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ABSTRACT 

We propose a new machine model in 
which load operations can be performed 
in parallel with arithmetic operations by 
two separate functional units. For this 
model, the evaluation of expression 
trees is considered. An efficient algo- 
rithm to produce an optimal order of 
evaluation is described and analyzed. 
For a tree with n vertices the algorithm 
runs in time D(nlog%). If the arith- 
metic operations have at most two argu- 
ments, the com.plexity goes down to 
O(nlogn). 

1. Introduction 
By and large, modern computers are not 

sequential any more. Their designs usually 
include a certain degree of parallelism, most 
commonly by offering a number of functional 
units that can operate simultaneously - some 
units handle memory access while others mani- 
pulate (in registers) the data thus retrieved. So 
far, this trend in computer architecture has 
only partially been matched by efforts to devise 
efficient code generation algorithms that will 
utilize such capabilities in order to reduce the 
running time of compiled programs. Most work 
was devoted to highly structured designs, e.g. 
vector machines, but not parallel machines in 
general. 

The difficulties are not easily dismissed. On 
one hand, the paradigms used for efficient code 
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generation on sequential machines (e.g. as 
found in [Z,?]) do not generalize to handling the 
intricate phenomena arising in a parallel 
machine as the cost function is not super addi- 
tive. On the other hand, Li [5] proved that the 
problem of finding an optimal (fastest) schedule 
for a set of tasks whose precedence graph forms 
a tree on a machine with even two dedicated 
functional units is NP-complete. 

In this paper we make a contribution 
towards filling the gap between these two 
extremes. We provide an efficient algorithm 
that produces optintal (i.e. fastest possible) 
schedules for evaluating a set of expression- 
trees on a machine that has one memory access 
unit and one arithmetic-logic unit that operates 
on data in registers. This case is special in that 
the precedence relations between memory 
access and arithmetic operations are limited in 
nature; for example, no arithmetic operation is 
ever required to precede any load command. A 
number of variations on this architecture have 
been proposed and even built (e.g. [a)), but they 
all use generic schemes for information transfer 
between the two units rather than providing a 
tight, customized scheduling algorithm for code 
generation. 

We assume that the number of registers at 
our disposal is unbounded, thus concentrating 
on the issue of how to alleviate the mc:nory-to- 
ALU bottle-neck rather than the ccnstraints 
caused by an inadequate number of registers. 
In this situation, the schedule provided by our 
algorithm is all a compiler needs to generate 
the object code. 

The algorithm proposed here processes the 
vertices of expression trees in that order which 
least impedes the processing of arithmetic ver- 
tices due to yet unloaded arguments; this order, 
in general, is quite different from the standard 
way of enumerating tree vertices, as used in [Z]. 
The algorithm is easy to program. It performs 
one pass on the expression tree during which it 
produces the optimal schedule of operations for 
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both the memory-access and the arithmetic 
units. The algorithm runs in time O(nlog2n), 
where n is the number of vertices of the tree. If 
no vertex has more than two immediate descen- 
dants then the complexity is reduced to 
O(nlogn) without change to the algorithm. 

We start in the next section with definitions 
of our machine model and tree evaluations for 
it, then we formulate an abstract representa- 
tion of such evaluations and state a number of 
key properties on which the algorithm relies. 
The algorithm itself is presented in Section 3, 
followed by the analyses of its optimality (Sec- 
tion 4) and complexity (Section 5). We conclude 
with extensions and open problems. 

2. Preliminaries 

2.1. The machine 

Our machine has an unbounded number of 
general purpose registers T~,T~,. . and memory 
cells meml,mem2,... _ It supports the following 
operations: 

a) Load operation: (me-) + (rj) 

b) Store operation: (Q) + (me?nj) 

c) Arithmetic operations of the kind 
A((ri,),...,(rh)) --) (rj) where l<k4o! (d is a 
global bound on the number of arguments 
(arity) that an arithmetic operation may 
have). 
The major parallel feature of our machine is 

that it can execute either a load or a store 
* operation concurrently with an arithmetic 

operation. For the purposes of presentation, 
the execution times of all the three types of 
operations are assumed to be equal; we also 
deal with load operations alone, for the time 
being. Section 6 explains how to relax these two 
restrictions. 

The vertices of a computation forest F that are 
associated with load operations are denoted by 
JW’), and those associated with arithmetic 
operations are denoted by A(F). Notice that all 
elements in L(F) are leaves of F; those leaves 
that are not in L(F) are associated with arith- 
metic operations whose operands are in regis- 
ters. Let l(F) = IL(F)l, a(F) = IA(F d(v) 
be the number of immediate descendants of the 
internal vertex V, and d( 7’)=~:; d(v). Given a 

machine with a bound d on the arity of its arith- 
metic operations, we will only consider trees T 
such that d ( T&d. 

The evaluation of a computation forest may 
be viewed as a proper scheduling [6] of two 
processes. One process loads values from the 
memory into registers, and the other carries 
out the arithmetic operations. A proper * 
scheduling (hereafter called legal eva.Jtitin) 
E(F) of a forest F comprises two one-to-one 
mappings into the set N of the positive integers: 

A: L(F)+ 

a: A(F)+N 

such that for every vertex VEF other than the 
root, if v EL(F) then h(v)<a(purent (v)). Other 
wise a(v)<a(parent(v)). 

The ranges of a and X are interpreted as the 
time slots (of unit length each) at which instruc- 
tions are performed. Clearly a load instruction 
can be executed simultaneously with an arith- 
metic operation as long as the precedence rela- 
tion defined by the forest is obeyed. Figure 2 
provides three legal evaluations of the tree from 
Figure 1. 

vodkasI 2 3 l 5 6 7 5 91 

2.2. Computation forests and their evaluation 
Following [2,71, computations are 

represented by rooted forests. An example of a 
forest with one tree in it is given in Figure 1. 
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The cost c (E(F)) of the evaluation E(F) of 
F is defined as: 

This measures the time (or number of slots) it 
takes to evaluate the expression represented by 
F using E(F). For example, in Figure 2 
c (Ei)=6, c (&)=7, and c (&)=a. 

An optimd evalzlation E is a legal evalua- 
tion for which the cost is smallest. The cost of 
an optimal evaluation of a forest F is denoted 
by C(F). We shall concentrate on the problem 
of finding C(F). In Section 6 an algorithm to 
find optimal evaluations is derived. 

2.3. Compressed evaluations 

In the sequel the parameters E and/or F 
are omitted when no ambiguity results. An 
evaluation E=(h,cx) is compressed if the follow- 
ing three conditions are satisfied: 
a. Range (A) = { 1 ,...,1], i.e the loads are con- 

secutive beginning at time slot 1. 
b. Range(a) = lc-a+l,..., c 1, i.e. the arith- 

metic operations are consecutive at the end 
of the evaluation, 

c. The evaluation E ‘=(h,a’) obtained by set- 
ting (for all v) a’(v)=a(v)-1 is illegal, i.e. it 
either violates the precedence conditions or 
sets a(v)=0 for some v. 
For example, the evaluations El and E2 in 

Figure 2 are compressed, whereas E3 is not. 

LEMMA 2.1. For every evaluation E there exists 

:(E 
compressed evaluation E ’ such that 
‘)sc (E). 

Proof. To compress E, we squeeze the loads and 
arithmetic operations separately, and then 
advance the arithmetic block as far to the left 
as possible. This transformation can only 
reduce the cost of E. 9 

Hereafter, all evaluations will be assumed to 
be compressed. 

2-4. Schematic representation of compressed 
evaluations 
Compressed evaluations may be described 

schematically as in Figure 3. In such a 
representation each ‘A’ stands for some arith- 
metic operation, and each ‘L’ represents a load 
operation. 

As we shall see in Section 3, once an optimal 
compressed evaluation for a subforest F of a 
tree T has been determined, only its schematic 
representation is necessary to compute C(T). 
Therefore, we shall only be interested in 
schematic representations. 

L L L L 

A A A A A 

-co 

figure 3. A dWWtic representation of 
K, from Figure 2 

Schematic descriptions are fully character- 
ized by triples of the form <c ,h,t > (c for cost, 
h for head, and t for tail). The three com- 
ponents are interrelated as follows: 

h=c -a (1) 
t=c-1 (2) 

In particular, for a given forest F, anyone of h, 
t, and c determines the others. Still, for our 
purposes it is easier to keep track of all three 
parameters. Thus, we define S(F) to be the set 
of all different schematic representations of 
evaluations of F. Also, let p(F) be the 
schematic representation for which 
c b4F))=C(F). 

Another important parameter of a 
schematic representation is its balance b 
defined by 

b =t -h. (3) 

To rate the quality of evaluations with 
respect to their cost as well as potential paral- 
lelism, we impose two disjoint relations on SxS. 
The first denoted by (<) is a strict order that is 
special in the sense that the order between two 
elements depends on their balance as well as on 
the values of h or t. The second (E) is an 
equivalence relation. Formally, let f ,g ES. We 
say that f <g if one of the following conditions 
holds: 
a. b(f)>0 and b(g)50 

b. b (f M(g)>0 and h(fNh(g) 

c. b(f)b(g&O andt(l)>t(g) 
Also, f-g if b(f),b(g)>O and h(f)=h(g), or 
b(f)lb(g)sO and t(f)=t(g). 
We say that f “g if f =g or f Kg. The relation 4 
is a total order modulo Y. 

An increasing sequence ,f i, . . . , fk of ele- 
ments from S is one in which for every two con- 
secutive elements fi <fi+ i. A non-decreosmg 
sequence (as above) is one such that jisfi+i. 
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2.5. Concatenation of schematic 

representations 
The concatenation (I) of two elements 

f I,fzcS is the compressed evaluation obtained 
by performing the load operations of fz 
immediately after those of f ,, and the arith- 
metic operations of f 2 immediately after those 
of f 1. This may introduce a certain delay to the 
arithmetic operations of f 1 or f z We use the 
notation f 1,2 = f 1 1 f 2. 

LEMMA 2.2. Let f, = <c,,h,,t,>, 
f 2 = <c2,h2,t2>, and f 1,2 = tc ,h.t>. Then 

b = t-h = b,+b, (4) 
h = h,+max(h2-t ,.O) (5) 

t = t,+max(t,-h,,O) (6) 

c = c ,+cz+max(hz--tI.O)-hz (7) 

Proof. By case analysis. . 

The concatenation operator is associative 
but not commutative. For example, let 
f 1 = <5,2.1>, f 2 = <4,2,3>, and f 3 = <6,3,2>. 
Then f l,B = <8,3,3>, but f 2,1 = <‘7,2,2>. Also, 

(f Af 2)lf 3 = <1113,2> = f A(f 21f 3). 

Concatenation has the following effect on 
the ordering relation ZZ: If f @f 2 then 
h(f d+f 2.J. 

These and other properties of concatenation 
are derived in Section 4.1. 

3, An Algorithm to Compute C(T) 
In this section we describe an efficient algo- 

rithm to find C( 7’) for a tree T. The algorithm 
uses the boolean function (predicate) TEST, and 
three subroutines: MERGE, JOIN, and ADDOP. 

3.1. TEsr(f &7) 
f and g are schematic representations 

such that f 59. 7’ESZ’(f ,g)=true in the follow- 
ing cases: 

a. b(f )>0 and b(g)20 and h(g)st(f ). 

b. b(f &O and b(g)=O. 

c. b (f )40 and b (g)<O and h(g)M (f ). 

TEST(f ,g)=false otherwise. 
TEST (f .g ) determines whether the two 

schematic representations f and g can be com- 
bined into one without causing a potential loss 
of optimality to the overall result. 

3.2. MERGE(&, , &) 

MERGE may have any number 16k6d of 
arguments, each being an increasing scqucnce 
of schematic rcprcsentaliorls. The outpul is a 
(single) non-decreasing scqucncc formed by 

merging the input sequences using the s order- 
ing (the order between equivalent elements is 
immaterial). 

3.3. JOIN(J) 

$=f i,...,fh is a non-decreasing sequence of 
schematic representations. g=JOIN(J) is an 
increasing sequence of i elements gl, . . , gi 
where lSil;k defined by: 

j=l 
i=l 
do while j sk 

SC =,f j 

c&=L&ie ‘sk 
~~=JYt fj f 

and TEST(g(, f j) 

e,i-l+l 

i=i+l 
end 

JOIN(J) iteratively concatenates consecu- 
tive elements of 7 as long as they meet the cri- 
terion of TEST. If concatenated, the resulting 
element is further tested against the next ele- 
ment, and so on. 

3.4. ADDoP(J) 

J=f 1, . . . , fk is the increasing sequence of 
schematic representations. Let f k =<c ,h ,t>, 
and f’k=<c+l,h,t+l>. g=ADDOP(P) is an 
increasing sequence consisting of EC or k-l ele- 
ments defined as follows: 

doi=l to k-2 
en2=ft 

if TEST(f k-l,f ‘k) then gk-l=fk-l If’k 
else do 

3.5. The top-level procedure 
We visit the vertices of T in a bottomap 

order and compute at each vertex the increas- 
ing sequence y. of schematic representations 
using the following program: 

. 

if d(v)=0 then if vEL(T) thenJ,=(<l,l,O>) 

else~v=(<l,O,l>) 
else do 

1st. u ,w , . . . be the children_of V- 
e2d = ADDOP(JOIN(MERGE(f,,f,,...))) 

Finally, once we found f=f 1, . . , f k at the 
root, p(T) can be computed as 

AT)=f ll...lfk. 

C( 7’) is easily derived since C( T)=c (p(T)). 
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4. The optimality of the algorithm 

To prove that the suggested algorithm 
indeed computes C(T). we first derive certain 
properties of the concatenation operation. 

4.1. Properties of the concatenation operation 
In the sequel, let J’i=tCi, 4, ti> be arbi- 

trary schematic representations. 
The results in Lemmas 4.1 and 4.2 have 

already been mentioned in Section 2. 
LEMMA 4.1 (Associativity). 

(f,If2)lf3=f1l(f2lf3) 

Proof. It suffices to prove that 

h((f 1 lf2) lf3)=h(f 1 l(f2lfd. 

By (5) and (6) we get 

W 1t12)If3)=h1+max(h2-t,10)+ 

+max(h3-(tz+max(ti-h2,0)),0) 

h(f1i(f21f3))= 

=h1+max(h~+max(h3-ts,O)-t ,,O) 

Now we proceed by case analysis. 

Case 1. h$f 1. We get: 

WflIf2)If31 = h,+h2-tl+max(h3-t2,0) 

h(jll (f 2lf3)) = h,+hz-tl+max(h3-tz10) 

Case 2. h,<t 1. 

Wf I If21 Ij3)=hI+max(h3-t2-tl+h210) 

Subcase 2.1. h$tZ, Then we get 

h(f lI(f2lf3))=h1+max(h2+h3-t2-t1~0) 

and the lemma follows. 

Subcase 2.2. h3<t2. Therefore: 

h(j1l(f2lf3))=hl+max(h2-t1,0)=hl 

However, h3<t2 and h2<t 1 also imply: 

max(hz+h3-t2-t l,O)=O. 

Therefore 

h((f 1 If21 113)=hl 

and the proof is completed. 9 

Since the concatenation operation is associative 
we shall omit parenthesis wherever convenient. 
LEMMA 4.2 (Ordering). If I 1~121 then 

h(f ,,2)4h(f2.1). 

Proof. By (5) 

h(f1,2) = hl+m~@2-W0 

h(,f2,J = h2+max(hl-te,O) 

Case 1. b ,40. Here we get b&O, and h,rt 1’d2. 

Then 

h(f,,,)=h,++t, 

h(f 1,d%+h2--t M(f2.d 

Case 2. b,>O. 

Subcase 2.1. b,>O. 1 lere h,sh,<t,. Then 

hL(f 2,1)=h2 

If h2stl then h(fls2)=h,sh(fz+J, and if h,>t, 
then h(f 1,2)=h,+h,-t 11 and again 
h(f l,zbh,=h(f2J 
Subcase 2.2 b2r;0. If h$t, then 

h(f ,.z)=h,+h,-t1 

If h)<t, then h(f2,,)=h2>h(f 1,2). Otherwise 

w2,*)=h2++t2* and because ti>hirts it fol- 
lows that h(f 1,2)<h(f2,1). If h,<t 1 then 

h.(f 1.2)=‘% 

If h,<t24h2 then h(f8,1)=h2>h(f1,2). Otherwise 
if h $t 2 and then 

h(f2,,)=hz+h*-t,~h,=h(f 1,2) . 

Remark 4.1. f 1<f2 does not imply 

h(f 1.dNfd 
Remark 4.2. f i=fs implies h(f 1,2)=h(f2,1). 
I.,F,MMA 4.3 (Monotonicity). If bz=b, and h&h, 
thenh(fllf,lf3)4h(fl/f2lf3). 
Proof. By (5) we get: 

h(f,If,Fh(fIlf2) 

Let fa=f llfe and fa=f llf4. Thus, h&h,. 
Also, by b2=b4 and (4) we get 

bs=b,. 

To complete the proof we have to show: 

h(fdfd’;h(fdfd 

This also follows from (5). l 

IXMMA 4.4. If b,=O and b,sO then 

Nf 1,2)4W2J 
Proof. By (5) 

h(fl,2) = max(h2+hl-tl,hI)=max(h2,h1) 

h(f2,J = max(hl+h2-t2,h2)zmax(hl,h2) m 

EMMA 4.5. If b r,b$O, and h+tl,t2 then 

h(f,lfzlf3)=h(Jelf~lf3) 
ProoJ By h+tr,t2 we get 

h(f2j f 3)=h2+max(h3-t,,O)=hz+ha-t2 

h(f 11(f21f3))=h,+max(h2+h3-t2-t1~0) 
b (I 2)~0’implies that h2rt2, and therefore: 

h(f 1 lfzlf d=‘v-b l--b, 

329 



By symmetry of the above with respect f i and 
12 

LEMMA 4.6. If b,,b;rO and h2,h3st, then 

h(f,l12lf3)=h(f~lf3lf2) 
Proof. By (5) we get 

wf,lf,If,)=~,+ 
+max(hs+max(h2-t3,0)-tl,O). 

However, 

h3+max(h2-ts,O)= 

=max(hs-( t3-h3),0)+s;t 1. 

Therefore h(f 1 1 f 21 f s)=h,. By symmetry the 
sameistrueforh(f11fs1f2). l 

4.2. Increasing sequences of schematic otherwise by the same lemma 

representations 
LEMMA 4.7. Let f ,g be schematic representa- 
tions such that f 49. If TEST(f ,g)=false then 
,f <g ; ot!ierwise f S(f Ig )Sg 

Proof. By case analysis. 
Case 1. b(f )>O. TEST(J ,g)=false implies either 
b(g)<O, or b(g)sO and h(g)>t(f)>h(f). In 
both cases it foIlows 
TEST( f ,g ) =true then by (4) 

that f <g. If 

gk-l=fk-llf’kzfk-l>fk-2 

yielding the same result. 
To complete the proof of the lemma we must 
prove the claim. By Lemma 4.6 jk-r<jk. We 
proceed by case analysis. 
Case 1. bk-,>O and b,#O. Then either b&O, or 
bk>O and & >hk-1. In both cases it immediately 
follows that fkel<j’k. 

BY (5) 

a(f 19) = b(f W(g)>0 

h(f Is)=h(f)+max(h(g)-t(f),O)=h(f) . 
It follows that h (f ) g ) =h (f ) and thus f cxf 1 g . 

Case 2. b(f )SO. If TEST(f ,g)=false then 
b(g)<0 and h(g)<t(f). Therefore 
t(g)<h(g)<t(f), which implies f<g. If 
TEST(J ,g)=true then by (4) 

Case 2. bk:_,>O and bk=O. Here we claim that 

J4c>t,-,- 
Subcase 2.1. fk=e lo,. mST(fk-l,fk)=fdse. 
Then by the definition of TEST the claim follows. 
Subcase 2.2. fk=ejI . . . lelo, for some i. This 
implies that TEST(f k-l,ej)=false. 

BY (6) 

b(f Ig)=b(f)+b(gk:O 

TEST has the following property: when 
applied to an increasing sequence p for which 
bhl . . . Iq 

f 
,I=0 and 

TEST(q,j . . . q~,q~+J=true for all i, Q must 
satisfy b (q$)=O for all i. 

t(f Is) = t(g)+max(t(f )-h(g),O). 

Then t(J)at(f lg)rt(9). n 

LEMMA 2.6. Let $ be non-decreasing. Then 
g = JOIN(f ) is increasing. 

When this observation is applied to 
g=ej,...,e lrl it shows that b(ei)=O for all 
j5i4lEl. Now that we know that b(e.)=O and 
TEST(fk-I,ej)fal SC, it follows that h(ej ‘, >tksl. 

An increasing sequence of elements whose 

Proof. By induction on the length of 7. 
Basis. The lemma is vacuously true for JJ I = 1. 
@dzLctive step2 JOIN(J) is increasing for every 
f fof,which If 1 <k. Let g be of length k, Then 
for f =(f I,...fk-J, $=JOIN (p’) is increasing. 
All is needed to complete JOIN(j) is to test fk 
for the possibility to concatenate with g’ the 
last element of g If TEST(g’,jk)=false (notice 
that by Lemma 4.7 g’Sfkwl<f k) then by Lemma 

balance is 0 has a decreasing value of h. Thus, 
their concatenation inherits the h-value of the 
first element. In our case 

hk=h(ej 1 . . . le lo Ikh(ej). 

Therefore &>tkml. 

Case 3. bk-$0. Here t&,>t,. If bk<O the proof 
is obvious. bk=O is impossible since by an argu- 
ment similar to that of Subcase 2.2 
‘l”l%T(~k-l,ej)=fdse and therefore b (ej) is 
already negative. 8 

4.7, g’ <fk, and g is increasing, otherwise by the 
same lemma g’ Ijkzg’ >g” (9” is the element 
before the last in 0) and again g is increasing. . 
LEMMA 4.9. Let 7 be such that J=JOIN(e) and 
B is non-decreasing. Then g=ADDOP(J) is 
increasing. 
Prooj. If IJ I =1 then g consists of one element 
and is trivially an increasing sequence. If 
17 I=ka2, then by the definition of ADDOP the 
first k -2 elements of g are equal to the respec- 
tive elements of 7, and their increasing order is 
preserved. ADDOP only appends the arithmetic 
operation at the end of f k, resulting in the new 
schematic representation 

j’,=<c,+l,hk,t,+l>. 

Claim: f’bsfk-l. If this holds then we can use 
Lemma 4.7: If TEST(Jk-l,f’k)=false we get: 
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In the sequel T is a tree on which the algo- schematic representations into enc. If the algo- 
rithm is applied, and 7, is the sequence that it rithm combines f and g at step m, then P,,, is 
attaches to 21 ET. obtained from Pm-I as follows: 

THEOREM 4.1. yVoot is increasing. 

Proof. By induction on 1 T I. 
Basis. For a tree with one vertex, 470,t=<1,1,0>, 
or f700t=<1,0,1>. In both cases froot is an 
increasing sequence. 

~nt=(~l7a-,-lfL7~)ulf ISI, 
claim: For ail m, the clcrnents of C;;, can bc 
arranged into a sequcncc so that 

Inductive step. Let us assume that for all trees 
with less than n vertices Jroot is increasing. Let 
1 T(=n. 
Let u,uJ,... be the children of root. Then 

~m,t=ADDOP(JOIN(MERGE(j$&,,...))) 

All of u,w ,... are the roots of subtrees with 72. -1 
or less vertices and by induction hypothesis 
fU.f,,, ,... are increasing. Then clearly 
MERGE&&,,...) is non-decreasing, by Lemma 
4.8 JOIN(MERGE(TU,J, ,. . .)) is increasing, and 
finally by Lemma 4.9 

Lot =ADDOP(JOIN(MERGE(&&,...))) 

f1lfal Ifpq=d7’). (8) 
Once this claim has been proven, the bag which 
is the last to be obtained contains exactly the 
elements of ftoot. By Lemma 4.2 concatenating 
them in an increasing order is optimal. 
Proof of claim: By induction on m. 
lijdFis. m=O. Let (h,a) be an optimal order of 
evaluation of T. To define the PC we first build 
a sequence of c-a elements of the form 

<l,l,O> where h(q)=iSc-a. then we add 
two elements at a time - <l,O,l> and 

<l,l,O> where c -a<X(~~)=a(vi)=&l and 
finally we add <l,O,l> where l<a(wi)=i5c. 
It is easy to check that equation (8) holds for 
this construction. 

is increasing. . Induction hypothesis: Let Pmml=j fi j be 
such that (8) holds. 

4.3. Correctness and optimality of the 

idgorithm 
THEOREM 4.2 (Correctness). The concatenation 
of the elements comprising froot represents a 
legal evaluation of T. 
Roof. By induction on 1 T I. 
Basis. For a tree with one vertex the claim is 
trivially true. 
Inductive step. Let us assume that the lemma 
holds for all trees with less than n vertices. Let 
U,W,... be the children of the root. Then the 
inductive hypothesis holds for yU ,yw ,... To 
obtain Fmot the algorithm computes: 

7 ,,,=ADDOP(JOIN(MERGE(~u,&,,...))) 
The ADDOP function only appends the arith- 
metic operation at the end of the evaluation in 
compliance with the precedence constraints, 
while JOIN never changes the order of evalua- 
tion. By Theorem 4.1 7, ,T,, . . . are increasing 
sequences, and therefore the order among their 
elements is preserved by MERGE. 1 
THEOREM 4.3 (Optimality). The concatenation 
of the elements of F,.Oot is minimal. 

Proof. The algorithm may be viewed as a rou- 
tine which manipulates a bag P of schematic 
representations. Let 

Pc=[<l,l,O> : v~Ljul<l,O,l> : VEAL. 

We totally ignore the MERGE operation and con- 
centrate on the most basic activity of the algo- 
rithm, namely the combination of two 

Induction step: Assume, that during step m the 
algorithm combines two schematic representa- 
tions f + and fj, f <Sfj. We must prove the 
existence of an ordering of P, which fulfills (8). 

Case 1. i<j. Let g=fi+ll...Ifj-l. 

Subcase 1.1. f i>g. Here we can make the fol- 
lowing reordering of the elements of Pm, and 
then combine f i and f j as described by: 

fiJsfj + gs(fiIfj) 

and by Lemmas 4.2 and 4.3 the overall cost does 
not increase. 
Subcase 1.2. grfj, Here the reordering is: 

fisglfj + (fi Ifj>8!J 
and again by Lemmas 4.2 and 4.3 the overall 
cost does not increase. 
Subcase 1.3. f i<g <fj. 

Subcase 1.3.1. b(fi)>O. Here b(fj)>O and 
W+Wd Th erefore, b (g)>O and 

h(fi)(h(g)<h(fj) 

We reorder as follows: 

fi9gsfj --) (fi Ifj)-g 

and by I,emmas 4.6 and 4.3 the overall cost does 
not increase. 
Subcase 1.3.2. b (fi)~O. Here either b (fj)=o or 

b(fj)<o and h(fj)zt(fi). Since fi<gs 

t(fi)>t (g). In case b (f-j)=0 we can reorder: 

f<.!Jefj + (fi Ifj)vg 
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and by Lemmas 4.4 and 4.3 the overall cost does 
not increase, If b(fj)<O then we make the 
reordering: 

fivgvfj -) !J~(filfj) 

and by Lemmas 4.5 and 4.3 the cost again does 
not increase. 

Case 2. i>j. Let g=fj+l)...Jfi-1. It is clear 
that the order fj<g<fi does not hold. If 9Sfj 
then we reorder: 

otherwise we reorder: 

fj.9.fi + fjgfir9 ” (fi lfjls9 
and in both cases by Lemmas 4.2 and 4.3 the 
cost does not increase. 8 

5. The Time Complexity of the Algorithm 
ADDOP, MERGE and JOIN are called once for 

every internal vertex. ADDOP changes at most 
the last two elements of its input sequence, 
therefore it can be implemented in such a way 
that its running time is bounded by a constant. 

JOIN is always applied to the result of 
MERGE, therefore the two procedures can be 
performed as one pass on the input of MERGE 
during which JOIN acts on the output of MERGE 
while it is being formed. Also, the MERGE opera- 
tion at a vertex with more than 2 children can 
be effected by a series of binary MERGE opera- 
tions applied to the subtrees in any order. 

To process ordered sequences that are pro- 
pagated from the leaves of a Lree all the way up 
to its root, the following time-complexity 
recurrence relation holds at every (binary) 
internal vertex of the tree: 

dP+Q)=T@)+-dq)+T.q 

where p,q are the sizes of the two subtrees 
hanging off the vertex, p;rq, and T is a global 
bound on the cost of the MERGE and JOIN opera- 
tions per element in the sequence associated 
with the lighter tree. 

Solving this recurrence (with ~(1)=1) we 
obtain ~(n.)=r.n.logn, since 

T(p+q)=T(p)+T(q)+T.q = 

=?-~p~logp+r~q~logq+r~q= 

=r~p-logp+r~q-log2q~ 

5r-p,log(p +q)+r.q .log(p+q)= 

=r~@+q)~log@+q) 

The bound r accounts for the need to insert 
elements from one sequence into the other in 
the right place, and also for the tests with its 

neighbours in order to decide whether they are 
to be concatenated or not (as part of JOIN). If 
the sequences are maintained as balanced 
trees, and if proper accounting of the effects of 
successful vs. unsuccessful TESTS is taken, 
careful analysis shows that r=U(logn) where n 
is the total number of vertices in the tree. All 
in all we obtain 

THEOREM 5.1. The complexity of the algorithm 
is O(nlog%). 

6. Extensions and Open Problems 
Our results can be extended in a number of 

ways, but also leave a few problems open to 
further research. 

6.1. Store operations 

When results of computing subtrees need to 
be stored in memory, store operations are 
added to the evaluation in memory access slots. 
Clearly, grouping all stores after the last load 
has been completed, will not harm the optimal- 
ity of the algorithm. Only when the number of 
stores exceeds t at the root, need the cost be 
increased. Still, in this case the computation is 
memory bound and its cost is the total number 
of memory access operations, which is optimal. 

6.2. An algorithm for forests 

If initially we are given a forest of expres- 
sion trees rather than a single tree, we can con- 
struct a new tree by adding a “dummy” root 
that is the parent of all the roots of the forest. 
Then the algorithm is applied to the tree thus 
obtained, except for the last call to ADDOP. 

6.3. F’inding an optimal evaluation 
Our algorithm can be easily augmented to 

provide an optimal evaluation of an expression 
tree T in addition to just computing C(T). To 
do this a list is attached to every variable that 
contains a schematic representation. Each 
such list contains the vertices in the subtree 
corresponding to the schematic representation 
of the associated variable. Whenever two 
schematic representations f and g are con- 
catenated, so are their respective vertex lists. 
Note that whenever a sequence of schematic 
representation is maintained, we must also 
keep a similar structure of lists; it is important 
not to confuse lists with sequences. With proper 
implementation, these list manipulation opera- 
tions do not increase the complexity of the algo- 
rithm. 
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8.4. Non unitary execution times 
Finally, we can relax our restriction that the 

execution time of memory access is equal to 
that of the arithmetic operations. Let r1 be the 
(integral) number of machine cycles required 
by a memory access, and 72 is how long an 
arithmetic operation takes. These numbers will 
be used now by the algorithm instead of 1 to 
charge for the appropriate operation; for exam- 
ple, a load leaf is represented by <T~,~~,O>. 
Since all the operations on schematic represen- 
tations are defined in terms of numbers, this 
transition is rather smooth and natural. 

6.5. Better complexity results 
It seems that the complexity analysis of 

Section 5 can be tightened. In particular, we 
were able to prove that the time complexity 
goes down to O(nlogn) when all the vertices of 
the forest have at most two children each (i.e. 
d(T)<2). In the general case, the following 
observation might be of help in trying to tighten 
the analysis: for every vertex v, IJ, 1 =O(m 
where Tu is the subtree rooted at v. Thus, the 
effort that goes into JOIN and MERGE is in fact 
smaller than what we charge for in our analysis. 

6.6. Finite number of registers 
The main problem left open by this work is 

the case when the number of registers in the 
machine is bounded. It seems that the purely 
binary case (i.e. o!(v)=2 for all the internal ver- 
tices in T) could be easier, but the general case 
is evidently hard. 
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