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1. Introduction 

It is a point of continuing controversy in the 

computer science community as to whether branch- 

ing time or linear time temporal logic is more ap- 

propriate for reasoning about concurrent programs 

(cf. [LA80], [EH83]). In linear time logic, temporal 

operators are provided for describing events along a 

single future, although when a linear formula is used 

for program specification there is usually an implicit 

universal quantification over all possible futures. 

Commonly used linear time operators include Fp 

(“sometimes p”), Gp (*always p”), Xp(“nexttime 

p”), and [p U gj (“p until q”). In contrast, in 

branching time logic the operators usually reflect the 

branching nature of time by allowing explicit quan- 

tification over possible futures. The basic modalities 

of these logics are generally of the form: either A 

(‘for all futures*) or E (“for come future*) followed 
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by a combination of the usual linear time operators 

F, G, X, and U. One argument presented by the sup 

porters of branching time logic is that it offers the 

ability to reason about esistentiaf properties of con- 

current programs (e.g., potential for deadlock along 

Borne future) in addition to universal properties 

(e.g., inevitability of service along all futures). 

Another advantage cited for branching time 

logic over linear time logic concerns the complexity 

of automatic verification for finite state concurrent 

programs. The global state graph of such a program 

can be viewed as a finite (Kripke) structure, and a 

model checking algorithm can be given for determin- 

ing if a given structure is a model of a specification 

expressed in a propositional temporal logic. 

Provided that the algorithm is efficient, this ap- 

proach is potentially of wide applicability since a 

large class of concurrent programming problems 

have finite state solutions, and the interesting 

properties of many such systems can be specified in a 

propositional temporal logic. For example, many 

network communication protocols (e.g., the Alternat- 

ing Bit Protocol [BSWSS]) can be modeled at some 

level of abstraction by a finite state system. 

For the branching time logic CTL (which has 

basic modalities of the form: A or E followed by a 
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single occurrence of F, G, X, or U), Clarke, Emer- 

son, and Sistla [CES83] give an algorithm that runs 

in time O(]M].]p]) which is linear in both the size of 

the input structure M and the length of the 

specification formula p; hence, this branching time 

approach is readily mechankable. In contrast, the 

model checking problem formulated for linear time 

logic is known ([SCSZ]) to be PSPACEcomplete. 

On the other hand, while fairness is readily 

handled in linear temporal logic, it is known (cf. 

[LA80], [EH83]) that the branching time logic CTL 

used in [CESSS] does not permit reasoning under 

certain common fairness assumptions. A partial 

remedy to this problem is given in [CES83] by incor- 

porating semantic restrictions on path quantification 

into the underlying structure, but it does not handle, 

e.g., strong fairness. In a recent paper, Lichtenstein 

and Pnueli [LP84) suggest that efficient - in practice 

w model checking algorithms exist for linear time 

logic as well. By forming the cross product of the 

input structure M with the tableau for testing satis- 

fiability of the linear time formula p, they develop 

an algorithm for model checking linear time 

specifications that runs in time 0( ]M12.exp( lpi)) 

which is quadratic in the structure size but 

ezponential in the formula length. They then claim 

that, in practice, the specification is relatively small 

while the structure can be quite large. Thus, the ar- 

gument goes, it is the small polynomial complexity 

in the size of the structure which really matters. 

They conclude that linear time logic is at least ss 

good as branching time logic for model checking, 

and may be better because it allows reasoning about 

types of fairness not handled by [CES83]. 

In this paper, we now argue that branching 

time logic is always better than linear time logic for 

model checking. We show that given a model check- 

ing algorithm for a system of linear time logic (in 

particular, for the usual system of linear time logic 

over F, G, X, and U), there is a model checking algo- 

rithm of the same order of complexity (in both the 

structure and formula size) for the corresponding full 

branching time logic which trivially subsumes the 

linear time logic in expressive power (in particular, 

for the system of lull branching time logic CTL* in 

which the basic modalities are of the form: A or E 

followed by an unrestricted formula of linear time 

logic over F, G, X, and U). We demonstrate that 

handling explicit path quantifiers and even nested 

path quantifiers costs (essentially) nothing. Thus, 

there is no reason to restrict oneself to linear time 

logic. Use instead the corresponding full branching 

time,logic for the same cost. 

We go on to present a model checking algo- 

rithm which permits efficient (actually still linear 

time) mechanical reasoning in a branching time 

framework under a broad class of generalized fair- 

ness assumptions (including, among others, strong 

fairness). In particular, we consider the model 

checking problem (FMCP) for Fair Computation 

Tree J!&C (FCTL). FCTL is a branching time sys- 

tem which generalizes the (ordinary) CTL as used in 

[CES83] by having all path quantifiers relativized to 

a fairness assumption Q0 specified by a boolean com- 

bination of the infinitary linear time temporal 
OQ 

operators Fp {which abbreviates GFp and means 

“infinitely often p”) and Ep (which abbreviates FGp 

and means “almost everywhere p”). Its basic 

modalities are thus of the form A, (“for all fair 

paths*) or E, (“for some fair path”) followed by a 

single linear time operator: F, G, X, or U. The in- 

finitary operators of @0 make it possibie to express 

and resson under a wide variety of ‘practical” fair- 

ness assumptions from the literature including im- 
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partiality [LPS81], weak fairness ((LA80]), strong 

fairness ([LA80]), f air reachability of predicates 

([QSSS]), state fairness ([PN83]), as well 85 technical 

notion of “limited looping” fairness ([AEl80]). 

To develop our FMCP algorithm, we will first 

argue that FMCP can be reduced in linear time to 

the Fair State Boblem (FSP): Starting from which 

states does there exist some path along which d 
0 

holds? Our reduction applies for any fairness 

specification Go involving a boolean combination of 

the F, E operators as above. We then show that 

when e. is in the special canonical /arm 

b ?! (Epij V F”s,), then FSP (and hence also 
pd=f 

can be solved in time linear in the size of the 

input specification and input structure. While any 

Go can be translated into an equivalent Go’ in 

canonical form, the translation can cause an ex- 

ponential increase in length (resulting in an exponen- 

tial time solution to the original instance of FMCP). 

However, it turns out that most all “practical” types 

of fairness considered in the literature (including all 

those listed above) can be directly specified using a 

canonical eo. On the other hand, we are able to 

classify the complexity of FSP and FMCP for an ar- 

bitrary Go: they are NP-complete. 

Finally, we argue that the results discussed 

above strongly suggest that the real issue involved 

for model checking is not whether to use branching 

time or linear time, but simply: what are the basic 

modalities of my branching time logic? I.e., what 

linear time formulae can follow the path quantifiers? 

(Remark: In a basic modality of a branching time 

logic, the linear time formula following the path 

quantifier is a Upure ” linear time formula involving 

no nested path quantifiers.) The results of [SCSZ] 

show that when an arbitrary combination (i.e., al- 

lowing boolean connectives and nesting) of linear 

time operators is allowed, the model checking 

problem is PSPACEcomplete. And, as we should ex- 

pect, for the algorithm of [LP84] it is indeed the 

linear formula (following the implicit path 

quantifier) which causes the exponential blowup in 

the complexity of model checking for linear time 

logic (and for CTL*). At the other extreme, as we 

might expect, [CES83] shows that model checking is 

easy for the simple modalities of CTL where only a 

single linear time operator is allowed to follow a 

path quantifier. When we consider modalities of in- 

termediate structural complexity, the results of 

[SC821 show that model checking is NP-hard even 

for linear time logic over just F and G. It is quite 

surprising, however, to note that while [SC821 shows 

that even for the simple modality E[FP, A . . . A 

FP,] the model checking problem is NP-hard, for the 

apparently closely related modalities E[FP, A . . . A 

Fpnj and E[gPI A . . . A EP,] model checking can be 

done in linear time. (The first modality is related to 

the second because FP means “there exists at least 
W 

one state satisfying P’ while FP means *there exist 

infinitely many states satisfying P”; the first 
W 

modality is related to the third because GP is equiv- 

alent to FGP.) Thus, the infinitary operators FP 

and EP used in describing fairness properties which 

are often thought of as causing all sorts of problems 

with discontinuities, non-definability in first order 

arithmetic, etc. (cf. [EC80], [HA84]) can actually 

simplify the problem of model checking. Indeed, we 

are able to obtain linear time complexity model 

checking algorithms under a broad class of practical 

fairness assumptions. 

The work described so far may be viewed as 

extending the model checking approach originally 

developed for CTL to various (increasingly 

expressive) sublanguages of CTL*, each of which 
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subsumes CTL in expressive power. There is 

another way to think of extending model checking 

for CTL. View CTL not as a sublanguage of CTL*, 

but, rather, as a sublanguage of the propositional 

Mu-calculus (cf. [KO83], [PR81], [ECSO]). The 

propositional Mu-calculus provides a leaet fizpoint 

operator (p) and a greatest f&point operator (v) 

which make it possible to give jizpoint 

charocterimtions of the branching time modalities. 

Intuitively, the Mu-Calculus makes it possible to 

characterize the modalities in terms of recursively 

defined tree-like patterns. For example, EFP = 

pZ.P V EXZ, the least fiipoint of the functional P V 

EXZ where Z is an atomic proposition variable 

(intuitively ranging over sets of states.) Similarly, 

EFP = vZ,+Z,.EX[(P A Z1) V ZJ. (Alternating 

nestings of p’s and u’s as in this latter example can 

lead to discontinuities.) We show how model check- 

ing can be done for the Mu-calculus. In particular, 

for the fragment of the Mu-calculus where the depth 

of nesting of alternating p’s and v’s as above is 

bounded by k, our algorithm runs in polynomial 

time with the degree of the polynomial proportional 

to k. (This makes it possible to model check PDL-A 

((ST8i]) in quadratic time.) 

The remainder of the paper is organized as fol- 

lows: The utility of the model checking approach to 

verification is discussed in Section 2. Section 3 

describes the syntax and semantics of our temporal 

languages. Section 4 gives the reduction of the 

model checking problem for full branching time logic 

to that for the corresponding linear time logic. Sec- 

tion 5 describes how to do efficient model checking 

in the branching time FCTL system whenever the 

fairness constraint is in canonical form. The com- 

plexity of the general case is also analyzed. A 

variety of types of practical fairness are defined and 

canonically specified in Section 6. Section 7 describes 

how one may apply FSP for testing emptiness of 

finite automata on infinite strings. Our algorithm 

for model checking in the Mu-calculus is described in 

section 8. Finally, extensions to this work are con- I 

sidered in the concluding section 9. 

2. Practical Utility of the Model Checking 

Approach to Verification 

Numerous approaches to reasoning about cor- 

rectness of concurrent programs have been proposed 

in the literature. Most of these approaches can be 

partitioned into one of two categories: 

1. 

2. 

Formal systems designed with mathematical 
elegance as the primary motivation. Unfor- 
tunately, the designers of such systems usually 
pay little attention to pragmatic issues and the 
resulting systems are often of little practical 
use in proving actual (or even toy) programs 
correct. 
Systems (or methodologies) designed with prac- 
tical utility as the primary motivation. Papers 
in this category generally illustrate the 
proposed method by applying it to establish 
correctness for a number of example programs 
in an effort to convince the reader of the use- 
fulness of the approach. Unfortunately, such 
systems often lack the underlying mathemati- 
cal framework necessary to provide a clear-cut 
characterization of their range of applicability 
(i.e., to what class of concurrent programs does 
the method apply). Moreover, in some of these 
systems even the underlying specification lan- 
guage (or formalism) lacks a syntax and 
semantics that is mathematically well-defined. 
In such cases it is out of the question to con- 
sider formal justifications of the methods’ ade- 
quacy and utility (e.g., soundness, deductive 
completeness, expressive completeness, etc.). 

We claim that our model checking approach 

transcends this dichotomy, and enjoys the best fea- 

tures of both categories. Our method has formal 

elegance: the method is applicable to a well-defined 

class of concurrent programs, the finite state 
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programs. The specification language, (an ap- 

propriately chosen, particular system of) propoei- 

tional temporal logic has a precise syntax and 

rigorously well-defined semantics. Over finite state 

concurrent programs, our model checking algorithm 

trivially ensures that the proof method is sound and 

complete. 

Our method also has considerable practical 

utility as has been empirically demonstrated. In par- 

ticular, the model checking method as described in 

[CES83) has actually been implemented. The imple- 

mented EMC (Extended Model Checker) system 

described there has been used to mechanically verify 

the correctness of, e.g., the mutual exclusion example 

program previously proved correct by hand in 

[OL82]. It has also been successfully applied to the 

verification of VLSI circuits. In particular, [~~83] 

describes how the EMC system was used to detect an 

error in a circuit from Conway and Meade’s VLSI 

text and also to verify that an amended circuit was 

correct. Finally, we point out that the large size of 

the state graph encountered in certain applications 

need not present an insurmountable obstacle. For ex- 

ample, methods based on graph reachability analysis 

similar to our model checking algorithm have been 

successfully used to mechanically verify network 

protocols with large state spaces for European 

telecommunications companies ([0 5841; cf. [AE83]). 

We believe that our model checking algorithm, be- 

cause of its linear complexity, may also be suitable 

for similar applications. 

3. Syntax and Semantics of Temporal Logics 

We inductively define a class of state formulae 

(true of false of states). which intuitively correspond 

to branching time logic and a class of path formulae 

(true or false of paths) which intuitively correspond 

to linear time logic: 

Sl. Any atomic proposition P ia a state formula. 
S2. If p,q are state formulae then so are p A q, up. 
S3. If p is a path formula then Ep is a state formula. 
Pl. Any state formula p is a path formula. 
P2. If p,q are path formulae then so are p A q, yp. 
P3. If p,q are path formulae then so are Xp, (p U q). 

Other connectives can be introduced abbreviations in 

the usual way: p V q for -(-p A yq), p * q for lp 

v q, Ap for ‘E-p, Fp for true U p, Gp for -F-p, 

Fp for GFp, Ep for -F-p, etc. 

We define the semantics of a formula with 

respect to a structure M = (S, R, L) where 

S is a nonempty set of &tea, 
R is a nonempty, total binary relation on S, and 
L is a lobelling which assigns to each state a set 

of atomic propositions true in the state 

A fulZpath (s1,s2,s3,...) is an infinite sequence of 

states such that (s~,s~+~) E R for all i. We write M,s I= 

p (M,x c p) to mean that state formula p (path for- 

mula p) is true in structure M at state s (of path x, 

respectively). W,hen M is understood, we write 

simply s b p (x c p). We define c inductively using 

the convention that x = (so,sL’sz,...) denotes a path 

and xi denotes the suffix path (s~,s~+~,~+~,...): 

Sl. s C P iff P E L(s) for any atomic proposition P 
S2,scpAqiffscpandscq 

s c up iff not (s c p) 
S3. s c Ep iff for some fullpath x starting at s, x c p 
Pl. x C p iff so C p for any state formula p 
P2.xcpAqiffxcpandxbp 

x t 7p iff not (x C p) 
P3.x cXp iff x1 cp 

x F (p U q) iff for some i > 0, xi F q and 
for all j >_ 0 [j 5 i implies 9 )I p] 

We say that state formula p is valid, and write 

c p, if for every structure M and every state a in M, 

M,a c p. We say that state formula p is satiejiable if 

for some structure M and some state s in M, M,a c 

p. In this case we also say that M defines a model of 
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p. We define validity and satisfiability similarly for 

path (i.e., linear time) formulae. 

The set of path formulae generated by rules 

Sl,Pl,P2, and P3 (the set of ‘pure* path formulae 

which contain no path quantifiers A or E) forms the 

usual language of linear time logic. The set of state 

formulae generated by all the above rules forms the 

language CTL* . The language CTL is the subset of 

CTL* where only a single linear time operator 

(F,G,X, or U) can follow a path quantifier (A or E). 

FCTL (Fair CTL) is defined as follows: An 

FCTL specification (pO, GO) consists of a functional 

assertion p,, which is a state formula, and an under- 

lying fairness assumption @e, which is a path for- 

mula. The functional assertion p, is expressed in es- 

sentially CTL syntax with basic modalities of the 

form either A, (,“for all fair paths”) or E, (“for 

some /air path”) followed by one of the linear time 

operators F, G, X, or U. We subscript the path 

quantifiers with the egmbol @ to emphasize that they 

range over paths meeting the fairness constraint @O, 

and to syntactically distinguish FCTL from CTL. A 

fairness constraint GO is a boolean combination of 

the infinitary linear time operators Fp (“infinitely 

often p”) and Ep (*almost always p”), applied to 

(for simplicity) propositional arguments. We now 

define the semantics of an FCTL specification (pe, 

GO). GO is a path formula, in a restricted syntax spe- 

cialized to describing fairness properties, so by ex- 

panding the abbreviations M,x c GO is defined by the 

rules Sl,Pl,P2,P3. We can then view a subformula 

such ss A#FP of functional sssertion p, as an ab- 

breviation for the CTL* formula A[@O + Fp], 

Similarly, E#GP abbreviates E[@O I\ GP]. Note that 

all path quantifier8 in the functional aeecrtion are 

relativized to the same (single) underlying fairncee 

constraint GO. If we were to expand the abbrevis 

tions for E, and A, in a functional assertion, the 

resulting CTL* formula might be rather unwieldy 

due to the need to repeatedly write down multiple 

copies of the actual fairness formula GO. Thus, when 

we mention the length of p,, we refer to the un- 

expanded formula. 

In practice, the formalism of FCTL should 

provide ample generality because we typically remon 

about behaviors of concurrent systems under a single 

fairness assumption over the entire system. It is in- 

teresting to note from a technical standpoint, 

however, that we can also define a Generalized Fair 

CTL (GZXXL) ss simply a sublanguage of CTL* 

with basic modalities such ss AIGO + FP] and E[O, 

h GP] where each such A or E subformula is ss- 

so&ted with a (possibly) different fairness specifica- 

tion ei. Moreover, the arguments to the F” and E 

operators can be generalized to be arbitrary GFCTL 

state formulae. 

Remark: It is routine to give formal defini- 
tions of the syntax and semantics of CTL, FCTL, 
and GFCTL described in a manner similar to that 
used in [EH83]; these formal definitions will be given 
in the full paper. 

4. Model Checking for the Full Branching 

Time Logic CTL* _I 
The Branching Time Logic Model Checking 

F+oblem (BMCP) formulated for CTL* is: Given a 

finite structure M = (S,R,L) and a CTL* formula p, 

determine for each state s in S whether or not M,s t 

p and label s with p or up accordingly. The Model 

Checking Problem for linear time logic (LMCP) can 

be similarly formulated ss follows (cf. [SC82]): We 

are given a finite structure M=(S, R, L) and a for- 

mula p of ordinary linear temporal logic over F, G, 

X, and U. Formally, p is a path formula generated 
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by rules Sl,Pl,P2,P3 in the previous section (so that 

it contains no nested path quantifiers A or E). Then 

determine for each state in S, whether there is a 

fullpath satisfying p starting at s, and label s with 

Ep or ‘Ep accordingly.2 (Note that the [LP84] algo- 

rithm can be trivially modified to do this.) 

Despite the superficially plausible intuition 

that handling, e.g., nested, alternating path quan- 

tifiers would make BMCP more difficult than 

LMCP, we have the following 

Theorem 1: (With mild, technical conditions 

on its complexity,) if we are given an algorithm 

LMCA to solve LMCP for a linear logic (in par- 

ticular, ordinary linear logic over F, G, X, and U), 

then we can design an algorithm BMCA to solve 

BMCP for the corresponding full branching time 

logic (in particular, CTL*) - which trivially sub- 

sumea the linear logic in expressive power - of the 

same order of complexity as LMCA. 

proof idea: The key point is that we can ac- 

tually use LMCA to evaluate Ep for an arbitrary 

path formula p, in particular for one which contains 

nested path quantifiers. To model check an ar- 

bitrary CTL* state formula p,, we simply model 

check on each subformula by recur&e descent 

based on the inductive definition of CTL* state for- 

mulae using LMCA as a subroutine to evaluate Ep 

formulae: 

1. If p, is an atomic proposition P, then add -P 
to the label of each state s whose label does not 

‘Thii definition of LMCP msy not, rt lint glmcr, corrcrpond 
to how one thinks it should be formulated because most 
proponenb of linear time logic observe the convention that lineu 
time formula p is true of 8 structure (representing a concurrent 
program) iff it in true of all paths in the strudurc. Please note, 
however, that p is true of rll prtbs in the structure iff Ap holds at 
all strter of the rtructure. Since Ap = -E--p, by solving our 
formulation of LMCP md then Banning all states to check 
whether Ap holds, we get a solution to the %lternstive* formule 
tion. 

2. 

3. 

4. 

contain P. 
If p, is a conjunction p A q of two state for- 
mulae p,q then recursively model check for 
each of p and q; then add p, to the label of 
each state whose label contains both p and q. 
If p, is 8 negation lp of a state formula p, 
then recursively model check for p. Add up to 
the label of each state not containing p. 
If p, is of the form Ep where p is a path for- 
mula, then let Eq,,...,Eqk be the list of all ‘top 
level” proper Esubformulae of p. If this list is 
empty then p is a “pure” linear time formula 
with no nested path quantifiers so call the 
linear time model checker LMCA for p. Other- 
wise, for each E 

f, 
recursively call this state 

model checker. W en all recursive calls have 
returned, each state s will be labelled with Eql 
or lEql as appropriate. Introduce a list of new, 
“fresh” atomic propositions Q1,...,Qk. Aug- 
ment the labelling of each state s in the struc- 
ture for each i, with Qi if Eql holds at s and 
‘Qi otherwise. Let p’ be the path formula 
resulting from substituting each Q. for its cor- 
responding Eqi in p. Call the &ear model 
checker LMCA for p’. When it returns each 
state is labelled with Ep’ or -Ep’ as ap- 
propriate. Re-substitute 

9 
. back for each Qi 

so in the occurrences of Ep to get each state 
labelled with Ep or -Ep appropriately. 

Actually, in implementing the algorithm 

BMCA it is not necessary to introduce the auxiliary 

atomic propositions Qi; rather, the corresponding Eql 

can be viewed as themselves atomic. So impla 

mented, it is straightforward to check that if LMCA 

is of time complexity O(f(IMI).g(lp()) for any 

*reasonable* functions f, g (such as polynomials or 

exponentials) then so is the recursive descent alge 

rithm BMCA. In particular, the BMCP algorithm 

for CTL* resulting from the [LP84] algorithm for 

LMCP for ordinary linear temporal logic is of the 

same order of complexity. It is also easy to see that 

this reduction will work for any linear temporal for- 

malism and its corresponding full branching tem- 

poral logic. 
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6. Model Checking for FCTL 

The Model Checlcing B-obtem for FCTL 

(FMCP) is: Given a finite structure M and an 

FCTL specification (p,, #c), determine for each state 

SES whether M, s c pO’ where p,’ is the CTL* for- 

mula that p, abbreviates as explained in section 2. 

The Fair State Z+obZem (FSP) is: Given a structure 

M=(S, R, L), and a fairness constraint Go, deter- 

mine for each state SES whether there is a fullpath x 

in M starting at s such that M, xtiO (i.e., whether 

M,s b EQ. 

5.1. Reduction of FMCP to FSP. FSP may be 

viewed BS a special case of FMCP. However, we can 

generalize a method in [CES83] to reduce FMCP to 

FSP. The reduction yields an algorithm for for 

FMCP that runs in time linear in the size of the in- 

put (specification and structure) and the time to 

solve FSP. The reduction exploits the observation 

that, for any fairness constraint @c and for any 

fullpaths x and y such that x is a suffix of y, M, x c 

@e iff M, y c @O. We thus get the following equiv- 

alences: 

(1) M,s + E#Xp iff 3(s,t)ER[(M,t b E@JA(M,t + p)] 

(2) M,s c A#Xp iff V(s,t)ER[(M,t c E@O)=+(M,t b p)] 

(3) M,s b E&p U s] iff M,s c E[p U (q A E@,,)) 

(4) M,s cA,[p U (11 iff M,s c -[E&-q U (-PA-q)) 

v q&+q)l 

The equivalences (1) and (2) are immediate; (3) fol- 

lows from the observation above that fairness 

properties are oblivious to finite prefixes. To check 

A&p U 9], equivalence (4) shows that we can first 

check whether E&-q U (up A 79)) using equivalence 

(3). To next check E#G(-q), we let M’ be the sub- 

structure of M obtained by deleting all nodes where 

q holds (inductively, we assume nodes of M are 

labeled with the true subformulae). Then E#G(lq) 

holds at a node s iff there is a finite path from s to a 

fair node t in M’. Detection of fair nodes is done by 

the algorithm for FSP. The reduction algorithm is 

described in detail in the full paper where we also 

show that if we let T,(M, $,) denote the time com- 

plexity of algorithm for FSP(M, $0) then the reduc- 

tion can be performed in time O(]p,].max(]M], 

T,(M, @,))), so does the whole algorithm. 

6.2. Efficient Algorithm for Fair State 

Problem. We will now develop a linear time 

algorithm for FSP when @c is in the (restricted) 

canonical form @O=i;\l(Fpi V &.). Since E[p V q] 

z Ep V Eq, this willactually yield a linear time al- 

gorithm for FSP (and hence FMCP) when Go is in 

the (jull) canonical jorm ;/ 1 (?pijV?!qij). 
i=l j=l 

The first step is detection of fair components 

(a strongly connected component is fair if it contains 

a fair path). Given a strongly connected structure 

C=(S,R, L), and a fairness constraint $=ii{Fpi V 

‘qi)t we check if C is fair w.r.t. Q0 as follows: if 

there is a fullpath in C satisfying all the Fpi then C 

is fair; otherwise, there is some pj which is never 

true at any state in C. In this case C is fair iff the 

substructure obtained from C by deleting all nodes 

which do not satisfy qj contains a component that is 

fair w.r.t the fairness constraint resulting from delet- 

ing the jth conjunct of Go. In the full paper we give 

a recursive implementation of this algorithm which 

runs in time O(]C]*]@,]). 

Now to solve FSP, we first compute the fair 

components of the given structure M w.r.t. OO. We 

then determine the fair states, i.e., those states 

which can reach a fair component. This can be done 

in time O(lMI.I@OI), We have thus established: 

Theorem 2: FMCP for input structure 

M=(S, R, L), and input specification (p_, @,) with 
” ” 

Go = ;/ 2 (EPijVFiJij). can be solved in time 

O(]po&#$ 
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Proof. By the preceding remarks FSP can be 

solved for Go in full canonical form in time TA = 

O(]MI+]QO]). Then the reduction of FMCP to FSP 

solves FMCP in time O(lPol-m=41M1,T*)) = 

O(lPol*Iwlq). 0 

Note that any arbitrary Go can be placed in 

canonical form by first putting it in Diejunctiue 

Normal Form (which can cause an exponential 

blowup) and then *padding” with Ffalee or z/&e 

as needed. However, most all “practical” fairness 

specifications, as in the next section, can be mas- 

saged into canonical form with only a linear blowup. 

6.3. Complexity of The Genera1 &se. 

Theorem 3: FSP is NP-complete. 

Proof. [NP-hardness:] We will reduce 3-SAT 

to FSP, with fairness constraint of the form 

i~l(~~Pi v E-q,- Details are given in the full 

paper. 

[Membership]: It has already been shown in 

[SC821 that the model checking problem for linear 

time temporal logic with F, and G operators can be 

solved in NP time, Hence FSP is in NP. 0 

Remark: In [SC821 it was shown that, in ef- 
fect, FSP for &0 any arbitrary linear time formula 
over F, G is NP-complete. For FSP with Q0 of the 

type we construct, membership in NP follows since 
our language of fairness constraints may be viewed 
as a sublanguage of linear time logic by the equiv- 

alences Fp z GFp and Ep E FGp. But NP- 
hardness for Go of our type does not follow from the 

proof in [SCSS]. That proof involved a different 
reduction to a formula FP,A . . . A Fp,. Because Fp is 

not expressible in our Q0 language, such an ar- 

gument cannot be applied. Since our G0 language 

has a more restricted syntax, its decision problem 
might be easier. Our NP-hardness argument shows 
that this is not the case. 

Corollary 4. FMCP is NP-complete. 

6.4. Handling GFCTL 

We can define the model checking problem for 

GFCTL in the obvious way and show using the ideas 

above that it too can be solved in linear time. 

6. Fairness Notions Expressible in FCTL 

We can succinctly express the following fair- 

ness notions using our canonical form: 

1. Impartiality [LPS81]: An infinite computa- 

tion sequence is impartial iff every process is ex- 

ecuted infinitely often during the computation. This 
n co 

notion can be expressed as A (Fezecute+), where 
i-1 

ezecuted,. is a proposition which asserts that process 

i is being executed. 

2. Weak Faimeee ([LA80]) (also known as 

juetice [LPS81]): An infinite computation sequence 

is weakly fait iff every process enabled almost 

everywhere is executed infinitely often. The following 
n 

FCTL formulae express weak fairness: A 

(Eenobled~ =t Fezecuted:) z \ (Fm(-ena6led$-$ 

(F(-et;abledii=VLezecutedi)) 
L- 

3. Strong-Frzirnese ([LA80]) (called simply 

fairneee in [LPSSl]): An infinite computation se- 

quence is etrongly fair iff every process enabled in- 

finitely often is executed infinitely often. This notion 

of fairness can be expressed using the following 

FCTL formulae: i (~enabledi~~ezeeutedi) = 9r 

(&encrbledi V Fe&cfutedi) 
i=l 

4. Generalized Faitnese ([FK84]): Note that 

we can replace the propositions executedi and 

enabledi by any ordinary propositions so that we can 

reason not only about, say, strong fairness w.r.t. 

process enabling and execution but also strong fair- 

ness w.r.t. the occurrence of any propositional 

properties. This is the idea behind generalized 

fairn-8. Let 3 = @‘,,Q,), (P2,Q2), . . . . F’,,Q,)) be 

a finite list of pairs of propositions (where we think 
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of each proposition as representing an arbitrary state 

or transition property). Then we can express that a 

computation is unyditionally Tfair by i FQi, 

weakly 3-fpit by A-($P~ ==+ FQi), 
i=l 

and strongly 

7-lair by ifl (FPi z FQi). 

5. FGr reachability of predicate P ([QS83]): 

We say that a computation x is fair w.r.t rea- 

chability of predicate P provided that if there are 

infinitely many states s occurring along x from 

which a state satisfying proposition P is reachable, 

then there are infinitely many states t along x which 

themselves satisfy P. This can be formulated as 

FEFP + FP. (Note: because EFP is not a pure 

propositional formula, this actually corresponds to a 

fairness specification of GFCTL rather than FCTL.) 

Remark: There was a technical fine point 
glossed over in our rendering of the fairness 
properties above. Whereas the enabling condition for 
performing a step of process i is properly viewed as a 
predicate on states (i.e. nodes), the actual execution 
of the step is more naturally modeled as a transition 
(i.e. traversal of an arc). To allow a precise differen- 
tiation between execution of transition actions and 
enabling of state conditions, we can extend the 
semantics of FCTL to be interpreted over PDL-like 
(cf. [PR76, FL79)) -structures M=(S,A,,A2,...,Ap,L) 
where each AiCSxS represents (the atomic actions 
of) process i, and where we think of each each arc 
(s,,s,&~=A,u...uA~ as being labeled with the set 
(i: (sl,s2)EAi) of processes which can cause a tran- 

sition from state sL to state s2. We can now extend 
the fairness specifications to allow atomic arc asses- 
tions: executedi hold at (s1,s2) iff (sl,s2)EAi. The 

fairness specifications such as Fenabledi=+Fezecutedi 

can be given a rigorous definition. It is straightfor- 
ward to formalize this approach and to extend our 
efficient model checking aIgorithm to the extended 
semantics. Alternatively, we can encode the extended 
semantics with arc labels into the original semantic 
framework of only having node labels as is done in 
[PN77]. 

7. Flnite Automata on Infinite Strings 

In the full paper we describe an application of 

FSP to the theory of finite automata on infinite 

strings (where acceptance is defined by a condition 

such as repeating a designated set of states infinitely 

often). There has been a resurgence of interest lately 

in such automata because of their intimate relation- 

ship to temporal logic ([VW84)). We describe how 

the emptiness problem for finite automata on in- 

finite strings can be viewed as an instance of FSP. 

Moreover, for the common types of acceptance con- 

ditions (Buchi acceptance, pairs acceptance, and 

complemented pairs acceptance) the fairness con- 

dition GO for the corresponding instance of FSP is in 

our canonical form and the emptiness problem can 

be solved in linear time. (Designated subsets (Muller) 

acceptance can be handled in quadratic time.) 

Finally, we remark that our restricted canonical 

form corresponds to complemented pairs acceptance. 

8. Model Checking in the Mu-Calculus 

Formulas of the (endogenous) propositional 

Mu-Calculus are interpreted with respect to a struc- 

ture M = (S, R, L) as in section 3. (The extension 

to the exogenous Mu-Calculus defined over PDL-like 

structures is routine). The formulae are built up 

using atomic proposition constants (P,Q,... etc.), 

atomic proposition variables (Y,Z,... etc.), the truth- 

functional connectives (A, V, -), the nexttime 

operators (EXp, AXp where p is a subformula), and 

and the least fixpoint and greatest fixpoint operators 

(pY.p and vY.p, resp., where p is a subformula). 

We write p(Y) to indicate that free, atomic proposi- 

tion Y is viewed as a variable ranging over 

PowerSet( p(Y) defines a mapping p’: PowerSet 

-* PowerSet in the obvious way. Thus, pY.p(Y) 

and vY.p(Y) d enote the least fixpoint and greatest 
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fixpoint of the associated functional p’, where p(Y) is 

required to be formally monotonic in variable Y, 

i.e., every free occurrence in Y occurs in the scope of 

an even number of negations (7). For example, we 

have the following fixpoint characterizations of 

CTL* modalities: EFP = pY.P V EXY, AGP = 

vY.P A AXY, AFP = pY.P v AXY, E;P = 

uY.&EX[(P A Y) v Z), and A?!P = c;Y.YZ.AX((P 

v Y) A Z]. We refer the reader to [EC80], [PRSl], 

[~083], [SE841 f or additional details regarding the 

Mu-Calculus. 

Our algorithm for model checking in the Mu- 

calculus operates by recursive descent and is similar 

to the original model checking algorithm for CTL 

given in [CE81]. Details are given in the full paper. 

9. Extensions 

While the following types of fairness can be 

succinctly expressed in the canonical form, it turns 

out that model checking for them can be done even 

more simply by merely modifying the algorithm. 

6. State Fuirneee ([PN83]) (also called /air 

choice jrom etatee [QS83]): We say that an infinite 

computation x is stale fait for stute 8 provided that 

if s appears infinitely often along x, then every suc- 

cessor t in M of s also appears infinitely often along 

s. We say that x is &ale /air if2 it is state fair for 

all s in M. 

7. “Limited Looping” Fuirnese ([AB80]): We 

say that fullpath x is limited looping juir for date 8 

provided that if s occurs infinitely often along x then 

each state t accessible from s in M also occurs in- 

finitely often along x. We say that x is limited loop- 

ing fair iff x is limited looping fair for all states s in 

M. (Note: This fairness is closely related to but dis- 

tinct from state fairness.) 

Proposition 6. For any finite structure 

M=(S,R,L), and for all states s in S, there is a state 

fair (limited looping fair) path starting from s. 

Proof. Starting from state s, we use round- 

robin scheduling policy to choose the next state. 

Observation 8. If fullpath x is state fair 

(limited looping fair), any fullpath y resulting from 

adding or deleting some finite prefix to/from x is 

still a state fair (resp., limited looping fair) path. 

Due to proposition 5, FSP under the above two 

fairness notions becomes trivial. Furthermore, the 

model checking procedure for formulae of the form 

A#Xp, E#Xp, E+[pUq] reduce to exactly the same as 

the corresponding CTL formulae. To see how to do 

model checking for A,[pUq], recall that A&pUq] = 

BERG v ~Eo[(~q)U(~p/\~q)]. Hence we only 

have to describe how to check formulae of the form 

E,Gr. The key idea is that every state fair (limited 

looping fair) fullpath must end in a terminal 

strongly connected component (of the structure in 

question), and every state in the terminal component 

must occur infinitely often on the path. Therefore, a 

state s satisfies E,Gr iff there is a finite path start 

ing from s leading to a terminal strongly connected 

component such that all nodes involved satisfy 

proposition r. 

Finally, we remark that our method can be 

used to perform model checking for the probabilistic 

branching temporal logic PTL, of [HS84] interpreted 

over finite Markov chains. The syntax of PTL, is 

very similar to FCTL but an assertion such as A+Fp 

means intuitively that p will eventually hold with 

probability one. We can define a simple translation 

from PTL, into FCTL such that a PTL, formula 

holds in a finite Markov chain iff the corresponding 

FCTL formula holds in the chain viewed as a struc- 

ture, provided that the underlying fairness assump- 

tion is state fairness. 
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