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I. Introduction———

A standard approach to the analysis of program
construct the “control flow graph” which models the
graph algorithms can be applied to the control flow

structure for the purpose of code optimization is to
possible execution paths through the program. Various

graph to produce data flow information, possible opti----
mizations, etc. [A1,A2,AC:AU2,AU3,CS ,HUl,HU2.HU3,Kel~Ke2,Ke3,Ke4,Sc,U] . Studies of the form-of typical

control flow graphs indicate that such graphs tend to fall into a restricted subclass of general graphs.
For example, empirical investigations have shown tha’c the vast majority of program graphs have no multiple-
entry loops [AC,HU2,HU3,Knl].

The recent work on “structured programming” has suggested that “good” programs fall into an even more

restricted subclass. In fact, purists recommend that all programs be synthesized from three basic control
structures : sequential statements, if-then-else statements, and single-entry single-exit loops [Di,Wi].

Formal language theory [Hou] has given us a practical way to specify the set of strings which com-
prise a given language: via a grammar. It is then a natural idea to extend grammars from the strings to
graphs in hopes of getting the same power of expression. Several researchers have used this approach
[FKZ,J2,RO].

In this paper we study the applicability of a grammatical approach to describing the set of control
flow graphs which arise from “good” programs in the sense proposed by many programming practitioners. The
resulting flow graph language contains all those programs constructed according to the purists’ rules and
also admits ~rograms with multiple-exit loops if such loops are constructed sensibly. The grammar we use
is the ll~emi.structured flow graph” gra~ar GSsFG which was studied originally in [FKZ]. There are

several appealing properties of this grammar; perhaps the most important, from the point-of-view of a
compiler-writer, is the existence of a linear-time parsing algorithm which leads directly to a linear-time
data flow analysis method [FKZ].

In the present work we summarize the results from [FKZI and address several new questions. First,

how often do programs written by people with no knowledge of the SSFG rules fall into the language defined

by GssFG? In other words, is the language a natural one for programming? Second, once a program has been

parsed according to Gs~FG do benefits other than fast data flow analysis accrue?

The paper is organized into three main sections. Section II introduces GssFG and the parsing algo-

rithm from [FKZ]. Section III is devoted to an empirical study conducted by the authors in an attempt to
answer the question of naturalness, described above. Section IV discusses several applications of the
graph parse in a “graph attribute grammar” framework. The summary at the end of the paper includes

suggestions for further investigation.

II. The Grammar

The semi-structured flow graph grammar GSSFG consists of the nine rules depicted in Figure 1.
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‘SSFG

d-loop

Note that the two terminal symbols represent straight-line blocks of code with and without a conditional

jump at the end. The two no;-terminais represent ; computation region with one exit and a decision region

which may do some computation but also makes a decision at some point about which exit to take.

The’ family 3SSFG of SSFG flow graphs is the set of graphs which can be generated by applying the rules

‘f ‘SSFG”
Note that rules 7, 8, and 9 allow various mirror images. A graph r is said to be SSFG-redug~

ble if

m2] .
This is an example graph taken fromConsider the spir~l graph depicted in Figure 2.

Figure 2. Spiral Graph
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A derivation for the spiral graph is shown in Figure 3, Whether or not a particular flow graph is reduci-

ble can be determined by applying the parsing algorithm presented in [FKZI. If the given graph is a

member of 7SSFG, the parsing algorithm returns the sequence of productions required to reduce it to a

single node; otherwise, the algorithm halts with a report of failure.

For completeness, we include an Outline of the parse algorithm:

Algorithm P. SSFG Parse (outline).—

QIQ!.!2: 1) A graph r
2) A list L of unvisj

u

visit by depth-first

Q!U.PQ’ If r< 3~~FGa parse P

Method :——

ted nodes in

search).

otherwise,

kxm a: = entry node of r;— Pr= 0; remove

straight order (the reverse of the order of last

the answer “no.”

a from—

visit: W+#null &

apply all reductions possible with a as
reduction takes place, false otherwise;

linked Predecessor of all its unvisited

L.
u’

header, set success to true if at least one-———
add reductions to ‘r ; make a the unique

successors :

i_& success ~ g is linked to predecessor >

then a:=b
———

else QL = @ then a = null
u

else a: = next unvisited node from L ;—— u

remove a from L— u

g

Q

od

i-& T is now a single computation node then return P else return “no”r— ~
end—

Algorithm P, properly implemented , parses arbitrary graphs in time linear in the size of the graph.
Furthermore, the parse leads to a linear-time algorithm for data flow analysis on members Of %SSFG, [FKZ].

It was shown in [FKZ] that the family %SSFG admits many graphs produced through the use of control

structures suggested as extensions for “structured programming.” Examples are Zahn’s control structure,

[Za,Kn] Martin’s “natural” set of control structures [w] and the counterexample of Ashcroft and Manna

[AM] . From those results we were led to ponder the question: How many programs, written with or without

structured concepts, fall naturally into 3SSFG? That question led us to the investigation described in

the next section.

III. The Empirical Study

For our study of the structure of typical application programs we decided to look at FORTRAN programs

since there exist numerous scientific applications programmed in that language and since the control

structures do not particularly encourage good programming.

The next step was to acquire programs for the study. Members of the Rice faculty generously provided

us with an ample supply which we subdivided into the following groups.

1) Sixty FORTRAN programs written by students in an engineering class where “structured programming”

was not taught. The sample represented student solutions to two problems:

a) find the roots of a cubic equation,

b) compute the time to target and the required angle from the plane for a projectile with given

velocity and range.

2) Two hundred twenty-seven subroutines from a large Chemistry Dept. application: to construct the

wave function for a compound during molecular scattering using the “stabilization” method. The

routines were as much as ten years old and many had been written at other universities.

3) Sixty-two Physics Dept. routines used to calculate eigenvalues and wave functions for certain

Hamiltonians in a molecular structure application.

4) Seventy-six Biochemistry Dept. routines comprising a large crystallographic system for analyzing

X-ray diffraction data to deduce molecular structure.
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5) Five routines used by the Chemistry Dept. to determine mean square end-to-end separation of

molecules via a Monte Carlo simulation of macro molecular structure.

6) Thirty-six routines comprising two Mathematical Sciences Dept. applications:

a) a finite element differential equation solver which uses a Galerkin procedure and isopara-

met”ric elements.

b) a collection of HI procedures for solving quadratic homogeneous partial differential

equations.

7) Thirty-four routines from two Geology Dept. programs:

a) a program which solves the free convection problem for a medium with variable viscosity.-
by solving a system of coupled partial differential equations.

b) a program which simulates the slow flow of liquids under given boundary conditions.

All in

reducit

Group

1

2

3

4

5

6

7

Total

111, a total of five hundred routines were analyzed to determine how many were Cocke-Allen

.e and how many were SSFG-reducible. The results are summarized in Table 1 below.

$ of
Cocke-Allen

Number Number of $
of

reducible

Cocke-Allen Cocke-Allen # SSFG- $ SSFG programs SSFG

programs reducible reducible reducible reducible reducible

60 58 97 55 92 94.8

227 221 97 199 88 94.3

62 60 97 56 90 93

76 62 81.5 41 54 66

5 4 80 0 0 0

36 33 92 30 83 91

34 32 94 30 88 94

500 470 94 411 82 87.5

Table 1. Reducibility Analysis

The last column, indicating the percentage of Cocke-Allen reducible programs which are also SSFG-reducible

is worth comment. Since most fast data flow analysis routines work for Cocke-Allen reducible programs,

one should compare the linear-time SSFG method with those for applicability. The last column in Table 1

indicates that the SSFG method would work in nearly 90$ of those cases which could be handled by one of

the fast non-linear methods [GW,Ke3,AU3].

Overall, more than four out of five of these programs, all written without the benefit of

structured programming, were SSFG-reducible. Though we were pleased with this result, we were disturbed

by the intractability of groups 4 and 5 , without which 88’$ of the programs would have been SSFG-reducible.
We therefore undertook a study of the programs in these groups to determine the reasons they failed to

reduce so frequently.

The first step was to perform a static analysis on all the programs to determine average length and

frequencies of various statement types. Tune results of this study appear in Table 2.

Avg. {} Avg. #

Avg. # of Avg. # Avg. #
Group

Avg. # computed Iabelled

statements if-statements do-loops goto’s goto’s statements
—

1. Student 41 2.6 .4 2 0 5

2. Chemistry 97 9 5 3 .28 13

3. Physics 66.5 5 6 2.5 .25 16

L. 13ioehem 200 31 11 15 1.5 69

5. Chemistry 320 50 10 20 3 54

6. Math Sci 76 6 5 3 1 11

7. Geology 89 7 7 4 1 15
.-

Table 2. Static Analysis
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From this table we can see that the programs in groups 4 and 5 were extremely long and contained many

goto-statements. If we compare the statistics for group 4 with those for group 2, which reduced more

frequently, we see that group 4 programs were three times as long (on the average) but contained five times

as many goto’s, five times as many labelled statements and only twice as many do-loops. It seems likely

that many of the loops in group 4 were implemented with goto’s rather than do’s, resulting in a fairly

complex control flow structure.

Our next step was to analyze programs in groups 4 and 5 to determine specifically why they failed and

to see if a richer grammar might reduce them. For the purposes of this analysis, we defined two new
grammars. The first, extended the SSFG grammar by adding two new rules depicted in Figure 4.

10) I%=)

●
0

11) =+

Figure 4. SSFGX extensions

The resulting grammar is called SSFG and an analysis of groups 4 and 5 showed that an additional 7

programs reduced under these rules. x

A more ambitious grammar admitting 3-exit regions was also considered. This grammar, named SSFG3,

consists of rules 1-7 of SSFG and the nine rules depicted in Figure 5. Groups 4 and 5 were also analyzed

for reduction under this grammar. The results of these studies are summarized in Table 3.

I $
;0

Cocke-Allen

I Number of
Cocke-Allen which were

# of Cocke-Allen # SSFG
# SSFG SSFGX # SSFG3 SSFG3

x

I Programs reducible reducible reducible reducible reducible reducible

4.

5.

It

Biochem I 76 62 41 47 76 58 93.5 I
Chemistry 5 5 0 1 25 3 75

Table 3.

can be seen that significant improvements in reduction percentages can be achieved by using the larger

grammars.

However, it is our belief that the programs in group 4 and 5 have too many complex control structures

and that increasing the complexity of our grammar is not an appropriate way to deal with such programs,

We are currently investigating a systematic code-copying approach which will be reported on in another

paper.
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IV. Applications

The grammatical description of program flow graphs allows a number of applications to be carried over

from language theory. In particular, many algorithms on the flow graph can be specified via “attributes!’

on the graph grammar [Kn3,Kn4]. As an example, we show how one might specify the analysis of “profitabi-

lity,”

Simply stated, the problem is this. Suppose we are given for each branch (x,y) in the program, the

probability p(x,y) fhat that branch will be taken after block x is executed. We wish to determine the

expected frequency f(x) of execution of each block x in the program during a single execution of the
whole program. Under certain simplifying “Markov assumptions” [CK], the expected frequencies can be
expressed as follows:

f(no) = 1 n the program entry node
o’

(>k)

f(x) =
E P(Y,x)f(Y) all other nodes

(y,x)EE

A solution-finding method for the system of equations (~~) is described by the graph attribute grammar in

Figure 6.

There are several points to notice about this graph grammar.

1)

2)

3)

4)

Figures

The attribute p is a synthesized attribute; that is, its value for composite regions is based

on its value for nodes within the region. The values of p for terminal nodes are “given.”

The attribute ~ is an inherited attribute; that is, its value for nodes within a region is

based upon its value for the region as a whole (and upon the values of ~).

Because of the dependence of ~ upon ~, we are forced to evaluate ~ first. Thus the attribute

grammar in Figure 8 gives rise to a two-pass algorithm. The first pass moves forward through

the parse, computing ~ for larger and larger regions; the second pass moves backward through

the parse, computing f for smaller and smaller regions.

The first value of f is the one for the whole program no which is 1 by assumption (the whole

program is executed once).

7 and 8 present an example profitability computation, with Figure 8 depicting the reduction

pass and associated transition probability computations and Figure 9 depicting the production pass and

frequency computations.

From the considerations above and the example, we can see that the attribute grammar specification

gives rise to the classical algorithm for profitability [CK]. Furthermore, by applying analogs of tech-

niques in [w,m] we can compile these attribute grammars into efficiently-executing finite-state machines

which use the parse (or its reverse) as input. The eventual result may be a system to generate graph-

based optimization algorithms. By analogy with [FKZ] these algorithms should be linear in the size of the

input program.

v. Summary and Conclusions

We have investigated the practicability of a graph grammar for program control flow from two view-

points: its “naturalness” for describing programs and its applicability to compiler construction.

An empirical study has shown that programmers (even those untutored in “structured programming”)

tend to write programs which are derivable using GSSFG. We might conclude that a typical “good pro-

grammer” would not find rules based upon G too restrictive,

‘s!~r specifying global flow algorithms via an attributedWe have also shown a promising new way

‘ersion ‘f ‘SSFG”
This could lead to a system for the automatic generation of compiler optimizers.
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f(x)=l

p(z,w)=l

f(x)=f(z)

p(z, w)=l.

f(x)=f(z)

f(y)=f(z)

p(z, w)=l

f(x)= f(z)/ (l-p(x, x))

p(z, w)=l

f (X)=f (z)

p(z, v)=p(x, v)

p(z,w)=p(x,w)

f (X)=f (z)

p(z,v)=p(y,v)

p(z,w)=p(y,w)

f (X)=f (z)

f(y)=f(z)

p(z,v)=p(x,y)

p(z,w)=p(x,w)

f(x)=f(z)

f(y)=f(z)~:p(x,y)

p(z,v)=p(x,v)+p(x,y)$:p(y, v)

p(z,w)=p(x,y)~:p(y,w)

f(x)=f(z)

f(y)=f(z)>~p(x,y)

p(z,v)=p(x,v)/(1-p(x,y);:p(y,x) )

P(.z,w)=P(x,Y)~’P(Y,w)/(1-P(x,Y)’~P(Y, z))
f(x)=f(z)/(1-p(x,y)~:p(y,x) )

f(y)=f(z)~~p(x,y)/(1-p(x,y)>~p(y, x))

Figure 6.
‘ttrib”ted ‘SSFG

for “Profitability”
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Figure 7. A Profitability Reduction Sequence
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