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Abstract:  Clarke has shown that it is impossible to obtain a 
relat ively complete  ax iomat iza t ion  of a b lock-s t ruc tu red  
programming language if it has features such as static scope, 
reeurs ive  procedure  calls wi th  procedure  parameters ,  and 
global variables, provided that we take first-order logic as the 
underlying assertion language [CI]. We show that if we take 
a more  powerful  asser t ion language,  and hence a more  
powerful  not ion of express iveness ,  such a complete  
axiomatization is possible. The crucial point is that we need 
to be able to express  weakest  precondi t ions  of commands  
with free proeedure parameters.  The axioms presented here 
are natura l  and reflect the syntax  of Ihe p rog ramming  
language. Such an axiom sys tem provides a tool for 
understanding how to reason about languages with powerful 
eontrol features. 

1. INTRODUCTION 

In a paper entitled "Programming languages for which it 

is impossible  to obtain good Hoare axiom sys tems"  [CI], 

Clarke showed that it is impossible to obtain a "good" Hoare 

axiom system for a block-structured programming language 

with the following features: 

(i) procedure names as parameters of procedure calls, 

(ii) reeursion, 

(iii) static scope, 

(iv) global variables, and 

(v) internal procedures. 

In this paper,  we give a "good"  Hoare axiom sys tem for 

PROG 83, a large subset of PROG, the ALGOL-like language 

introduced and studied in [THMI,THM2].  PROG 83 allows 

nondeterminism and sharing of variables (aliasing) and has all 

five features mentioned above. 
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To explain this paradox,  we must  look a little more  

carefully at the meaning of "good". Of course, we expect a 

good Hoare axiom system to be sound (everything which is 

provable  should be t rue)  and complete  (every part ial  

correctness assertion which is true should be provable). It 

should also be "na tu ra l " ;  i.e., the ax ioms should in some 

sense reflect the syntax of the programming language. 

From the G0dcl incompleteness theorem, we know that 

for sufficiently rich interpretations, such as arithmetic, it is 

impossible to obtain a sound and complete axiomatization for 

f i r s t -o rder  formulas ,  lot alone for part ial  co r rec tness  

asser t ions  involving f i r s t -order  formulas ,  In order  to talk 

about the completeness of a Hoare axiom system independent 

of the under ly ing  in terpre ta t ion ,  Cook ICe/  proposed the 

notion of relative completeness: under the assumplion that for 

a given in te rpre ta t ion  1 and asser t ion language ..~'., we are 

given an oracle for the formulas of ~'  which are truc in I, and 

that .~ is expressive for 1, then every true partial correctness 

asser t ion  is provable .  Expressivenesx means  thal for every 

program g in the programming language and formula P in .if, 

there is a formula in .~ equivalent to the weakest precondition 

(ef. [DiD of g with respect to P. 

Taking .ff to be first-order logic, Cook gave a relatively 

complete  ax iomat iza t ion  of a subset  of ALGOL with a 

while-statement and nonreeursivc programs. Gorelick [Go] 

extended Cook's  work to include rccursive procedures. On 

the other hand, Clarke [CI] showed that if we take a language 

with the five features  ment ioned above,  no relat ive 

completeness proof is possible provided ~w take first-order logic 

as the underlying assertion language. 

The work of papers such as [GCH,THM,DJ] shows that 

in order  to reason about  p rograms  in languages with rich 

control structures, it is also necessary to be able to reason 
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about commands with possibly free procedure identifiers, in 

order to facilitate reasoning about such commands,  we will 

require  that our  asser t ion  language be powerful  enough to 

express the weakest precondition of g with respect to P even 

if g has some occurrences of free procedure identifiers. Thus, 

our  asser t ion  language is a higher order  one, in much the 

same spiri t  as that of [DJ]. We present  a natural  

axiomatization of PROG 83 which is sound and, under our 

stronger expressiveness hypothesis, relatively complete. 

The axiom system presented here draws heavily on those 

of [GCH] and [THMI]. From [GCHI we get the style of the 

axiom system, which is presented in terms of (possibly nested 

and universa l ly  quantif ied)  sequents  of partial cor rec tness  

assertions, and the recursion rule. The completeness result 

presented here seems to be convincing evidence that this rule 

is indeed the " r ight"  way to reason about reeursion.  

Fol lowing ITHMi] ,  we dis t inguish locations and their  

contents, allowing us to deal with aliasing in a clean way. 

The assignment axiom is taken directly from [THMI],  as well 

as techniques for reasoning about invariance. 

This  last point deserves some fur ther  discussion.  In 

papers  such as [CI, Go, OI] ,  one sees a variant  of the 

following axiom: 

P[g}P, provided the free variables of P arc disjoint from 

those of g. 

Intuitively, this is sound because a program can only affect 

the values of its free variables. Since the truth of P only 

depends on the values of its free variables, if P is true before 

g is run, then it will still be true afterwards.  However, thv 

statement, "a program g can only affect the values of its frce 

var iables ,"  no longer holds if we allow free procedure  

identifiers with global variables. For example, if q is the 

parameterless procedure x :=3  and cent(x)  denotes the value 

stored at location x, then 

cont(x)--2{q}eont(x)ffi2 

is clearly not valid. 

In order to deal with this problem, w e  i n t r o d u c e  a new 

class of assertions called covering assertions. In our notation, 

the partial correctness assertion abnve becomes: 

c°v(q.{Yl . . . . .  Yk}) "* 

(x#YtA .,. AX#ykAcont(x)ff i2)~qleont(x)=2.  

i.e., if q is covered by the locations Yl ..... Yk ( roughly  

speaking, if q "reads" and "wri tes" at most these locations) 

and x is distinct from Yl ..... Yk, then if the contents of location 

x is 2 before we run q, thcn it will bc 2 afterwards.  Covering 

assertions provide a general technique for dealing with global 

variables; moreover,  no special axioms are required for them. 

The rest of this paper is organized as follows. In 

Section 2, we give the syntax  and semant ics  of PROG 83, 

while in Section 3, we give the syntax and semantics of the 

asser t ion  language, covering asser t ions ,  and partial 

cor rec tness  formulas .  In Section 4, we present  the axiom 

sys tem,  and prove its soundness  and completeness .  We 

conclude in Section 5 with a discussion of fur ther  

applications of these results. 

2. SYNTAX AND SEMANTICS OF PROG 83 

To illustrate our axiom system, wc use the programming 

language PROG 83, a subset of the language PROG described 

in greater  detail in ITHMI ,THM2] .  PIT, OG 83 is a 

fully-typed, block-structured programming language, with a 

number  of non-tr ivial  features including nonde te rmin i sm,  

shared variables, nondeterminism, and procedure parameters 

nested to a rb i t r a ry  depth. We have omit ted a n u mb er  of 

features  found in PROG, including lambda abs t rac t ion  and 

higher order declarations. Moreover, procedures in PROG 83 

can only take identifiers as parameters, rather than arbitrary 

expressions of the right type. Although it is straightforward 

to give such features semantics in the framework developed in 

[ THMi ,  THM2],  axiomat iz ing them seems a bit more 

complicated. We hope to axiomatize more features of PROG 

in future work. 

The primit ive types of PROG 83 are int, lee. prog. 

intexp, and Ioeexp. A store is a mapping from locations to 

their values. The types int and lee are intended to be the 

domains of storable values and the locations in which these 

values are stored. The domain prog is that of p rogram 

meanings: nondeterministic mappings from stores to sets of 

stores. Elements of type intexp and Ioeexp are exprcsslons 

which evaluate to values and locations respectively in a given 

store, i.e. functions from stores to int (rcsp. lee) (in ALGOL 

jargon, these are " thunks") .  We call 1o¢ and in! basic o'pes. 

For ease of exposition, the only tests we allow are cquality 

tests between expressions of basic type. Procedure o'pes arc 

defined inductively to be of the form a l - - ' " - - a k - * p r o g  , 

where =1 ..... a k are either of procedure type or of basic type. 

As in ALGOL 68, starting with variables of basic type, we 

can form more complicated location and integer expressions. 

We use the notation x a to indicate that variable x has type a. 
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We brie!Ily review the syntax of PROG 83, and refer the 

reader  to [THMI,THM2] for more detai ls .  

I n t ege r  express ions:  

IntE::---- a (where a is a constant  symbol)  I x int I cont (LocE)  I 

f ( lntE 1 . . . . .  IntEk) (where f has type in tk - - in t )  [ 

if  Booll= then IntE 1 else lntE 2 ft. 

Loca t ion  express ions:  

LocE: :=  x I°c ] if BoolE then LoeE t else LocE 2 ft. 

Boolean express ions:  

Boo lE : := ln tE  l = In tE  2 [ LocE t =LocE 2. 

Procedure  express ions :  

ProcEa:: -- p° l  ProcEl~'~°ProcI~l l )rocE>~°x~ (where a, ,8 

are procedure types, y is a basic type).  

P rocE= uaPE a. 

Calls: 

Ca l l : :=  ProcEPr°g (a pr(~cedure expression of type prog). 

Commands: 

Corn::= C a l l l d i v e r g e l L o c E : = l n t E I C o m i ; C o m  2l 

Corn I or Corn 2 ] BBI [PBI I 

if Boule  then Corn! else Corn 2 ft. 

Basic Blocks:  

BBh:=  let x i n t ~ I n t E  in Cmd tcl lnew x Ioc in Cmd ~ e n [  

let  xiO¢~=LocE in Cmd tel. 

Procedure  Blocks:  

PBh :=  proc PDeel do Cmd end. 

Procedure  Dec la ra t ions :  

PDec l : :=p l  x t 1 ...x i nl~=Com 1 .. . . .  pmXm | ...Xmn, ~=Conlrn, 

where Pi,Xil ..... Xin i are dist inct  for i = I . . . . .  m ,  Pi has 

procedure type a i. and xij has type aij, w h e r e  

n i -- a i l ' ~ a i 2 " ' " ~ n i n i ~ p r o g ,  i = I ..... m. We say Pi 

is declared in this finite sys tem of mutual procedure 

declarations with formal parameters Xil ..... Xin ~ and 

declaration body Corn i. 

N o t a t i o n :  We of ten  use the l e t t e r  E (poss ib ly  p r imed  or 

subscripted)  to represent  a finite system of mutual  procedure 

declara t ions .  Procedure  blocks of the form proc E do Corn 

end will usually be abbrevia ted as EICom. For readabi l i ty ,  

we wi l l  u sua l l y  w r i t e  p(x t ..... Xk) r a the r  than  PXl.. .x k in 

procedure calls and on the left side of the ~= in procedure 

declarat ions.  

No te  tha t  P R O G  83 a l lows  r e c u r s i o n  in p r o c e d u r e  

d e c l a r a t i o n s ,  p r o c e d u r e s  of a r b i t r a r i l y  h igh  f in i t e  type ,  

unres t r ic ted  procedure  nesting, and a rb i t r a r i ly  complex  calls.  

Exp l ic i t  shar ing is possible by use of the dec lara t ion  x I°¢ 

L u t e  in a basic block. 

C o m m a n d s  in PROG 83 may  have  free p r o c e d u r e  

ident i f iers .  A program is a command wi thout  free procedure  

ident i f iers .  

We give s e m a n t i c s  to e x p r e s s i o n s  of PP, OG 83 by 

mapping  them in to  elements of an algebraic swre model D. An 

a l g e b r a i c  s tore  mode l  D cons i s t  of a co l l ec t i on  of pa r t i a l  

orders  [Da], one for each type a, such that  each e lement  of 

D . , # i s  a monotonic  function from Dn--Dfj. There is a least 

e lement  z. a ¢ D., and for each funct ion f ¢ D . the  

sequence J.Q, f(.La), f ( f ( l a ) )  . . . . .  has a least  upper bound in 

D a. Final ly ,  for each d c D  o, there  is a f inite set of locat ions 

which  covers d. The properties of store models,  the method of 

ass igning semant ics ,  and the precise def ini t ion of the cover ing 

re la t ion  is given in detai l  in [THM2]. We give a brief sketch 

here. 

We have  a m e a n i n g  func t ion  ,.4'¢ such t h a i  for each  

cons tan t  c of type n, ,X¢(c) ¢ D a, An environment c gives 

m e a n i n g  to the  va r i ab l e s :  if x is a v a r i a b l e  of t ype  a, 

e ( x ) ¢ D  a. To every  PROG 83 express ion v of type a there  

corresponds  an e lement  ,#¢(v)eeD a which is the meaning  of v 

in env i ronment  e. 

With each e lement  of Da, we can define what  it means 

for a set of locat ions  L c DIe c to corer if. Some impor tan t  

proper t ies  of the covering relat ion include:  

I. If p ¢ Dprog, then p is covered by L iff (cf. [MM]): 

(a) for any store s, for all s ' cp s ,  s and s '  agree off L; 

i.e., for al l  h~L ,  s ' ( h ) = s ( h ) .  Thus ,  p does not  

change the contents  of locat ions  not in L. 

(b) if s and s' agree on L, then ps and ps' agree on L. 

2. If h ¢ Die c, then h is c o v e r e d b y  L iff h ¢ L. 

3. If d ¢ Din t, then d is covered by L for all sets L. 

4. If p is covered by L and q is covered by L',  then p(q) is 

covered by L u L ' .  

Cruc ia l  use is made  of the c o v e r i n g  r e l a t i o n  when  

d e f i n i n g  the  s e m a n t i c s  of the new d e c l a r a t i o n .  R o u g h l y  

speaking,  to run new x in g wen in envi ronment  e and store s, 

we proceed as follows.  We first find a set L which covers  g 

(or, more accura te ly ,  , ,¢(g)e),  chobsc a locat ion h not in L, 

run g in envi ronment  e' and store s' which are ident ical  to e 
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and s e x c e p t  that  x is set to h with its contents  ini t ia l ized to 

a 0' and then reset the contents of h after the computation of g 

has ended. In this way we maintain the stack discipline and 

u s e  a t ru ly  "new" location for  x. Again, we refer the reader 

to [THM2]  for more details. 

As a consequence of the semantics, we get the fo l lowing 

proposition, which shows that every command is equivalent to 

one in which the procedure declarations arc "pushed in"  so 

that they only occur in f ront  of procedure calls. This 

proposit ion wi l l  be useful in our axiomatizat ion, by enabling 

us to restrict attention to commands in this special form. 

P r o p o s i t i o n  1 (cf. [THM I ,GCH]) :  The fo l l owing  

equivalences hold: 

(a) El(gl;g2) --- (E[gl);(E[g2) , 

(b) EI(gt or g2) -= (Elgl)  or (Fig2), 

(c )  El(if BooIE t h e n  g l e i s e  g2 fi) --- 

if  BooIE t h e n  Elg I e l s e  EIB 2 fi, 

(d) If x does not appear . f ree  in E, then 

El(new x in g w e n )  - 

new  x in Elg wen,  

(e) If x is of basic type, Base  is a basic express ion of the 

same type. and x does not appear free in E, then 

El(let x ~= Base  in g t e l )  m 

let  x ~= Base  in EIg te l ,  

(f) If E l and E 2 do not contain dist inct  declara t ion  for the 

same procedure identif ier ,  then 

EII(E21g) = ( (E  t oE2)Jg),  

(g) If none of the procedures declared in E appears free in g, 

then 

EIg - g, 

(h) If g and g' are  i den t i ca l  up to r e n a m i n g  of bound  

var iables ,  then 

g_g'. 

From Proposition I we immediately get the fo l lowing 

Corol lary:  Every command g is equivalent to a command g' 

in a normal form, where the subcommand EIh occurs in g' 

only i f  h is a procedure call. 

3. THE ASSERTION LANGUAGE AND PARTIAL 

CORRECTNESS FORMULAS 

To permi t  as much genera l i ty  as possible, we do not 

describe the assert ion language .~f in detai l  hero, but state 

some abstract properties it must satisfy: 

(a) &f is many-sorted. Among its sorts arc int and Ioc. 

To every integer (respectively, location) cxprcssion 

B a s e  in PRO(3 83, there  is a c o r r e s p o n d i n g  te rm 

Base  t in .Z with the same meaning  (we shall omit 

the superscript  t when it is clear  from context ) .  The 

assertions X = l i n  t and y=z to  e are  def inable  in -(g.. 

(b) F o r m u l a s  in ~ '  a re  closed under  the f i r s t - o r d e r  

connectives ~, A, and V, which arc defined in the 

usual  way.  Tru th  for f o r m u l a s  of ..¢e is def ined  

r e l a t i v e  to a model  D, an e n v i r o n m e n t  e, and a 

store s. For a formula P of ~ce, we wri te  D,e,s I=P if 

P is true with respect to D,e,s and D,e I=P iff for all 

stores s, D,e,s I= P. 

(c) A formula has a certain set of frec variables,  and the 

t ruth of a formula depends only on the values given 

to i ts  f ree  va r iab les .  More p rec i se ly ,  if the free 

var iables  of P are among x 1 ..... x m, and e (x i )=e ' ( x i ) ,  

i = l  ..... m, then 

D,e,s I=P iff D,e~,s I= I ) 

(d) If P is a formula in -.~', ln tE is an integer  expression,  

and LocE is a loca t ion  exp re s s ion ,  then we can 

effect ively find a formula I L o c E - i n t E ] P  such that  

D,e,s I = [ L o c E - l n t E I I  ) iff D.e ,s lLoeE/IntE1 I = P, 

where s[LocE/IntE] is ident ical  to s except that  the 

value it assigns to (the meaning  in D,e,s el)  location 

express ion LocE is (the meaning in D,e,s of) integer  

expression lntE. 

The f i r s t - o r d e r  l anguage  def ined  in ITHM] has all the  

propert ies  of (a) - (d)  above. 

The model  D is said to be strongly expressive if for al l  

commands  g (even those with free procedure parameters) ,  and 

f o r m u l a s  P c . ~  the re  is a fo rmula  WP(g,P)cL£,  ca l led  the 

weakest precondition of P with respect to g, such that  

D,e,s I,=WP(g,P) iff for all s'c,J¢(g)es we have D,c,s' I=P. 

Remark:  Note that  Dynamic Logic (cf. IHa]) is an example  of 

an a s s e r t i o n  l anguage  for which  all mode ls  arc  s t rong ly  

e x p r e s s i v e  in th is  sense,  s ince,  by de f in i t i on ,  the D y n a m i c  

Log ic  fo rmula  [g]P is the weakes t  p r econd i t i on  of g wi th  

respect to P. In D y n a m i c  Logic ,  we can find weakes t  

precondi t ions  effectively,  but we do not require this for our 

results .  
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A partial correctness assertion is a triple PIglQ, where P 

and Q are formulas of .~' and g is a command. We define 

D,e,s pP{g}Q iff 

(D,e,s h P implies Vs' ¢..¢'/(g)es, D,e,s' k Q), 

and 

D,e PP{g]O iff Ys(D,e,s kPlglQ). 

(Note our definition of D,ePPIg} is slightly different from 

that of [THMI]  in that with our formalism we do not need 

the notion of matching environments; i.e, environments which 

agree in the meanings  that they give to all p rocedure  

identifiers.) 

in order  to deal with global variables we use covering 

assertions, which have the form cov(p .X) ,  where  p is a 

variable of procedure type or of basic type, and X =  Ix I ..... xk} 

is a finite set of location variables. For covering assertions 

we define: 

D,e [=cov(p,X) iff e(p) is covered by {e(xl),. . . ,e(Xk) }. 

From the properties of the covering relation it follows that if 

y has type int, then c o v ( y , X ) - t r u e ,  while if z has type Ioc, 

then cov(z,{x I ..... Xk} ) --- z=x  I V ... V z=x  k. 

The set of partial correctness formulas  is defined 

inductively as follows (of. [GCH]): 

(a) If H is a formula of .f~, or a covering asserti{m, or a 

part ial  cor rec tness  asser t ion,  then H is a partial  

correctness formula. 

(b) If H l ..... H n are partial correctness formulas, then so 

is {H 1 ..... Hn}- 

(e) If HI,  H 2 are partial correctness formulas, then so is 

HI -*H 2. 

(d) If H is a partial cor rec tness  formula and x ° is a 

var iable  (of any type a), then VxaH is a partial  

correctness formula. 

define the t ru th  of a partial cor rec tness  formula  

to D,e. We have already done this for formulas of .~, 

For 

We 

relative 

covering assertions and partial correctness assertions. 

the other types of partial correctness formulas, we define: 

D,e]={H l ..... H n} iff D,e]~H i, i-~1 ..... n, 

D,e [= H t -* H 2 iff (D,e ]= H I implies D,e ]= H2), 

D,e [~ YxaH iff D,e[d/x]  [~ H for all d c D  e. 

A formula H is valid in D, written D I=H, iff for all 

environments e, D,e p H. 

If g is a command with free identifiers Pl ..... Pit and X is a 

finite set of location identifiers, wc take cov(g,X) to bc an 

abbreviation for the partial correctness formula: 

{Cov(p I ,X), . . . ,cov(Pk,X) }. 

Note that if g has no free procedure identifiers and all its free 

location identif iers  are contained in X then cov(g,X)  is 

vacuously true. 

Before we can give our axiomatizat i .n  of PROG 83, we 

shall need several more definitions. 

if E is a set of procedure declarations, we will say that 

the variable q is reachable from p via E iff q = p  or, inductively, 

if p is declared in E with declarat ion body Corn and q is 

reachable from r via E for some free variable r in Com. For 

example, if E consists of the procedure declarations 

p <- if w = z  then q else p(r) 

q ~. x :=y ,  

then p, q, r, w, z, x, and y are reachable from p via E, while 

q, x, and y are reachable  f rom q via E, and only r is 

reachable from r via B. If X is some finite set of location 

variables, we define eov(E[p,X) to bc an abbreviation for 

{ c o v ( q , X ) [ q  is reachable  f rom p via E and q is not 

declared in El 

Thus coy(Hip,X) holds exactly if p is covered by X when it is 

bound to its declaration body in E. 

If H is a partial  cor rec tness  formula  such that no 

procedure declared in E occurs free in any of the subformulas 

of H which are formulas of .~, then we define EIH to be an 

abbreviation for the formula which results when we replace 

each subformula of H of the form cov(p,X) by cov(Eip,X), 

and replace each part ial  cor rec tness  formula of the form 

P Ig IQ  by P{E[g}Q (subject  to the usual provisos  about  

renaming any bound variables in H so that they have names 

distinct  f rom any var iables  free in E, and renaming  the 

declared variables in E so that they have names distinct from 

the free var iables  in H, in order  to avoid capture  of free 

variables). EIH is undefined if some .ftf-subformula of H has a 

free occurrence of a variable declared in E. 

Roughly  speaking,  E[H is the resul t  of binding the 

meanings of free variables in H which are declared in E to 

their declarations in E. Note that we can find EIH effectively 

given E and H. If the assertion language .~" were Dynamic 

Logic, we could also effectively transform any formula P in .f~ 

to a fo rmula  EIP, again binding procedures  to their  

declarations in E, but for arbitrary .~' this in general cannot 
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be done. For this reason we have not allowed procedures 

variables declared in E to appear free in .W.-subformulas of H. 

If P is a formula of .W, we define [LocE: f ln tE]P  to be an 

abbreviation for 

[LocE-,-IntE]P V LocE= .t.lo r V ln tE= ~Lia ,. 

As shown in [THMI] ,  [LocE:=In tE]P  is the weakest  

precondition of P with respect to the assignment LocE:=IntE.  

Finally, let w in* be a variable which does not appear in P, 

and let x I°¢ be any location variable. Then we define 

l n v ( P , x )  ==def (P ffi Vw([x--wlP)). 

Inv(P,x) says that P is invariant under changes to the 

contents of x. If X is a finite set of location variables, let 

Inv(P,X) =def Ax,xlnv(P,x) • 

Inv(P,X) holds exactly if P is invariant under changes to the 

contents of all the location variables in X. 

4. A S O U N D  AND R E L A T I V E L Y  C O M P L E T E  

AXIOMATIZATION OF PROG 83 

Consider the following collection of axioms and rules of 

inference for partial c o r r e c t n e s s  formulas. Axioms 1-7 are 

variants of the corresponding axioms in [THM l ], expressed in 

our formalism, and successfully capture the semantics of all 

the constructs in PROG 83 other that procedure declarations. 

Rule 8 is the recurslon rule of [GCH], reformulated here to 

allow us to deal with global variables. Axiom 9 alh)ws us to 

reduce cons idera t ion  to c o m m a n d s  in normal  form when 

doing the completeness proof. Axioms and rules 10-14 are 

again quite s tandard  and are used to prove a rb i t r a ry  valid 

partial c o r r e c t n e s s  formulas once we have the "most  general" 

par t ia l  c o r r e c t n e s s  formula.  This  technique goes back to 

[Go],  and has also been used in many o ther  papers,  (eg. 

[THMI,CI ,OI ,GCH, . . , ] ) .  The remaining rules  and axioms 

simply allow us to manipulate partial correctness formulas. 

1. Assignment axiom: 

( [LocE:=IntElP)  {LocE:=Int E }P. 

2. Axiom of divergence: 

t rue(divergelfalse.  

3. Sequencing axiom: 

IPIgIQ.  QIg'}R} .* Plg;g'lR. 

4. Choice axiom: 

{Pig}Q, PIg'}Q} "*' Pig or g'lQ. 

5. Conditional axiom: 

[(PABoolE){gtIQ, (PA~BoolE)Ig21Q l -, 

Plif BoolE then gt else g2 filQ. 

6. Axiom of let declarations: If x is a variable of basic type, 

Base is an expression of the same type, and y a variable 

of the same type which is not frcc in P. O, BasE, or g, 

then 

(P A y=BasE ^ y # z ) | [ y / x J g I o  

P~let x~=BasE in g tell(.,). 

Axiom of new declaration: Let yloc and z int be variables 

not free in P, Q, or g, and let X be a finite set of location 

variables. Recall that a Ois the constant used to initialize 

the new location in a new dcclaration. Then 

~Axd:Xx~Y, c o v ( g , X ) ,  

( [ Y : f z ] P A c o n t ( y ) = a o ) l l y / x l g l l y : =  z ]O I  

"* Plnew x in g w e n l Q .  

g. Recurs ion  rule: Suppose E is a set of procedure 

dec la ra t i ons  of the f o r m  

P l ( r l  l ..... r l k t ) ~ b ° d Y l  ..... Pn(rn i ..... rnkn) '~bodYn-  

Suppose Pl ..... Pn do not  appca~ f ree  in H i. Pi, o r  Oi, i = 

1 ..... n, and  on ly  appear  f rec in s u b f o r m u l a s  o f  H wh ich  

are cove r i ng  fo rmu las .  Then  

H'*[{Yril ..... rikl(Hi'*PilPi(ril ..... rikl)lOi), i = I ..... nt-* 

I V r i t , . . . r i k , ( H i ' * P i l b o d y i | Q t ) ,  i =  1 ..... n i l  

E I H " [ V r i l  ..... r i k i ( H i - ' P i { E  I Pi ( r i ]  ..... rik ) }Qi ) ,  i = l ..... n } ]  

Suppose we are given some set of  procedure declarations 

E. Intuitively, the recursion rule says that if, whenever we 

can prove from some hypothesis H i somulhing about each of 

the calls Pi in E for all possible values of their parameters, we 

can also prove the same thing about the corresponding body i 

of Pi (for all possible values of the parameters, and from the 

same hypothesis  Hi) , then we can conclude the partial 

correctness assertion holds of Pi when it is declared in the 

env i ronment  E (again for all values of the paramete rs  and 

under hypothesis Hi). 

9. Normal form axiom: if g and g' are provably equivalent 

using the equivalences of Proposition I, then 

P{gIQ .,. p{g'~Q. 

10. Axiom of coaseq~ence: 

{P'~P, Pig}Q, Q~Q'} - P ' Ig lQ ' .  

11. Axiom 04" conj~tcNo-m 

{P|gIQ, P'{gIQ'} ~ (PAP ' ) Ig I (QAQ' ) .  
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12. Invariance axiom: Let X b c a  finite set of location 

variables. Then 

{co,,'(g,X), Inv(P,X)} ~ PigIP. 

Intuitively, the invarianec axiom says that if g is covered 

by X and P is a formula whose truth is independent of the 

contents of these locations, then if P is true before we run g 

then P will be true afterwards.  

13. Subs t i tu t ion  rule:  Let o be any mapping on variables 

which respects types (i.e., o(x) has the same type a,~ x). 

Let He be the result of replacing x by o(x) wherever x 

occurs in H. Then 

H 
He" 

Note  we al low a rb i t r a ry  subs t i tu t ions  here, not just 

injections. This will enable us to deal with sharing. 

14. Rule of quantification introduction: If x d o e s  not appear 

free in g or H, then 

H -* P{g}Q 

H "* :ixP{g}]xQ 

Note  that  the H appears  here as a hypothes is  in both the 

antecedent and the conclusion of this rule. This gives us a 

more  powerful rule than the corresponding rule without the 

H, since we can apply the rule relative to the hypothesis H. 

A similar phenomenon occurs in the rccursion rule (rule 8 

above) and in rules 15 and 22 below. 

15. Rule of universal quantification: If x does not appear 

free in H 1, then 

H 1 ~ H 2 

H 1 --~ VxH 2 

16. Rule of declaration binding: If none of the procedures 

declared in E appear [rec in .~-subformulas of H, then 

H 

~lB" 
17. Implication axiom: If P and Q arc formulas of .~', then 

( p = Q )  -. (p -- Q). 

18. Instantiat ion axiom: 

Vrtl -* H. 

19. Axiom of transitivity: 

{HI-*H 2 , H 2 ~ H  3] ~ (HI~H3) .  

20. Modus ponens: 

H l, H I ' * H  2 

H2 

21. Axiom of trivial implication: 

{H 1 . . . . .  HnJ -* H i , i  ffi 1 . . . .  n. 

22. Set formation rule: For all n>_.0 

H-~H 1 . . . . .  H-*H n 

H.~ [H 1 ..... Hn] 

Note that H -- ~ is a special case of this rule (taking n=0) .  

23. Empty set introduction axiom: 

(a )  H -- (~ -- H ) ,  

(b) (~b -- H) -- H. 

24. Currying axiom: 

( |H1,  H21 -* H 3) -* (H 1 -* (H 2 -* H3)). 

Theorem I:  The axiom system presented above is sound; i.e. 

for any model D and any environment e, D,e]ffiH for every 

axiom scheme H above, and for every rule of inference with 

antecedents H t ..... Hk, and conclusion H, if D,e [-Hi, iffil ..... k, 

then D,e ]m H. 

Proof :  The soundness  of ax ioms  and rules 1-7 and 9-13 

follows from the soundness of the corresponding axioms and 

rules of [THMI].  We refer the reader there for details. The 

recurs ion  rule is just  a r e fo rmula t ion  of the we l l -known 

fixed-point induction rule, and unlike the recursion rule of 

[THMI]  or [Oi], its soundness follows immediately from the 

deno ta t iona l  ( f ixed-poin t )  semant ics ,  and does not require  

copy- ru le  semant ics  (and thus  a tedious proof  of the 

equivalence  of f ixed-point  and copy-ru le  semant ics ;  of. 

[THMI,THM2]) .  The soundness of the remaining axioms and 

rules is almost  an immediate consequence of the definitions. 

We leave details to the full paper. I"l 

Let Th*(D) consist of all the partial correctness formulas 

of the form cov(g,X)-*P which are valid in D, where P is a 

formula of ,~. 

We can now state our relative completeness theorem. 

T h e o r e m  2: If D is s t rongly  express ive ,  then the ax iom 

sys tem above is complete relat ive t o  Th*(D)  for part ial  

co r rec tness  asser t ions  involving p rograms;  i.e., if g is a 

program (with no free procedure identifiers) and D [- P { g ] Q .  

then Th*(D) I'- P{gJQ. 

In order to prove the completeness theorem, we need to 

develop an analogue for the '*most general partial correctness 
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formula"  of [Go, OI]. Let X be the set of location variables 

{x 1 ..... Xk}, and Y be the set of integer variables {Yt ..... Yk I" 

Let U(X,¥) be the formula 

e o n t ( x l ) = y  I A ... A eon t (xk)=y  k. 

For each variable of basic or procedure type p and set of 

procedure declarations I::. we define the most general partial 

correctness formula of  p with respect to U(X, Y) and E, written 

mg(p,U(X,Y),E) ,  by induction on the type of p as follows: 

(a) if p is of basic type, then mg(p.U(X,Y),E))  --def 

cov(p,X) 

(b) if p has type at- ' . . , . ' . 'am"~prog,  re>O, let r t ..... rra be 

variables of type al,...,n m, respectively. Then 

mg(p,U(X.Y),E) =def 

Vr I ..... rm[ {mg(rl ,U(X,Y),E) ..... mg(rm.U(x,y),E) I 

-- ( I cov (p ,X) .cov (E Ip ,X)  } 

-- WP(Elp(r  I ..... r m ) , U ( X , Y ) ) l p ( r  ! ..... r m ) I U ( X . Y ) ) I .  

Rough l y  speak ing,  m g ( p . U ( X , y ) . E )  says that  p "acts  

r i gh t "  prov ided that  that it is covered by the locat ions in X 

and a l l  of i ts pa ramete rs  ( i f  any )  act r igh t  (whe re  " a c t i n g  

r i gh t "  in the case of procedure ident i f iers means that 

WP(EIp(r I ..... r r a ) , U ( X , Y ) ) l P ( r  t ..... rrn) | I .J(X,Y)  

is t rue).  

If g is a command with free identifiers Pl ..... Pn, we take 

mg(g .U(X,Y) ,E )  to be an abbrevia t ion  for the partial  

correctness formula 

[mg(pI,U(X,Y),E) ..... mg(pn,U(X,Y),E) I. 

The core of the relative completeness proof consists of 

the following two lemmas. 

Lemma I: If c o v ( h , X ) - P | h l Q  is valid, then 

Th*(D) l- [cov(h,X),cov(g.X).WP(h,U(X.Y))lglU(X,Y) ] 

-*P{g]O. 

Lemma 2: If X = {x I ..... xk} is a set of location variables, and 

Y = {YI ..... Yk| is a set of integer variables which do not 

appear in g, then 

I-mg(g,U(X,Y)),E) -. [Icov(g,X),cov(l::lg.X)} 

" YYl ..... Yk(WP(t=Ig,U(X,Y)) Ig} U(X,Y))].  

Lemma 1 is just a variant of the observation that any 

valid partial cor rec tness  asser t ion  about  g can be obtained 

from the most general partial correctness assertion about g 

(cf. [ G o , e l . e l i ) .  Lemma 2, which is proved by a 

s t r a igh t fo rward  induction on the s t ruc ture  . f  commands ,  

intuitively says that o,lce w e k n o w  the most general partial 

correctness formulas for all the free w~riables in g then we 

can prove the most general partial correctness formula for g. 

We leave details of the proofs of Lcmmas I and 2 to the full 

paper. 

With these Lcmmas in hand. the remainder of Ihe proof 

of Theorem 1 is straightforward. N.tt: that if g is a program 

(with  no free procedure  identif iers)  whose free location 

identifiers are contained in X, taking E to be empty, we have 

mg(g,O(X,Y),¢)  m eov(g,X) -- true. 

Thus by Lemma 2, we have 

(*) ]-- W P ( g , U ( X , Y ) )  t g I U (X ,Y ) .  

And if PIgIQ is valid, by Lemma I with g=h  we have 

(**) T h * ( D )  I -WP(g,U(X.Y))Igl IJ (X,Y)  ~ Plglt) .  

Then from (*) and (**) we can conclude, as dcsired. 

Th*(D) I- P[g}Q. 

5. C O N C L U S I O N S  

We have provided an axiomatization of PROG 83 which 

is sound and relat ively complete,  which for the first time 

deals with global var iables  in a natura l  way. by means of 

covering asser t ions .  There is only one d rawback  to the 

results presented here, namely, that we require a higher-order 

oracle: Th*(D). 

By Clarke's  results we know that this is in some sense 

necessary:  we cannot  hope to obtain a complete 

ax iomat iza t ion  for a language as rich as PP.OG 83 by 

res t r ic t ing ourselves  to just having an oracle for the 

first-order theory of the interpretation, Th(D). Using a rich 

oracle such as Th*(D) enables us to factor  out certain 

difficulties in order to gain insight into how to reason about 

p rog ramming  languages which allow procedures  as 

parameters.  Nevertheless. it is worth trying to understand 

just how far we can get using only Th(D) as an oracle. 

First  note that if wc restrict to the subset of PROG 83 in 

which procedures  only take basic variables as parameters  

(and thus  no procedure pa ramete r s ) ,  then the above 

axiomatization is complete for the resulting language relative 

to Th(D). 

Several previous papers on Hoarc  logics have given 

complete  ax iomat iza t ions  for subse ts  of ALGOL-l ike  

languages consisting of programs with the finite range property 
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('cf. [CI,OI,I .O,THMI]).  (Roughly speaking, a program has 

the finite range property if there is a bound on the number of 

distinct procedure environmcnts which can bc rcachcd when 

it is run.)  Indeed, as OIderog has shown lol l ,  the standard 

Hoare axiom systems based on thc copy rule cannot deal with 

programs which do not have the finite range property. A 

program with the finite range property can be shown to be 

equivalent to a program with no proccdurc parameters. Using 

this fact ,  we can show that by adding one axiom to our 

system,, we can obtain a complete axiomatization for finite 

range programs relative to Th(D).  (This result was obtained 

jointly with A. Meyer and will appear in the full paper.) This 

observation confirms the conjecture made in [THM I] we can 

replace copy-ru le  induction ( the usual rulc used to reason 

about  recurs ion ,  which is shown in [THMI]  to be 

semantically unsound) by the semantically sound fixcd-point 

induction rule, and still get a complete axiomatization relative 

to Th(D) for finite range programs. 

We can also adapt our  proof  sys tem to yield an 

axiomatization for L4 (the language with no global variables 

in t roduced in [CI]) which is complete  relat ive to Th(D)  in 

Herbrand definable domains (domains in which every value is 

representable as some term in the Hcrbrand univcrsc). The 

proof of completeness is essentially the same as that given in 

[GCH].  (Note  that  with L4 covering asse r t ions  are 

unnecessary, since the variablcs that any procedure depends 

on are explicit. Moreover, with our prcscnt formalism we can 

avoid the use of environment ~'ariables which seemed to be 

necessary  in [GCH].)  The crucial  point in the proof of 

completeness is that in Herbrand definable domains, we can 

t ransform an L4 program (which may not have finitc range) 

into a program with no procedure parameters (which clearly 

does). 

We can see that the finite range property is the common 

thread running through all the proofs of completeness relative 

to Th(D) .  But now consider  tht: problem of finding a 

complete axiomatization for the type of modcls considered in 

[Cr], where not only is the domain finite, but there arc only 

finitely many distinct memory h)cations. For such models, 

Clarke's  incompleteness results do not hold since they depend 

crucially on a recursive procedure being able to gcncrate an 

unbounded number of distinct locations. But the standard 

Hoare axiom systems based on the copy rule cannot lead to a 

relat ive comple teness  result  in this model because the 

p rog ramming  language still lacks the finite range proper ty .  

However ,  it is relat ively s t r a igh t fo rward  to t r ans fo rm the 

zxio.~a system presented here to get a axiom system which is 

complete relative relative to Th*(D) (we must only modify 

the axioms slightly to deal with the fact that there arc only 

finitely many locat ions) .  And note that  for such models,  

Th*(D) is decidable. We believe there will be many other 

situations where the style of axiomatization presented here 

will also lead to in teres t ing comple teness  resul ts  not 

obtainable by other means. 

There  still r emains  the problem of f inding a concre te  

asser t ion  language ,W sat isfying the abs t rac t  proper t ies  

pointed out, Dynamic Logic is nnc candidate, but in DL we 

can effectively find the weakcst preconditions. It would be 

wor thwhi l e  to find a possibly wcaker  language in which 

weakest  p recondi t ions  exist ,  but cannot  a lways  bc found 

effectively. 
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