
MODALITIES
FOR MODEL CHECKING:

BRANCHING TIME STRIKES BACK
(Extended Abstract)

E. Allen EMERSON’ and Chin-Laung LEI

Department of Computer Sciences
University of Texas at Austin

Austin, Texan 78713

1. Introduction

It is a point of continuing controversy in the

computer science community as to whether branch-

ing time or linear time temporal logic is more ap-

propriate for reasoning about concurrent programs

(cf. [LA80], [EH83]). In linear time logic, temporal

operators are provided for describing events along a

single future, although when a linear formula is used

for program specification there is usually an implicit

universal quantification over all possible futures.

Commonly used linear time operators include Fp

(“sometimes p”), Gp (*always p”), Xp(“nexttime

p”), and [p U gj (“p until q”). In contrast, in

branching time logic the operators usually reflect the

branching nature of time by allowing explicit quan-

tification over possible futures. The basic modalities

of these logics are generally of the form: either A

(‘for all futures*) or E (“for come future*) followed

‘Work supported in part by NSF Grant MC238302878

Permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and ita date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or rpccik permission.

e1984 ACM 0-89791-147-4/85/001/0084 $00.75

by a combination of the usual linear time operators

F, G, X, and U. One argument presented by the sup

porters of branching time logic is that it offers the

ability to reason about esistentiaf properties of con-

current programs (e.g., potential for deadlock along

Borne future) in addition to universal properties

(e.g., inevitability of service along all futures).

Another advantage cited for branching time

logic over linear time logic concerns the complexity

of automatic verification for finite state concurrent

programs. The global state graph of such a program

can be viewed as a finite (Kripke) structure, and a

model checking algorithm can be given for determin-

ing if a given structure is a model of a specification

expressed in a propositional temporal logic.

Provided that the algorithm is efficient, this ap-

proach is potentially of wide applicability since a

large class of concurrent programming problems

have finite state solutions, and the interesting

properties of many such systems can be specified in a

propositional temporal logic. For example, many

network communication protocols (e.g., the Alternat-

ing Bit Protocol [BSWSS]) can be modeled at some

level of abstraction by a finite state system.

For the branching time logic CTL (which has

basic modalities of the form: A or E followed by a

84

single occurrence of F, G, X, or U), Clarke, Emer-

son, and Sistla [CES83] give an algorithm that runs

in time O(]M].]p]) which is linear in both the size of

the input structure M and the length of the

specification formula p; hence, this branching time

approach is readily mechankable. In contrast, the

model checking problem formulated for linear time

logic is known ([SCSZ]) to be PSPACEcomplete.

On the other hand, while fairness is readily

handled in linear temporal logic, it is known (cf.

[LA80], [EH83]) that the branching time logic CTL

used in [CESSS] does not permit reasoning under

certain common fairness assumptions. A partial

remedy to this problem is given in [CES83] by incor-

porating semantic restrictions on path quantification

into the underlying structure, but it does not handle,

e.g., strong fairness. In a recent paper, Lichtenstein

and Pnueli [LP84) suggest that efficient - in practice

w model checking algorithms exist for linear time

logic as well. By forming the cross product of the

input structure M with the tableau for testing satis-

fiability of the linear time formula p, they develop

an algorithm for model checking linear time

specifications that runs in time 0(]M12.exp(lpi))

which is quadratic in the structure size but

ezponential in the formula length. They then claim

that, in practice, the specification is relatively small

while the structure can be quite large. Thus, the ar-

gument goes, it is the small polynomial complexity

in the size of the structure which really matters.

They conclude that linear time logic is at least ss

good as branching time logic for model checking,

and may be better because it allows reasoning about

types of fairness not handled by [CES83].

In this paper, we now argue that branching

time logic is always better than linear time logic for

model checking. We show that given a model check-

ing algorithm for a system of linear time logic (in

particular, for the usual system of linear time logic

over F, G, X, and U), there is a model checking algo-

rithm of the same order of complexity (in both the

structure and formula size) for the corresponding full

branching time logic which trivially subsumes the

linear time logic in expressive power (in particular,

for the system of lull branching time logic CTL* in

which the basic modalities are of the form: A or E

followed by an unrestricted formula of linear time

logic over F, G, X, and U). We demonstrate that

handling explicit path quantifiers and even nested

path quantifiers costs (essentially) nothing. Thus,

there is no reason to restrict oneself to linear time

logic. Use instead the corresponding full branching

time,logic for the same cost.

We go on to present a model checking algo-

rithm which permits efficient (actually still linear

time) mechanical reasoning in a branching time

framework under a broad class of generalized fair-

ness assumptions (including, among others, strong

fairness). In particular, we consider the model

checking problem (FMCP) for Fair Computation

Tree J!&C (FCTL). FCTL is a branching time sys-

tem which generalizes the (ordinary) CTL as used in

[CES83] by having all path quantifiers relativized to

a fairness assumption Q0 specified by a boolean com-

bination of the infinitary linear time temporal
OQ

operators Fp {which abbreviates GFp and means

“infinitely often p”) and Ep (which abbreviates FGp

and means “almost everywhere p”). Its basic

modalities are thus of the form A, (“for all fair

paths*) or E, (“for some fair path”) followed by a

single linear time operator: F, G, X, or U. The in-

finitary operators of @0 make it possibie to express

and resson under a wide variety of ‘practical” fair-

ness assumptions from the literature including im-

85

partiality [LPS81], weak fairness ((LA80]), strong

fairness ([LA80]), f air reachability of predicates

([QSSS]), state fairness ([PN83]), as well 85 technical

notion of “limited looping” fairness ([AEl80]).

To develop our FMCP algorithm, we will first

argue that FMCP can be reduced in linear time to

the Fair State Boblem (FSP): Starting from which

states does there exist some path along which d
0

holds? Our reduction applies for any fairness

specification Go involving a boolean combination of

the F, E operators as above. We then show that

when e. is in the special canonical /arm

b ?! (Epij V F”s,), then FSP (and hence also
pd=f

can be solved in time linear in the size of the

input specification and input structure. While any

Go can be translated into an equivalent Go’ in

canonical form, the translation can cause an ex-

ponential increase in length (resulting in an exponen-

tial time solution to the original instance of FMCP).

However, it turns out that most all “practical” types

of fairness considered in the literature (including all

those listed above) can be directly specified using a

canonical eo. On the other hand, we are able to

classify the complexity of FSP and FMCP for an ar-

bitrary Go: they are NP-complete.

Finally, we argue that the results discussed

above strongly suggest that the real issue involved

for model checking is not whether to use branching

time or linear time, but simply: what are the basic

modalities of my branching time logic? I.e., what

linear time formulae can follow the path quantifiers?

(Remark: In a basic modality of a branching time

logic, the linear time formula following the path

quantifier is a Upure ” linear time formula involving

no nested path quantifiers.) The results of [SCSZ]

show that when an arbitrary combination (i.e., al-

lowing boolean connectives and nesting) of linear

time operators is allowed, the model checking

problem is PSPACEcomplete. And, as we should ex-

pect, for the algorithm of [LP84] it is indeed the

linear formula (following the implicit path

quantifier) which causes the exponential blowup in

the complexity of model checking for linear time

logic (and for CTL*). At the other extreme, as we

might expect, [CES83] shows that model checking is

easy for the simple modalities of CTL where only a

single linear time operator is allowed to follow a

path quantifier. When we consider modalities of in-

termediate structural complexity, the results of

[SC821 show that model checking is NP-hard even

for linear time logic over just F and G. It is quite

surprising, however, to note that while [SC821 shows

that even for the simple modality E[FP, A . . . A

FP,] the model checking problem is NP-hard, for the

apparently closely related modalities E[FP, A . . . A

Fpnj and E[gPI A . . . A EP,] model checking can be

done in linear time. (The first modality is related to

the second because FP means “there exists at least
W

one state satisfying P’ while FP means *there exist

infinitely many states satisfying P”; the first
W

modality is related to the third because GP is equiv-

alent to FGP.) Thus, the infinitary operators FP

and EP used in describing fairness properties which

are often thought of as causing all sorts of problems

with discontinuities, non-definability in first order

arithmetic, etc. (cf. [EC80], [HA84]) can actually

simplify the problem of model checking. Indeed, we

are able to obtain linear time complexity model

checking algorithms under a broad class of practical

fairness assumptions.

The work described so far may be viewed as

extending the model checking approach originally

developed for CTL to various (increasingly

expressive) sublanguages of CTL*, each of which

86

subsumes CTL in expressive power. There is

another way to think of extending model checking

for CTL. View CTL not as a sublanguage of CTL*,

but, rather, as a sublanguage of the propositional

Mu-calculus (cf. [KO83], [PR81], [ECSO]). The

propositional Mu-calculus provides a leaet fizpoint

operator (p) and a greatest f&point operator (v)

which make it possible to give jizpoint

charocterimtions of the branching time modalities.

Intuitively, the Mu-Calculus makes it possible to

characterize the modalities in terms of recursively

defined tree-like patterns. For example, EFP =

pZ.P V EXZ, the least fiipoint of the functional P V

EXZ where Z is an atomic proposition variable

(intuitively ranging over sets of states.) Similarly,

EFP = vZ,+Z,.EX[(P A Z1) V ZJ. (Alternating

nestings of p’s and u’s as in this latter example can

lead to discontinuities.) We show how model check-

ing can be done for the Mu-calculus. In particular,

for the fragment of the Mu-calculus where the depth

of nesting of alternating p’s and v’s as above is

bounded by k, our algorithm runs in polynomial

time with the degree of the polynomial proportional

to k. (This makes it possible to model check PDL-A

((ST8i]) in quadratic time.)

The remainder of the paper is organized as fol-

lows: The utility of the model checking approach to

verification is discussed in Section 2. Section 3

describes the syntax and semantics of our temporal

languages. Section 4 gives the reduction of the

model checking problem for full branching time logic

to that for the corresponding linear time logic. Sec-

tion 5 describes how to do efficient model checking

in the branching time FCTL system whenever the

fairness constraint is in canonical form. The com-

plexity of the general case is also analyzed. A

variety of types of practical fairness are defined and

canonically specified in Section 6. Section 7 describes

how one may apply FSP for testing emptiness of

finite automata on infinite strings. Our algorithm

for model checking in the Mu-calculus is described in

section 8. Finally, extensions to this work are con- I

sidered in the concluding section 9.

2. Practical Utility of the Model Checking

Approach to Verification

Numerous approaches to reasoning about cor-

rectness of concurrent programs have been proposed

in the literature. Most of these approaches can be

partitioned into one of two categories:

1.

2.

Formal systems designed with mathematical
elegance as the primary motivation. Unfor-
tunately, the designers of such systems usually
pay little attention to pragmatic issues and the
resulting systems are often of little practical
use in proving actual (or even toy) programs
correct.
Systems (or methodologies) designed with prac-
tical utility as the primary motivation. Papers
in this category generally illustrate the
proposed method by applying it to establish
correctness for a number of example programs
in an effort to convince the reader of the use-
fulness of the approach. Unfortunately, such
systems often lack the underlying mathemati-
cal framework necessary to provide a clear-cut
characterization of their range of applicability
(i.e., to what class of concurrent programs does
the method apply). Moreover, in some of these
systems even the underlying specification lan-
guage (or formalism) lacks a syntax and
semantics that is mathematically well-defined.
In such cases it is out of the question to con-
sider formal justifications of the methods’ ade-
quacy and utility (e.g., soundness, deductive
completeness, expressive completeness, etc.).

We claim that our model checking approach

transcends this dichotomy, and enjoys the best fea-

tures of both categories. Our method has formal

elegance: the method is applicable to a well-defined

class of concurrent programs, the finite state

87

programs. The specification language, (an ap-

propriately chosen, particular system of) propoei-

tional temporal logic has a precise syntax and

rigorously well-defined semantics. Over finite state

concurrent programs, our model checking algorithm

trivially ensures that the proof method is sound and

complete.

Our method also has considerable practical

utility as has been empirically demonstrated. In par-

ticular, the model checking method as described in

[CES83) has actually been implemented. The imple-

mented EMC (Extended Model Checker) system

described there has been used to mechanically verify

the correctness of, e.g., the mutual exclusion example

program previously proved correct by hand in

[OL82]. It has also been successfully applied to the

verification of VLSI circuits. In particular, [~~83]

describes how the EMC system was used to detect an

error in a circuit from Conway and Meade’s VLSI

text and also to verify that an amended circuit was

correct. Finally, we point out that the large size of

the state graph encountered in certain applications

need not present an insurmountable obstacle. For ex-

ample, methods based on graph reachability analysis

similar to our model checking algorithm have been

successfully used to mechanically verify network

protocols with large state spaces for European

telecommunications companies ([0 5841; cf. [AE83]).

We believe that our model checking algorithm, be-

cause of its linear complexity, may also be suitable

for similar applications.

3. Syntax and Semantics of Temporal Logics

We inductively define a class of state formulae

(true of false of states). which intuitively correspond

to branching time logic and a class of path formulae

(true or false of paths) which intuitively correspond

to linear time logic:

Sl. Any atomic proposition P ia a state formula.
S2. If p,q are state formulae then so are p A q, up.
S3. If p is a path formula then Ep is a state formula.
Pl. Any state formula p is a path formula.
P2. If p,q are path formulae then so are p A q, yp.
P3. If p,q are path formulae then so are Xp, (p U q).

Other connectives can be introduced abbreviations in

the usual way: p V q for -(-p A yq), p * q for lp

v q, Ap for ‘E-p, Fp for true U p, Gp for -F-p,

Fp for GFp, Ep for -F-p, etc.

We define the semantics of a formula with

respect to a structure M = (S, R, L) where

S is a nonempty set of &tea,
R is a nonempty, total binary relation on S, and
L is a lobelling which assigns to each state a set

of atomic propositions true in the state

A fulZpath (s1,s2,s3,...) is an infinite sequence of

states such that (s~,s~+~) E R for all i. We write M,s I=

p (M,x c p) to mean that state formula p (path for-

mula p) is true in structure M at state s (of path x,

respectively). W,hen M is understood, we write

simply s b p (x c p). We define c inductively using

the convention that x = (so,sL’sz,...) denotes a path

and xi denotes the suffix path (s~,s~+~,~+~,...):

Sl. s C P iff P E L(s) for any atomic proposition P
S2,scpAqiffscpandscq

s c up iff not (s c p)
S3. s c Ep iff for some fullpath x starting at s, x c p
Pl. x C p iff so C p for any state formula p
P2.xcpAqiffxcpandxbp

x t 7p iff not (x C p)
P3.x cXp iff x1 cp

x F (p U q) iff for some i > 0, xi F q and
for all j >_ 0 [j 5 i implies 9)I p]

We say that state formula p is valid, and write

c p, if for every structure M and every state a in M,

M,a c p. We say that state formula p is satiejiable if

for some structure M and some state s in M, M,a c

p. In this case we also say that M defines a model of

88

p. We define validity and satisfiability similarly for

path (i.e., linear time) formulae.

The set of path formulae generated by rules

Sl,Pl,P2, and P3 (the set of ‘pure* path formulae

which contain no path quantifiers A or E) forms the

usual language of linear time logic. The set of state

formulae generated by all the above rules forms the

language CTL* . The language CTL is the subset of

CTL* where only a single linear time operator

(F,G,X, or U) can follow a path quantifier (A or E).

FCTL (Fair CTL) is defined as follows: An

FCTL specification (pO, GO) consists of a functional

assertion p,, which is a state formula, and an under-

lying fairness assumption @e, which is a path for-

mula. The functional assertion p, is expressed in es-

sentially CTL syntax with basic modalities of the

form either A, (,“for all fair paths”) or E, (“for

some /air path”) followed by one of the linear time

operators F, G, X, or U. We subscript the path

quantifiers with the egmbol @ to emphasize that they

range over paths meeting the fairness constraint @O,

and to syntactically distinguish FCTL from CTL. A

fairness constraint GO is a boolean combination of

the infinitary linear time operators Fp (“infinitely

often p”) and Ep (*almost always p”), applied to

(for simplicity) propositional arguments. We now

define the semantics of an FCTL specification (pe,

GO). GO is a path formula, in a restricted syntax spe-

cialized to describing fairness properties, so by ex-

panding the abbreviations M,x c GO is defined by the

rules Sl,Pl,P2,P3. We can then view a subformula

such ss A#FP of functional sssertion p, as an ab-

breviation for the CTL* formula A[@O + Fp],

Similarly, E#GP abbreviates E[@O I\ GP]. Note that

all path quantifier8 in the functional aeecrtion are

relativized to the same (single) underlying fairncee

constraint GO. If we were to expand the abbrevis

tions for E, and A, in a functional assertion, the

resulting CTL* formula might be rather unwieldy

due to the need to repeatedly write down multiple

copies of the actual fairness formula GO. Thus, when

we mention the length of p,, we refer to the un-

expanded formula.

In practice, the formalism of FCTL should

provide ample generality because we typically remon

about behaviors of concurrent systems under a single

fairness assumption over the entire system. It is in-

teresting to note from a technical standpoint,

however, that we can also define a Generalized Fair

CTL (GZXXL) ss simply a sublanguage of CTL*

with basic modalities such ss AIGO + FP] and E[O,

h GP] where each such A or E subformula is ss-

so&ted with a (possibly) different fairness specifica-

tion ei. Moreover, the arguments to the F” and E

operators can be generalized to be arbitrary GFCTL

state formulae.

Remark: It is routine to give formal defini-
tions of the syntax and semantics of CTL, FCTL,
and GFCTL described in a manner similar to that
used in [EH83]; these formal definitions will be given
in the full paper.

4. Model Checking for the Full Branching

Time Logic CTL* _I
The Branching Time Logic Model Checking

F+oblem (BMCP) formulated for CTL* is: Given a

finite structure M = (S,R,L) and a CTL* formula p,

determine for each state s in S whether or not M,s t

p and label s with p or up accordingly. The Model

Checking Problem for linear time logic (LMCP) can

be similarly formulated ss follows (cf. [SC82]): We

are given a finite structure M=(S, R, L) and a for-

mula p of ordinary linear temporal logic over F, G,

X, and U. Formally, p is a path formula generated

89

by rules Sl,Pl,P2,P3 in the previous section (so that

it contains no nested path quantifiers A or E). Then

determine for each state in S, whether there is a

fullpath satisfying p starting at s, and label s with

Ep or ‘Ep accordingly.2 (Note that the [LP84] algo-

rithm can be trivially modified to do this.)

Despite the superficially plausible intuition

that handling, e.g., nested, alternating path quan-

tifiers would make BMCP more difficult than

LMCP, we have the following

Theorem 1: (With mild, technical conditions

on its complexity,) if we are given an algorithm

LMCA to solve LMCP for a linear logic (in par-

ticular, ordinary linear logic over F, G, X, and U),

then we can design an algorithm BMCA to solve

BMCP for the corresponding full branching time

logic (in particular, CTL*) - which trivially sub-

sumea the linear logic in expressive power - of the

same order of complexity as LMCA.

proof idea: The key point is that we can ac-

tually use LMCA to evaluate Ep for an arbitrary

path formula p, in particular for one which contains

nested path quantifiers. To model check an ar-

bitrary CTL* state formula p,, we simply model

check on each subformula by recur&e descent

based on the inductive definition of CTL* state for-

mulae using LMCA as a subroutine to evaluate Ep

formulae:

1. If p, is an atomic proposition P, then add -P
to the label of each state s whose label does not

‘Thii definition of LMCP msy not, rt lint glmcr, corrcrpond
to how one thinks it should be formulated because most
proponenb of linear time logic observe the convention that lineu
time formula p is true of 8 structure (representing a concurrent
program) iff it in true of all paths in the strudurc. Please note,
however, that p is true of rll prtbs in the structure iff Ap holds at
all strter of the rtructure. Since Ap = -E--p, by solving our
formulation of LMCP md then Banning all states to check
whether Ap holds, we get a solution to the %lternstive* formule
tion.

2.

3.

4.

contain P.
If p, is a conjunction p A q of two state for-
mulae p,q then recursively model check for
each of p and q; then add p, to the label of
each state whose label contains both p and q.
If p, is 8 negation lp of a state formula p,
then recursively model check for p. Add up to
the label of each state not containing p.
If p, is of the form Ep where p is a path for-
mula, then let Eq,,...,Eqk be the list of all ‘top
level” proper Esubformulae of p. If this list is
empty then p is a “pure” linear time formula
with no nested path quantifiers so call the
linear time model checker LMCA for p. Other-
wise, for each E

f,
recursively call this state

model checker. W en all recursive calls have
returned, each state s will be labelled with Eql
or lEql as appropriate. Introduce a list of new,
“fresh” atomic propositions Q1,...,Qk. Aug-
ment the labelling of each state s in the struc-
ture for each i, with Qi if Eql holds at s and
‘Qi otherwise. Let p’ be the path formula
resulting from substituting each Q. for its cor-
responding Eqi in p. Call the &ear model
checker LMCA for p’. When it returns each
state is labelled with Ep’ or -Ep’ as ap-
propriate. Re-substitute

9
. back for each Qi

so in the occurrences of Ep to get each state
labelled with Ep or -Ep appropriately.

Actually, in implementing the algorithm

BMCA it is not necessary to introduce the auxiliary

atomic propositions Qi; rather, the corresponding Eql

can be viewed as themselves atomic. So impla

mented, it is straightforward to check that if LMCA

is of time complexity O(f(IMI).g(lp()) for any

reasonable functions f, g (such as polynomials or

exponentials) then so is the recursive descent alge

rithm BMCA. In particular, the BMCP algorithm

for CTL* resulting from the [LP84] algorithm for

LMCP for ordinary linear temporal logic is of the

same order of complexity. It is also easy to see that

this reduction will work for any linear temporal for-

malism and its corresponding full branching tem-

poral logic.

90

6. Model Checking for FCTL

The Model Checlcing B-obtem for FCTL

(FMCP) is: Given a finite structure M and an

FCTL specification (p,, #c), determine for each state

SES whether M, s c pO’ where p,’ is the CTL* for-

mula that p, abbreviates as explained in section 2.

The Fair State Z+obZem (FSP) is: Given a structure

M=(S, R, L), and a fairness constraint Go, deter-

mine for each state SES whether there is a fullpath x

in M starting at s such that M, xtiO (i.e., whether

M,s b EQ.

5.1. Reduction of FMCP to FSP. FSP may be

viewed BS a special case of FMCP. However, we can

generalize a method in [CES83] to reduce FMCP to

FSP. The reduction yields an algorithm for for

FMCP that runs in time linear in the size of the in-

put (specification and structure) and the time to

solve FSP. The reduction exploits the observation

that, for any fairness constraint @c and for any

fullpaths x and y such that x is a suffix of y, M, x c

@e iff M, y c @O. We thus get the following equiv-

alences:

(1) M,s + E#Xp iff 3(s,t)ER[(M,t b E@JA(M,t + p)]

(2) M,s c A#Xp iff V(s,t)ER[(M,t c E@O)=+(M,t b p)]

(3) M,s b E&p U s] iff M,s c E[p U (q A E@,,))

(4) M,s cA,[p U (11 iff M,s c -[E&-q U (-PA-q))

v q&+q)l

The equivalences (1) and (2) are immediate; (3) fol-

lows from the observation above that fairness

properties are oblivious to finite prefixes. To check

A&p U 9], equivalence (4) shows that we can first

check whether E&-q U (up A 79)) using equivalence

(3). To next check E#G(-q), we let M’ be the sub-

structure of M obtained by deleting all nodes where

q holds (inductively, we assume nodes of M are

labeled with the true subformulae). Then E#G(lq)

holds at a node s iff there is a finite path from s to a

fair node t in M’. Detection of fair nodes is done by

the algorithm for FSP. The reduction algorithm is

described in detail in the full paper where we also

show that if we let T,(M, $,) denote the time com-

plexity of algorithm for FSP(M, $0) then the reduc-

tion can be performed in time O(]p,].max(]M],

T,(M, @,))), so does the whole algorithm.

6.2. Efficient Algorithm for Fair State

Problem. We will now develop a linear time

algorithm for FSP when @c is in the (restricted)

canonical form @O=i;\l(Fpi V &.). Since E[p V q]

z Ep V Eq, this willactually yield a linear time al-

gorithm for FSP (and hence FMCP) when Go is in

the (jull) canonical jorm ;/ 1 (?pijV?!qij).
i=l j=l

The first step is detection of fair components

(a strongly connected component is fair if it contains

a fair path). Given a strongly connected structure

C=(S,R, L), and a fairness constraint $=ii{Fpi V

‘qi)t we check if C is fair w.r.t. Q0 as follows: if

there is a fullpath in C satisfying all the Fpi then C

is fair; otherwise, there is some pj which is never

true at any state in C. In this case C is fair iff the

substructure obtained from C by deleting all nodes

which do not satisfy qj contains a component that is

fair w.r.t the fairness constraint resulting from delet-

ing the jth conjunct of Go. In the full paper we give

a recursive implementation of this algorithm which

runs in time O(]C]*]@,]).

Now to solve FSP, we first compute the fair

components of the given structure M w.r.t. OO. We

then determine the fair states, i.e., those states

which can reach a fair component. This can be done

in time O(lMI.I@OI), We have thus established:

Theorem 2: FMCP for input structure

M=(S, R, L), and input specification (p_, @,) with
” ”

Go = ;/ 2 (EPijVFiJij). can be solved in time

O(]po&#$

91

Proof. By the preceding remarks FSP can be

solved for Go in full canonical form in time TA =

O(]MI+]QO]). Then the reduction of FMCP to FSP

solves FMCP in time O(lPol-m=41M1,T*)) =

O(lPol*Iwlq). 0

Note that any arbitrary Go can be placed in

canonical form by first putting it in Diejunctiue

Normal Form (which can cause an exponential

blowup) and then *padding” with Ffalee or z/&e

as needed. However, most all “practical” fairness

specifications, as in the next section, can be mas-

saged into canonical form with only a linear blowup.

6.3. Complexity of The Genera1 &se.

Theorem 3: FSP is NP-complete.

Proof. [NP-hardness:] We will reduce 3-SAT

to FSP, with fairness constraint of the form

i~l(~~Pi v E-q,- Details are given in the full

paper.

[Membership]: It has already been shown in

[SC821 that the model checking problem for linear

time temporal logic with F, and G operators can be

solved in NP time, Hence FSP is in NP. 0

Remark: In [SC821 it was shown that, in ef-
fect, FSP for &0 any arbitrary linear time formula
over F, G is NP-complete. For FSP with Q0 of the

type we construct, membership in NP follows since
our language of fairness constraints may be viewed
as a sublanguage of linear time logic by the equiv-

alences Fp z GFp and Ep E FGp. But NP-
hardness for Go of our type does not follow from the

proof in [SCSS]. That proof involved a different
reduction to a formula FP,A . . . A Fp,. Because Fp is

not expressible in our Q0 language, such an ar-

gument cannot be applied. Since our G0 language

has a more restricted syntax, its decision problem
might be easier. Our NP-hardness argument shows
that this is not the case.

Corollary 4. FMCP is NP-complete.

6.4. Handling GFCTL

We can define the model checking problem for

GFCTL in the obvious way and show using the ideas

above that it too can be solved in linear time.

6. Fairness Notions Expressible in FCTL

We can succinctly express the following fair-

ness notions using our canonical form:

1. Impartiality [LPS81]: An infinite computa-

tion sequence is impartial iff every process is ex-

ecuted infinitely often during the computation. This
n co

notion can be expressed as A (Fezecute+), where
i-1

ezecuted,. is a proposition which asserts that process

i is being executed.

2. Weak Faimeee ([LA80]) (also known as

juetice [LPS81]): An infinite computation sequence

is weakly fait iff every process enabled almost

everywhere is executed infinitely often. The following
n

FCTL formulae express weak fairness: A

(Eenobled~ =t Fezecuted:) z \ (Fm(-ena6led$-$

(F(-et;abledii=VLezecutedi))
L-

3. Strong-Frzirnese ([LA80]) (called simply

fairneee in [LPSSl]): An infinite computation se-

quence is etrongly fair iff every process enabled in-

finitely often is executed infinitely often. This notion

of fairness can be expressed using the following

FCTL formulae: i (~enabledi~~ezeeutedi) = 9r

(&encrbledi V Fe&cfutedi)
i=l

4. Generalized Faitnese ([FK84]): Note that

we can replace the propositions executedi and

enabledi by any ordinary propositions so that we can

reason not only about, say, strong fairness w.r.t.

process enabling and execution but also strong fair-

ness w.r.t. the occurrence of any propositional

properties. This is the idea behind generalized

fairn-8. Let 3 = @‘,,Q,), (P2,Q2), F’,,Q,)) be

a finite list of pairs of propositions (where we think

92

of each proposition as representing an arbitrary state

or transition property). Then we can express that a

computation is unyditionally Tfair by i FQi,

weakly 3-fpit by A-($P~ ==+ FQi),
i=l

and strongly

7-lair by ifl (FPi z FQi).

5. FGr reachability of predicate P ([QS83]):

We say that a computation x is fair w.r.t rea-

chability of predicate P provided that if there are

infinitely many states s occurring along x from

which a state satisfying proposition P is reachable,

then there are infinitely many states t along x which

themselves satisfy P. This can be formulated as

FEFP + FP. (Note: because EFP is not a pure

propositional formula, this actually corresponds to a

fairness specification of GFCTL rather than FCTL.)

Remark: There was a technical fine point
glossed over in our rendering of the fairness
properties above. Whereas the enabling condition for
performing a step of process i is properly viewed as a
predicate on states (i.e. nodes), the actual execution
of the step is more naturally modeled as a transition
(i.e. traversal of an arc). To allow a precise differen-
tiation between execution of transition actions and
enabling of state conditions, we can extend the
semantics of FCTL to be interpreted over PDL-like
(cf. [PR76, FL79)) -structures M=(S,A,,A2,...,Ap,L)
where each AiCSxS represents (the atomic actions
of) process i, and where we think of each each arc
(s,,s,&~=A,u...uA~ as being labeled with the set
(i: (sl,s2)EAi) of processes which can cause a tran-

sition from state sL to state s2. We can now extend
the fairness specifications to allow atomic arc asses-
tions: executedi hold at (s1,s2) iff (sl,s2)EAi. The

fairness specifications such as Fenabledi=+Fezecutedi

can be given a rigorous definition. It is straightfor-
ward to formalize this approach and to extend our
efficient model checking aIgorithm to the extended
semantics. Alternatively, we can encode the extended
semantics with arc labels into the original semantic
framework of only having node labels as is done in
[PN77].

7. Flnite Automata on Infinite Strings

In the full paper we describe an application of

FSP to the theory of finite automata on infinite

strings (where acceptance is defined by a condition

such as repeating a designated set of states infinitely

often). There has been a resurgence of interest lately

in such automata because of their intimate relation-

ship to temporal logic ([VW84)). We describe how

the emptiness problem for finite automata on in-

finite strings can be viewed as an instance of FSP.

Moreover, for the common types of acceptance con-

ditions (Buchi acceptance, pairs acceptance, and

complemented pairs acceptance) the fairness con-

dition GO for the corresponding instance of FSP is in

our canonical form and the emptiness problem can

be solved in linear time. (Designated subsets (Muller)

acceptance can be handled in quadratic time.)

Finally, we remark that our restricted canonical

form corresponds to complemented pairs acceptance.

8. Model Checking in the Mu-Calculus

Formulas of the (endogenous) propositional

Mu-Calculus are interpreted with respect to a struc-

ture M = (S, R, L) as in section 3. (The extension

to the exogenous Mu-Calculus defined over PDL-like

structures is routine). The formulae are built up

using atomic proposition constants (P,Q,... etc.),

atomic proposition variables (Y,Z,... etc.), the truth-

functional connectives (A, V, -), the nexttime

operators (EXp, AXp where p is a subformula), and

and the least fixpoint and greatest fixpoint operators

(pY.p and vY.p, resp., where p is a subformula).

We write p(Y) to indicate that free, atomic proposi-

tion Y is viewed as a variable ranging over

PowerSet(p(Y) defines a mapping p’: PowerSet

-* PowerSet in the obvious way. Thus, pY.p(Y)

and vY.p(Y) d enote the least fixpoint and greatest

93

fixpoint of the associated functional p’, where p(Y) is

required to be formally monotonic in variable Y,

i.e., every free occurrence in Y occurs in the scope of

an even number of negations (7). For example, we

have the following fixpoint characterizations of

CTL* modalities: EFP = pY.P V EXY, AGP =

vY.P A AXY, AFP = pY.P v AXY, E;P =

uY.&EX[(P A Y) v Z), and A?!P = c;Y.YZ.AX((P

v Y) A Z]. We refer the reader to [EC80], [PRSl],

[~083], [SE841 f or additional details regarding the

Mu-Calculus.

Our algorithm for model checking in the Mu-

calculus operates by recursive descent and is similar

to the original model checking algorithm for CTL

given in [CE81]. Details are given in the full paper.

9. Extensions

While the following types of fairness can be

succinctly expressed in the canonical form, it turns

out that model checking for them can be done even

more simply by merely modifying the algorithm.

6. State Fuirneee ([PN83]) (also called /air

choice jrom etatee [QS83]): We say that an infinite

computation x is stale fait for stute 8 provided that

if s appears infinitely often along x, then every suc-

cessor t in M of s also appears infinitely often along

s. We say that x is &ale /air if2 it is state fair for

all s in M.

7. “Limited Looping” Fuirnese ([AB80]): We

say that fullpath x is limited looping juir for date 8

provided that if s occurs infinitely often along x then

each state t accessible from s in M also occurs in-

finitely often along x. We say that x is limited loop-

ing fair iff x is limited looping fair for all states s in

M. (Note: This fairness is closely related to but dis-

tinct from state fairness.)

Proposition 6. For any finite structure

M=(S,R,L), and for all states s in S, there is a state

fair (limited looping fair) path starting from s.

Proof. Starting from state s, we use round-

robin scheduling policy to choose the next state.

Observation 8. If fullpath x is state fair

(limited looping fair), any fullpath y resulting from

adding or deleting some finite prefix to/from x is

still a state fair (resp., limited looping fair) path.

Due to proposition 5, FSP under the above two

fairness notions becomes trivial. Furthermore, the

model checking procedure for formulae of the form

A#Xp, E#Xp, E+[pUq] reduce to exactly the same as

the corresponding CTL formulae. To see how to do

model checking for A,[pUq], recall that A&pUq] =

BERG v ~Eo[(~q)U(~p/\~q)]. Hence we only

have to describe how to check formulae of the form

E,Gr. The key idea is that every state fair (limited

looping fair) fullpath must end in a terminal

strongly connected component (of the structure in

question), and every state in the terminal component

must occur infinitely often on the path. Therefore, a

state s satisfies E,Gr iff there is a finite path start

ing from s leading to a terminal strongly connected

component such that all nodes involved satisfy

proposition r.

Finally, we remark that our method can be

used to perform model checking for the probabilistic

branching temporal logic PTL, of [HS84] interpreted

over finite Markov chains. The syntax of PTL, is

very similar to FCTL but an assertion such as A+Fp

means intuitively that p will eventually hold with

probability one. We can define a simple translation

from PTL, into FCTL such that a PTL, formula

holds in a finite Markov chain iff the corresponding

FCTL formula holds in the chain viewed as a struc-

ture, provided that the underlying fairness assump-

tion is state fairness.

94

10. References

IA=31

ww

[BSWSS]

[CE81)

pES83]

I~831

[EC801

[EC821

(EH82]

(EH83]

AntiIa, M., Erikkson, H., Ikonen, J.,
Kujansuu, R., Ojala, L., Tuominen, H.,
Tools and Studies of Formal Techniques -
Petri Nets and Temporal Logic, Protocol
Specification, Testing, and Verification III,
H. Rudin and C. West (editors), Elsevier
North-Holland, IFIP, 1983.
Abrahamson, K., Decidability and Expres-
siveness of Logics of Processes, PhD
Thesis, University of Washington, 1980.
Bartlet, K,, Scantlebury, R., and Wilkin-
son, P., A Note on Reliable Full-Duplex
Transmission over Half-Duplex Links,
Comm. of the ACM, vol. 12, no. 5, pp.
269-261, 1969.
Clarke, E. M., Emerson, E.A., Design and
Synthesis of Synchronization Skeletons
Using Branching Time Temporal Logic,
IBM Logics of Programs Workshop,
Springer LNCS #131, pp. 52-71, May
1981.
Clarke, E. M., Emerson, E. A., and Sistla,
A. P., Automatic Verification of Finite
State Concurrent System Using Temporal
Logic, 10th Annual ACM 10th Annual
ACM Symp. on Principles of Program-
ming Languages, 1983. -
Clarke, E.M., Mishra, B., Automatic
Verification of Asynchronous Circuits,
CMU Logics of Programs Workshop,
Springer LNCS #164, pp. 101-115, May
1983.
Emerson, E. A., and Clarke, E. M.,
Characterizing Correctness Properties of
Parallel Programs as Fixpoints. Proc. 7th
Int. Colloquium on Automata, Languages,
and Programming, Lecture Notes in Com-
puter Science #85, Springer-Verlag, 1981.
Emerson, E. A., and Clarke, E. M., Using
Branching Time Temporal Logic to Syn-
thesize Synchronization Skeletons, Tech.
Report TR-208, Univ. of Texas, 1982.
Emerson, E. A., and Halpern, J. Y., Deci-
sion Procedures and Expressiveness in the
Temporal Logic of Branching Time, 14th
Annual ACM Symp. on Theory of Com-
puting, 1982.
Emerson, E. A., and Halpern, J. Y.,
‘Sometimes’ and ‘Not Never’ Revisited:
On Branching versus Linear Time 10th

Annual ACM Symp. on Principles of Pro
gramming Languages, January 1983.

[ES841 Emerson, E. A., and Sistla, A. P., Decid-
ing Branching Time Logic, 16 Annual
ACM Symp. on Theory of Computing,
1984.

[FL791 Fischer, M. J., and Ladner, R. E, Proposi-
tional Dynamic Logic of Regular

-Qrograms, JCSS vol. 18, pp. 194-211,

[FK84]

[HA841

(IIS

[K083]

[LA~o]

[LPSSl]

(LP84]

[McN66]

[OJ84]

[OL82]

[PN77]

1~~831

95

l&Q
Francez, N., and Kozen, D., Generalized
Fair Termination, 11th Annual ACM
Symp. on Principles of Programming Lan-
guages, 1984, pp. 46-53.
Harel, D., A General Result on Infinite
Trees and Its Applications, 16th STOC,
pp. 418-427, May 84.
Hart, S., and Sharir, M., Probabilistic
Temporal Logics for Finite and Bounded
Models, 16th STOC, pp. l-13, 1984.
Kozen, D., Results on the Propositional
Mu-calculus, Theoretical Computer
Science, pp. 333-354, December 83.
Lamport, L., Sometimes is Sometimes
“Not Never” - on the temporal logic of
programs, 7th Annual ACM Symp. on
Principles of Programming Languages,
1980, pp. 174-185.
Lehmann. D., Pnueli, A., and Stavi, J.,
Impartiality, Justice and Fairness: The
Ethics of Concurrent Termination, ICALP
1981, LNCS Vol. 115, pp 264-277.
Lichtenstein, 0. and Pnueli, A., Checking
that Finite State Concurrent Programs
Satisfy their Linear Specification, un-
published manuscript, July 84, (to appear
this POPL85.)
McNaughton, R., Testing and Generating
Infinite Sequences by a Finite Automaton,
Information and Control, Vol. 9, 1966.
Ojala, Leo, Personal Communication at
ICALP84, July 1984.
Owicki, S. S., and Lamport, L., Proving
Liveness Properties of Concurrent
Programs, ACM Trans. on Programming
Languages and Syst., Vol. 4, No. 3, July
1982, pp. 455-495.
Pnueli, A., The Temporal Logic of
Programs, 19th annual Symp. on Foun-
dations of Computer Science, 1977.
Pnueli, A., On The Extremely Fair Ter-
mination of Probabilistic Algorithms, 15

[PR76]

[PR81]

lQS831

PJ4691

Pw

[SC821

[ST81]

[SE841

ww

Annual ACM Symp. on Theory of Com-
puting, 1983, 278-290.
Pratt, V., Semantical Considerations on
Floyd-Hoare Logic, 17th FOCS, pp.
109-121, 1976.
Pratt, V., A Decidable Mu-Calculus, 22nd
FOCS, pp. 421-427, 198i.
Queille, J. P., and Sifakis, J., Fairness and
Related Properties in Transition Systems,
Acta Informatica, vol. 19, pp. 195-220,
1983.
Rabin, M., Decidability of Second order
Theories and Automata on Infinite Trees,
Trans. Amer. Math. Society, Vol. 141, pp.
l-35, 1969.
Rabin, M., Automata on Infinite Trees
and the Synthesis Problem, Hebrew Univ.,
Tech. Report no. 37, 1970.
Sistla, A. P., and Clarke, E. M., The
Complexity of Propositional Temporal
Logic, 14 Annual ACM Symp. on Theory
of Computing, 1982.
Streett, R., Propositional Dynamic Logic
of Looping and Converse (PhD Thesis),
MIT Lab for Computer Science, TR-263,
1981. (a short version appears in STOC81)
Streett, R., and Emerson, E. A., The
Propositional Mu-Calculus is Elementary,
ICALP84, pp 465 -472, July 84.
Vardi, M. and Wolper, P., Automata
Theoretic Techniques for Modal Logics of
Programs, pp. 446-455, STOC84.

96

