A GOOD HOARE AXIOM SYSTEM FOR AN .;\LGOL-LIKE LANGUAGE

Joseph Y. Halpern
IBM Research Laboratory
San Jose, California 95193

Abstract: Clarke has shown that it is impossible to obtain a
relatively complete axiomatization of a block-structured
programming language if it has features such as static scope,
recursive procedure calls with procedure parameters, and
global variables, provided that we take first-order logic as the
underlying assertion language [Cl]. We show that if we take
a more powerful assertion language, and hence a more
powerful notion of expressiveness, such a complete
axiomatization is possible. The crucial point is that we nced
to be able to express weakest preconditions of commands
with free procedure parameters. The axioms presented here
are natural and reflect the syntax of the programming
language. Such an axiom system provides a tool for
understanding how to reason about languages with powerful
control features.

1. INTRODUCTION

In a paper entitled "Programming languages for which it
is impossible to obtain good Hoare axiom systems" [Cl],
Clarke showed that it is impossible to obtain a "good" Hoarc
axiom system for a block-structured programming language
with the following features:

(i)

(ii)

(iii)

(iv)

)

procedure names as parameters of procedure calls,
recursion,

static scope,

global variables, and

internal procedures.

In this paper, we give a "good" Hoarc axiom system for
PROG 83, a large subset of PROG, the ALGOL-like language
introduced and studied in [THM1,THM2]. PROG 83 allows
nondeterminism and sharing of variables (aliasing) and has all

five features mentioned above.
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To explain this paradox, we must look a little more

carefully at the meaning of "good". Of course, we expect a

good Hoare axiom system to be sound (everything which is
provable should be true) and complete (cvery partial
correctness assertion which is true should be provable). It
should also be "natural”; i.e., the axioms should in some

sense reflect the syntax of the programming language.

From the Godel incompleteness thcorem, we know that
for sufficiently rich interpretations, such as arithmetic, it is
impossible to obtain a sound and complete axiomatization for
first-order formulas, let alonc for

partial corrcciness

assertions involving first-order formulas. In order to talk
about the completeness of a Hoare axiom system independent
of the underlying interpretation, Cook [Co) proposed the
notion of relative completeness: undcer the assumption that for
a given interpretation 1 and assertion language £, we arc
given an oracle for the formulas of £ which are true in I, and
that & is expressive for 1, then every truc partial correctness
assertion is provable. Expressiveness means that for every
program g in the programming language and formula P in £,
there is a formula in & cquivalent to the weakest precondition
(cf. [Di]) of g with respect to P,
C

Taking £ to be first-order logic, Cook gave a relatively
complete axiomatization of a subset of ALGOL with a
Gorelick [Go)
On
the other hand, Clarke [Cl] showed that if we take a language

while-statement and nonrecursive programs.
extended Cook's work to include recursive procedures.
with the five features mentioned above, no relative
completeness proof is possible provided we take firsi-order logic

as the underlying assertion language.

The work of papers such as {GCH,THM,DJ] shows that
in order to reason about programs in languages with rich

control structures, it is also necessary to be able to reason



about commands with possibly frec procedure identifiers. In
order to facilitate reasoning about such commands, we will
require that our assertion language be powerful cnough to
express the weakest precondition of g with respect to P even
if g has some occurrences of free procedure identifiers. Thus,
our assertion language is a higher order one, in much the
of [DJ]. We

axiomatization of PROG 83 which is sound and, under our

same spirit as that present a natural

stronger expressiveness hypothesis, relatively complete.

The axiom system prescnted herc draws heavily on those
of [GCH} and [THM1). From [GCH] we get the style of the
axiom system, which is presented in terms of (possibly nested
and universally quantified) scquents of partial correctness
assertions, and the recursion rule. ‘The completeness result
presented here secms to be convincing evidence that this rule
is indeed the "right" way to rcason about recursion.
Following [THM1], we distinguish locations and their
contents, allowing us to dcal with aliasing in a clean way.
The assignment axiom is taken dircctly from [THM1}, as well

as techniques for reasoning about invariance.

This last point deserves some further discussion. In
papers such as [Cl, Go, Ol]. one sces a variant of the

following axiom:

P{glP, provided the free variables of P arc disjoint from

those of g.

Intuitively, this is sound because a program can only affcct
the values of its free variables. Sincc the truth of P only
depends on the values of its free variables, if P is true before
g is run, then it will still be true afterwards. However, the
statement, "a program g can only affect the values of its free
variables," no longer holds if we allow free procedure
identifiers with global vari_ables. For example, il q is the
parameterless procedure x:=3 and cont(x) denotes the value

stored at location x, then
cont(x)=2{qicont(x)=2
is clearly not valid.

In order to deal with this problem, we introduce a new

class of assertions called covering assertions. In our notation,

the partial correctness assertion above becomes:
cov(q,{yy, .o, Y1) =
(x#Y (A ... Ax#Ey Acont(x)=2){qlcont(x)=2,

i.e., if q is covered by the locations y,,..,y; (roughly
speaking, if q "reads" and "writes” at most these locations)

and x is distinct from y,,...,yg, then if the contents of location
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x is 2 before we run q, then it will be 2 afterwards. Covering
assertions provide a genceral technique for dealing with global

variables; moreover, no special axioms are required for them.

The rest of this paper is organized as follows. In
Section 2, we give the syntax and semantics of PROG 83,
while in Section 3, we give the syntax and semantics of the
assertion language, covering

asscrtions, and partial

correctness formulas. In Section 4, we present the axiom
system, and prove its soundness and completeness. We

conclude in Section 5 with a discussion of further

applications of these results.

2. SYNTAX AND SEMANTICS OF PROG 83

To illustrate our axiom system, we usc the programming
language PROG 83, a subset of the language PROG described
in greater detail in |THMI1 /THM2]). PROG 83 is a
fully-typed, block-structured programming language, with a
number of non-trivial features including nondeterminism,
shared variables, nondeterminism, and procedure paramecters
nested to arbitrary depth. We have omitted a number of
features found in PROG, including lambda abstraction and
higher order declarations. Moreover, procedures in PROG 83
can only take identifiers as parameters, rather than arbitrary
expressions of the right type. Although it is straightforward
to give such features semantics in the framework developed in
[THM1, THM2], axiomatizing them secems a bit more
complicated. We hope to axiomatize more features of PROG

in future work.

The primitive types of PROG 83 are int, loc. prog,
intexp, and locexp. A srore is a mapping from locations to
their values. The types int and loc are intended to be the
domains of storable values and the locations in which these
values are stored. The domain prog is that of program
meanings: nondeterministic mappings from stores to scts of
stores. Elements of type intexp and locexp are expressions
which evaluate to values and locations respectively in a given
store, i.e. functions from stores to int (resp. loe) (in ALGOL
jargon, thesc are "thunks”). We call loc and int basic rypes.
For ease of exposition, the only tests we allow are cquality
tests between expressions of basic type. Procedure types arc
defined inductively to be of the form ay-:-=a, -prog,
where aj,...,a; are either of procedurc type or of basic type.
As in ALGOL 68, starting with variables of basic type, we
can form more complicated location and integer expressions.

We use the notation x¢ to indicate that variable x has type a.



We briefly review the syntax of PROG 83, and refer the
reader to [THM1,THM2] for more details.

Integer expressions:
IntE::= a (where a is a constant symbol) | xi*t | cont(LocE) |
f(InLEy, ..., IntE,) (where [ has type intk-=int) |

if BoolE then IntE, else IntE, fi.

Location expressions:

LocE::= x!°¢| if BoolE then LocE; else LocE, fi.

Boolean expressions:

BoolE::=IntE; =IntE, | LocE;=LocE,.

Procedure expressions:
ProcE®::= po| ProcE’l"""Pr(‘AcEg|l"rocE"’"xy (where a, B

are procedure types, y is a basic type).
ProcE=u PE.

Calls:

Call::= ProcEPf8 (a pracedure expression of type prog).

Commands:
Com::= Call | diverge | LocE:=IntE | Com,;Com, |
Com; or Com,| BBI|PBI|

if BoolE then Com, else Com, fi.

Basic Blocks:
BBl::= let xi"&IntE in Cmd 1cl i new x'9¢ in Cmd wen |

let x!°¢«l ocF in Cmd tel.

Procedure Blocks:
PBl::= proc PDecl do Cmd cnd.

Procedure Declarations:
PDecl::=p1x1,...xln‘¢Coml, o PmXm1 X «Comy,
where p;,Xj),...X;,, are distinct for i = 1,..,m, p; has

procedure type a; and Xj; has type a;;, where

jv
a; = ajy > @y~ @y, = Prog, i=1,..,m Wec say P
is declared in this finite system of mutual procedure

declarations with formal parameters XipeenX and

in;
b
declaration body Com;.

Notation: We often use the lctter E (possibly primed or
subscripted) to represent a finite system of mutual procedure
declarations. Procedure blocks of the form proc E do Com
end will usually be abbreviated as E|Com. For readability,
we will usually write p(x;....,x,) rather than pPXy..Xg in
procedure calls and on the left side of the « in procedure

declarations,
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Note that PROG 83 allows recursion in procedure
declarations, procedures of arbitrarily high finite type,

unrestricted procedure nesting, and arbitrarily complex calls.
Explicit sharing is possible by use of the declaration x'¢ &

LocE in a basic block.

Commands in PROG 83 may have free procedurc
identifiers, A program is a command without free procedure

identifiers,

We give semantics to cxpressions of PROG 83 by
mapping them into elements of an algebraic siore model D. An
algebraic store model D consist of a collection of partial

orders {D,}, one for each typc a, such that cach element of

Da-»B is a monotonic function from D,=Dg. There is a least
element L, ¢ D, and for each function [ ¢ Da‘n, the
sequence 1., f(1,), f(f(L,)), ..., has a lcast upper bound in

D,. Finally, for each dc¢D,, there is a finite set of locations
which covers d. The properties of store modcls, the method of
assigning semantics, and the precise definition of the covering
relation is given in detail in [THM2]. We give a brief sketch

here.

We have a meaning function  such that for each
constant ¢ of type a, M(c) ¢ D,. An environment ¢ gives
meaning to the variables:
e(x)eD,.

corresponds an element #(v)ee D, which is thec meaning of v

if x is a variable of type «,

To every PROG 83 expression v of type a there

in environment e,

With each element of D,, we can dcfine what it mecans

for a set of locations L ¢ D, . to cover it. Somc important

properties of the covering relation include:
i. IfpeD
(a)

prog: then p is covered by L iff (cf. [MM]):

for any store s, for all s'cps, s and s’ agree off L;
i.e., for all h¢L, s'(h)=s(h). Thus, p does not
change the contents of locations not in L,

if s and s’ agree on L, then ;is and ps’ agrec on L.

()
2. If h € Dy,,, then his covered-by Liff h ¢ L.
3. I d ¢ Dy, then d is covered by L for all sets L.

If p is covered by L and q is covered by L', then p(q) is
covered by LuL’,

Crucial use is made of the covering rclation when
defining the semantics of the new declaration. Roughly
speaking, to run new x in g wen in cnvironment ¢ and store s,
we proceed as follows. We first find a set L. which covers g
(or, more accuratcly, J#(g)e), chobse a location h not in L,

run g in environment ¢’ and store s’ which arc identical to ¢



and s except that x is set to h with its contents initialized to
ag, and then reset the contents of h after the computation of g
has ended. In this way we maintain the stack discipline and
use a truly "new" location for x. Again, we refer the reader
to [THM2] for more details.

As a consequence of the semantics, we get the following
proposition, which shows that every comimand is cquivalent to
one in which the procedure declarations arc "pushed in" so
This

proposition will be useful in our axiomatization, by cnabling

that they only occur in front of procedure calls.

us to restrict attention to commands in this special form.

Proposition 1 (cf. [THM1,GCH)]): The following

equivalences hold:
(a)
(b)
(c)

El(g,:8,) = (Elg,);(Elg,), ,
E|(g; or g;) = (Elg,) or (Elg,).

E|(if BoolE then g else g, fi) =
if BoolE then Elg; else Elg, fi,

(d)

If x does not appear{ree in E, then
E|(new x in g wen) =

new x in Elg wen,

()

If x is of basic type, BasE is a basic expression of the
same type, and x does not appear free in E, then
E|(let x ¢ BasE in g tel) =

let X < BasE in Elg tel,

)

If B, and E, do not contain distinct declaration for the

same procedure identifier, then
. Eyl(B,lg) = ((E,UE,)fe),
(8)

If none of the procedures declared in E appears free in g,

then
Eg =g
(h)

1f g and g’ are identical up to renaming of bound

variables, then

?
g8=8.
From Proposition 1 we immediatcly get the following

Corollary: Every command g is equivalent to a command g’
in a normal form, where the subcommand Ejh occurs in g’

only if h is a procedure call.

3. THE ASSERTION LANGUAGE AND PARTIAL
CORRECTNESS FORMULAS

To permit as much generality as possible, we do not

describe the assertion language & in detail herc, but state

265

some abstract properties it must satisly:

(a) & is many-sorted, Among its sorts arce int and loc.
To every integer (respectively, location) cxpression
BasE in PROG 83, therc is a corresponding term
BasE! in & with the same meaning (wc shall omit
the superscript t when it is clear from context). The

assertions x=1;, and y=1, . arc definable in £,

(b) Formulas in £ are closed under the first-order
conncctives -~, A, and ¥, which arc defined in the
usual way. Truth for formulas of & is defined
relative to a model D, an environment e, and a
store s. For a formula P of &, we writec D,e,s P if
P is true with respect to D,e,s and D,c P iff for all

stores s, D¢ s EP.

(c¢) A formula has a certain set of free variables, and the
truth of a formula depends only on the values given
to its free variables. More preciscly, if the free
variables of P arc among x,,....xp,, and c(x;)=c'(x;),

i=1,...,m, then
De,skEPiff D' skEP
(d)

If P is a formula in £, IntE is an integer expression,
and LocE is a location expression, then we can

effectively find a formula [LocE « IntE]P such that
D,e,s E[LocE «IntE}P iff D,c,s|[LocE/IntE] kP,

where s[LocE/IntE] is identical to s except that the
value it assigns to (the meaning in D,e,s of) location
expression LocE is (the meaning in D,e,s of) integer

expression IntE.

The first-order language defined in {THM] has all the
properties of (a)-(d) above.

The model D is said to be strongly expressive if for all
commands g (even those with free procedure parameters), and
formulas P there is a formula WP(g,P)c %, called the
weakest precondition of P with such that

respect to g,

D,e,s e WP(g,P) iff for all s’ #(g)cs we have D,es’ EP.

Remark: Note that Dynamic Logic (cf. [Ha]) is an example of
an assertion language for which all models are strongly
expressive in this sensc, since, by definition, the Dynamic
Logic formula [g]P is the weakest precondition of g with
respect to P. In Dynamic Logic, we can find weakest
preconditions effectively, but we do nor require this for our

results.



A partial correctness assertion is a triple PiglQ, where P
and Q are formulas of & and g is a command. We define

D.e,sEP{glQ iff

(D.e,s I* P implies Vs’ e #(g)es, D.es’ EQ),
and

D,e EP{g}Q iff ¥s(D,c,s EP{g}Q).
(Note our definition of D,ckPig} is slightly different from
that of [THM1] in that with our formalism we do not need
the notion of matching environments; i.c. environments which
agree in the meanings that they give to all procedure

identifiers.)

In order to deal with global variables we use covering
assertions, which have the form cov(p,X), where p is a
variable of procedure type or of basic type, and X=ix,...,x}
is a finite set of location variables. For covering asscrtions

we define:
D,e Bcov(p,X) iff e(p) is covered by fe(x,),...e(x))}.
From the properties of the covering relation it follows that if

y has type int, then cov(y.X)=true, while if z has typc loc,

then cov(z,{x,,...x }) = z=x; V ... V z=x,.

The set of partial correciness formulas is dcfined

inductively as follows (cf. [GCH]):

(a) If H is a formula of &, or a covering asscrtion, or a
partial correctness assertion, then H is a partial
correctness formula.

(b) If Hy,..,H, are partial correctness formulas, then so

is {H;,... H}.

(c) If H,, H; are partial correctness formulas, then so is

H,-~H,.

(d) If H is a partial correctness formula and x¢ is a

variable (of any type «), then Vx®H is a partial

correctness formula.

We define the truth of a partial correctness formula
relative to D,e. We have already done this for formulas of £,
covering assertions and partial correctness assertions, For

the other types of partial correctness formulas, we define:
DeFE{H,...Hyl iff DekFH; i=1,.n,
D,e EH;+H,; iff (D,c FH, implies D,c FH,;),
D.,e EvxeH iff D,eld/x] H for alldcD,.

A formula H is valid in D, written DEH, iff for all

environments e, D,e kH.

If g is a command with free identifiers py,...,.p; and X is a

266

finite set of location identificrs, we take cov(g,X) to be an

abbreviation for the partial correctness formula:
fecov(py,X),....cov(py X)i.
Note that if g has no free procedure identifliers and all its free

location identifiers arc contained in X then cov(g.X) is

vacuously true,

Before we can give our axiomatization of PROG 83, we

shall need several more definitions.

If E is a set of procedure declarations, we will say that
the variable q is reachable from p via E iff q=p or, inductively,
if p is declared in E with declaration body Com and q is
reachable from r via E for some free variable r in Com. For

example, if E consists of the procedure declarations

p < if w=2z then q else p(r)
q @« xi=y,

then p, q, r, W, z, X, and y are reachable from p via E, while
q, x, and y are reachable from q via E, and only r is
reachable from r via E. If X is some finite set of location

variables, we define cov(E|[p,X) to be an abbreviation for

fcov(q,X) | q is reachable from p via E and q is not
declared in E}

Thus cov(Ejp,X) holds exactly if p is covered by X when it is

bound to its declaration body in E.

If H is a partial correctness formula such that no
procedure declared in E occurs free in any of the subformulas
of H which are formulas of 2, then we define E|H to be an
abbreviation for the formula which results when we replace
each subformula of H of the form cov(p,X) by cov(Ep,X),
and replace each partial corrcctness formula of the form
PiglQ by P{E|g}Q (subject to thc usual provisos about
renaming any bound variables in H so that they have names
distinct from any variables free in E, and renaming the
declared variables in E so that they have names distinct from
the free variables in H, in order to avoid capturc of free
variables). E|H is undefined il some £-subformula of H has a

free occurrence of a variable declared in E.

Roughly speaking, E|H is the result of binding the
meanings of free variables in H which arc declared in E to
their declarations in E. Note that we can find EJH cffectively
given E and H. If the assertion language &€ werc Dynamic
Logic, we could also effectively transform any formula P in &£
to a formula E|P, again binding procedures to their

declarations in E, but for arbitrary £ this in general cannot



be done. For this reason we have not allowed procedures

variables declared in E to appear free in £-subformulas of H.

If Pis a formula of &, we define [LocE:=IntE}P to be an

abbreviation for
[LocE«IntE]P V LocE=4,;,. V IntE=1,.

As shown in [THM1], [LocE:=IntE]P is

precondition of P with respect to the assignment LocE:=IntE.

the weakest

Finally, let wint be a variable which does not appear in P,

and let x'°¢ be any location variable. Then we define
Inv(Px) =4 (P = Vw([x*wll’l)).

Inv(P,x) says that P is invariant under changes to the

contents of x. If X is a finite sct of location variables, let
Inv(P,X) =40 AgexInv(P,x).

Inv(P,X) holds exactly if P is invariant under changes to the

contents of all the location variables in X.

4. A SOUND AND RELATIVELY COMPLETE
AXIOMATIZATION OF PROG 83

Consider the following collection of axioms and rules of
inference for partial correctness formulas. Axioms 1-7 are
variants of the corresponding axioms in [THM1], cxpressed in
our formalism, and successfully capturc thec semantics of all
the constructs in PROG 83 other that procedure declarations.
Rule 8 is the recursion rule of [GCH], reformulated here to
allow us to deal with global variables. Axiom 9 allows us to
reduce consideration to commands in normal form when
doing the completeness proof. Axioms and rules 10-14 are
again quite standard and are uscd to prove arbitrary valid
partial correctness formulas once we have the "most general”
pnrtiall correctness formula, This technique goes back to
[Gol, and has also been used in many other papers, (eg.
[THM1,C1,01,GCH,...]). The remaining rules and axioms

simply allow us to manipulate partial correctness formulas.

1. Assignment axiom:

({ILocE:=IntE|P){LocE:=IntE}P.

2. Axiom of divergence:

true{divergelfalse.

3. Sequencing axiom:

{PiglQ. Qig'IR} ~ Pig:g'IR.

4. Choice axiom:
{PiglQ, P{g'}Q} - Pfgor g'iQ.
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5. Conditional axiom:

t(PABoolE){g;1Q, (PA~BoolE){g,1Q}
P{if BoolE then g, clse g, fi}Q.

6. Axiom of let declarations: If x is a variable of basic type,
BasE is an cxpression of the same type, and y a variable
of the same type which is not free in P, Q, BasE, or g,

then

(P A y=BasE A y#1)ily/x|glQ -
Pilet x<«=BasE in g 1¢l}Q.

7. Axiom of new declaration: Let y'0¢ and 2i" be variables
not free in P, Q, or g, and let X be a finite set of Jocation
variables. Recall that ag is the constant used to initialize

the new location in a new declaration. Then

{Axe xX#Y, cov(g,X),
(ly:=z]PAcont(y)=ag)ily/x)gHy:=2]Q}

"~ Pinew x in g wenjQ.
8. Recursion rule: Suppose E is a

set of procedurc

declarations of the form
Pl("l1'---"|k,)¢b°d71----'Pn("mv---vrnkh)<=b°d)'n-
Suppose py,...,p, do not appear free in H, P,or Qi =
1,...n, and only appear frec in subformulas of H which
are covering formulas. Then
H-[{Vr“.....rik'(Hi»Pilpi(r“,....riki)N)i). i=1,...n}e
{Vr“....rikl(HiwPilbodyi}()i), i=1,..n}l

EIH = (Ve (Hy = P E Uiy 1), 1= fond]

Suppose we are given some sct of procedure declarations
E. Intuitively, the recursion rule says that if, whenever we
can prove [rom some hypothesis H; somcthing about cach of
the calls p; in E for all possible valucs of their parameters, we
can also prove the same thing about the corresponding body;
of p; (for all possible values of the paramcters, and from the
same hypothesis H;), then we can conclude the partial
correctness assertion holds of p; when it is declared in the

environment E (again for all values of the paramcters and

under hypothesis H)).

9. Normal form axiom: If g and g’ arc provably cquivalent

using the equivalences of Proposition !, then

P{g}Q -~ P{g'iQ.

!

10. Axiom of consequence:

{P'3P, P{3}Q, Q>Q'} - P'{3]Q".

11. Axiom of conjunction:

{P{giQ, P’{glQ’} = (PAP){g](QAQ").



12. Invariance axiom: Let X be a finite set of location

variables. Then

{cov(g,X), Inv(P,X)} = PigiP.

Intuitively, the invariance axiom says that if g is covered
by X and P is a formula whose truth is independent of the
contents of these locations, then if P is true before we run g

then P will be true afterwards.

13. Substitution rule: Let o be any mapping on variables
which respects types (i.c., o(x) has the same type as x).
Let Ho be the result of replacing x by e(x) wherever x
occurs in H. Then

H
Ho'

Note we allow arbitrary substitutions hecre, not just

injections. This will enable us to dcal with sharing.

14, Rule of quantification introduction: 1If x does not appear
' free in g or H, then

H - P{g}Q

H - 3xP{g}ixQ

Note that the H appears here as a hypothesis in both the
antecedent and the conclusion of this rule. This gives us a
more powerful rule than the corresponding rule without the
H, since we can apply the rule relative to the hypothesis H.

A similar phenomenon occurs in the recursion rule (rule 8

above) and in rules 15 and 22 below.

15. Rule of universal quantification: If x docs not appear

free in H,, then
H, - H,
H, -Y¥xH,

16. Rule of declaration binding: If none of the procedures
declared in E appear frec in £-subformulas of H, then
) .-
EH
17. Implication axiom: I P and Q arc formulas of £, then

(P>Q) - (P - Q).

18. Instantiation axiom:

vrH - H.

19. Axiom of transitivity:

{H;=Hy, Hy+H;} = (H;~Hy).

20. Modus ponens:
H,. H,-H,
H, ’
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21. Axiom of trivial implication:

{Hy, .. Hg} = Hj,i=1,..n

22. Set formation rule: For all n>0
H~H,, .., H+H,
H- {H,,...H }

Note that H - ¢ is a special case of this rule (taking n=0).

23. Empty set introduction axiom:

(a) H ~ (¢ = H),
(b) (¢ » H) - H.

24, Currying axiom:

({H;, Hy} = Hy) = (H; - (H; -~ Hy)).

Theorem 1: The axiom system presented above is sound; i.e.
for any model D and any environment ¢, D.eH for every
axiom scheme H above, and for every rule of inference with
antecedents H,,...,Hy, and conclusion H, if DepkH,, i=1,..k,

then D,e mH.

Proof: The soundness of axioms and rules 1-7 and 9-13
follows from the soundness of the corresponding axioms and
rules of [THM1]. We refer the reader there for details. The
recursion rule is just a reformulation of the well-known
fixed-point induction rule, and unlike the recursion rule of
[THM1] or [Ol], its soundness follows immediately from the
denotational (fixed-point) semantics, and does not require
copy-rule semantics (and thus a tedious proof of the
equivalence of fixed-point and copy-rule semantics; cf.
[THM1,THM2]). The soundness of the remaining axioms and
rules is almost an immediate consequence of the definitions.

We leave details to the full paper. O

Let Th*(D) consist of all the partial correctness formulas
of the form cov(g,X)-P which are valid in D, where P is a

formula of 2.
We can now state our relative completeness theorem,

Theorem 2: If D is strongly expressive, then the axiom
system above is complete relative to Th*(D) for partial
correctness assertions involving programs; i.e., if g is a
program (with no free procedure identifiers) and D k P{g}Q,

then Th*(D) } P{giQ.

In order to prove the completeness theorem, we need to

develop an analogue for the "most general partial correctness



formula” of [Go, Ol]. Let X be the sct of location variables
{x,.....xk}, and Y be the set of integer variables [y‘....,ykl.

Let U(X,Y) be the formula

cont(x;)=y; A ... A cont(x)=yy.

For each variable of basic or procedure type p and set of
procedure declarations E, we define the most general partial
correctness formula of p with respect to U(X.Y} and E, written

mg(p,U(X,Y),E), by induction on the type of p as follows:

(a) if p is
cov(p,X)

(b) if p has type a,~...~a, +prog, m20, let ry ..ry, be

of basic type, then mg(p.U(X,Y),E)) =4.r

variables of type ay,...ay, respectively. Then
mg(p,U(X.Y).E) =g

Vr Pl img(r U(X,Y),E),....mg(r, U(x,y),E)}
~ (fcov(p,X),cov(Elp.X)}
~ WP(Elp(r;,....r ). U(X, YD) ip(ry,...,r  JIUCX,Y))L

Roughly speaking, mg(p.U(X,y).E) says that p "acts
right" provided that that it is covered by the locations in X
and all of its parameters (if any) act right (where "acting

right" in the case of procedure identificrs means that
WP(E[p(ry ...t ), UX, Y HP(ry e r ) EUCX,Y)

is true).

If g is a command with free identificrs p,.....p,, we take
mg(g.U(X,Y),E) to be an abbreviation for the partial

correctness formula

fmg(p; . U(X,Y).E),...mg(p,. U(X,Y),E)}.

The core of the relative completeness proof consists of

the following two lemmas.

Lemma 1: If cov(h,X)=-P{h}Q is valid, then

Th*(D) I fcov(h,X),cov(g. X}, WP(h, U(X,Y))glU(X,Y)}
-PiglQ. ‘

Lemma 2: If X = {x,,...,x, } is a set of location variables, and
Y = {y....y,} is a set of integer variables which do not
appear in g, then

Fmg(g.U(X,Y)),E) = [fcov(g,X),cov(Elg.X)}
-~ Vyy... ¥R (WP(Elg, U(X, YD {g}U(X,Y))].

Lemma 1 is just a variant of the observation that any
valid partial correctness assertion about g can be obtained
from the most general partial corrcciness assertion about g
(cf. [Go,Cl1,01]). which is

Lemma 2, proved by 3
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straightforward induction on the structure of commands,
intuitively says that once we know the most general partial
correctness formulas for all the free variables in g then we
can prove the most general partial correctness formula for g.
We leave details of the proofs of Lemmas | and 2 to the full

paper.

With these Lemmas in hand, the remainder of the proof
of Theor¢m 1 is straightforward. Note that if g is a program
(with no free procedure identifiers) whose free location
identifiers are contained in X, taking E to be empty, we have

mg(g. U(X,Y),¢) = cov(g.X) = true.

Thus by Lemma 2, wc have
™

And if P{g}Q is valid, by Lemma 1 with g=h we have

FWP(g U(X, YD {glU(X.Y).

(**) Th*(D) F WP(g,U(X.Y)}{glU(X.Y) = PiglQ.
Then from (*) and (**) we can conclude, as desired,

Th*(D) }-P{g}Q.

5. CONCLUSIONS

We have provided an axiomatization of PROG 83 which
is sound and relatively complete, which for the first time
deals with global variables in a natural way, by mcans of
covering assertions. Therc is only one drawback to the
results presented here, namely, that we require a higher-order
oracle: Th*(D).

By Clarke's results we know that this is in some scnsc

necessary: we obtain a

cannot hope to complete
axiomatization for a language as rich as PROG 83 by
restricting ourselves to just having an oracle for the
first-order theory of the interpretation, Th(D). Using a rich
oracle such as Th*(D) enables us to factor out certain
difficulties in order to gain insight into how to reason about

programming languages which allow procedures as

parameters. Nevertheless, it is worth trying to understand

just how far we can get using only Th(D) as an oracle.

First note that if we restrict to the subset of PROG 83 in
which procedures only take basic variables as parameters
(and thus no procedure paramcters), then the above
axiomatization is complete for the resulting language relative
to Th(D).

Several previous papers on Hoare logics have given
of ALGOL.-like

languages consisting of programs with the finite range property

complete axiomatizations for subscts



(cf. {C1,0L1.O,THM1}).

the finite range property if there is a bound on the number of

(Roughly spcaking, a program has

distinct procedure environments which can be reached when
it is run.) Indeed, as Olderog has shown {Ol], the standard
Hoare axiom systems based on thc copy rule cannot deal with
programs which do not have the finite range property. A
program with the finite range property can be shown to be
equivalent to a program with no procedurc parameters. Using
this fact, we can show that by adding one axiom to our
system, we can obtain a complete axiomatization for finite
range programs relative to Th(D). (This result was obtained
jointly with A, Meyer and will appear in the full paper.) This
observation confirms the conjecture made in [THM1] we can
replace copy-rule induction (the usual rulc used to reason
[THM1]

semantically unsound) by the semantically sound fixed-point

about recursion, which is shown in to be
induction rule, and still get a complete axiomatization relative

to Th(D) for finite range programs.

We can also adapt our proof system to yield an
axiomatization for L4 (the language with no global variables
introduced in [C1]) which is complete relative to Th(D) in
Herbrand definable domains (domains in which every value is
The
proof of completeness is essentially the same as that given in
[GCH].

unnecessary, since the variables that any procedure depends

representable as some term in the Herbrand universc).
(Note that with L4 covcring asscrtions are

on are explicit. Moreover, with our present formalism we can
avoid the use of environment variables which seemed to be
necessary in [GCH].) The crucial point in the proof of
completeness is that in Herbrand dcefinable domains, we can
transform an L4 program (which may not have finite range)
into a program with no procedure parameters (which clearly

does).

We can see that the finite range property is the common
thread running through all the proofs of completeness relative
to Th(D). But now consider the problem of finding a
complete axiomatization for the type of models considered in
[Cr}, where not only is the domain finite, but there arc only
finitely many distinct memory locations. For such models,
Clarke's incompleteness results do not hold since they depend
crucially on a recursive procedurc bcing abic to gencrate an
unbounded number of distinct locations. But the standard
Hoare axiom systems based on the copy rule cannot lead to a
relative completeness result in this model because the
programming language still lacks the finite range property.
However, it is relatively straightforward to transform the

zxiom system presented herc to get a axiom system which is
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complete relative relative to Th*(D) (we must only modify
the axioms slightly to deal with the fact that there arc only
finitely many locations). And notc that for such models,
Th*(D) is decidable.

situations where the style of axiomatization presented here

We believe there will be many other
will also lead to interesting complcteness results not

obtainable by other means.

There still remains the problem of finding a concrete
assertion language £ satisfying the abstract propertics
pointed out, Dynamic Logic is onc candidate, but in DL we
can effectively find the weakest preconditions. It would be
worthwhile to find a possibly weaker language in which
weakest preconditions exist, but cannot always be found

effectively.
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