
Towasd a typed foundation for
method specialization and inheritance

John C. Mitchell *
Department of Computer Science

Stanford University
j cm@ks . stanf ord. edu

Abstract

This paper discusses the phenomenon of m.ethod
specializa-ts’on in object-oriented programming lan-
guages. A typed function calculus of objeck and
classes is presented, featuring method specialization
when methods are added or redefined. The soundness
of the typing rules (without subtyping) is suggested
by a translation into a more traditiona. calculus with
recursively-defined record types. However, sema.ntic
questions regarding the subtype relation on classes
remain open.

1 Introduction

In spite of the increasing popula,rity of object-oriented

programming, several issues do not seem to bc well
understood. In particular, although prelimina.ry for-
mal semantics have been proposed [Kam$$, Red88,
Ye189], there is neither an accepted basis for reason-
ing about basic issues such as pr0gra.m transforlnation
or optimization, nor a sound ba.sis for flexible typing
disciplines. This paper presents a typed function ca.l-
culus with simple forms of “objects” and “classes”
which illustrate an essential feakure of inheri t,a.nce
we call method specialization. To give some insight
into the connection between this calculus and previ-
ous formal analysis, we also give a, translation of ob-
jects and classes into records and recursively-defined

*Supported in part by an NSF PYI Award, mat~ching funds
from Digital Equipment Corporation, the Powell Foulldatiou,
and Xerox Corporation, and NSF grant ‘CCR-S81492 1.

Permission to copy without fee all or part of this mateaial is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that the copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-343-4/90/0001/0109 $1.50 109

record types. This clarifies some of the challenges
involved in giving compositional, typed semantics to
realistic object-oriented languages.

Apart from typing and mathematical semantics,
the basic calculus used in this paper is relatively
straightforward. The main idea is to provide a func-
tional (1. e., side-effect free) form of “prototyping,” or
“delegation” [Bor86, LieSG, LTP86, US871 so that 0111:
object may be created by inheriting methods from an-
other. For simplicity, we treat methods and instance
variables uniformly; methods may be replaced, and
therefore instance variables may be regarded as meth-
ods that return a constant value. The set of mes-
sages an object will answer, and the t,ypes of t.heir
results, are specified by a form of type we call a class.
One class will be considcrcd a subclass (or suhtyl)c)

of another if every object, of the first is gua.rantced
to behave properly when considered as an element.
of the second class. Thus, in our view, classes are
types whose elements are objects, and inheritance is
a. mechanism for constructing one object from an-
other. The subclass relation is determined by hehav-
iora.1 characteristics of objects rather than program
declarations. While this may not be the predominant.
view of object-oriented programming, it is consist,ent
with at least one important practical view and it is a
convenient model for our purposes.

Method specialization, which is described in some
detail in Section 2, is achieved by treating objects as
collections of functions, each representing a method
of the object. When a method is invoked, t,he appro-
priate finction is applied to the object itself. In other
words, instead of using a special symbol se/f to allow
a method to refer to the object to which it belongs, we
use the first argument of the method. This approach
is also used directly in T [RA82, AR88], which we
were not aware of when we first began experimenting
with this idea, and in the implementation of Modula
3 [CDGf88, CDJf89]. The main point of the paper
is not to promote this view of objects, but to develop

typing rules for Inethods which usefully reflect the
way they are irlherit.cd.

One long-term goal is to develop a flexible, poly-
morphic typing discipline which could prevent such
common run-time errors as message not understood.
This is not an easy task, as illustrated by the va.-
garies of the early proposals for typing in Smalltalk
[BI82, Suz81] and the subtle bugs surrounding like
self [Coo89b] in the more recent language Eiffel
[Mey88]. A no th er reason to develop typing rules is
that in giving types, we are forced to specify exactly
what kind of value is defined by each kind of expres-
sion in the language. This seems quite valuable when
we consider substit,ut.ion equivalence, which is critical
to understanding or reasoning about transformation
and optimization.

The calculus presented in t.his paper owes much to
the recent line of work on record calculi with subtyp-
ing, beginning with Cardelli’s 1984 paper [Car@]. A
number of influential typing ideas, including bounded
quantification, were sketched out in [CWSS], and
summarized in [DTSS]. More recently, type infer-
ence techniques been present.ed in [Wan87], followed
up by [Sta88, JM88, R&-n89, Wan89]. From an un-
typed, denotational point of view, the primary studies
seem to be Cook’s thesis [Coo89a], which highlights
method specialization, and the denotational seman-
t,ics presented in [Iiam88, RedS8, Ye189]. The general
perspective of this paper has developed from a tu-
torial presentation at the 1988 OOPSLA conference
with Luca Cardelli [CM$8], a subsequent joint pa-
per [C&lPY]. and numerous conversations with mem-
bers of the ABl*;L group at 1IP Labs (Peter Canning,
1Yilliam COOli. Walt. llill and LValter Olthoff).

2 Method specialization

An important. phenomena t.1la.t seems essential to
object-oriented progranltning will be referred to as
m&od special/:ation. Although there is really only
one basic idea, it will be helpful to separate method
specializat,ion into two forms, one involving the ad-
dition of metllods, and the ot,her involving method
replacetllent) or “overriding.” Both forms may be il-
lustrated using esa.mple classes of points (c.J [CW85,
JM88]). The class poilll cont,ains objects that have
X, y and move methods. If points have integer coor-
dinates, then the funct.ionality of point objects may
be sumnlarizecl by the signature,

class poinl llletllods

x : int, y : inl,
move : in2 x in2 + paid

which we will regard as the type of all objects ha.ving
X, y, and move methods of the indicated function-
ality. Note that we allow methods to return func-
tions, which reduces method parameterization t,o or-
dinary function application. A more specialized class
of points are the colored points, which have au a.ddi-
tional method returning their color

class colored-point methods
x : int, y : int, c : color,
move : ini x int + colored-point

and an appropriately revised type of move method.
In a language such as Smalltalk [GR83], we might
first define a poini class and use point objects in writ-
ing a graphics package. Later, a,fter upgrading to
a color display, we might define the subclass of col-
ored-point ‘s and use these instead. In a delegation- or
prototype-based language such as Self, we might use
a similar programming technique, although we would
define the basic point methods in a prototype point,
instead of a class declaration. An important aspect
of object-oriented languages in general is that much
of the code we write for point’s may be used directly
on colored-point’s, eliminating what could otherwise
be a significa.nt amount of reprogramming.

When we define colored-point ‘s, either as a. sub-
class (as in Smalltalk) or by prototyping (as in Self),
the move method is specialized as it is inherited. In
particular, the type of move changes when it is inher-
ited. If we send the move message to a point, along
with integer “displacements” 6, and 6,, we obtain a
point with modified az and y coordinates. However,
when we send the move message do a colored point, we
obtain a colored point instead of an uncolored point.
While this will be completely familiar to anyone who
has written a program in an object-orienteg language,
it is worth noting that it is difficult to simulate this
behavior within traditional typed languages such as ,
Pascal and Ada; the typing constraints interfere (see
[DCBA89], for example). In particular, the correct
behavior of move on colored points ‘cannot be sim-
ulated using only a “conversion” function mapping
colored-point to point (c.f [BL88, BTCGS89]). If we
convert a colored-point p. to a point p’ and then send
the move message to p’, we obtain a point instead of
a colored-point.

A more complex form of method specialization oc-
curs when a method is overridden. To give an exam-
ple, we need one method which depends on another.
Let us assume we have another class of points, each
having a method slide which moves the point one uriit

110

up and to the right.

class sl-point methods
x : int, y : int,
move : in$ x int --t sl-point,
slide : sl-point

Since we have a move method, the natural implemen-
tation of slide is to send move with argument (1,l).
We now get an interesting form of method specializa-
tion if we replace mowe in some object (or subclass)
which inherits slide. One subclass of sl-point might
be the class dir-point of directed points which have
t, y coordinates and a direction, say an angle theta.

class dir-point methods
2 : inl, y : in2, theta : real,
move : int x int + dir-point,
slide : dir-point

Let us assume that when we move a directed point, we
wish to ma.intain its orientation toward some position
on the perimeter of some bounding box, such as the
boundary of the window or screen on which it is dis-
played. To achieve this behavior, we would redefine
the move method to calculate a new direction when-
ever the 2 and y coordinates are altered. However,
slide may be inherited directly from sliding points,
because of the following phenomenon. With slide
implemented by invoking move, the inherited slide
method will invoke the more specialized move method
associated with directed points. In other words, when
slide is inherited by dir-point, this method is spe-
cialized in accordance with the move method on di-
rected points, even though slide was declared as part
of sl-point. ‘t’his kind of behavior is relatively ensy to
implement. However, from a mathematical point of
view, this form of specialization seems to be a fairly
complex operation on functions.

While method specialization is very useful in a vari-
ety of programming situations, method specialization
seems t,o complicate static analysis. In particular, let
US say two expressions are substit,ution equivalent (01.
observationally congruent) if we may substitute one
for the other any place inside any prograln, without
changing the overall program behavior. This is an im-
portant relat,ion in any language, since it cha.ra.cter-
izes the local program transformations or optimiza-
tions that may be applied safely in any context. In
a Pascal-like language, it is relatively easy to state
a simple condition guaranteeing substit,ution equiv-
alence of twu procedures: if both return t.lle same
results and have the same side-effects, for all possible
values of the input parameters, then either may be
substituted for the other in any program.’ However,

looking only at a, single rllethod body in an ol.,jrct-
oriented lalrguage, it is difficult t.o see whether a sirn-
ple local transformation coltld change the behavior of
the entire program. ‘I‘he novice might suspect.. for
example, that in-line suhsbitut,ion of a met.horl Itody
might preserve program meaning. IIowever, if \VC re-
place the reference to m.ove in the method body of
slide by in-line code, tllis would change the way that
slide works when inherited by directed points. Specif-
ically, if slide does not refer t,o move, then overriding
move has no effect on the behavior of slide.

3 Method specialization and
natural transformation

There is a simple and int.uitive connection between
method specializat.ion and nat rural t,ransformation.
We will illustrate the main idea Ilsing an elementq
view of objects resembling jCnrE(S]. Although the for-
ma.l development. of the paper does not depend on this
section, the c.orrespondenct~ will hopefully gives some
insight into tile typing rules of t.11~ calculus presented
in Section 4. For the rentainder of this section, we
will use simple olrject to n~ean a record of some type.
ancl simple method to mean a certain kind of func-
t,ion on sirliple objects. A sirnpfc class is therefore a
record type.

At the risk of overdoing a single example> let us
consider silnple classes of cartesian points. The most.
basic is the class sim2>le-poi-rll whose elements are sim-
ple object,s (records) wit.11 integer t and y compo-
nents. Using the notation of [CXISS], we may write
this record type as follows’.

It. is a.lso llscful t#o cousid(~r a sinlple class of colored
points

simple-col-poinf : : = Q.c : int, y : int, c : color;l

111

simple object of any subtype of simple-point (see rule
(subsum) in Appendix B). However, this always gives
us a simple-point, rather than an element of a sub-
type such a.s simple-co/-point. In order to get a map
from simple-col-point to simple-co/-point, and simi-
larly for any other type of records with 2‘ : id, y : in.l
and additional components, simple-move must be a
function of a more complicated type. The correct
functionality in this case corresponds to a natural
transformation.

Since natural transformations are maps between
functors over categories, it might seem that we should
now introduce a lot of categorical machinery. How-
ever, by working within a calculus that has the ap-
propriate form of polymorphic functions, we may de-
fine functors and natural transformations using syn-
tactic expressions of the calculus. In doing so, we
consider the types of the calculus as objects (in the
categorical sense of the word) of a category. There are
two choices of morphisms. One might be the class of
morphisms given by closed function expressions (or,
equivalently, open expressions with exactly one free
variable; see [MS89]). However, the more appropriate
category seems to be the preorder given by the prov- i
a.ble subtyping assertions of our calculus. We will he
primarily concerned with subcategories of this cate-
gory which consist of all subtypes of a given type.
Since these categories are preorders, a functor is de-
termined by a function F from subtypes of some A
to types such that whenever s <: t <: A, we have
F’s <: Ft. In type systems based on [CWSS], the
“kind“ Vs <: A .T is the collect,ion of all functions
which map every subtype s of ,4 to a type (element of
the kind T of all types). It is a helpful notational cow

veution to use a double colon “::” for kind member-
ship and reserve t.he single colon for types. Using this
notation, the functors we consider are given by t.ype
functions F :: V/S <: A .T. Rather than expla.in the
general idea in any more detail (c.jY [Rey84, RPS9]),
we will illustrate the approach by the esa.mple at
hand. It is hoped that tile main ideas will be immc-
diately clear to t,llose familiar with category theory,
and still reasonably accessible to those without.

To consider simple-move as a natural transforma-
tion. we must. generalize sirnple.qoint from a t,ype
t.o a functor. The codomain of the functor we wa.nt
should be the collect.ion of subtypes of simple-point,
since simple-moue acts as a function on each sub-
type of simple-point. Using record type expressions
r,f [C.l,ISS]! we tray define the map

F ::= ~R<:())\~y..(f112:int,?/:intj)

frorn subtypes of ())\x y to record t,ypes, which is es-
plained below. It is easy to verify that F is a fulrc-

tor. In words, this type function maps any type
R of records without z and y fields to the type
((R 12 : int, y : int) of all records obtained by adding
integer z and y fields to some record from R. In more
detail, 0) is the type of all records, and (consequently)
()\z y is the type of all records without z or y fields.
The constraint that formal parameter R of F must be
a subtype of (o>\x y first implies that the domain of F
is the collection of all subtypes of {)\z y, and second
guamntees that the type expression (R 1 x : int, y: int)
is well-formed, since in the [CM891 calculus we may
only add fields to records which are known not to al-
ready have these fields. The range of the functor F
is the collection of all subtypes of simpleqoin2 which
are obtained by adding new fields2. Thus F is a func-
tor on the subcategory of our language whose objects
are record types without z and y fields and whose
morphisms are given by the subtyping preorder on
these t,ypes.

The natural extension of simple-move to a map on
arbitrary types of the form ((R 13: : int, y : int) is the
polymorphic function

simple-move : : =

X R <: (o\x y.
Aa:(RIa::int,y:int)).

(a\xyIx=a.x+ 1, g=a.y+ I).

In words, the first parameter of this function may
be any type R which is a subtype of (>)\z y, which
means that R may be any type of records without x
and y fields. The second parameter is a record u of
type (R 1x : int,y : id). Since R may be a.rbitrary,
we know that a has integer az aud y fields, but do not>
know what other fields this record might have. The
record expression a\z y denotes the result of removing
x and y fields from a, a.nd the form (Y 1~ = M, y = N)
is used to extend a record T by adding 2 and VJ fields
with values M and N, respectively. Thus the function
body (a\a:yl = z u.z + 1, y=a.y + 1) defines a record
<I’ which is identical to a, but with z and y fields each
incremented by 1. An elementary calculation wit,hin
the record calculus shows that simple-move defines a
natural tra.nsformation. This means that if R, <: S,

*In general, a subtype of simple-point may have the form
(RIz:a,y:~)whereR<:()\zyandbothaand~aresub-
types of int. However, since arbitrary subtypes of int may
not be closed under addition, the appropriate types to use
iI\ discussing the functionality of simple-move have the form
(R 1 z : int,y : int). Put another way, we wish to describe the
functionality of JimpIe-move using a functor whose range is
f.hc collection of all types which are closed under simple-move.
When we apply simple-move to a simple object of some ar-
bit.rary nnhtype (R (CT : o,y : T), t,he best our type system
can do is guarantee that the result leas “more generous” type
(R12.:ind,y: id).

112

and consequently

(R 12‘ : int, y : id)) -c: ((S) 2 : ini, y : int)

are two subtypes of simple-point, and if we begin
with any element 1’ of t#he smaller subclass (R) z :
inl, y : ini), the following two computations yield the
same result. The first a.pplies move to T, and then
“converts” T to the larger subclass (S 12 : int, y : id)
according to the subtyping assertion R <: S. The
second computation converts r to the larger subclass
before applying move. The fact that these two give
the same result seems to capture the intuitive prop-
erty that however we specialize simple-move on sub”“,’
classes, it should respect the behavior of simple-move
on simple-point’s.

It is worth mentioning that the view of methods as
natural transformations not only gives us a reason-
able “default” for specializing a method to subclasses
with additional properties, but allows for the possibil-
ity of “redefining” methods in any way that is consis-
tent with our interpretation of subtyping. However,
within the framework of “simple objects,” we have no
linguistic or semantic mechanism for redefining meth-
ods. This leads us to include methods as components
of objects, as we do in the next section.

4 Classes and objects

4.1 Class types

In the record ca.lculus of [CM89], a record type deter-
mines a finite map from field names to types. Since
the type of an object would na.turally be a list of
method names and their types, it is expedient to use
record field names as method names, and define class
types using record types. As a consequence of us-
ing the type expressions of [CM89], we get variables
ranging over finite maps with certain method names
guaranteed nol to be in their domain. This is exactly
what we need in order to type methods on objects
(c.f.[~M88]). Wh’l ‘t . 1 e I 1s certainly possible to defne
class types without mentioning records, it is conve-
nient to use the following formation rule.

r,t ::TD R<: (>)

I D classt.{R} :: 2’

In words, if R is any record type expression, possible
containing a free type variable t, then classt .{ R} is
a type. The type variable t is bound in class t .{ R}
If R is an explicit record type of the form Q. _ .), then
it is convenient to omit the angle brackets from the
corresponding class type expression. For example,

the class of points may be written

point :: = classi.{z:im2, y:inf, nkove:i71.1 X inf -t}

In words, the type expression for point defines the
class t with methods 2 : inl, y : inl and mozle : in1 x
int --+ 1.

4.2 Operations on objects

An object is a value which accept,s messages. The
simplest object is the “empty” object,, which accepts
no messages at all. We will write {} for the empty
object, and o e m for the result of sending message m
to object o. Since the result of sending a message may
be a function (from objects to objects, for example),
there is no special syntax for message parameters.

In addition to sending a message, there are two
basic operations on objects, adding a method and
replacing a method. Suppose o is an object accepting
messages ml, . . . , mk and that we want to extend o to
an object o’ accepting an additional message n. We
begin by choosing a “method body” e, which must
be a function; the result of sending message n. to the
new object o’ wiil be the result of the application co’
of method body e to object 0’. A reasonable syntax
for the object obtained by extending o with method
body e for n might be

extend 0 with n = e

Using the syntax o (I n for sending message n to o,
we could then evduate message send by a rule such
as

(extend o with n = e) + n
22 e(extend o with n = $1

Since e is passed the entire object as a parame-
ter, the method body may send a.ny other message

ml,..., mk t.0 the object, or send the message n if
desired. In this way, recursion and “self-reference”
become inherent parts of our object, model.

There is a. minor technicad difficulty with the sirnI,lc-:
syntax presented above. Suppose we send a message
rni to the object o’ above. This is not the “most re-
cently added” method, but a method implemented
in the “old” object O. The method body for mi
is therefore designed to be a.pplied to some object
that does not have an n method, but only meth-
ods among ml,. . . , mk. Therefore, before we apply
the appropriate method body to o’, we lnust some-

how a.lter the method body to accept an argument
with additional methods. As a “bookkeeping” mech-
anism for keeping the types of methods straight, we
will use a synt,ax for objects that indicates, for each
method, the list. of methods that were known at t.he

113

tinre this method was added. Specifically, if o is an
ob~ject accepting messages ml, _ . , mk, we will write
(0 1 n(ml: . . , mk, n.)=e} for the result of extending o
wit.h method body e for 7~. The equational rules
for manipulating object expressions will allow us to
.npdate” the types of method bodies to account for
met,hods added later (see Table 2 and related discus-
sion).

If we replace a method,
then we write {o - m;(mr , . . . , mk)=e} for the object
obtained from o by redefining rni to be e. Since an
object containing a method e may later be altered by
adding or replacing methods, our typing rules must
guarantee that e makes sense for any object obtained
in this way.

4.3 Typing rules for objects

The first typing rule specifies that the empty object
belongs to the class which does not promise any meth-
011%

1’ context
r b {} : ChSSt.{}

111 words? if I is a well-formed context (designating
types for variables; see Appendix B), then we have
the judgemenl I D {} : classt.{} asserting that, in
context I, the expression {} has type classl.0.

The next rule describes method addition, which
is relatively complicated. There are two main fea-
t.ures of this rule. The first is that a method must
be a function applicable to the object obtained by
-?tltling this method, and that the type of the re-
sult of sending a message is the type of this func-
tiOn application. ?‘he second overall objective is to
guarantee that t.he method will make sense for all
“flrture” ol,jects constructed from this one. In intu-
it.ive terms. we require that a method have the poly-
n-iorphic type Of a “natural transformation” on the
~if’llllCtOl.‘i which produces extensions of the present
~1~s. (Technically, it is worth noting that that
1 he “functor” is actually a map from types to types
which does not always seem to respect the subtyp-
ing preorder.) If we begin with an object o of type
class 1 .{nhl : (~1, , rnn : ok}; then every object ob-
tained by adding or redefining methods will have a
type of the form classt.{Ft 1 ml : (~1,. . . , rnk : uk},
where F is a function from types to record types
such that Ft never involves the names ml,. . , mk
of methods of o. Since the types of “future” ob-
jects are characterized by type functions, we want any
method we add to o to define a natural transforma-
tion on a functor whose domain is a category of maps

114

from types to types. (The morphisms of this cate-
gory correspond to the point-wise subtyping preorder
on T =3 T described in Appendix B). In a notation
following [CMSS], we require that the new method
body have a type of the form

VF <: (At ::T.()\ml...mkn).
[class2.(Ft(ml:al,..., mk:uk,n:7}/t](t--+r)

where the constraint F <: (At :: T.()\ml . . . mkn)
guarantees that the function F from types to
types always produces a record type without
ml . . . mkn, and the square brackets in the subex-
pression [. . . /t](t -r) indicate substitution. In
words, the new method body must be a polymor-
phic function which, for any “possible future” type
class1.{F1]mr:~r,..., ?nk : (Tk, n : T}, maps objects
of this type to some result type possibly depending
on the type of objects involved. The formal rule,
which is illustrated by example in Section 4.4, ap-
pears at the top of Table 1. Reading the rule in
words, we begin with an object er which has meth-
ods ml,. . ,mk and wish to add another method n
implemented using method body es. For this to make
good sense, e2 must be a function which, for any ad-
dition methods Ft, makes sense on an object of type
CIaSSt.{FtIml:al,...,?nk:(Tk,n:7},where7isthe
type of result of sending message n to the new object.
The constraint at the binding occurrence of F is that
for any argument t, the type Ft must be a subtype of

o\m1 ‘. . mk. This is a formal way of saying that Ft
may be any finite function from field names to types
“containing” t which does not associate a type to any

ml,. ..,mk,n.
The rule for replacing one method by another is

similar, but somewhat less complicated. If we begin
with an object er : class t .{mr : ~1,. . . , mk : bk) and
wish to replace rni, then we need an alternate method
body with the type required to produce a result of
type CT~. While it seems reasonable to allow the new
method body to have a type corresponding to some
subtype of gi, we will make the simplifying assump-
tion that the new method returns the same type of
result as the old. The formal rule which-accomplishes
appears in Table 1.

Since we may only add methods one-at-a-time, the
reader may wonder whether it is possible to define an
object with two mutually recursive methods, m and
n, for example. It is generally possible to do this, but
in a fuller development of the calculus it would prob-
ably be worthwhile to use more general rules allowing
simultaneous addition of several methods. There is
no technical problem in doing this, but the typing
rules become more difficult to read.

The typing rule for message send specifies that

roeI: classt.{ml : ul,. . . ,7nk : ~7k)
(add &$rbez :VF <:(Xt ::T.{)\m1 . ..mkn).[classt.{Ft~m~ :ul,“‘) mk:ak,n:r}/t)(t-+T)

I
I’ D {el 1 n(m1,. ..mk,n)=Q} :clasSt.{ml :ul,..., mk :uk,n:T}

rbel: ClaSSt-{ml :ul,...,mk :uk}

t
I? b e2 : VF c: (A i! :: T.()\ml . . . mk) .[classt.{Ft 1 ml : cl,. . . , mk : ‘Tk}/t](t -+ ci)

ovw 773&d
rD{el+m;(ml,... ,mk)=e2} : daSSt.{ml : ul,. . .,mk : uk}

(class E)

{oIm(ml,... ,mk)=e} em = e (At :: T-1)) (0 1 m(ml, . , . , mk)=e}xS

Table 1: Typing and evaluation rules for objects.

the result of sending the message has whatever type
is specified. The formal rule (class E) appears in
Table 1. To illustrate (class E) by example,
a object representing a number, with its own ad-
dition method (as described in [GR83], for exam-
ple) might be defined by an expression with type
e : class t . { ual : num , plus : t + t}. Sending the addi-
tion message to this object produces a function from
this class to itself

e-kplus :classt.{val:num,plus:t-+t}
-,classi.{vaZ:num,pIvs:t--tt}

order of methods is given in Ta.ble 2, where the cha.nge
in method body accounts for the presence of n’. In-
tuitively, this type manipulation is related to the fact
that a natural transformation must be applied t,o tile
type of an argument before it is applied to the ar-
gument itself. H owever, in our calculus, we + not
have a basic operation that returns the type of an ex-
pression. Therefore, we must “precompute” the type
of a method argument incrementally as we build the
object itself.

Therefore, e C= plus e produces another object of the
same class.

4.4 An example

The evaluation rules for objects Fompute the result
of message send by applying the appropriate method
to the object itself. The equational axiom at the bot-
tom of Table 1 is based on this idea, with type appli-
cation to the constant “empty record type” function
used to make the applicatiqn type correct. The cor-
responding axiom for a redefined method is similar.

There are several equational axioms for manipu-
lating object expressions, most of them following the
pattern of record axioms explained in [CM89]. &e
nontrivial axiom allows us to permute the order of
methods. In general, an. object which has been .ex-
tended twice will have the form

As an example, we will show how to define an ob-
ject of class point. Recall that a point has I, y and
moue methods. We will define a point whose x and
y methods are constant functions, returning integer
coordinates 20 and yo The move method will return
a function which, given a pair of integers, returns a
point with 2: and y coordinates altered accordingly.
We begin by adding polymorphic constant functions
(as methods) to the empty object {} : classl.{}.
Since we will also use constant functions in the defi-
nition of move, it is helpful to introduce the following
general form for methods returning constant meth-
ods,

{ (0 1 n(ml, . . , mk, n)=e} In’(ml , . . . , mk, 72, n’)=e’}

c-methm,ii[e] :: = XF <: (xt :: T.((j)\rn).
~2:(class~.{FtIm:~)).e

Note that the method body e does not assume the ob- for any sequence ti of method names, sequence 5 of
ject has a method named n’, since the second method corresponding types, and expression e not containing
was added later. However, e’ assumes a method E’orxfree. (IfrTa=ml...mkand~=ol...ak,we
named n. The equational axiom for exchdnging the write ti : ii for ml : u1 . . . , rnk : bk.) For any integer

115

r D {{O 1 n(fiz, n)=e}) n’(ti, n, n’)=e’} : classi .{h! (71 : T, n’ : T’}

r D ii0 1 n(m, ,,J=,) 1 nf(m, n, n’)=etj = ((01 n’(% n, n’)=e’l I 4% n, n’)=
n’ not among r7r, n

A G <: (A t :: T.()\%nn’).e (it :: T.QGt 1 n’ : T’))]

Table 2: Equational rule for permuting methods.

expression e without F or 2 free, the constant func-
tion c-mefh,,,[e] h<as the following “bounded poly-
morphic type.”

v F <: (xt :: T.(o\rn).
(classt.{Ft] ??I: a}) --+ inI

Therefore, by the object extension rule, the object

with method 2 ret,urning the integer coordinate ze
has type classi. (2 : int}. This object may he, ex-
tended with a constant y method returning integer
coordinate ye.

PZY :: = {({}I x(x) = c-meth,,jnt[xo]

I I y(xclvj = c-naelh(,y),(intint)[YOl
I

This gives us an object with two integer methods.
It it useful to make several observations about the

object p,,,. First, note that the first method,added,

x, “expects” to be passed an object with only one
method, while the second method expects both 2 and
y. This is indicated by the lists of method names in
t.he object expression. If we send the message y to
p,,,, the the result, may be computed directly using
the equa.tional rule at the bottom of Table 1. How-
ever, if we send the z message, then we must first
permute the order of methods using the equational
rule on Table 2. This rule changes the type of the
method body for x so that the function may be ap-
plied to any object with at least the two methods z
and y. We now continue the example by adding a
moue method to ~,r,~.

The move rnethotl for p,,, will be a polymorphic
function of type

VF <: (X1 :: T.{)\xymove).
classt.{F~] z: inl, y : i&, move : in1 x int dt}

- int x in2 i

since mo’ue must map any object with x, y, mave
and additional met,llods to another object of the same
type. An appropria.te method body for mozle is given
at t.he top of Table 3. This function takes any object

with x, y and move methods and replaces the x and y
methods by constant functions returning new coordi-
nates. Note that the new coordinates are calculated
by sending x and y messages to the object and in-
crementing the results. We obtain a point object by
adding this method to the object p,,

Pi : : = {pry 1 move(x, y, move) = move-meth}

To complete the example, we will compute the value
of pl e= move in Table 3. Thus pt + move is a func-
tion which, given a displacement d : inl x int, returns
an object which is identical to ~2, but with x and y
coordinates incremented by the first and second com-
ponents of d.

One very important fact about this calculation is
that if we had a more “specialized” kind of point pt’,
with any number of additional methods, the same cal-
culation would give us a new point identical to pt’,
but with z and y methods replaced by constant func-
tions returning new coordinates. It is exactly this
uniform behavior of methods, guaranteed by the typ-
ing rules, that allows us to inherit move from pt and
use it on extensions of pt.

5 A translation of objects into
records

The object and class expressions introduced in the
previous section may be interpreted in the calculus
with records and recursive type definitions summa-
rized in Appendix B, in the sense that under an ap-
propriate syntactic translation, all of the typing and
equational rules for objects are derived rules of the
record calculus. Although we have not studied the
semantics of the target record calculus when recur-
sive type declarations are allowed [CM89], the calcu-
lus i’s close enough to other systems so that semantic
soundness seems very likely (see [BTCGS89]). How-
ever, as ‘outlined in Section 6, this translation does
not respect the natural subtyping relation on classes.
Thus a semantic account of class subtyping remains
an open problem.

The translation into records is syntax-directed,
proceeding by induction on the formation of an ex-

116

moue-meih :: = X F <: (At :: T-Q)\2 y moue).
Xo:classt.{Ft] z : id, y : inl, mwe : inI x inl it} .

A d : int x int.
((0 + ~(2, y, move)=c-meth[(o + 2:) + fkt d]}
ty(z,y, l,rotle)=c-),leth((oe=y) + snddj)

pt (: move = (pzy 1 move(z, y, move) = moue2neth) X= moue

= (move-meih) (At :: T.(j)) pl

= Ed : int x id.

{{pi +-- t(z, y, moue)=cmet/~~[(pt X=x) + fst dj}

- y(z, y, move)=c-meth[(pt X= y) + sn$ dj}

Table 3: Move method body and example calculation.

pression. The transla.tion of an object is essen-
tially a record containing the methods of the object.
More precisely, we translate the empty object to the
empty record, and {el 1 m(ml, . . . , mk, m)=ez : F} to
the record expression (Trans,,F(el) 1 nt=ez), where
~rnnS~:F is a translation which makes sure that the
type of each method in e is “adjusted” to take the
presence of the additional method into account. A
class type expression class t . (~121 : ~1, . . . , ntk : 0~)
may be interpreted as t.he recursive type expression

pt.(TTq :t-+q,.. .,?nk :t+uk)

Note however that we may select components directly
from a record of this type, whereas message send only
gives us “indirect” access to the methods of an ob-
ject. This is the main reason why the translation of
objects into records does not respect the natural sub-
typeordering on class types. The translation becomes
slightly more complicated in the presence of record
type variables (which must also be translated), but is
essentially routine given the development of [CM89].
Details are omitted from this conference paper.

6 Subtyping

The subtype relation on classes is rela.t.ively subtle.
However, since ordinary bounded quantification is not
the only way to define polymorphic functions over
all classes of a certain form [CCH+89], our ability
to write useful programs is not as dependent on the
subtyping relation as might at first appear. By anal-
ogy with record types, one might think thc7.t if one
class type is obtained from another by adding meth-
ods, this should be a subclass. However, consider the

classes

A : :‘= classt.{z : int, y : int, plus : t --+1}
B ::= classt.{z:inl,plus:t~2}

Should we consider A <: B? The bottom line is that
we may only adopt A <: B if, in any context, any
expression of type B could safely be replaced by an
expression of type A. But consider the expression
o (: plus u, where o : 13. If the plus method for some
o’ : A is implemented by using both I and y methods.
then it certainly does not make sense to replace the
fiist occurrence of o by o’:A. Thus A <: B is unsound.
On the other hand, it certainly seems reasonable that
any cla.ss of the form

class i . { . , pr’inl : string, . . }

should be a subtype of printable : : = class t.{pnnt :
shing}. This would be useful, for example, in writ-
ing a print queue which collects printable 0bject.s and
prints each one in turn (each using its own print
methpd).

This example raises an important issue regarding
the difference between the natural subtyping relation
on classes and subtyping on recursive record types.
For example, a class with print, method might be in-
t&preted, under the translation.mentioned above, as
the recursive record type

R ::= ~t.(2::t~a,print:t-string)

while the class print&/e would be interpreted as

pGIt.lnble-rcff : : = p t.((pri& : t - siring))

Under the accepted notion of subtyping for recur-
sive record types [see Appendix R), we do noi. have

117

R <: prinfnble-red. (This is similar to the A <: B ex-
ample above.) This illust.rates that in semantic motl-
els of the calculus of 0bject.s and classes, it is impor-
tant to take seriously the fact that methods may not
be selected from objects, only applied to t,he object
itself. For without this consideration, the expected
subtyping relation on classes cannot be semantically
justified.

7 Conclusion

We have developed a preliminary function calculus
with objects and classes, and justified the typing rules
by translation into a more commonly studied calcu-
lus which is believed sound. Although we may ex-
plain method specialization using the more familiar
framework of recursively-defined record types, seman-
t,ic justification of reasonable subt,yping rules seems a
difficult open problem.

The calculus of objects and classes is presented us-
ing record type expressions from the record calculus
of [CM89]. This is convenient when it comes to trans-
lating objects into records, but from a programming
point of view it seems unnecessarily compfex. In fu-
ture work, it might be useful to simplify t,he language
to those type expressions that are absolutely neces-
sary to program realistic object-oriented examples,
and eliminate records in favor of objects.

The main long-term objectives of this work are to
provide a basis for reasoning about object-oriented
programming languages, and to design flesible poly-
morphic type systems. In future work, it seems
worthwhile to consider languages with different sets of
basic operations, in hopes that we could more easily
guarantee that the meanings of expressions have the
types outline here, without requiring as much type
information in the syntax itself. Although type infer-
ence algorithms might help, it seems more useful to
take up the connection with natura.1 transforma.tions
in earnest and define a language in which applica-
tion of natural transformation is a basic operation.
Or, since many of the t.ype functions do not induce
functors (i.e., do not respect subtyping), a treatment
based on presheaf categories seems more promising.
This might alleviate much of the complication and
could lead to a more elegant language. Another re-
search direction is to t,ry to adapt, the typing concepts
presented here to a prototyping-based language such
as Self. It is hoped that some of the optimizations
achieved through dynamic typing in [CU89], for ex-
ample, could be gua.rantecd by a static typing disci-
pline along the lines suggested here.

Acknowledgemenls: I am grateful to Luca Cardelli
of DEC Systems Research Center and the members
of the ABEL group at HP Laboratories (Peter Can-
ning, William Cook, Walt Hill and Wa.lter Olthoff)
for many discussions. Thanks also t,o Eugenio Moggi,
Gordon Plotkin and Andre Scedrov for their com-
ments and insight.

References

[AR881

[BI82]

[BL88]

[BMM89]

[Bor86]

[BTCGS89]

[Car8G]

[Car881

[CCH+89]

N. Adams and J. Rees. Object-oriented
programming in Scheme. In Proc. ACM
Symp. Lisp and Funchonal Program-
ming Languages, pages 277-288, July
1988.

A.H. Borning and D.H. Ingalls. A
type declaration and inference system
for Smalltalk. In ACM Symp. Principles
of Programming ‘Languages, pages 133-
141, 1982.

K. Bruce and G. Longo. A mod-
est model of records, inheritance and
bounded quantification. In Third IEEE
Symp. Logic in Computer Science, pages
38-51, 1988.

K. B. Bruce, A. R. Meyer, and J. C.
Mitchell, ,The semantics of second-order
lambda calculus. Information and Com-
puiation;1989. (to appear).

A.H. Borning. Classes versus proto-
types in object-oriented languages. In
ACM/IEE..Fall Joint Compzlter Conf.,
pages 36-40, 1986.

V. Breazu-Tannen, T. Coquand, C.A.
Gunter, and A: Scedrov. Inheritance and
explicit coercion. In Fourth IEEE Symp.
Logic in Computer Science, page (to ap-
pear), 1989.

L. Cardelli. Amber. In Combinaiors
and Func. Programming, pages .21-47.
Springer-Verlag LNCS 242, 1986.

L. Cardelli. A semantics of multiple in-
heritance. Informahon atid Computa-
tion, 76:138-164, 1988. Special issue de-
voted to Symp. on Semantics of Dais
Types, Sophia-Aniipolis (France), 1984.

P. Canning, W. Cook, W. Hill,
J. Mitchell, and W. Olthoff. F-bounded

[CDG+88]

[CDJ +89]

[CM881

[CM891

[CooSSa]

[CooSSb]

[CU89]

[CWS5]

[DCBA89]

[DTs~]

quantification for object-oriented pro-
gramming. In Functional Prog. and
Computer Architecture, 1989. To ap-
pear.

L. Cardelli, J. Donahue, L. Galssman,
M. Jordan, B. Kalsow, and G. Nel-
son. Modula-3 report. Technical Report
SRC-31, DEC systems Research Center,
1988.

L. Cardelli, J. Donahue, M. Jordan,
B. Kalsow, and G. Nelson. The Modula-
3 type system. In Sixteenth ACM Symp.
Prkciples of Programming Languages,
pages 202-212, 1989.

L. Cardelli and J.C. Mitchell. Semantic
methods for object-oriented languages.
Unpublished OOPSLA tutorial, 1988.

L. Cardelli and J.C. Mitchell. Opera-
tions on records. In Math. Foundations
of Prog. Lang. Sem.anti&, 1989. To ap-
pear.

W.R. Cook. A Denotational Semantics
of Inheritance. PhD thesis, Brown Uni-
versity, 1989.

W .R. Cook. A proposal for making
Eiffel type-safe. In European Conf.
011 Object-Oriented Progrnmming, pages
57-72, 1989.

C. Chambers and D. Ungar. Customiza-
tion: Optimizing compiler technology
for Self, a dynamically-typed object-
oriented programming language. In SIG-
PLAN ‘89 Conf. on Programming Lan-
g’uage Design and Implementation, pages
14G-160,19S9.

L. Cardelli a.nd P. Wegner. On under-
standing types, data abstraction, and
polymorphism. Comyuting Surveys,
17(4):471-522, 1985.

A. DiMaio, C. Cardingno, R. Bayan, and
C. Atkinson. Dragoon: an Ada-based
object-oriented language. In Proc. Ada-
Europe Conference, 1989. To appear.

S. Danforth and C. Tomlinson. Type
theories a.nd object-oriented program-
ming. ACM Computing Surveys,
20(1):29-72, 1988.

[Gir71]

[Gir72]

[GR83]

[JMS8]

[Kam88]

[Lie%] ,

[LTPS6]

[MeySSl

[Mit84]

[MPSSG]

J.-Y. Girartl. Une est.ensioli de
l’interpretation de Giidel k l’alhalyse,
et son application B l’Pliminat,ion ties
coupures dans l’analyse et la. thdorie des
types. In J.E. Fenstad, editor, 2nd Sct~n-
dinavinn Logic Symposium, pages 63-92.
North-Holland, 1971.

J.-Y. Girard. Interpret,atioil foiic-
tionelle et elimination des coupures de
l’arithnnetique d’ordre superieur. These
D’Etat,, Universit,e Paris VII, 1972.

A. Goldberg and D. Robson. Sn~nlltalk-

80: The laldguage and its rmplementa-
tion. Addison Wesley, 19S3.

L. Jategaonkar and J.C. Mitchell. ML
with extended pattern matching and
subtypes. In Proc. ACM Symp.
Lisp and Functional Programming Lan-
guages, pages 198-212, July 1988.

S. Iiamin. Inheritance in snialltall~-SO; a
denota.tional defiuitiqn. In /lCiV Symp.
Principles of Programming Languages,
pages 80-87, 1988.

11. ~~ie~Jerllla~i. Using- prototypical ob-
jects lo implement sha.red behavior
in object-orielitecl systems. In Proc.
ACM Symp. on Object-Oriented PTO-

gramlttiug: Systems, Languages, and
Applzculions, pa,ges 214-2‘23, October
1936.

W.R. LaLonde, D.A. Thomas, and J.R.
Pugh. An esemp1a.r based Smalltalk.
In Proc. AC&I Symp. on Object-Oriented
Proyrtrmming: Systems, Languayes, and
Applimlio71.s, pages 322-330, October
19%.

B. Meyer. Object-Orienied Software
Co~~.st~c~ctio~~. Prentice-Hall, 198s.

J.C. Mitchell. Coercion ,and type in-
ference (summary). In Proc. II-th
ACM .i’1/mp. on. Principles of Program-
ming I,ang~rages, pages 175-185, Jan-
uary 19M4.

D. M;l(‘Quecn, G Plotkin, and R. Sethi.
An idcal model for recursive polymor-
phic t,ypes. In.formation nnd Control,
71(1/2):95-130, 19S6.

[MSS9]

(RA82]

[Red88]

[R&89]

[~ey84]

[RP89]

[St.a88]

[Suz81]

[l-%87]

[Wi1187]

J.C. Mitchell and P.J. Scott. Typed
lambda calculus and Cartesian closed
categories. In Proc. Conf. Computer Sci-
ence and Logic June 14-20, 198’7, Univ.
Colorado Boulder, volume 92 of Con-
temporary Mathematics, pages 301-316.
Amer. Math. Society, 1989.

J. Rees and N. Adams. T, a di-
alect of Lisp, or lambda: the ultimate
software tool. In PTOC. ACM S7Jmp.

Lisp and Functional Programming Lan-
guages, pa.ges 114-122, August 1982.

U.S. Reddy. Objects as closures:
Abstract semantics of object-oriented
languages. In Proc. ACM Symp.
Lisp and Functional Programming Lan-
guages, pages 289-297, July 1988.

D. Remy. Typechecking records and
variants in a natural extension of ML.
In 16-th ACM Symposium on Princiyles
of Programming Languages, pages 60-
76, 1989.

J.C. Reynolds. Polymorphism is not set-
theoretic. In Proc. Int. Symp. on Se-
mantics of Data Types, Sophin-Antipolis
(hxnce), Springer LNCS 173, pages
145-156. Springer-Verlag, 1984.

J.C. Reynolds and G.D. Plotkin. On
functors expressible in the polymorphic
lambda calculus. Information and Com-
putation, page to appear, 1989.

R. Stansifer. Type inference with sub-
types. In Proc. 15-th ACM Symp. on
Principles of Programming Languages,
pages 88-97, January 1988.

N. Suzuki. Inferring types in Smallta.11~.
In ACM Symp. Principles of Progmm-
ming Languages, pages 187-199, 19Sl.

D. Ungar and R.B. Smith. Self:
The power of simplicity. 111 Proc.
ACM Symp. on Object-Oriented PTO-
gramming: Systems, Languages, and
Applications, pages 227-241, 1987.

M. Wand. Comp1et.e type inference fat
simple objects. In PTOC. 2-7ttl lEEI;:

Symp. on Logic in Computer Science,
pages 37-44, 1987. Corrigenclunr in Proc.

3-rd IEEE Symp. OR Logic zn Computer
Science, page 132, 1988.

[Wan891 M. Wand. Type inference for record con-
catenation and simple objects. In Proc.
4-nd IEEE Symp. on Logic in Computer
Science, pages 92-97, 1989.

[Ye1891 P.M. Yelland. First steps towards fully-
abstract semantics for object-oriented
languages. In European Conf. on Object-
Oriented Programming, pages 347-367,
1989.

A Summary of Cardelli-
Mitchell record operations

A.1 Introduction

This appendix contains an intuitive summary of the
record operations presented in [CM89]. The general
idea of [CM891 is to extend a polymorphic type sys-
tem with a notion of subtyping at all types. Record
types a.re then introduced as specialized type con-
structions with some specialized subtyping rules.

A.2 Record values

A record value is essentially a finite map from labels
to values, where the values may belong to different
types. Syntactically, a record value is a collection of
fields, where each field is a labeled value. To cap-
ture the notion of a map, the labels in a given record
must be distinct. Hence the labels can be used to
ideutify the fields, and the fields should be regarded
as unordered. This is the notation we use:

0 the empty record.
(x = 3, y = true) a record with two fields,

labeled x and y, and
equivalent to (y = true, x = 3).

There are three basic operations on record values,
extension, restriction, a.nd extraction. These have the
following basic properties.

Eziension (r/z = u) adds a field of label x and value a
to a record T, provided a field of label x is not already
present. This restriction will be enforced statically
by the type system. The additional brackets placed
a.round the operator help to make the examples more
rexlable; we also write (T]X = a/y = 6) for ((r]~ =
a)ly = 6).

Restriction 7*\2 removes the field of label z, if any,
from t,he record r. We write r\xy for (r\z)\y.

Extraction r.x extracts the value corresponding to the
la.bel z from the record r, provided a field having

120

((z = 3)]y = true) = (x = 3, y = true) extension
(z = 3,y = true)\y = (x = 3) restriction (canceling y)
(z = 3, y = drue)\z = {z = 3, y = true) restriction (no effect)
ix = 3,y= t7wej.i = iii

invalid extension
invalid extraction

extraction

Table 4: Example record expressions

that label is present. This restriction will be enforced
statically by the type system.

We have chosen these three operations because
they seem to be fundamental constituents of more
complex operations. Some examples are given in Ta-
ble 4.

Some additional operators may be defined in terms
of the ones above.

Renaming r[x +. y] dsf (r\xly = r.x) changes the
name of a record field.

Overriding (r +-- x = u) d2f (r\xlx = a). If z is
present in r, replace its value with one of a possi-
bly unrelated type, otherwise extend r with x = a
(compare with [Wan89]). Given adequate type re-
strictions, this can be seen as an upda.ting oper-
ator, or a method overriding operator. We write
(r t x = a, y = b) for ((r t x = u) + y = b).

It is clear that any record may be constructed from
the empty record using extension operations. In fact,
it is convenient to regard the syntax for a record of
many fields as an abbreviation for iterated extensions
of the empty record, e.g.,

(x = 3, y = true) d2f ((()1x = 3)ly = true).

This approach to record values allows us to express
the fundamental properties of records using combina-
tions of simple operators of fixed arity, as opposed to
n-ary operators. Hence we never have to use schemes
with ellipses, such as (21 = or, z,, = a,), in our
formal treatment.

Since r\x = r whenever r lacks a field of label 2, we
may write (z = 3, y = true) using any of the following
expressions:

(()1x = 31~ = true) = ((()\xIx = 3)\yly = true)
= (0,x = 3, y = true)

The latter forms match a similar definition for record
types, given in the next section.

A.3 Record types

In describing operations on record values, we made
positive assumptions of the form “a field of label x
must occur in record 7” and negative assumptions of
the form “a field of label z must not occur in record
1”‘. These constraints will be verified statically by the
type system. To accomplish this, record types must
convey both positive and negative information. Posi-
tive information describes the fields that members of
a record type must have, while negative information
describes the fields the members of that type must
not have. Within these constraints, the members of
a record type may or may not have additional fields
or lack additional fields. It is worth emphasizing t.hat
both positive and negative constra.ints restrict the el-
ements of a type, hence increasing either kind of con-
straint will lead to smaller sets of values. The smallest
amount of information is expressed by the “empty”
record type (1. Tl ie “empty” record type is empty
only in that it places no constraints on its illembers
- every record has type ((1, since all records have at
least no fields and lack at least no fields. Some es-
amples are given in Table 5.

As with record values, we have three basic opera-
tions on record types.

Extension((RIx : A)) This type denotes the collection
obtained from R by adding + fields with values in A
in all possible ways (provided that none of the ele-
ments of R have 2 fields). More precisely, this is the
collection of those records (rlt = a) such that r is in
R and a is in A, provided that a positive type field
zr is not already present in R (this will be enforced
statically). We sometime write (Rlz : Aly : EQ for
(((Rjx : A) Iy : B).

Restriction R\x This type denotes the collection ob-
tained from R by removing the field 3: (if a.ny) from
all its elements. More precisely, this is the collection
of those records r\x such that r is in R. We writ,e
R\xy for (R\x)\y.

Extraction R.x This is the type associated to label

121

0) the type of all records.
Contains, e.g., () and (z = 3).

o)\x the type of all records which lack a field labeledz.
E.g., 0, (y = true), but not (x = 3).

(x : Id, y : Bool)) t1 le ype of all records which have at least fields t
labeled 2 and y, with values of types Int and Bool.
E.g.,(z. = 3,~ = true), (z = 3,y = true,2 = str) but not (z = 3,y = 4), (z = 3).

(x : Jntj)\y the type of all records which have at least a field
labeled 2 of type Int, and no field with label y.
E.g.,(z = 3, z = str), but not (z = 3,y = true).

Table 5: Example record type expressions

((z : Int))\yyly : Bool] = (x : Int, y : Bool) extension
(x : Int, y : Bool)\y = (z : Int)\y restriction (canceling y)
(x : Id, y : Bool))\z = (z : Int, y : Bool)\z restriction (no effect)
(x : lnt, y : Bool)).z = Int extraction

((0 lx : Bo4 invalid extension
(x : Int).y invalid extraction

Table 6: Record type extension examples

x in R, provided R has such a positive field. This
provision will be enforced statically. Again, several
derived operators can be defined from these.

Renaming R[x, y] dsf ((R\xly = R.z) changes the
name of a record type field.

Overriding ((R e x : A) dsf (R\xlx : A) if a type
field 3: is present in R, replaces it with a field x of
type A, otherwise extends R. Given adequate type
restrictions, this can be used to override a method
type in a class signature (i.e. record type) with a more
specialized one, to produce a subclass signature.

One crucial formal difference between these opera-
tors on types and the similar ones on values is that
()\y # (1, since records belonging to the “empty”
type may have y fields, whereas ()\y = (). In forming
record types, one must always make a field restriction
before a type extension, as illustrated by example in
Table G.

It helps to read the examples in terms of the collec-
tions they represent. For example, the first example
for restriction says that if we take the collection of
records that have x and y (and possibly more) fields,
and remove the y field from all the elements in the
collection, then we obtain the collection of records
that have 2 (and possibly more) but no y. In partic-
ular, we do not obtain the collection of records that

have 2 and possibly more fields, because those would
include y.

The way positive and negative information is for-
mally manipulated is actually easier to understand if
we regard record types as abbreviations, as we did for
record values:

lx : Int, y : Boo]) %f (((o\xlx : Int)\yjy : Boo/)

Then, when considering {y: BooQ\y, we actually have

(O\YIY:BOO~)\Y- If we allow the outside positive and
negative y labels to cancel, we are still left with (I\,.
The inner y restriction reminds us that y fields have
been eliminated from records of this type.

A.4 Subtyping

The subtyping rules for record types are essentially
that every record type is a subtype of 0, and the
subtyping relation respects the type operations of ex-
tension, restriction a.nd extraction. Writing A <: B
for A is a subtype of B, we have the following exam-
ples.

(x : Int, u : Boolj) <: 0)
(R/x : A)) <: (SIX : A)) if R <: S <: {)\x
R\x <: S\z ifR<:S<:()
R.x <: S.x ifR<:S<:Qlx:A)

In general, a record type R will be a subtype of an-
other record type S if every positive constraint (la-

beled field) associated with R is also a positive con-
straint imposed by S, and similarly for negative cou-
straints (fields required to be absent). There are some
subtleties. For example, (R\zlz : Int) is not necessar-
ily a subtype of R, and never a subtype of R\x, even
though this might seem consistent with the point of
view expressed in [Car88], for example.

B Summary of full typed cal-
culus

B. 1 Overview

The basic calculus we use is a higher-order typed
lambda calculus, ‘in the general style of Girard’s F,
[Gir71, Gir72] d an many subsequent systems. In ad-
dition to function types and polymorphism, we will
use recursive type definitions, subtyping and a rela-
tively elaborate form of record types and operations.
All of this is quite “standard,” in the sense of being
syntactically familiar to type theorists, with the ex-
ception of the record calculus and subtyping. The
main subtyping notions are primarily due to Cardelli
[Car88, CW85], with some remnants of [Mit84]. The
record calculus with subtyping is explored in some
depth in [CM89], although certain semantic and prag-
matic questions remain. While many of the syntactic
aspects of this .calculus will be familiar, the reader
should not take this as an indication that the se-
mantics are,well-understood. In particular, the com-
bination of record operations, subtyping and recur-
sive types poses a number of mathematical challenges
However, it seems that’ the bulk of the the problems
here have been identified and discussed in the liter-
ature (see, for example,’ [BTCGS89, BL88, CM89]).
Due to space limitations, we will only summarize the
basic parts of the calculus.

B.2 Kinds

The types and type-producing functions of the cal-
culus are characterized by kinds, following [Gir72,
MPS86, BMM89]; kinds are called ix-dew in [Gir72]
and some subsequent work. The kinds-consist of the
base kind T, the kind of all types, and kinds of func-
tions over T. Since we wish- to consider type con-
structors defined only on subtypes of some type A,
for example, we will allow “dependent” kinds of the
form v s < : A ..Ic~, where A :: .ICZ. While we could a.lso
introduce product kinds ~1 x ~2, we have no imme-
diate need for them in this paper. We write “K kind”
if n is a well-formed kind expression.

123

B.3 Contexts

Free variables are given types or kinds using c&e+
which are ordered lists of assumptions about vari-
ables. We write ‘T context” if I’ is a well formed
context. The basic rules for context are standard,
with 0 context. We write v :: K to indicate that v
has kind K, and x : 7 to indicate that 3: has type r.
Kinded variables are added to contexts using the rule

r context, K kind
l?,v :: IE context

v 6 bm(r).

We omit the analogous rule for typed variables.
Since subtyping is a basic notion of the calculus,

we may assert in a context that a fresh type variable
denotes a subtype of a given type. It is also useful t,o
have “subtyping” at higher kinds, with the intuitive
meaning that <: on kind ~~ 3 n2 is the pointwise
ordering

F c:n, a Ic1 G iff vv : Kl.fv <:K3 gv.

We generally omit subscripts from the subtype rela-
tion.

Subtyping assumptions are added to contexts ac-
cording to the rule

rbA::tc

I’, U <: A context

B.4 Subtyping

The main typing rule associated with subtyping is
called subsumption.

(subsum)
rDe:U, rDa<:T

rDe:T

This rule lets us apply a function f : u -+ T to an
argument x : u’, whenever cr’ <: B, for example.

B.5 Function Types

We have ordinary function types, formed according
to the typing rule

(-3
roA::T, rDB::T

I?t>A-+B::T

and polymorphism over all kinds, as in F,.

w
r,v :: K.D A :: T

rDjiV ::tc.B ::T

In addition, as in [CWSS], we have bounded polymor-
phism.

(V bdd)
I’,u<:At>B::T

I’r>Vu <: A& ::T

Introduction and elimination rules defining terms of
these types are standard and omitted.

We do not seem to need the so-called F-bounded
polymorphism of [CCH+89], since most useful cases
seein to be handled by ordinary bounded quautifica-
tion over kind T *T. (We have not done a thorough
study of this point, and it may eventually be neces-
sary to introduce F-bounded polymorphism.)

B.6 Record Types

The “empty” or “universal” record type is written (),
following [CM89].

r context

r D () :: T

This type contains all records.
Additional types of records are formed by adding

constraints of the form z : T, which assert that all ele-
ments of this type must have an 2: component of type
T, and constraints of the form \;c, which assert that
no elements of this type may have an z component.

I?DR<: ())\x, I’DA ::T

r D (RIX : -4) :: T

FD R-C: (1

I’DR\x:T

In [CM89), if R . 1s a type of records, with every record
guaranteed to have an x component; then R.x is the
type of all 2 components of records from R. However,
we do not seem to need type expressions of the form
R.x in this paper.

Using equational rules, which we omit, every record
type of the pure calculus may he simplified to the
form

(R\xI\Q.. . 1~1 : Al I .)

where R is either the empty record type (1, a record
type variable, or an application beginning with a vari-
able of some functional kind. It is convenient to
write (xi : Al,. . ,x1: : Ak) for { (O\X~\Q (x1 :
AlI . . . IX:kAk).

B.7 Record Subtyping

Every record type is a subtype of the type () contain-
ing all records. Moreover, subtyping respects record
type extension and restriction .

AderivedruleisisthatfromJ?Dal <:rr,rD

uk <:?-k wemayderivethat (ml:ol,...,mk:Uk,121:

Pi,..., nc : pt) is a subtype of (ml : ~1,. . . , mk : Q),
which may be familiar from [CarSS].

B.8 Recursive Types

Recursive types will be used to describe records which
contain methods applicable to the records themselves.
Rather than write recursive types in the common pro-
gramming language form

tree = leaf + (1 : tree, r : tree)

we will use the more concise syntax

jhi!.leaf+(l:t,r:t).

The formation rule for record types is

r, v :: T b u :: T

l?c.~v::T.c::T

and the natural subtyping rule for record types
[Car86, BTCGS89] is

r, (S <Z t) b u C: 7, rbt::T
r D (p zt :: TAT) <: (p V :: T.r)

The usual term formation rules associated with re-
cursive types are

b 0
r D e : bV :: T.u/t]a

I’Dabse:pv::T.u

(cl El
rDe :clV ::?b

r D rep e : i)HJ :: Ta/t]s

where abs and rep are names for the isomorphism be-
tween p v :: T a and [p v :: Tn/t]c. For simplicity of
notation, we will omit a6s and rep from expressions.

rdks<:(]\X, r'bA<:B

r D (RlX : A) C: (sl% : k?)

rr>R<:s<: 0)
r D R\X <: s\X

124

