
A GOOD l lOARE AXIOM SYSTEM FOR AN ALGOL-LIKE LANGUAGE

Joseph Y. ilalpern
IBM Research Laboratory

Sat) Jose, California 9S193

Abstract: Clarke has shown that it is impossible to obtain a
relat ively complete ax iomat iza t ion of a b lock-s t ruc tu red
programming language if it has features such as static scope,
reeurs ive procedure calls wi th procedure parameters , and
global variables, provided that we take first-order logic as the
underlying assertion language [CI]. We show that if we take
a more powerful asser t ion language, and hence a more
powerful not ion of express iveness , such a complete
axiomatization is possible. The crucial point is that we need
to be able to express weakest precondi t ions of commands
with free proeedure parameters. The axioms presented here
are natura l and reflect the syntax of Ihe p rog ramming
language. Such an axiom sys tem provides a tool for
understanding how to reason about languages with powerful
eontrol features.

1. INTRODUCTION

In a paper entitled "Programming languages for which it

is impossible to obtain good Hoare axiom sys tems" [CI],

Clarke showed that it is impossible to obtain a "good" Hoare

axiom system for a block-structured programming language

with the following features:

(i) procedure names as parameters of procedure calls,

(ii) reeursion,

(iii) static scope,

(iv) global variables, and

(v) internal procedures.

In this paper, we give a "good" Hoare axiom sys tem for

PROG 83, a large subset of PROG, the ALGOL-like language

introduced and studied in [THMI,THM2]. PROG 83 allows

nondeterminism and sharing of variables (aliasing) and has all

five features mentioned above.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a f¢¢ and/or specific permission.

© 1983 ACM 0-89791-125-3/84/001/0262 $00.75

To explain this paradox, we must look a little more

carefully at the meaning of "good". Of course, we expect a

good Hoare axiom system to be sound (everything which is

provable should be t rue) and complete (every part ial

correctness assertion which is true should be provable). It

should also be "na tu ra l " ; i.e., the ax ioms should in some

sense reflect the syntax of the programming language.

From the G0dcl incompleteness theorem, we know that

for sufficiently rich interpretations, such as arithmetic, it is

impossible to obtain a sound and complete axiomatization for

f i r s t -o rder formulas , lot alone for part ial co r rec tness

asser t ions involving f i r s t -order formulas , In order to talk

about the completeness of a Hoare axiom system independent

of the under ly ing in terpre ta t ion , Cook ICe/ proposed the

notion of relative completeness: under the assumplion that for

a given in te rpre ta t ion 1 and asser t ion language ..~'., we are

given an oracle for the formulas of ~' which are truc in I, and

that .~ is expressive for 1, then every true partial correctness

asser t ion is provable . Expressivenesx means thal for every

program g in the programming language and formula P in .if,

there is a formula in .~ equivalent to the weakest precondition

(ef. [DiD of g with respect to P.

Taking .ff to be first-order logic, Cook gave a relatively

complete ax iomat iza t ion of a subset of ALGOL with a

while-statement and nonreeursivc programs. Gorelick [Go]

extended Cook's work to include rccursive procedures. On

the other hand, Clarke [CI] showed that if we take a language

with the five features ment ioned above, no relat ive

completeness proof is possible provided ~w take first-order logic

as the underlying assertion language.

The work of papers such as [GCH,THM,DJ] shows that

in order to reason about p rograms in languages with rich

control structures, it is also necessary to be able to reason

262

about commands with possibly free procedure identifiers, in

order to facilitate reasoning about such commands, we will

require that our asser t ion language be powerful enough to

express the weakest precondition of g with respect to P even

if g has some occurrences of free procedure identifiers. Thus,

our asser t ion language is a higher order one, in much the

same spiri t as that of [DJ]. We present a natural

axiomatization of PROG 83 which is sound and, under our

stronger expressiveness hypothesis, relatively complete.

The axiom system presented here draws heavily on those

of [GCH] and [THMI]. From [GCHI we get the style of the

axiom system, which is presented in terms of (possibly nested

and universa l ly quantif ied) sequents of partial cor rec tness

assertions, and the recursion rule. The completeness result

presented here seems to be convincing evidence that this rule

is indeed the " r ight" way to reason about reeursion.

Fol lowing ITHMi] , we dis t inguish locations and their

contents, allowing us to deal with aliasing in a clean way.

The assignment axiom is taken directly from [THMI], as well

as techniques for reasoning about invariance.

This last point deserves some fur ther discussion. In

papers such as [CI, Go, OI] , one sees a variant of the

following axiom:

P[g}P, provided the free variables of P arc disjoint from

those of g.

Intuitively, this is sound because a program can only affect

the values of its free variables. Since the truth of P only

depends on the values of its free variables, if P is true before

g is run, then it will still be true afterwards. However, thv

statement, "a program g can only affect the values of its frce

var iables ," no longer holds if we allow free procedure

identifiers with global variables. For example, if q is the

parameterless procedure x :=3 and cent(x) denotes the value

stored at location x, then

cont(x)--2{q}eont(x)ffi2

is clearly not valid.

In order to deal with this problem, w e i n t r o d u c e a new

class of assertions called covering assertions. In our notation,

the partial correctness assertion abnve becomes:

c°v(q.{Yl Yk}) "*

(x#YtA .,. AX#ykAcont(x)ff i2)~qleont(x)=2.

i.e., if q is covered by the locations Yl Yk (roughly

speaking, if q "reads" and "wri tes" at most these locations)

and x is distinct from Yl Yk, then if the contents of location

x is 2 before we run q, thcn it will bc 2 afterwards. Covering

assertions provide a general technique for dealing with global

variables; moreover, no special axioms are required for them.

The rest of this paper is organized as follows. In

Section 2, we give the syntax and semant ics of PROG 83,

while in Section 3, we give the syntax and semantics of the

asser t ion language, covering asser t ions , and partial

cor rec tness formulas . In Section 4, we present the axiom

sys tem, and prove its soundness and completeness . We

conclude in Section 5 with a discussion of fur ther

applications of these results.

2. SYNTAX AND SEMANTICS OF PROG 83

To illustrate our axiom system, wc use the programming

language PROG 83, a subset of the language PROG described

in greater detail in ITHMI ,THM2] . PIT, OG 83 is a

fully-typed, block-structured programming language, with a

number of non-tr ivial features including nonde te rmin i sm,

shared variables, nondeterminism, and procedure parameters

nested to a rb i t r a ry depth. We have omit ted a n u mb er of

features found in PROG, including lambda abs t rac t ion and

higher order declarations. Moreover, procedures in PROG 83

can only take identifiers as parameters, rather than arbitrary

expressions of the right type. Although it is straightforward

to give such features semantics in the framework developed in

[THMi , THM2], axiomat iz ing them seems a bit more

complicated. We hope to axiomatize more features of PROG

in future work.

The primit ive types of PROG 83 are int, lee. prog.

intexp, and Ioeexp. A store is a mapping from locations to

their values. The types int and lee are intended to be the

domains of storable values and the locations in which these

values are stored. The domain prog is that of p rogram

meanings: nondeterministic mappings from stores to sets of

stores. Elements of type intexp and Ioeexp are exprcsslons

which evaluate to values and locations respectively in a given

store, i.e. functions from stores to int (rcsp. lee) (in ALGOL

jargon, these are " thunks") . We call 1o¢ and in! basic o'pes.

For ease of exposition, the only tests we allow are cquality

tests between expressions of basic type. Procedure o'pes arc

defined inductively to be of the form a l - - ' " - - a k - * p r o g ,

where =1 a k are either of procedure type or of basic type.

As in ALGOL 68, starting with variables of basic type, we

can form more complicated location and integer expressions.

We use the notation x a to indicate that variable x has type a.

263

We brie!Ily review the syntax of PROG 83, and refer the

reader to [THMI,THM2] for more detai ls .

I n t ege r express ions:

IntE::---- a (where a is a constant symbol) I x int I cont (LocE) I

f (lntE 1 IntEk) (where f has type in tk - - in t) [

if Booll= then IntE 1 else lntE 2 ft.

Loca t ion express ions:

LocE: := x I°c] if BoolE then LoeE t else LocE 2 ft.

Boolean express ions:

Boo lE : := ln tE l = In tE 2 [LocE t =LocE 2.

Procedure express ions :

ProcEa:: -- p° l ProcEl~'~°ProcI~l l)rocE>~°x~ (where a, ,8

are procedure types, y is a basic type).

P rocE= uaPE a.

Calls:

Ca l l : := ProcEPr°g (a pr(~cedure expression of type prog).

Commands:

Corn::= C a l l l d i v e r g e l L o c E : = l n t E I C o m i ; C o m 2l

Corn I or Corn 2] BBI [PBI I

if Boule then Corn! else Corn 2 ft.

Basic Blocks:

BBh:= let x i n t ~ I n t E in Cmd tcl lnew x Ioc in Cmd ~ e n [

let xiO¢~=LocE in Cmd tel.

Procedure Blocks:

PBh := proc PDeel do Cmd end.

Procedure Dec la ra t ions :

PDec l : :=p l x t 1 ...x i nl~=Com 1 pmXm | ...Xmn, ~=Conlrn,

where Pi,Xil Xin i are dist inct for i = I m , Pi has

procedure type a i. and xij has type aij, w h e r e

n i -- a i l ' ~ a i 2 " ' " ~ n i n i ~ p r o g , i = I m. We say Pi

is declared in this finite sys tem of mutual procedure

declarations with formal parameters Xil Xin ~ and

declaration body Corn i.

N o t a t i o n : We of ten use the l e t t e r E (poss ib ly p r imed or

subscripted) to represent a finite system of mutual procedure

declara t ions . Procedure blocks of the form proc E do Corn

end will usually be abbrevia ted as EICom. For readabi l i ty ,

we wi l l u sua l l y w r i t e p(x t Xk) r a the r than PXl.. .x k in

procedure calls and on the left side of the ~= in procedure

declarat ions.

No te tha t P R O G 83 a l lows r e c u r s i o n in p r o c e d u r e

d e c l a r a t i o n s , p r o c e d u r e s of a r b i t r a r i l y h igh f in i t e type ,

unres t r ic ted procedure nesting, and a rb i t r a r i ly complex calls.

Exp l ic i t shar ing is possible by use of the dec lara t ion x I°¢

L u t e in a basic block.

C o m m a n d s in PROG 83 may have free p r o c e d u r e

ident i f iers . A program is a command wi thout free procedure

ident i f iers .

We give s e m a n t i c s to e x p r e s s i o n s of PP, OG 83 by

mapping them in to elements of an algebraic swre model D. An

a l g e b r a i c s tore mode l D cons i s t of a co l l ec t i on of pa r t i a l

orders [Da], one for each type a, such that each e lement of

D . , # i s a monotonic function from Dn--Dfj. There is a least

e lement z. a ¢ D., and for each funct ion f ¢ D . the

sequence J.Q, f(.La), f (f (l a)) has a least upper bound in

D a. Final ly , for each d c D o, there is a f inite set of locat ions

which covers d. The properties of store models, the method of

ass igning semant ics , and the precise def ini t ion of the cover ing

re la t ion is given in detai l in [THM2]. We give a brief sketch

here.

We have a m e a n i n g func t ion ,.4'¢ such t h a i for each

cons tan t c of type n, ,X¢(c) ¢ D a, An environment c gives

m e a n i n g to the va r i ab l e s : if x is a v a r i a b l e of t ype a,

e (x) ¢ D a. To every PROG 83 express ion v of type a there

corresponds an e lement ,#¢(v)eeD a which is the meaning of v

in env i ronment e.

With each e lement of Da, we can define what it means

for a set of locat ions L c DIe c to corer if. Some impor tan t

proper t ies of the covering relat ion include:

I. If p ¢ Dprog, then p is covered by L iff (cf. [MM]):

(a) for any store s, for all s ' cp s , s and s ' agree off L;

i.e., for al l h~L , s ' (h) = s (h) . Thus , p does not

change the contents of locat ions not in L.

(b) if s and s' agree on L, then ps and ps' agree on L.

2. If h ¢ Die c, then h is c o v e r e d b y L iff h ¢ L.

3. If d ¢ Din t, then d is covered by L for all sets L.

4. If p is covered by L and q is covered by L', then p(q) is

covered by L u L ' .

Cruc ia l use is made of the c o v e r i n g r e l a t i o n when

d e f i n i n g the s e m a n t i c s of the new d e c l a r a t i o n . R o u g h l y

speaking, to run new x in g wen in envi ronment e and store s,

we proceed as follows. We first find a set L which covers g

(or, more accura te ly , , ,¢(g)e), chobsc a locat ion h not in L,

run g in envi ronment e' and store s' which are ident ical to e

264

and s e x c e p t that x is set to h with its contents ini t ia l ized to

a 0' and then reset the contents of h after the computation of g

has ended. In this way we maintain the stack discipline and

u s e a t ru ly "new" location for x. Again, we refer the reader

to [THM2] for more details.

As a consequence of the semantics, we get the fo l lowing

proposition, which shows that every command is equivalent to

one in which the procedure declarations arc "pushed in" so

that they only occur in f ront of procedure calls. This

proposit ion wi l l be useful in our axiomatizat ion, by enabling

us to restrict attention to commands in this special form.

P r o p o s i t i o n 1 (cf. [THM I ,GCH]) : The fo l l owing

equivalences hold:

(a) El(gl;g2) --- (E[gl);(E[g2) ,

(b) EI(gt or g2) -= (Elgl) or (Fig2),

(c) El(if BooIE t h e n g l e i s e g2 fi) ---

if BooIE t h e n Elg I e l s e EIB 2 fi,

(d) If x does not appear . f ree in E, then

El(new x in g w e n) -

new x in Elg wen,

(e) If x is of basic type, Base is a basic express ion of the

same type. and x does not appear free in E, then

El(let x ~= Base in g t e l) m

let x ~= Base in EIg te l ,

(f) If E l and E 2 do not contain dist inct declara t ion for the

same procedure identif ier , then

EII(E21g) = ((E t oE2)Jg),

(g) If none of the procedures declared in E appears free in g,

then

EIg - g,

(h) If g and g' are i den t i ca l up to r e n a m i n g of bound

var iables , then

g_g'.

From Proposition I we immediately get the fo l lowing

Corol lary: Every command g is equivalent to a command g'

in a normal form, where the subcommand EIh occurs in g'

only i f h is a procedure call.

3. THE ASSERTION LANGUAGE AND PARTIAL

CORRECTNESS FORMULAS

To permi t as much genera l i ty as possible, we do not

describe the assert ion language .~f in detai l hero, but state

some abstract properties it must satisfy:

(a) &f is many-sorted. Among its sorts arc int and Ioc.

To every integer (respectively, location) cxprcssion

B a s e in PRO(3 83, there is a c o r r e s p o n d i n g te rm

Base t in .Z with the same meaning (we shall omit

the superscript t when it is clear from context) . The

assertions X = l i n t and y=z to e are def inable in -(g..

(b) F o r m u l a s in ~ ' a re closed under the f i r s t - o r d e r

connectives ~, A, and V, which arc defined in the

usual way. Tru th for f o r m u l a s of ..¢e is def ined

r e l a t i v e to a model D, an e n v i r o n m e n t e, and a

store s. For a formula P of ~ce, we wri te D,e,s I=P if

P is true with respect to D,e,s and D,e I=P iff for all

stores s, D,e,s I= P.

(c) A formula has a certain set of frec variables, and the

t ruth of a formula depends only on the values given

to i ts f ree va r iab les . More p rec i se ly , if the free

var iables of P are among x 1 x m, and e (x i)=e ' (x i) ,

i = l m, then

D,e,s I=P iff D,e~,s I= I)

(d) If P is a formula in -.~', ln tE is an integer expression,

and LocE is a loca t ion exp re s s ion , then we can

effect ively find a formula I L o c E - i n t E] P such that

D,e,s I = [L o c E - l n t E I I) iff D.e ,s lLoeE/IntE1 I = P,

where s[LocE/IntE] is ident ical to s except that the

value it assigns to (the meaning in D,e,s el) location

express ion LocE is (the meaning in D,e,s of) integer

expression lntE.

The f i r s t - o r d e r l anguage def ined in ITHM] has all the

propert ies of (a) - (d) above.

The model D is said to be strongly expressive if for al l

commands g (even those with free procedure parameters) , and

f o r m u l a s P c . ~ the re is a fo rmula WP(g,P)cL£, ca l led the

weakest precondition of P with respect to g, such that

D,e,s I,=WP(g,P) iff for all s'c,J¢(g)es we have D,c,s' I=P.

Remark: Note that Dynamic Logic (cf. IHa]) is an example of

an a s s e r t i o n l anguage for which all mode ls arc s t rong ly

e x p r e s s i v e in th is sense, s ince, by de f in i t i on , the D y n a m i c

Log ic fo rmula [g]P is the weakes t p r econd i t i on of g wi th

respect to P. In D y n a m i c Logic , we can find weakes t

precondi t ions effectively, but we do not require this for our

results .

265

A partial correctness assertion is a triple PIglQ, where P

and Q are formulas of .~' and g is a command. We define

D,e,s pP{g}Q iff

(D,e,s h P implies Vs' ¢..¢'/(g)es, D,e,s' k Q),

and

D,e PP{g]O iff Ys(D,e,s kPlglQ).

(Note our definition of D,ePPIg} is slightly different from

that of [THMI] in that with our formalism we do not need

the notion of matching environments; i.e, environments which

agree in the meanings that they give to all p rocedure

identifiers.)

in order to deal with global variables we use covering

assertions, which have the form cov(p .X) , where p is a

variable of procedure type or of basic type, and X = Ix I xk}

is a finite set of location variables. For covering assertions

we define:

D,e [=cov(p,X) iff e(p) is covered by {e(xl),. . . ,e(Xk) }.

From the properties of the covering relation it follows that if

y has type int, then c o v (y , X) - t r u e , while if z has type Ioc,

then cov(z,{x I Xk}) --- z=x I V ... V z=x k.

The set of partial correctness formulas is defined

inductively as follows (of. [GCH]):

(a) If H is a formula of .f~, or a covering asserti{m, or a

part ial cor rec tness asser t ion, then H is a partial

correctness formula.

(b) If H l H n are partial correctness formulas, then so

is {H 1 Hn}-

(e) If HI, H 2 are partial correctness formulas, then so is

HI -*H 2.

(d) If H is a partial cor rec tness formula and x ° is a

var iable (of any type a), then VxaH is a partial

correctness formula.

define the t ru th of a partial cor rec tness formula

to D,e. We have already done this for formulas of .~,

For

We

relative

covering assertions and partial correctness assertions.

the other types of partial correctness formulas, we define:

D,e]={H l H n} iff D,e]~H i, i-~1 n,

D,e [= H t -* H 2 iff (D,e]= H I implies D,e]= H2),

D,e [~ YxaH iff D,e[d/x] [~ H for all d c D e.

A formula H is valid in D, written D I=H, iff for all

environments e, D,e p H.

If g is a command with free identifiers Pl Pit and X is a

finite set of location identifiers, wc take cov(g,X) to bc an

abbreviation for the partial correctness formula:

{Cov(p I ,X), . . . ,cov(Pk,X) }.

Note that if g has no free procedure identifiers and all its free

location identif iers are contained in X then cov(g,X) is

vacuously true.

Before we can give our axiomatizat i .n of PROG 83, we

shall need several more definitions.

if E is a set of procedure declarations, we will say that

the variable q is reachable from p via E iff q = p or, inductively,

if p is declared in E with declarat ion body Corn and q is

reachable from r via E for some free variable r in Com. For

example, if E consists of the procedure declarations

p <- if w = z then q else p(r)

q ~. x :=y ,

then p, q, r, w, z, x, and y are reachable from p via E, while

q, x, and y are reachable f rom q via E, and only r is

reachable from r via B. If X is some finite set of location

variables, we define eov(E[p,X) to bc an abbreviation for

{ c o v (q , X) [q is reachable f rom p via E and q is not

declared in El

Thus coy(Hip,X) holds exactly if p is covered by X when it is

bound to its declaration body in E.

If H is a partial cor rec tness formula such that no

procedure declared in E occurs free in any of the subformulas

of H which are formulas of .~, then we define EIH to be an

abbreviation for the formula which results when we replace

each subformula of H of the form cov(p,X) by cov(Eip,X),

and replace each part ial cor rec tness formula of the form

P Ig IQ by P{E[g}Q (subject to the usual provisos about

renaming any bound variables in H so that they have names

distinct f rom any var iables free in E, and renaming the

declared variables in E so that they have names distinct from

the free var iables in H, in order to avoid capture of free

variables). EIH is undefined if some .ftf-subformula of H has a

free occurrence of a variable declared in E.

Roughly speaking, E[H is the resul t of binding the

meanings of free variables in H which are declared in E to

their declarations in E. Note that we can find EIH effectively

given E and H. If the assertion language .~" were Dynamic

Logic, we could also effectively transform any formula P in .f~

to a fo rmula EIP, again binding procedures to their

declarations in E, but for arbitrary .~' this in general cannot

266

be done. For this reason we have not allowed procedures

variables declared in E to appear free in .W.-subformulas of H.

If P is a formula of .W, we define [LocE: f ln tE]P to be an

abbreviation for

[LocE-,-IntE]P V LocE= .t.lo r V ln tE= ~Lia ,.

As shown in [THMI] , [LocE:=In tE]P is the weakest

precondition of P with respect to the assignment LocE:=IntE.

Finally, let w in* be a variable which does not appear in P,

and let x I°¢ be any location variable. Then we define

l n v (P , x) ==def (P ffi Vw([x--wlP)).

Inv(P,x) says that P is invariant under changes to the

contents of x. If X is a finite set of location variables, let

Inv(P,X) =def Ax,xlnv(P,x) •

Inv(P,X) holds exactly if P is invariant under changes to the

contents of all the location variables in X.

4. A S O U N D AND R E L A T I V E L Y C O M P L E T E

AXIOMATIZATION OF PROG 83

Consider the following collection of axioms and rules of

inference for partial c o r r e c t n e s s formulas. Axioms 1-7 are

variants of the corresponding axioms in [THM l], expressed in

our formalism, and successfully capture the semantics of all

the constructs in PROG 83 other that procedure declarations.

Rule 8 is the recurslon rule of [GCH], reformulated here to

allow us to deal with global variables. Axiom 9 alh)ws us to

reduce cons idera t ion to c o m m a n d s in normal form when

doing the completeness proof. Axioms and rules 10-14 are

again quite s tandard and are used to prove a rb i t r a ry valid

partial c o r r e c t n e s s formulas once we have the "most general"

par t ia l c o r r e c t n e s s formula. This technique goes back to

[Go], and has also been used in many o ther papers, (eg.

[THMI,CI ,OI ,GCH, . . ,]) . The remaining rules and axioms

simply allow us to manipulate partial correctness formulas.

1. Assignment axiom:

([LocE:=IntElP) {LocE:=Int E }P.

2. Axiom of divergence:

t rue(divergelfalse.

3. Sequencing axiom:

IPIgIQ. QIg'}R} .* Plg;g'lR.

4. Choice axiom:

{Pig}Q, PIg'}Q} "*' Pig or g'lQ.

5. Conditional axiom:

[(PABoolE){gtIQ, (PA~BoolE)Ig21Q l -,

Plif BoolE then gt else g2 filQ.

6. Axiom of let declarations: If x is a variable of basic type,

Base is an expression of the same type, and y a variable

of the same type which is not frcc in P. O, BasE, or g,

then

(P A y=BasE ^ y # z) | [y / x J g I o

P~let x~=BasE in g tell(.,).

Axiom of new declaration: Let yloc and z int be variables

not free in P, Q, or g, and let X be a finite set of location

variables. Recall that a Ois the constant used to initialize

the new location in a new dcclaration. Then

~Axd:Xx~Y, c o v (g , X) ,

([Y : f z] P A c o n t (y) = a o) l l y / x l g l l y : = z]O I

"* Plnew x in g w e n l Q .

g. Recurs ion rule: Suppose E is a set of procedure

dec la ra t i ons of the f o r m

P l (r l l r l k t) ~ b ° d Y l Pn(rn i rnkn) '~bodYn-

Suppose Pl Pn do not appca~ f ree in H i. Pi, o r Oi, i =

1 n, and on ly appear f rec in s u b f o r m u l a s o f H wh ich

are cove r i ng fo rmu las . Then

H'*[{Yril rikl(Hi'*PilPi(ril rikl)lOi), i = I nt-*

I V r i t , . . . r i k , (H i ' * P i l b o d y i | Q t) , i = 1 n i l

E I H " [V r i l r i k i (H i - ' P i { E I Pi (r i] rik) }Qi) , i = l n }]

Suppose we are given some set of procedure declarations

E. Intuitively, the recursion rule says that if, whenever we

can prove from some hypothesis H i somulhing about each of

the calls Pi in E for all possible values of their parameters, we

can also prove the same thing about the corresponding body i

of Pi (for all possible values of the parameters, and from the

same hypothesis Hi) , then we can conclude the partial

correctness assertion holds of Pi when it is declared in the

env i ronment E (again for all values of the paramete rs and

under hypothesis Hi).

9. Normal form axiom: if g and g' are provably equivalent

using the equivalences of Proposition I, then

P{gIQ .,. p{g'~Q.

10. Axiom of coaseq~ence:

{P'~P, Pig}Q, Q~Q'} - P ' Ig lQ ' .

11. Axiom 04" conj~tcNo-m

{P|gIQ, P'{gIQ'} ~ (PAP ') Ig I (QAQ') .

267

12. Invariance axiom: Let X b c a finite set of location

variables. Then

{co,,'(g,X), Inv(P,X)} ~ PigIP.

Intuitively, the invarianec axiom says that if g is covered

by X and P is a formula whose truth is independent of the

contents of these locations, then if P is true before we run g

then P will be true afterwards.

13. Subs t i tu t ion rule: Let o be any mapping on variables

which respects types (i.e., o(x) has the same type a,~ x).

Let He be the result of replacing x by o(x) wherever x

occurs in H. Then

H
He"

Note we al low a rb i t r a ry subs t i tu t ions here, not just

injections. This will enable us to deal with sharing.

14. Rule of quantification introduction: If x d o e s not appear

free in g or H, then

H -* P{g}Q

H "* :ixP{g}]xQ

Note that the H appears here as a hypothes is in both the

antecedent and the conclusion of this rule. This gives us a

more powerful rule than the corresponding rule without the

H, since we can apply the rule relative to the hypothesis H.

A similar phenomenon occurs in the rccursion rule (rule 8

above) and in rules 15 and 22 below.

15. Rule of universal quantification: If x does not appear

free in H 1, then

H 1 ~ H 2

H 1 --~ VxH 2

16. Rule of declaration binding: If none of the procedures

declared in E appear [rec in .~-subformulas of H, then

H

~lB"
17. Implication axiom: If P and Q arc formulas of .~', then

(p = Q) -. (p -- Q).

18. Instantiat ion axiom:

Vrtl -* H.

19. Axiom of transitivity:

{HI-*H 2 , H 2 ~ H 3] ~ (HI~H3) .

20. Modus ponens:

H l, H I ' * H 2

H2

21. Axiom of trivial implication:

{H 1 HnJ -* H i , i ffi 1 n.

22. Set formation rule: For all n>_.0

H-~H 1 H-*H n

H.~ [H 1 Hn]

Note that H -- ~ is a special case of this rule (taking n=0) .

23. Empty set introduction axiom:

(a) H -- (~ -- H) ,

(b) (~b -- H) -- H.

24. Currying axiom:

(|H1, H21 -* H 3) -* (H 1 -* (H 2 -* H3)).

Theorem I: The axiom system presented above is sound; i.e.

for any model D and any environment e, D,e]ffiH for every

axiom scheme H above, and for every rule of inference with

antecedents H t Hk, and conclusion H, if D,e [-Hi, iffil k,

then D,e]m H.

Proof : The soundness of ax ioms and rules 1-7 and 9-13

follows from the soundness of the corresponding axioms and

rules of [THMI]. We refer the reader there for details. The

recurs ion rule is just a r e fo rmula t ion of the we l l -known

fixed-point induction rule, and unlike the recursion rule of

[THMI] or [Oi], its soundness follows immediately from the

deno ta t iona l (f ixed-poin t) semant ics , and does not require

copy- ru le semant ics (and thus a tedious proof of the

equivalence of f ixed-point and copy-ru le semant ics ; of.

[THMI,THM2]) . The soundness of the remaining axioms and

rules is almost an immediate consequence of the definitions.

We leave details to the full paper. I"l

Let Th*(D) consist of all the partial correctness formulas

of the form cov(g,X)-*P which are valid in D, where P is a

formula of ,~.

We can now state our relative completeness theorem.

T h e o r e m 2: If D is s t rongly express ive , then the ax iom

sys tem above is complete relat ive t o Th*(D) for part ial

co r rec tness asser t ions involving p rograms; i.e., if g is a

program (with no free procedure identifiers) and D [- P { g] Q .

then Th*(D) I'- P{gJQ.

In order to prove the completeness theorem, we need to

develop an analogue for the '*most general partial correctness

268

formula" of [Go, OI]. Let X be the set of location variables

{x 1 Xk}, and Y be the set of integer variables {Yt Yk I"

Let U(X,¥) be the formula

e o n t (x l) = y I A ... A eon t (xk)=y k.

For each variable of basic or procedure type p and set of

procedure declarations I::. we define the most general partial

correctness formula of p with respect to U(X, Y) and E, written

mg(p,U(X,Y),E) , by induction on the type of p as follows:

(a) if p is of basic type, then mg(p.U(X,Y),E)) --def

cov(p,X)

(b) if p has type at- ' . . , . ' . 'am"~prog, re>O, let r t rra be

variables of type al,...,n m, respectively. Then

mg(p,U(X.Y),E) =def

Vr I rm[{mg(rl ,U(X,Y),E) mg(rm.U(x,y),E) I

-- (I cov (p ,X) .cov (E Ip ,X) }

-- WP(Elp(r I r m) , U (X , Y)) l p (r ! r m) I U (X . Y)) I .

Rough l y speak ing, m g (p . U (X , y) . E) says that p "acts

r i gh t " prov ided that that it is covered by the locat ions in X

and a l l of i ts pa ramete rs (i f any) act r igh t (whe re " a c t i n g

r i gh t " in the case of procedure ident i f iers means that

WP(EIp(r I r r a) , U (X , Y)) l P (r t rrn) | I .J(X,Y)

is t rue).

If g is a command with free identifiers Pl Pn, we take

mg(g .U(X,Y) ,E) to be an abbrevia t ion for the partial

correctness formula

[mg(pI,U(X,Y),E) mg(pn,U(X,Y),E) I.

The core of the relative completeness proof consists of

the following two lemmas.

Lemma I: If c o v (h , X) - P | h l Q is valid, then

Th*(D) l- [cov(h,X),cov(g.X).WP(h,U(X.Y))lglU(X,Y)]

-*P{g]O.

Lemma 2: If X = {x I xk} is a set of location variables, and

Y = {YI Yk| is a set of integer variables which do not

appear in g, then

I-mg(g,U(X,Y)),E) -. [Icov(g,X),cov(l::lg.X)}

" YYl Yk(WP(t=Ig,U(X,Y)) Ig} U(X,Y))].

Lemma 1 is just a variant of the observation that any

valid partial cor rec tness asser t ion about g can be obtained

from the most general partial correctness assertion about g

(cf. [G o , e l . e l i) . Lemma 2, which is proved by a

s t r a igh t fo rward induction on the s t ruc ture . f commands ,

intuitively says that o,lce w e k n o w the most general partial

correctness formulas for all the free w~riables in g then we

can prove the most general partial correctness formula for g.

We leave details of the proofs of Lcmmas I and 2 to the full

paper.

With these Lcmmas in hand. the remainder of Ihe proof

of Theorem 1 is straightforward. N.tt: that if g is a program

(with no free procedure identif iers) whose free location

identifiers are contained in X, taking E to be empty, we have

mg(g,O(X,Y),¢) m eov(g,X) -- true.

Thus by Lemma 2, we have

(*)]-- W P (g , U (X , Y)) t g I U (X ,Y) .

And if PIgIQ is valid, by Lemma I with g=h we have

(**) T h * (D) I -WP(g,U(X.Y))Igl IJ (X,Y) ~ Plglt) .

Then from (*) and (**) we can conclude, as dcsired.

Th*(D) I- P[g}Q.

5. C O N C L U S I O N S

We have provided an axiomatization of PROG 83 which

is sound and relat ively complete, which for the first time

deals with global var iables in a natura l way. by means of

covering asser t ions . There is only one d rawback to the

results presented here, namely, that we require a higher-order

oracle: Th*(D).

By Clarke's results we know that this is in some sense

necessary: we cannot hope to obtain a complete

ax iomat iza t ion for a language as rich as PP.OG 83 by

res t r ic t ing ourselves to just having an oracle for the

first-order theory of the interpretation, Th(D). Using a rich

oracle such as Th*(D) enables us to factor out certain

difficulties in order to gain insight into how to reason about

p rog ramming languages which allow procedures as

parameters. Nevertheless. it is worth trying to understand

just how far we can get using only Th(D) as an oracle.

First note that if wc restrict to the subset of PROG 83 in

which procedures only take basic variables as parameters

(and thus no procedure pa ramete r s) , then the above

axiomatization is complete for the resulting language relative

to Th(D).

Several previous papers on Hoarc logics have given

complete ax iomat iza t ions for subse ts of ALGOL-l ike

languages consisting of programs with the finite range property

269

('cf. [CI,OI,I .O,THMI]). (Roughly speaking, a program has

the finite range property if there is a bound on the number of

distinct procedure environmcnts which can bc rcachcd when

it is run.) Indeed, as OIderog has shown lol l , the standard

Hoare axiom systems based on thc copy rule cannot deal with

programs which do not have the finite range property. A

program with the finite range property can be shown to be

equivalent to a program with no proccdurc parameters. Using

this fact , we can show that by adding one axiom to our

system,, we can obtain a complete axiomatization for finite

range programs relative to Th(D). (This result was obtained

jointly with A. Meyer and will appear in the full paper.) This

observation confirms the conjecture made in [THM I] we can

replace copy-ru le induction (the usual rulc used to reason

about recurs ion , which is shown in [THMI] to be

semantically unsound) by the semantically sound fixcd-point

induction rule, and still get a complete axiomatization relative

to Th(D) for finite range programs.

We can also adapt our proof sys tem to yield an

axiomatization for L4 (the language with no global variables

in t roduced in [CI]) which is complete relat ive to Th(D) in

Herbrand definable domains (domains in which every value is

representable as some term in the Hcrbrand univcrsc). The

proof of completeness is essentially the same as that given in

[GCH]. (Note that with L4 covering asse r t ions are

unnecessary, since the variablcs that any procedure depends

on are explicit. Moreover, with our prcscnt formalism we can

avoid the use of environment ~'ariables which seemed to be

necessary in [GCH].) The crucial point in the proof of

completeness is that in Herbrand definable domains, we can

t ransform an L4 program (which may not have finitc range)

into a program with no procedure parameters (which clearly

does).

We can see that the finite range property is the common

thread running through all the proofs of completeness relative

to Th(D) . But now consider tht: problem of finding a

complete axiomatization for the type of modcls considered in

[Cr], where not only is the domain finite, but there arc only

finitely many distinct memory h)cations. For such models,

Clarke's incompleteness results do not hold since they depend

crucially on a recursive procedure being able to gcncrate an

unbounded number of distinct locations. But the standard

Hoare axiom systems based on the copy rule cannot lead to a

relat ive comple teness result in this model because the

p rog ramming language still lacks the finite range proper ty .

However , it is relat ively s t r a igh t fo rward to t r ans fo rm the

zxio.~a system presented here to get a axiom system which is

complete relative relative to Th*(D) (we must only modify

the axioms slightly to deal with the fact that there arc only

finitely many locat ions) . And note that for such models,

Th*(D) is decidable. We believe there will be many other

situations where the style of axiomatization presented here

will also lead to in teres t ing comple teness resul ts not

obtainable by other means.

There still r emains the problem of f inding a concre te

asser t ion language ,W sat isfying the abs t rac t proper t ies

pointed out, Dynamic Logic is nnc candidate, but in DL we

can effectively find the weakcst preconditions. It would be

wor thwhi l e to find a possibly wcaker language in which

weakest p recondi t ions exist , but cannot a lways bc found

effectively.

ACKNOWLEDGMENTS

! would like to thank my coau thor s on several o ther

papers in this area, Albert Meycr, Boris Trakhtenbrot , Steve

German, and Ed Clarke, for many stimulating conversations

on this material. The notion of "covered by" was worked out

in conjunct ion wi th Albcrt and Boris, while Steve was in

large part responsible for the form of the recursion rule. 1

would also like to thank Sylvia Fujii for her help in preparing

the manuscript.

REFERENCES

fel l E . M . Clarke, Programming language constructs for

which it is impossible to nbtain good Hoare axiom

systems. JACAf 26, 129-147 (1979).

[Col S .A . Cook, Soundness and completeness of an axiom

system for program verification, SI..IM J. Comput. 7,

70-90 (1978).

[Cr] F. Cr is t ian , Correct and robust p rograms , IBM

RJ3753, 1983i to appear in IEEE Trans. on Software

Engineering.

[DJ] W. Datum and B. Josko, A sound and relat ively

complete Hoare-logie for a language with higher type

procedures, Bericht No. 77, Lehrstuhl for informatik

If, RWTH, Aachen, 1982.

[Di] E. W. Diikstra, A Discipline of Programming,

Prentice-Hall, 1976.

[GCH] S. M. German, E. M. Clarke, aml J. Y. Halpcrn,

270

Reasoning about procedures as parameters, to appear

in Proceedings of CMU Workshop on Logics on

Programs, Springcr-Verlag, 1983.

[Go] G . A . Gorelick, A complete axiom system for

proving assertions about reeursive and nonrecursive

programs, TR75, University of Toronto, 1975.

[Ha] D. Harel, First-order Dynan, ic Logic, Lecture Notes in

Computer Science 68, Springcr-Vcrlag, 1979.

[LO] H. Langmaack and I/. R. Olderog, Present-day

Hoare-Iike systems for programming languages with

procedures: power, limits, and most likely

extensiohs, in Proceedings of 7th International

Colloquium on Automata , Languages, and

Programming, 1980, pp. 363-373.

[MM] A. R. Meyer and J. C. Mitchell. Axiomatic

definability and completeness for recursivc

programs, in Proceedings of the Ninth Annual

Symposium on Principles of Programming

Languages, 1982, pp. 337-346.

[OI] E . R . Olderog, Sound and complete Hoarc-likc

calculi based on copy rules, Ac ta I n f o r m a t i c a 16,

161-197 (1981).

[THM1] B. A. Trakhtenbrot, J. Y. Halpcrn, and A. R. Meyer,

From denotational to operational and axiomatic

semantics for ALGOL-like languages: an ovcrvicw,

to appear in Proceedings of the CMU Workshop on

Logics of Programs, Springer-Vcrlag, 1983.

ITHM2] B. A. Trakhtenbrot, J. Y. Halpcrn, and A. R. Meyer,

The semantics of local storage, to appear in

Proceedings of the IZlevcnth Annual ACM

Symposium on Principles of Programming

Languages, 1984.

271

