
Optimal Scheduling of hrilhmctic Operations in
Parallel with Memory Access

(Preliminary Version)

Lh~id Bernstein

Dept. of Electrical Engineering
Technion - Israel Institute of Technology

Haif a 32000, ISRAEL

ABSTRACT

We propose a new machine model in
which load operations can be performed
in parallel with arithmetic operations by
two separate functional units. For this
model, the evaluation of expression
trees is considered. An efficient algo-
rithm to produce an optimal order of
evaluation is described and analyzed.
For a tree with n vertices the algorithm
runs in time D(nlog%). If the arith-
metic operations have at most two argu-
ments, the com.plexity goes down to
O(nlogn).

1. Introduction
By and large, modern computers are not

sequential any more. Their designs usually
include a certain degree of parallelism, most
commonly by offering a number of functional
units that can operate simultaneously - some
units handle memory access while others mani-
pulate (in registers) the data thus retrieved. So
far, this trend in computer architecture has
only partially been matched by efforts to devise
efficient code generation algorithms that will
utilize such capabilities in order to reduce the
running time of compiled programs. Most work
was devoted to highly structured designs, e.g.
vector machines, but not parallel machines in
general.

The difficulties are not easily dismissed. On
one hand, the paradigms used for efficient code

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

“1984 ACM O-89791 -147-4/85/001/0325 $00.75

Ron Y. Finter
Michael Rod.eh

IBM Israel Scientific Center
Technion City

Haifa 32000, ISRAEL

generation on sequential machines (e.g. as
found in [Z,?]) do not generalize to handling the
intricate phenomena arising in a parallel
machine as the cost function is not super addi-
tive. On the other hand, Li [5] proved that the
problem of finding an optimal (fastest) schedule
for a set of tasks whose precedence graph forms
a tree on a machine with even two dedicated
functional units is NP-complete.

In this paper we make a contribution
towards filling the gap between these two
extremes. We provide an efficient algorithm
that produces optintal (i.e. fastest possible)
schedules for evaluating a set of expression-
trees on a machine that has one memory access
unit and one arithmetic-logic unit that operates
on data in registers. This case is special in that
the precedence relations between memory
access and arithmetic operations are limited in
nature; for example, no arithmetic operation is
ever required to precede any load command. A
number of variations on this architecture have
been proposed and even built (e.g. [a)), but they
all use generic schemes for information transfer
between the two units rather than providing a
tight, customized scheduling algorithm for code
generation.

We assume that the number of registers at
our disposal is unbounded, thus concentrating
on the issue of how to alleviate the mc:nory-to-
ALU bottle-neck rather than the ccnstraints
caused by an inadequate number of registers.
In this situation, the schedule provided by our
algorithm is all a compiler needs to generate
the object code.

The algorithm proposed here processes the
vertices of expression trees in that order which
least impedes the processing of arithmetic ver-
tices due to yet unloaded arguments; this order,
in general, is quite different from the standard
way of enumerating tree vertices, as used in [Z].
The algorithm is easy to program. It performs
one pass on the expression tree during which it
produces the optimal schedule of operations for

325

both the memory-access and the arithmetic
units. The algorithm runs in time O(nlog2n),
where n is the number of vertices of the tree. If
no vertex has more than two immediate descen-
dants then the complexity is reduced to
O(nlogn) without change to the algorithm.

We start in the next section with definitions
of our machine model and tree evaluations for
it, then we formulate an abstract representa-
tion of such evaluations and state a number of
key properties on which the algorithm relies.
The algorithm itself is presented in Section 3,
followed by the analyses of its optimality (Sec-
tion 4) and complexity (Section 5). We conclude
with extensions and open problems.

2. Preliminaries

2.1. The machine

Our machine has an unbounded number of
general purpose registers T~,T~,. . and memory
cells meml,mem2,... _ It supports the following
operations:

a) Load operation: (me-) + (rj)

b) Store operation: (Q) + (me?nj)

c) Arithmetic operations of the kind
A((ri,),...,(rh)) --) (rj) where l<k4o! (d is a
global bound on the number of arguments
(arity) that an arithmetic operation may
have).
The major parallel feature of our machine is

that it can execute either a load or a store
* operation concurrently with an arithmetic

operation. For the purposes of presentation,
the execution times of all the three types of
operations are assumed to be equal; we also
deal with load operations alone, for the time
being. Section 6 explains how to relax these two
restrictions.

The vertices of a computation forest F that are
associated with load operations are denoted by
JW’), and those associated with arithmetic
operations are denoted by A(F). Notice that all
elements in L(F) are leaves of F; those leaves
that are not in L(F) are associated with arith-
metic operations whose operands are in regis-
ters. Let l(F) = IL(F)l, a(F) = IA(F d(v)
be the number of immediate descendants of the
internal vertex V, and d(7’)=~:; d(v). Given a

machine with a bound d on the arity of its arith-
metic operations, we will only consider trees T
such that d (T&d.

The evaluation of a computation forest may
be viewed as a proper scheduling [6] of two
processes. One process loads values from the
memory into registers, and the other carries
out the arithmetic operations. A proper *
scheduling (hereafter called legal eva.Jtitin)
E(F) of a forest F comprises two one-to-one
mappings into the set N of the positive integers:

A: L(F)+

a: A(F)+N

such that for every vertex VEF other than the
root, if v EL(F) then h(v)<a(purent (v)). Other
wise a(v)<a(parent(v)).

The ranges of a and X are interpreted as the
time slots (of unit length each) at which instruc-
tions are performed. Clearly a load instruction
can be executed simultaneously with an arith-
metic operation as long as the precedence rela-
tion defined by the forest is obeyed. Figure 2
provides three legal evaluations of the tree from
Figure 1.

vodkasI 2 3 l 5 6 7 5 91

2.2. Computation forests and their evaluation
Following [2,71, computations are

represented by rooted forests. An example of a
forest with one tree in it is given in Figure 1.

I “9

“3 +/-\A
/\ /\ a b -c ABS “r “2 I I “7

C (3

“4 “6

figure 1. An expression tree T
for to+ bJ+MBSkJ4BSo)

a

time 1 2 3 4 5 6 7 6

El x 6 l 1 2
a

i

7 5 a 3 6
----.--.-.--.-..-.--..-.---..

Al246
‘2 a 3 5 7 6 9

-._--_--_-_--_._____----.---.

320

The cost c (E(F)) of the evaluation E(F) of
F is defined as:

This measures the time (or number of slots) it
takes to evaluate the expression represented by
F using E(F). For example, in Figure 2
c (Ei)=6, c (&)=7, and c (&)=a.

An optimd evalzlation E is a legal evalua-
tion for which the cost is smallest. The cost of
an optimal evaluation of a forest F is denoted
by C(F). We shall concentrate on the problem
of finding C(F). In Section 6 an algorithm to
find optimal evaluations is derived.

2.3. Compressed evaluations

In the sequel the parameters E and/or F
are omitted when no ambiguity results. An
evaluation E=(h,cx) is compressed if the follow-
ing three conditions are satisfied:
a. Range (A) = { 1 ,...,1], i.e the loads are con-

secutive beginning at time slot 1.
b. Range(a) = lc-a+l,..., c 1, i.e. the arith-

metic operations are consecutive at the end
of the evaluation,

c. The evaluation E ‘=(h,a’) obtained by set-
ting (for all v) a’(v)=a(v)-1 is illegal, i.e. it
either violates the precedence conditions or
sets a(v)=0 for some v.
For example, the evaluations El and E2 in

Figure 2 are compressed, whereas E3 is not.

LEMMA 2.1. For every evaluation E there exists

:(E
compressed evaluation E ’ such that
‘)sc (E).

Proof. To compress E, we squeeze the loads and
arithmetic operations separately, and then
advance the arithmetic block as far to the left
as possible. This transformation can only
reduce the cost of E. 9

Hereafter, all evaluations will be assumed to
be compressed.

2-4. Schematic representation of compressed
evaluations
Compressed evaluations may be described

schematically as in Figure 3. In such a
representation each ‘A’ stands for some arith-
metic operation, and each ‘L’ represents a load
operation.

As we shall see in Section 3, once an optimal
compressed evaluation for a subforest F of a
tree T has been determined, only its schematic
representation is necessary to compute C(T).
Therefore, we shall only be interested in
schematic representations.

L L L L

A A A A A

-co

figure 3. A dWWtic representation of
K, from Figure 2

Schematic descriptions are fully character-
ized by triples of the form <c ,h,t > (c for cost,
h for head, and t for tail). The three com-
ponents are interrelated as follows:

h=c -a (1)
t=c-1 (2)

In particular, for a given forest F, anyone of h,
t, and c determines the others. Still, for our
purposes it is easier to keep track of all three
parameters. Thus, we define S(F) to be the set
of all different schematic representations of
evaluations of F. Also, let p(F) be the
schematic representation for which
c b4F))=C(F).

Another important parameter of a
schematic representation is its balance b
defined by

b =t -h. (3)

To rate the quality of evaluations with
respect to their cost as well as potential paral-
lelism, we impose two disjoint relations on SxS.
The first denoted by (<) is a strict order that is
special in the sense that the order between two
elements depends on their balance as well as on
the values of h or t. The second (E) is an
equivalence relation. Formally, let f ,g ES. We
say that f <g if one of the following conditions
holds:
a. b(f)>0 and b(g)50

b. b (f M(g)>0 and h(fNh(g)

c. b(f)b(g&O andt(l)>t(g)
Also, f-g if b(f),b(g)>O and h(f)=h(g), or
b(f)lb(g)sO and t(f)=t(g).
We say that f “g if f =g or f Kg. The relation 4
is a total order modulo Y.

An increasing sequence ,f i, . . . , fk of ele-
ments from S is one in which for every two con-
secutive elements fi <fi+ i. A non-decreosmg
sequence (as above) is one such that jisfi+i.

327

2.5. Concatenation of schematic

representations
The concatenation (I) of two elements

f I,fzcS is the compressed evaluation obtained
by performing the load operations of fz
immediately after those of f ,, and the arith-
metic operations of f 2 immediately after those
of f 1. This may introduce a certain delay to the
arithmetic operations of f 1 or f z We use the
notation f 1,2 = f 1 1 f 2.

LEMMA 2.2. Let f, = <c,,h,,t,>,
f 2 = <c2,h2,t2>, and f 1,2 = tc ,h.t>. Then

b = t-h = b,+b, (4)
h = h,+max(h2-t ,.O) (5)

t = t,+max(t,-h,,O) (6)

c = c ,+cz+max(hz--tI.O)-hz (7)

Proof. By case analysis. .

The concatenation operator is associative
but not commutative. For example, let
f 1 = <5,2.1>, f 2 = <4,2,3>, and f 3 = <6,3,2>.
Then f l,B = <8,3,3>, but f 2,1 = <‘7,2,2>. Also,

(f Af 2)lf 3 = <1113,2> = f A(f 21f 3).

Concatenation has the following effect on
the ordering relation ZZ: If f @f 2 then
h(f d+f 2.J.

These and other properties of concatenation
are derived in Section 4.1.

3, An Algorithm to Compute C(T)
In this section we describe an efficient algo-

rithm to find C(7’) for a tree T. The algorithm
uses the boolean function (predicate) TEST, and
three subroutines: MERGE, JOIN, and ADDOP.

3.1. TEsr(f &7)
f and g are schematic representations

such that f 59. 7’ESZ’(f ,g)=true in the follow-
ing cases:

a. b(f)>0 and b(g)20 and h(g)st(f).

b. b(f &O and b(g)=O.

c. b (f)40 and b (g)<O and h(g)M (f).

TEST(f ,g)=false otherwise.
TEST (f .g) determines whether the two

schematic representations f and g can be com-
bined into one without causing a potential loss
of optimality to the overall result.

3.2. MERGE(&, , &)

MERGE may have any number 16k6d of
arguments, each being an increasing scqucnce
of schematic rcprcsentaliorls. The outpul is a
(single) non-decreasing scqucncc formed by

merging the input sequences using the s order-
ing (the order between equivalent elements is
immaterial).

3.3. JOIN(J)

$=f i,...,fh is a non-decreasing sequence of
schematic representations. g=JOIN(J) is an
increasing sequence of i elements gl, . . , gi
where lSil;k defined by:

j=l
i=l
do while j sk

SC =,f j

c&=L&ie ‘sk
~~=JYt fj f

and TEST(g(, f j)

e,i-l+l

i=i+l
end

JOIN(J) iteratively concatenates consecu-
tive elements of 7 as long as they meet the cri-
terion of TEST. If concatenated, the resulting
element is further tested against the next ele-
ment, and so on.

3.4. ADDoP(J)

J=f 1, . . . , fk is the increasing sequence of
schematic representations. Let f k =<c ,h ,t>,
and f’k=<c+l,h,t+l>. g=ADDOP(P) is an
increasing sequence consisting of EC or k-l ele-
ments defined as follows:

doi=l to k-2
en2=ft

if TEST(f k-l,f ‘k) then gk-l=fk-l If’k
else do

3.5. The top-level procedure
We visit the vertices of T in a bottomap

order and compute at each vertex the increas-
ing sequence y. of schematic representations
using the following program:

.

if d(v)=0 then if vEL(T) thenJ,=(<l,l,O>)

else~v=(<l,O,l>)
else do

1st. u ,w , . . . be the children_of V-
e2d = ADDOP(JOIN(MERGE(f,,f,,...)))

Finally, once we found f=f 1, . . , f k at the
root, p(T) can be computed as

AT)=f ll...lfk.

C(7’) is easily derived since C(T)=c (p(T)).

328

4. The optimality of the algorithm

To prove that the suggested algorithm
indeed computes C(T). we first derive certain
properties of the concatenation operation.

4.1. Properties of the concatenation operation
In the sequel, let J’i=tCi, 4, ti> be arbi-

trary schematic representations.
The results in Lemmas 4.1 and 4.2 have

already been mentioned in Section 2.
LEMMA 4.1 (Associativity).

(f,If2)lf3=f1l(f2lf3)

Proof. It suffices to prove that

h((f 1 lf2) lf3)=h(f 1 l(f2lfd.

By (5) and (6) we get

W 1t12)If3)=h1+max(h2-t,10)+

+max(h3-(tz+max(ti-h2,0)),0)

h(f1i(f21f3))=

=h1+max(h~+max(h3-ts,O)-t ,,O)

Now we proceed by case analysis.

Case 1. h$f 1. We get:

WflIf2)If31 = h,+h2-tl+max(h3-t2,0)

h(jll (f 2lf3)) = h,+hz-tl+max(h3-tz10)

Case 2. h,<t 1.

Wf I If21 Ij3)=hI+max(h3-t2-tl+h210)

Subcase 2.1. h$tZ, Then we get

h(f lI(f2lf3))=h1+max(h2+h3-t2-t1~0)

and the lemma follows.

Subcase 2.2. h3<t2. Therefore:

h(j1l(f2lf3))=hl+max(h2-t1,0)=hl

However, h3<t2 and h2<t 1 also imply:

max(hz+h3-t2-t l,O)=O.

Therefore

h((f 1 If21 113)=hl

and the proof is completed. 9

Since the concatenation operation is associative
we shall omit parenthesis wherever convenient.
LEMMA 4.2 (Ordering). If I 1~121 then

h(f ,,2)4h(f2.1).

Proof. By (5)

h(f1,2) = hl+m~@2-W0

h(,f2,J = h2+max(hl-te,O)

Case 1. b ,40. Here we get b&O, and h,rt 1’d2.

Then

h(f,,,)=h,++t,

h(f 1,d%+h2--t M(f2.d

Case 2. b,>O.

Subcase 2.1. b,>O. 1 lere h,sh,<t,. Then

hL(f 2,1)=h2

If h2stl then h(fls2)=h,sh(fz+J, and if h,>t,
then h(f 1,2)=h,+h,-t 11 and again
h(f l,zbh,=h(f2J
Subcase 2.2 b2r;0. If h$t, then

h(f ,.z)=h,+h,-t1

If h)<t, then h(f2,,)=h2>h(f 1,2). Otherwise

w2,*)=h2++t2* and because ti>hirts it fol-
lows that h(f 1,2)<h(f2,1). If h,<t 1 then

h.(f 1.2)=‘%

If h,<t24h2 then h(f8,1)=h2>h(f1,2). Otherwise
if h $t 2 and then

h(f2,,)=hz+h*-t,~h,=h(f 1,2) .

Remark 4.1. f 1<f2 does not imply

h(f 1.dNfd
Remark 4.2. f i=fs implies h(f 1,2)=h(f2,1).
I.,F,MMA 4.3 (Monotonicity). If bz=b, and h&h,
thenh(fllf,lf3)4h(fl/f2lf3).
Proof. By (5) we get:

h(f,If,Fh(fIlf2)

Let fa=f llfe and fa=f llf4. Thus, h&h,.
Also, by b2=b4 and (4) we get

bs=b,.

To complete the proof we have to show:

h(fdfd’;h(fdfd

This also follows from (5). l

IXMMA 4.4. If b,=O and b,sO then

Nf 1,2)4W2J
Proof. By (5)

h(fl,2) = max(h2+hl-tl,hI)=max(h2,h1)

h(f2,J = max(hl+h2-t2,h2)zmax(hl,h2) m

EMMA 4.5. If b r,b$O, and h+tl,t2 then

h(f,lfzlf3)=h(Jelf~lf3)
ProoJ By h+tr,t2 we get

h(f2j f 3)=h2+max(h3-t,,O)=hz+ha-t2

h(f 11(f21f3))=h,+max(h2+h3-t2-t1~0)
b (I 2)~0’implies that h2rt2, and therefore:

h(f 1 lfzlf d=‘v-b l--b,

329

By symmetry of the above with respect f i and
12

LEMMA 4.6. If b,,b;rO and h2,h3st, then

h(f,l12lf3)=h(f~lf3lf2)
Proof. By (5) we get

wf,lf,If,)=~,+
+max(hs+max(h2-t3,0)-tl,O).

However,

h3+max(h2-ts,O)=

=max(hs-(t3-h3),0)+s;t 1.

Therefore h(f 1 1 f 21 f s)=h,. By symmetry the
sameistrueforh(f11fs1f2). l

4.2. Increasing sequences of schematic otherwise by the same lemma

representations
LEMMA 4.7. Let f ,g be schematic representa-
tions such that f 49. If TEST(f ,g)=false then
,f <g ; ot!ierwise f S(f Ig)Sg

Proof. By case analysis.
Case 1. b(f)>O. TEST(J ,g)=false implies either
b(g)<O, or b(g)sO and h(g)>t(f)>h(f). In
both cases it foIlows
TEST(f ,g) =true then by (4)

that f <g. If

gk-l=fk-llf’kzfk-l>fk-2

yielding the same result.
To complete the proof of the lemma we must
prove the claim. By Lemma 4.6 jk-r<jk. We
proceed by case analysis.
Case 1. bk-,>O and b,#O. Then either b&O, or
bk>O and & >hk-1. In both cases it immediately
follows that fkel<j’k.

BY (5)

a(f 19) = b(f W(g)>0

h(f Is)=h(f)+max(h(g)-t(f),O)=h(f) .
It follows that h (f) g) =h (f) and thus f cxf 1 g .

Case 2. b(f)SO. If TEST(f ,g)=false then
b(g)<0 and h(g)<t(f). Therefore
t(g)<h(g)<t(f), which implies f<g. If
TEST(J ,g)=true then by (4)

Case 2. bk:_,>O and bk=O. Here we claim that

J4c>t,-,-
Subcase 2.1. fk=e lo,. mST(fk-l,fk)=fdse.
Then by the definition of TEST the claim follows.
Subcase 2.2. fk=ejI . . . lelo, for some i. This
implies that TEST(f k-l,ej)=false.

BY (6)

b(f Ig)=b(f)+b(gk:O

TEST has the following property: when
applied to an increasing sequence p for which
bhl . . . Iq

f
,I=0 and

TEST(q,j . . . q~,q~+J=true for all i, Q must
satisfy b (q$)=O for all i.

t(f Is) = t(g)+max(t(f)-h(g),O).

Then t(J)at(f lg)rt(9). n

LEMMA 2.6. Let $ be non-decreasing. Then
g = JOIN(f) is increasing.

When this observation is applied to
g=ej,...,e lrl it shows that b(ei)=O for all
j5i4lEl. Now that we know that b(e.)=O and
TEST(fk-I,ej)fal SC, it follows that h(ej ‘, >tksl.

An increasing sequence of elements whose

Proof. By induction on the length of 7.
Basis. The lemma is vacuously true for JJ I = 1.
@dzLctive step2 JOIN(J) is increasing for every
f fof,which If 1 <k. Let g be of length k, Then
for f =(f I,...fk-J, $=JOIN (p’) is increasing.
All is needed to complete JOIN(j) is to test fk
for the possibility to concatenate with g’ the
last element of g If TEST(g’,jk)=false (notice
that by Lemma 4.7 g’Sfkwl<f k) then by Lemma

balance is 0 has a decreasing value of h. Thus,
their concatenation inherits the h-value of the
first element. In our case

hk=h(ej 1 . . . le lo Ikh(ej).

Therefore &>tkml.

Case 3. bk-$0. Here t&,>t,. If bk<O the proof
is obvious. bk=O is impossible since by an argu-
ment similar to that of Subcase 2.2
‘l”l%T(~k-l,ej)=fdse and therefore b (ej) is
already negative. 8

4.7, g’ <fk, and g is increasing, otherwise by the
same lemma g’ Ijkzg’ >g” (9” is the element
before the last in 0) and again g is increasing. .
LEMMA 4.9. Let 7 be such that J=JOIN(e) and
B is non-decreasing. Then g=ADDOP(J) is
increasing.
Prooj. If IJ I =1 then g consists of one element
and is trivially an increasing sequence. If
17 I=ka2, then by the definition of ADDOP the
first k -2 elements of g are equal to the respec-
tive elements of 7, and their increasing order is
preserved. ADDOP only appends the arithmetic
operation at the end of f k, resulting in the new
schematic representation

j’,=<c,+l,hk,t,+l>.

Claim: f’bsfk-l. If this holds then we can use
Lemma 4.7: If TEST(Jk-l,f’k)=false we get:

330

In the sequel T is a tree on which the algo- schematic representations into enc. If the algo-
rithm is applied, and 7, is the sequence that it rithm combines f and g at step m, then P,,, is
attaches to 21 ET. obtained from Pm-I as follows:

THEOREM 4.1. yVoot is increasing.

Proof. By induction on 1 T I.
Basis. For a tree with one vertex, 470,t=<1,1,0>,
or f700t=<1,0,1>. In both cases froot is an
increasing sequence.

~nt=(~l7a-,-lfL7~)ulf ISI,
claim: For ail m, the clcrnents of C;;, can bc
arranged into a sequcncc so that

Inductive step. Let us assume that for all trees
with less than n vertices Jroot is increasing. Let
1 T(=n.
Let u,uJ,... be the children of root. Then

~m,t=ADDOP(JOIN(MERGE(j$&,,...)))

All of u,w ,... are the roots of subtrees with 72. -1
or less vertices and by induction hypothesis
fU.f,,, ,... are increasing. Then clearly
MERGE&&,,...) is non-decreasing, by Lemma
4.8 JOIN(MERGE(TU,J, ,. . .)) is increasing, and
finally by Lemma 4.9

Lot =ADDOP(JOIN(MERGE(&&,...)))

f1lfal Ifpq=d7’). (8)
Once this claim has been proven, the bag which
is the last to be obtained contains exactly the
elements of ftoot. By Lemma 4.2 concatenating
them in an increasing order is optimal.
Proof of claim: By induction on m.
lijdFis. m=O. Let (h,a) be an optimal order of
evaluation of T. To define the PC we first build
a sequence of c-a elements of the form

<l,l,O> where h(q)=iSc-a. then we add
two elements at a time - <l,O,l> and

<l,l,O> where c -a<X(~~)=a(vi)=&l and
finally we add <l,O,l> where l<a(wi)=i5c.
It is easy to check that equation (8) holds for
this construction.

is increasing. . Induction hypothesis: Let Pmml=j fi j be
such that (8) holds.

4.3. Correctness and optimality of the

idgorithm
THEOREM 4.2 (Correctness). The concatenation
of the elements comprising froot represents a
legal evaluation of T.
Roof. By induction on 1 T I.
Basis. For a tree with one vertex the claim is
trivially true.
Inductive step. Let us assume that the lemma
holds for all trees with less than n vertices. Let
U,W,... be the children of the root. Then the
inductive hypothesis holds for yU ,yw ,... To
obtain Fmot the algorithm computes:

7 ,,,=ADDOP(JOIN(MERGE(~u,&,,...)))
The ADDOP function only appends the arith-
metic operation at the end of the evaluation in
compliance with the precedence constraints,
while JOIN never changes the order of evalua-
tion. By Theorem 4.1 7, ,T,, . . . are increasing
sequences, and therefore the order among their
elements is preserved by MERGE. 1
THEOREM 4.3 (Optimality). The concatenation
of the elements of F,.Oot is minimal.

Proof. The algorithm may be viewed as a rou-
tine which manipulates a bag P of schematic
representations. Let

Pc=[<l,l,O> : v~Ljul<l,O,l> : VEAL.

We totally ignore the MERGE operation and con-
centrate on the most basic activity of the algo-
rithm, namely the combination of two

Induction step: Assume, that during step m the
algorithm combines two schematic representa-
tions f + and fj, f <Sfj. We must prove the
existence of an ordering of P, which fulfills (8).

Case 1. i<j. Let g=fi+ll...Ifj-l.

Subcase 1.1. f i>g. Here we can make the fol-
lowing reordering of the elements of Pm, and
then combine f i and f j as described by:

fiJsfj + gs(fiIfj)

and by Lemmas 4.2 and 4.3 the overall cost does
not increase.
Subcase 1.2. grfj, Here the reordering is:

fisglfj + (fi Ifj>8!J
and again by Lemmas 4.2 and 4.3 the overall
cost does not increase.
Subcase 1.3. f i<g <fj.

Subcase 1.3.1. b(fi)>O. Here b(fj)>O and
W+Wd Th erefore, b (g)>O and

h(fi)(h(g)<h(fj)

We reorder as follows:

fi9gsfj --) (fi Ifj)-g

and by I,emmas 4.6 and 4.3 the overall cost does
not increase.
Subcase 1.3.2. b (fi)~O. Here either b (fj)=o or

b(fj)<o and h(fj)zt(fi). Since fi<gs

t(fi)>t (g). In case b (f-j)=0 we can reorder:

f<.!Jefj + (fi Ifj)vg

331

and by Lemmas 4.4 and 4.3 the overall cost does
not increase, If b(fj)<O then we make the
reordering:

fivgvfj -) !J~(filfj)

and by Lemmas 4.5 and 4.3 the cost again does
not increase.

Case 2. i>j. Let g=fj+l)...Jfi-1. It is clear
that the order fj<g<fi does not hold. If 9Sfj
then we reorder:

otherwise we reorder:

fj.9.fi + fjgfir9 ” (fi lfjls9
and in both cases by Lemmas 4.2 and 4.3 the
cost does not increase. 8

5. The Time Complexity of the Algorithm
ADDOP, MERGE and JOIN are called once for

every internal vertex. ADDOP changes at most
the last two elements of its input sequence,
therefore it can be implemented in such a way
that its running time is bounded by a constant.

JOIN is always applied to the result of
MERGE, therefore the two procedures can be
performed as one pass on the input of MERGE
during which JOIN acts on the output of MERGE
while it is being formed. Also, the MERGE opera-
tion at a vertex with more than 2 children can
be effected by a series of binary MERGE opera-
tions applied to the subtrees in any order.

To process ordered sequences that are pro-
pagated from the leaves of a Lree all the way up
to its root, the following time-complexity
recurrence relation holds at every (binary)
internal vertex of the tree:

dP+Q)=T@)+-dq)+T.q

where p,q are the sizes of the two subtrees
hanging off the vertex, p;rq, and T is a global
bound on the cost of the MERGE and JOIN opera-
tions per element in the sequence associated
with the lighter tree.

Solving this recurrence (with ~(1)=1) we
obtain ~(n.)=r.n.logn, since

T(p+q)=T(p)+T(q)+T.q =

=?-~p~logp+r~q~logq+r~q=

=r~p-logp+r~q-log2q~

5r-p,log(p +q)+r.q .log(p+q)=

=r~@+q)~log@+q)

The bound r accounts for the need to insert
elements from one sequence into the other in
the right place, and also for the tests with its

neighbours in order to decide whether they are
to be concatenated or not (as part of JOIN). If
the sequences are maintained as balanced
trees, and if proper accounting of the effects of
successful vs. unsuccessful TESTS is taken,
careful analysis shows that r=U(logn) where n
is the total number of vertices in the tree. All
in all we obtain

THEOREM 5.1. The complexity of the algorithm
is O(nlog%).

6. Extensions and Open Problems
Our results can be extended in a number of

ways, but also leave a few problems open to
further research.

6.1. Store operations

When results of computing subtrees need to
be stored in memory, store operations are
added to the evaluation in memory access slots.
Clearly, grouping all stores after the last load
has been completed, will not harm the optimal-
ity of the algorithm. Only when the number of
stores exceeds t at the root, need the cost be
increased. Still, in this case the computation is
memory bound and its cost is the total number
of memory access operations, which is optimal.

6.2. An algorithm for forests

If initially we are given a forest of expres-
sion trees rather than a single tree, we can con-
struct a new tree by adding a “dummy” root
that is the parent of all the roots of the forest.
Then the algorithm is applied to the tree thus
obtained, except for the last call to ADDOP.

6.3. F’inding an optimal evaluation
Our algorithm can be easily augmented to

provide an optimal evaluation of an expression
tree T in addition to just computing C(T). To
do this a list is attached to every variable that
contains a schematic representation. Each
such list contains the vertices in the subtree
corresponding to the schematic representation
of the associated variable. Whenever two
schematic representations f and g are con-
catenated, so are their respective vertex lists.
Note that whenever a sequence of schematic
representation is maintained, we must also
keep a similar structure of lists; it is important
not to confuse lists with sequences. With proper
implementation, these list manipulation opera-
tions do not increase the complexity of the algo-
rithm.

332

8.4. Non unitary execution times
Finally, we can relax our restriction that the

execution time of memory access is equal to
that of the arithmetic operations. Let r1 be the
(integral) number of machine cycles required
by a memory access, and 72 is how long an
arithmetic operation takes. These numbers will
be used now by the algorithm instead of 1 to
charge for the appropriate operation; for exam-
ple, a load leaf is represented by <T~,~~,O>.
Since all the operations on schematic represen-
tations are defined in terms of numbers, this
transition is rather smooth and natural.

6.5. Better complexity results
It seems that the complexity analysis of

Section 5 can be tightened. In particular, we
were able to prove that the time complexity
goes down to O(nlogn) when all the vertices of
the forest have at most two children each (i.e.
d(T)<2). In the general case, the following
observation might be of help in trying to tighten
the analysis: for every vertex v, IJ, 1 =O(m
where Tu is the subtree rooted at v. Thus, the
effort that goes into JOIN and MERGE is in fact
smaller than what we charge for in our analysis.

6.6. Finite number of registers
The main problem left open by this work is

the case when the number of registers in the
machine is bounded. It seems that the purely
binary case (i.e. o!(v)=2 for all the internal ver-
tices in T) could be easier, but the general case
is evidently hard.

Acknowledgement. We would like to thank Jeff
Jaffe for numerous suggestions that improved
(and sometimes corrected) the presentation of
our results.

References

[I11

[21

[31

[41

/51

[f31

[71

[83

Aho, A.V., Hopcroft, J.E., and Ullman, J.D.,
Data structures and algorithms, Addison-
Wesley, Reading, MA, 1983.
Aho, A.V., and Jonhson, S.C., “Optimal code
generation for expression trees”, JACM 23, 3
(Jul. 1976), 488-501.

Even, S., Graph algorithms, Computer Sci-
ence Press, Rockville, MD, 1979.
Knuth, D.E., The art of computer program-
ming: Sorting and Searching (Vol. 31,
Addison-Wesley, Reading, MA, 1973.
Li, H.F., “Scheduling trees in
parallel /pipelined processing environ-
ments”, IEEE transactions on computers,
C-26, 11 (Nov. 1977), 1101-l 112.

Lloyd, E.L., Scheduling task systems with
resources, Ph.D. dissertation, MIT-LCS-TR-
236, May 1980.

Sethi, R., and Ullman, J.D.. “The generation
of optimal code for arithmetic expressions”,
JACM 17, 4 (Oct. 1970), 715-728.
Smith, J. E., “Decoupled access /execute
computer architectures”, Proceedings of
the 9th Symposium on Computer Architec-
ture, (April 1982), 112-119.

333

