are added to step 4:

4’. Just before each assignment u := dl op d2 in L

such that u e C, insert the code tm :=fall.op td,~.

Although multiset string discrimination could be

used in computing the union in step 4, the Q(lsl) worst

case cost contributed by each strings in lablec (C) is too

slow. More efficient is to modify the preceding algorithm

to generate all stings of a given length before applying

multiset discrimination. We will compute kzbelc by gen-

erating these strings in order of ascending length.

Initially, labelc (C) is empty for all reducible com-

ponents C. Then for length i = O, 1,,,., k, we generate the

strings of length i in labelc (C) for all reducible com-

ponents C. When i =0 useful program variables are

detected, We assume no new strings are generated in

round k. After each round i, i = 1, k–l, we assign a

unique identifier for each distinct string of length i.

Thus, in round i+l, each newly generated string

C1C2 ””” ci+l can be represented by a pair [c 1,n 1], where

n 1 is the name for C2 “ .0 ci+l. Consequently, in order to

determine distinct strings generated in each ith round i> 1

multiset string discrimination is only meded for strings

;f length 2.

It is easy to compute strings of length i+l from

strings of length i using the following two rules:

1. If lablec (C) contains a strings (of length i, and if

for some predecessor Ci of C, labele([Ci, C]) contains C,

then CIISis a string of length i+l that must be contained

in Iabelc (Ci);

2. If lablec (C) contains a sting s of length i+l,

and if for some predecessor Ci of C, kbele([Ci, C]) con-

tains 1, thens must also be contained in Iabelc (Ci).

The above representation of strings can also be

used to initialize constants and temporaries. If s =

cl”” “ c~ is a new string in labelc (C) for some k> 1 and

C e Scd, and if nl is the name of c2 os “ c~, then we use

t. to store the value of c 1x...xc~, and insert an assignment

t$:= c 1 x L, at the end of the initialization block. Once

all the constants are initialized, we insert an assignment

t~~:= v x t, at the end of the initialization block for each

temporary tv~.

After round 1, when all temporaries for strings of

length 1 are determined, replace all occurrences of candi-

date products in L by their associated temporaries.

Because the algorithm processes components Scd in the

reverse direction of edges, only useful variables and tem-

poraries are introduced to the final program. Conse-

quently, we have

THEOREM 4. The iterated strength reduction prob-

lem with useless code elimination can be solved in time

and au.n”liary space linear in the maximum length of the

initial and final program texts.

4.4. Extensions

Two possible approaches that exploit commutative

and associative laws of products may reduce the number

of strings, and therefore temporaries, generated in the

preceding strength reduction algorithms. One approach

is to use a weak form of the Paige/Tarjan lexicographic

sorting algonthm[16] to generate strings of constants in

some arbitrarily chosen order. Another more effective,

but less efficient, approach, would be to actually compute

the product of constants identifying each temporary, and

to use mtdtiset constant discrimination.

We are currently investigating these ideas as well

as extensions that implement a more powerful transfor-

mation integrating strength reduction of sums, products,

quotients, exponentiations, and multivariate expressions.

Such extensions would allow different kinds of spoilers

for different arguments of candidate expressions.

Development of simpler hash-based algorithms is

another promising direction.

5. Conclusion

We have suggested hash-free methods for solving

various aspects of optimizing compilation. These

methods have been based in large part on efficient algo-

rithms for solving multiset discrimination for different

datatypes. Multiset discrimination of ordered flow

graphs, unordered trees and dags, and unordered graphs

with respect to given depth-fist-search spanning trees

are straightforward. An empirical investigation compar-

ing our hash-free alternatives with their conventional

hash-based counterparts would be worthwhile future

work.

153

6. Acknowledgements

We are grateful to Alan Siegel, whose independent

investigation of lexicographic sorting and great interest

in its applications to algorithm design provided motiva-

tion for our work. We thank Bob Tarjan for describing a

list based data structure known to Knuth for implement-

ing fast string matching, which is related to our list based

implementation of multiset discrimination. We also

thank Ralph Wachter, whose workshop on randomized

algorithms brought to our attention questions about ran-

domized versus deterministic algorithms, which, we felt,

raised similar questions about hash-based versus hash-

free algorithms, and led to the current paper.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Aho, A., Hopcroft, J., and Ulhnan, 1., Design and

Analysis of Computer Algorithms, Addison-Wesley,

1974.

Aho, A., Sethi, R. and Unman, J., Compilers, Addison-

Wesley, 1986.

Allen, F. E., Cocke, J., and Kemedy, K., (‘Reduction of

Operator Strength, ” in Program Flow Analysis, ed.

Muchrick, S. and Jones, N., pp. 79-101, Prentice Hall,

1981.

Alpem, B., Wegman, N., and Zadeck, K., “Detecting

Equality of Variables in programs,” in Proc. 15th ACM

POPL, JarL 1988.

Carter, J. and Wegman, M., “Universal Classes of Hash

Functions,” .KXS, vol. 18, no. 2, pp. 143-154, 1979.

Cocke, J. and Kennedy, K., “An Algorithm for Reduc-

tion of Operator Strength,” CACM, vol. 20, no. 11, pp.

850-856, Nov., 1977.

Cocke, J. and Schwartz, J. T., Programming Languages

and Their Compilers, Lecture Notes, CIMS, New York

University, 1969.

Cytron, R., Lowry, A., and Zadeck, K., S‘Code Motion

of Control Structures in High-level Languages, ” IBM

Research Center/Yorktown Heights, 1985.

Downey, P., Sethi, R., and Tarjan, R., “Variations on

the Common Subexpression Problem, ” JACM, vol. 27,

no. 4, pp. 758-771, Oct., 1980.

Hoffmann, C. and O’Donnell, J., ‘ ‘Pattern Matching in

Trees, ” JACM, vol. 29, no. 1, pp. 68-95, Jan, 1982.

Hoperof; J., ‘ ‘An n log n Algorithm for Minimizing

States in a Finite Automaton,” in Theory of Machines

and Computations, ed. Kohavi and Paz, pp. 189-196,

Academic Press, New York 1971.

Lewis, F., Rosencmntz, D., and Stearns, R., Compiler

Design Theory, Addison-Wesley , 1976,

Mairson, H., “The Program Complexity of Searching a

Table, ” in 24th IEEE FOCS, pp. 40-47, Nov., 1983.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Paige, R., “Symbolic Finite Differencing - Part I,” in

Proc. ESOP 90, ed. N. Jones, Lecture Notes in Com-

puter Science, vol. 432, Springer-Verlag, 1990.

Paige, R., “Real-time Simulation of a Set Machine on a

RAM,” in ICCI ’89, ed. W. Koczkodaj, Computing and

Information, Vol II, pp. 69-73, 1989.

Paige, R and Tarjw R., “Three Efficient Algorithms

Based on Partition Refinement,” SIAM Journal on Com-

puting, vol. 16, no. 6, Dee., 1987.

Paige, R., Tarjan, R., and Bonic, R., “A Linear Time

Solution to the Single Function Coarsest Partition Prob-

lem,” TCS, vol. 40, no. 1, pp. 67-84, Sep, 1985.

PelegtiLlopart, E., Rewrite Systems, Patrern Matching,

and Code Generation, U. of CA - Berkeley, 1987. Ph.D.

Dissertation

Stearns, R., “Deterministic top-down parsing,” in Proc.

5th Princeton Conf on Information Sciences and Sys-

tems, pp. 182-188, 1971.

Tarjan, R., “Depth first search and linear graph algo-

rithms,” SIAM J. Cornput, vol. 1, no. 2, pp. 146-160,

1972.

Warshall, S., “A Theorem on Boolean matrices, ”

JACM, vol. 9, no. 1, pp. 11-12, 1962.

Wegman, M. N. and Zadeck, F. K,, “Constant Propaga-

tion with Conditional Branches,” in Proc. 12th ACM

POPL, Jan, 1985.

Yang, W., Horwitz, S., and Reps, T., “Detecting pro-

gram components with equivalent behaviors,” TR-840,

Computer Sciences Dept., Univ. of Wisconsim Madison,

WI, April 1989.

Yang, w., “A new algorithm for semantics-based pro-

gram integration, ” Ph.D. Dissertation, TR 962, Com-

puter Sciences Dept., Univ. of Wisconsin, Madison, Wf,

August 1990.

154

