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Abstract 

This paper discusses the phenomenon of m.ethod 
specializa-ts’on in object-oriented programming lan- 
guages. A typed function calculus of objeck and 
classes is presented, featuring method specialization 
when methods are added or redefined. The soundness 
of the typing rules (without subtyping) is suggested 
by a translation into a more traditiona. calculus with 
recursively-defined record types. However, sema.ntic 
questions regarding the subtype relation on classes 
remain open. 

1 Introduction 

In spite of the increasing popula,rity of object-oriented 

programming, several issues do not seem to bc well 
understood. In particular, although prelimina.ry for- 
mal semantics have been proposed [Kam$$, Red88, 
Ye189], there is neither an accepted basis for reason- 
ing about basic issues such as pr0gra.m transforlnation 
or optimization, nor a sound ba.sis for flexible typing 
disciplines. This paper presents a typed function ca.l- 
culus with simple forms of “objects” and “classes” 
which illustrate an essential feakure of inheri t,a.nce 
we call method specialization. To give some insight 
into the connection between this calculus and previ- 
ous formal analysis, we also give a, translation of ob- 
jects and classes into records and recursively-defined 

*Supported in part by an NSF PYI Award, mat~ching funds 
from Digital Equipment Corporation, the Powell Foulldatiou, 
and Xerox Corporation, and NSF grant ‘CCR-S81492 1. 

Permission to copy without fee all or part of this mateaial is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that the copying is by 
permission of the Association for Computing Machinery. To copy other- 
wise, or to republish, requires a fee and/or specific permission. 

0 1990 ACM 089791-343-4/90/0001/0109 $1.50 109 

record types. This clarifies some of the challenges 
involved in giving compositional, typed semantics to 
realistic object-oriented languages. 

Apart from typing and mathematical semantics, 
the basic calculus used in this paper is relatively 
straightforward. The main idea is to provide a func- 
tional (1. e., side-effect free) form of “prototyping,” or 
“delegation” [Bor86, LieSG, LTP86, US871 so that 0111: 
object may be created by inheriting methods from an- 
other. For simplicity, we treat methods and instance 
variables uniformly; methods may be replaced, and 
therefore instance variables may be regarded as meth- 
ods that return a constant value. The set of mes- 
sages an object will answer, and the t,ypes of t.heir 
results, are specified by a form of type we call a class. 
One class will be considcrcd a subclass (or suhtyl)c) 

of another if every object, of the first is gua.rantced 
to behave properly when considered as an element. 
of the second class. Thus, in our view, classes are 
types whose elements are objects, and inheritance is 
a. mechanism for constructing one object from an- 
other. The subclass relation is determined by hehav- 
iora.1 characteristics of objects rather than program 
declarations. While this may not be the predominant. 
view of object-oriented programming, it is consist,ent 
with at least one important practical view and it is a 
convenient model for our purposes. 

Method specialization, which is described in some 
detail in Section 2, is achieved by treating objects as 
collections of functions, each representing a method 
of the object. When a method is invoked, t,he appro- 
priate finction is applied to the object itself. In other 
words, instead of using a special symbol se/f to allow 
a method to refer to the object to which it belongs, we 
use the first argument of the method. This approach 
is also used directly in T [RA82, AR88], which we 
were not aware of when we first began experimenting 
with this idea, and in the implementation of Modula 
3 [CDGf88, CDJf89]. The main point of the paper 
is not to promote this view of objects, but to develop 



typing rules for Inethods which usefully reflect the 
way they are irlherit.cd. 

One long-term goal is to develop a flexible, poly- 
morphic typing discipline which could prevent such 
common run-time errors as message not understood. 
This is not an easy task, as illustrated by the va.- 
garies of the early proposals for typing in Smalltalk 
[BI82, Suz81] and the subtle bugs surrounding like 
self [Coo89b] in the more recent language Eiffel 
[Mey88]. A no th er reason to develop typing rules is 
that in giving types, we are forced to specify exactly 
what kind of value is defined by each kind of expres- 
sion in the language. This seems quite valuable when 
we consider substit,ut.ion equivalence, which is critical 
to understanding or reasoning about transformation 
and optimization. 

The calculus presented in t.his paper owes much to 
the recent line of work on record calculi with subtyp- 
ing, beginning with Cardelli’s 1984 paper [Car@]. A 
number of influential typing ideas, including bounded 
quantification, were sketched out in [CWSS], and 
summarized in [DTSS]. More recently, type infer- 
ence techniques been present.ed in [Wan87], followed 
up by [Sta88, JM88, R&-n89, Wan89]. From an un- 
typed, denotational point of view, the primary studies 
seem to be Cook’s thesis [Coo89a], which highlights 
method specialization, and the denotational seman- 
t,ics presented in [Iiam88, RedS8, Ye189]. The general 
perspective of this paper has developed from a tu- 
torial presentation at the 1988 OOPSLA conference 
with Luca Cardelli [CM$8], a subsequent joint pa- 
per [C&lPY]. and numerous conversations with mem- 
bers of the ABl*;L group at 1IP Labs (Peter Canning, 
1Yilliam COOli. Walt. llill and LValter Olthoff). 

2 Method specialization 

An important. phenomena t.1la.t seems essential to 
object-oriented progranltning will be referred to as 
m&od special/:ation. Although there is really only 
one basic idea, it will be helpful to separate method 
specializat,ion into two forms, one involving the ad- 
dition of metllods, and the ot,her involving method 
replacetllent ) or “overriding.” Both forms may be il- 
lustrated using esa.mple classes of points (c.J [CW85, 
JM88]). The class poilll cont,ains objects that have 
X, y and move methods. If points have integer coor- 
dinates, then the funct.ionality of point objects may 
be sumnlarizecl by the signature, 

class poinl llletllods 

x : int, y : inl, 
move : in2 x in2 + paid 

which we will regard as the type of all objects ha.ving 
X, y, and move methods of the indicated function- 
ality. Note that we allow methods to return func- 
tions, which reduces method parameterization t,o or- 
dinary function application. A more specialized class 
of points are the colored points, which have au a.ddi- 
tional method returning their color 

class colored-point methods 
x : int, y : int, c : color, 
move : ini x int + colored-point 

and an appropriately revised type of move method. 
In a language such as Smalltalk [GR83], we might 
first define a poini class and use point objects in writ- 
ing a graphics package. Later, a,fter upgrading to 
a color display, we might define the subclass of col- 
ored-point ‘s and use these instead. In a delegation- or 
prototype-based language such as Self, we might use 
a similar programming technique, although we would 
define the basic point methods in a prototype point, 
instead of a class declaration. An important aspect 
of object-oriented languages in general is that much 
of the code we write for point’s may be used directly 
on colored-point’s, eliminating what could otherwise 
be a significa.nt amount of reprogramming. 

When we define colored-point ‘s, either as a. sub- 
class (as in Smalltalk) or by prototyping (as in Self), 
the move method is specialized as it is inherited. In 
particular, the type of move changes when it is inher- 
ited. If we send the move message to a point, along 
with integer “displacements” 6, and 6,, we obtain a 
point with modified az and y coordinates. However, 
when we send the move message do a colored point, we 
obtain a colored point instead of an uncolored point. 
While this will be completely familiar to anyone who 
has written a program in an object-orienteg language, 
it is worth noting that it is difficult to simulate this 
behavior within traditional typed languages such as , 
Pascal and Ada; the typing constraints interfere (see 
[DCBA89], for example). In particular, the correct 
behavior of move on colored points ‘cannot be sim- 
ulated using only a “conversion” function mapping 
colored-point to point (c.f [BL88, BTCGS89]). If we 
convert a colored-point p. to a point p’ and then send 
the move message to p’, we obtain a point instead of 
a colored-point. 

A more complex form of method specialization oc- 
curs when a method is overridden. To give an exam- 
ple, we need one method which depends on another. 
Let us assume we have another class of points, each 
having a method slide which moves the point one uriit 
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up and to the right. 

class sl-point methods 
x : int, y : int, 
move : in$ x int --t sl-point, 
slide : sl-point 

Since we have a move method, the natural implemen- 
tation of slide is to send move with argument (1,l). 
We now get an interesting form of method specializa- 
tion if we replace mowe in some object (or subclass) 
which inherits slide. One subclass of sl-point might 
be the class dir-point of directed points which have 
t, y coordinates and a direction, say an angle theta. 

class dir-point methods 
2 : inl, y : in2, theta : real, 
move : int x int + dir-point, 
slide : dir-point 

Let us assume that when we move a directed point, we 
wish to ma.intain its orientation toward some position 
on the perimeter of some bounding box, such as the 
boundary of the window or screen on which it is dis- 
played. To achieve this behavior, we would redefine 
the move method to calculate a new direction when- 
ever the 2 and y coordinates are altered. However, 
slide may be inherited directly from sliding points, 
because of the following phenomenon. With slide 
implemented by invoking move, the inherited slide 
method will invoke the more specialized move method 
associated with directed points. In other words, when 
slide is inherited by dir-point, this method is spe- 
cialized in accordance with the move method on di- 
rected points, even though slide was declared as part 
of sl-point. ‘t’his kind of behavior is relatively ensy to 
implement. However, from a mathematical point of 
view, this form of specialization seems to be a fairly 
complex operation on functions. 

While method specialization is very useful in a vari- 
ety of programming situations, method specialization 
seems t,o complicate static analysis. In particular, let 
US say two expressions are substit,ution equivalent (01. 
observationally congruent) if we may substitute one 
for the other any place inside any prograln, without 
changing the overall program behavior. This is an im- 
portant relat,ion in any language, since it cha.ra.cter- 
izes the local program transformations or optimiza- 
tions that may be applied safely in any context. In 
a Pascal-like language, it is relatively easy to state 
a simple condition guaranteeing substit,ution equiv- 
alence of twu procedures: if both return t.lle same 
results and have the same side-effects, for all possible 
values of the input parameters, then either may be 
substituted for the other in any program.’ However, 

looking only at a, single rllethod body in an ol.,jrct- 
oriented lalrguage, it is difficult t.o see whether a sirn- 
ple local transformation coltld change the behavior of 
the entire program. ‘I‘he novice might suspect.. for 
example, that in-line suhsbitut,ion of a met.horl Itody 
might preserve program meaning. IIowever, if \VC re- 
place the reference to m.ove in the method body of 
slide by in-line code, tllis would change the way that 
slide works when inherited by directed points. Specif- 
ically, if slide does not refer t,o move, then overriding 
move has no effect on the behavior of slide. 

3 Method specialization and 
natural transformation 

There is a simple and int.uitive connection between 
method specializat.ion and nat rural t,ransformation. 
We will illustrate the main idea Ilsing an elementq 
view of objects resembling jCnrE(S]. Although the for- 
ma.l development. of the paper does not depend on this 
section, the c.orrespondenct~ will hopefully gives some 
insight into tile typing rules of t.11~ calculus presented 
in Section 4. For the rentainder of this section, we 
will use simple olrject to n~ean a record of some type. 
ancl simple method to mean a certain kind of func- 
t,ion on sirliple objects. A sirnpfc class is therefore a 
record type. 

At the risk of overdoing a single example> let us 
consider silnple classes of cartesian points. The most. 
basic is the class sim2>le-poi-rll whose elements are sim- 
ple object,s (records) wit.11 integer t and y compo- 
nents. Using the notation of [CXISS], we may write 
this record type as follows’. 

It. is a.lso llscful t#o cousid(~r a sinlple class of colored 
points 

simple-col-poinf : : = Q.c : int, y : int, c : color;l 
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simple object of any subtype of simple-point (see rule 
(subsum) in Appendix B). However, this always gives 
us a simple-point, rather than an element of a sub- 
type such a.s simple-co/-point. In order to get a map 
from simple-col-point to simple-co/-point, and simi- 
larly for any other type of records with 2‘ : id, y : in.l 
and additional components, simple-move must be a 
function of a more complicated type. The correct 
functionality in this case corresponds to a natural 
transformation. 

Since natural transformations are maps between 
functors over categories, it might seem that we should 
now introduce a lot of categorical machinery. How- 
ever, by working within a calculus that has the ap- 
propriate form of polymorphic functions, we may de- 
fine functors and natural transformations using syn- 
tactic expressions of the calculus. In doing so, we 
consider the types of the calculus as objects (in the 
categorical sense of the word) of a category. There are 
two choices of morphisms. One might be the class of 
morphisms given by closed function expressions (or, 
equivalently, open expressions with exactly one free 
variable; see [MS89]). However, the more appropriate 
category seems to be the preorder given by the prov- i 
a.ble subtyping assertions of our calculus. We will he 
primarily concerned with subcategories of this cate- 
gory which consist of all subtypes of a given type. 
Since these categories are preorders, a functor is de- 
termined by a function F from subtypes of some A 
to types such that whenever s <: t <: A, we have 
F’s <: Ft. In type systems based on [CWSS], the 
“kind“ Vs <: A .T is the collect,ion of all functions 
which map every subtype s of ,4 to a type (element of 
the kind T of all types). It is a helpful notational cow 

veution to use a double colon “::” for kind member- 
ship and reserve t.he single colon for types. Using this 
notation, the functors we consider are given by t.ype 
functions F :: V/S <: A .T. Rather than expla.in the 
general idea in any more detail (c.jY [Rey84, RPS9]), 
we will illustrate the approach by the esa.mple at 
hand. It is hoped that tile main ideas will be immc- 
diately clear to t,llose familiar with category theory, 
and still reasonably accessible to those without. 

To consider simple-move as a natural transforma- 
tion. we must. generalize sirnple.qoint from a t,ype 
t.o a functor. The codomain of the functor we wa.nt 
should be the collect.ion of subtypes of simple-point, 
since simple-moue acts as a function on each sub- 
type of simple-point. Using record type expressions 
r,f [C.l,ISS]! we tray define the map 

F ::= ~R<:())\~y..(f112:int,?/:intj) 

frorn subtypes of ())\x y to record t,ypes, which is es- 
plained below. It is easy to verify that F is a fulrc- 

tor. In words, this type function maps any type 
R of records without z and y fields to the type 
((R 12 : int, y : int) of all records obtained by adding 
integer z and y fields to some record from R. In more 
detail, 0) is the type of all records, and (consequently) 
()\z y is the type of all records without z or y fields. 
The constraint that formal parameter R of F must be 
a subtype of (o>\x y first implies that the domain of F 
is the collection of all subtypes of {)\z y, and second 
guamntees that the type expression (R 1 x : int, y: int) 
is well-formed, since in the [CM891 calculus we may 
only add fields to records which are known not to al- 
ready have these fields. The range of the functor F 
is the collection of all subtypes of simpleqoin2 which 
are obtained by adding new fields2. Thus F is a func- 
tor on the subcategory of our language whose objects 
are record types without z and y fields and whose 
morphisms are given by the subtyping preorder on 
these t,ypes. 

The natural extension of simple-move to a map on 
arbitrary types of the form ((R 13: : int, y : int) is the 
polymorphic function 

simple-move : : = 

X R <: (o\x y. 
Aa:(RIa::int,y:int)). 

(a\xyIx=a.x+ 1, g=a.y+ I). 

In words, the first parameter of this function may 
be any type R which is a subtype of (>)\z y, which 
means that R may be any type of records without x 
and y fields. The second parameter is a record u of 
type (R 1x : int,y : id). Since R may be a.rbitrary, 
we know that a has integer az aud y fields, but do not> 
know what other fields this record might have. The 
record expression a\z y denotes the result of removing 
x and y fields from a, a.nd the form (Y 1~ = M, y = N) 
is used to extend a record T by adding 2 and VJ fields 
with values M and N, respectively. Thus the function 
body (a\a:yl = z u.z + 1, y=a.y + 1) defines a record 
<I’ which is identical to a, but with z and y fields each 
incremented by 1. An elementary calculation wit,hin 
the record calculus shows that simple-move defines a 
natural tra.nsformation. This means that if R, <: S, 

*In general, a subtype of simple-point may have the form 
(RIz:a,y:~)whereR<:()\zyandbothaand~aresub- 
types of int. However, since arbitrary subtypes of int may 
not be closed under addition, the appropriate types to use 
iI\ discussing the functionality of simple-move have the form 
(R 1 z : int,y : int). Put another way, we wish to describe the 
functionality of JimpIe-move using a functor whose range is 
f.hc collection of all types which are closed under simple-move. 
When we apply simple-move to a simple object of some ar- 
bit.rary nnhtype (R ( CT : o,y : T), t,he best our type system 
can do is guarantee that the result leas “more generous” type 
(R12.:ind,y: id). 
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and consequently 

(R 12‘ : int, y : id)) -c: ((S ) 2 : ini, y : int) 

are two subtypes of simple-point, and if we begin 
with any element 1’ of t#he smaller subclass (R) z : 
inl, y : ini), the following two computations yield the 
same result. The first a.pplies move to T, and then 
“converts” T to the larger subclass (S 12 : int, y : id) 
according to the subtyping assertion R <: S. The 
second computation converts r to the larger subclass 
before applying move. The fact that these two give 
the same result seems to capture the intuitive prop- 
erty that however we specialize simple-move on sub”“,’ 
classes, it should respect the behavior of simple-move 
on simple-point’s. 

It is worth mentioning that the view of methods as 
natural transformations not only gives us a reason- 
able “default” for specializing a method to subclasses 
with additional properties, but allows for the possibil- 
ity of “redefining” methods in any way that is consis- 
tent with our interpretation of subtyping. However, 
within the framework of “simple objects,” we have no 
linguistic or semantic mechanism for redefining meth- 
ods. This leads us to include methods as components 
of objects, as we do in the next section. 

4 Classes and objects 

4.1 Class types 

In the record ca.lculus of [CM89], a record type deter- 
mines a finite map from field names to types. Since 
the type of an object would na.turally be a list of 
method names and their types, it is expedient to use 
record field names as method names, and define class 
types using record types. As a consequence of us- 
ing the type expressions of [CM89], we get variables 
ranging over finite maps with certain method names 
guaranteed nol to be in their domain. This is exactly 
what we need in order to type methods on objects 
(c.f.[~M88]). Wh’l ‘t . 1 e I 1s certainly possible to defne 
class types without mentioning records, it is conve- 
nient to use the following formation rule. 

r,t ::TD R<: (>) 

I D classt.{R} :: 2’ 

In words, if R is any record type expression, possible 
containing a free type variable t, then classt .{ R} is 
a type. The type variable t is bound in class t .{ R} 
If R is an explicit record type of the form Q. _ .), then 
it is convenient to omit the angle brackets from the 
corresponding class type expression. For example, 

the class of points may be written 

point :: = classi.{z:im2, y:inf, nkove:i71.1 X inf -t} 

In words, the type expression for point defines the 
class t with methods 2 : inl, y : inl and mozle : in1 x 
int --+ 1. 

4.2 Operations on objects 

An object is a value which accept,s messages. The 
simplest object is the “empty” object,, which accepts 
no messages at all. We will write {} for the empty 
object, and o e m for the result of sending message m 
to object o. Since the result of sending a message may 
be a function (from objects to objects, for example), 
there is no special syntax for message parameters. 

In addition to sending a message, there are two 
basic operations on objects, adding a method and 
replacing a method. Suppose o is an object accepting 
messages ml, . . . , mk and that we want to extend o to 
an object o’ accepting an additional message n. We 
begin by choosing a “method body” e, which must 
be a function; the result of sending message n. to the 
new object o’ wiil be the result of the application co’ 
of method body e to object 0’. A reasonable syntax 
for the object obtained by extending o with method 
body e for n might be 

extend 0 with n = e 

Using the syntax o (I n for sending message n to o, 
we could then evduate message send by a rule such 
as 

(extend o with n = e) + n 
22 e(extend o with n = $1 

Since e is passed the entire object as a parame- 
ter, the method body may send a.ny other message 

ml,..., mk t.0 the object, or send the message n if 
desired. In this way, recursion and “self-reference” 
become inherent parts of our object, model. 

There is a. minor technicad difficulty with the sirnI,lc-: 
syntax presented above. Suppose we send a message 
rni to the object o’ above. This is not the “most re- 
cently added” method, but a method implemented 
in the “old” object O. The method body for mi 
is therefore designed to be a.pplied to some object 
that does not have an n method, but only meth- 
ods among ml,. . . , mk. Therefore, before we apply 
the appropriate method body to o’, we lnust some- 

how a.lter the method body to accept an argument 
with additional methods. As a “bookkeeping” mech- 
anism for keeping the types of methods straight, we 
will use a synt,ax for objects that indicates, for each 
method, the list. of methods that were known at t.he 
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tinre this method was added. Specifically, if o is an 
ob~ject accepting messages ml, _ . , mk, we will write 
(0 1 n(ml: . . , mk, n.)=e} for the result of extending o 
wit.h method body e for 7~. The equational rules 
for manipulating object expressions will allow us to 
.npdate” the types of method bodies to account for 
met,hods added later (see Table 2 and related discus- 
sion). 

If we replace a method, 
then we write {o - m;(mr , . . . , mk)=e} for the object 
obtained from o by redefining rni to be e. Since an 
object containing a method e may later be altered by 
adding or replacing methods, our typing rules must 
guarantee that e makes sense for any object obtained 
in this way. 

4.3 Typing rules for objects 

The first typing rule specifies that the empty object 
belongs to the class which does not promise any meth- 
011% 

1’ context 
r b {} : ChSSt.{} 

111 words? if I is a well-formed context (designating 
types for variables; see Appendix B), then we have 
the judgemenl I D {} : classt.{} asserting that, in 
context I, the expression {} has type classl.0. 

The next rule describes method addition, which 
is relatively complicated. There are two main fea- 
t.ures of this rule. The first is that a method must 
be a function applicable to the object obtained by 
-?tltling this method, and that the type of the re- 
sult of sending a message is the type of this func- 
tiOn application. ?‘he second overall objective is to 
guarantee that t.he method will make sense for all 
“flrture” ol,jects constructed from this one. In intu- 
it.ive terms. we require that a method have the poly- 
n-iorphic type Of a “natural transformation” on the 
~if’llllCtOl.‘i which produces extensions of the present 
~1~s. (Technically, it is worth noting that that 
1 he “functor” is actually a map from types to types 
which does not always seem to respect the subtyp- 
ing preorder.) If we begin with an object o of type 
class 1 .{nhl : (~1, , rnn : ok}; then every object ob- 
tained by adding or redefining methods will have a 
type of the form classt.{Ft 1 ml : (~1,. . . , rnk : uk}, 
where F is a function from types to record types 
such that Ft never involves the names ml,. . , mk 
of methods of o. Since the types of “future” ob- 
jects are characterized by type functions, we want any 
method we add to o to define a natural transforma- 
tion on a functor whose domain is a category of maps 
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from types to types. (The morphisms of this cate- 
gory correspond to the point-wise subtyping preorder 
on T =3 T described in Appendix B). In a notation 
following [CMSS], we require that the new method 
body have a type of the form 

VF <: (At ::T.()\ml...mkn). 
[class2.(Ft(ml:al,..., mk:uk,n:7}/t](t--+r) 

where the constraint F <: (At :: T.()\ml . . . mkn) 
guarantees that the function F from types to 
types always produces a record type without 
ml . . . mkn, and the square brackets in the subex- 
pression [. . . /t](t -r) indicate substitution. In 
words, the new method body must be a polymor- 
phic function which, for any “possible future” type 
class1.{F1]mr:~r,..., ?nk : (Tk, n : T}, maps objects 
of this type to some result type possibly depending 
on the type of objects involved. The formal rule, 
which is illustrated by example in Section 4.4, ap- 
pears at the top of Table 1. Reading the rule in 
words, we begin with an object er which has meth- 
ods ml,. . ,mk and wish to add another method n 
implemented using method body es. For this to make 
good sense, e2 must be a function which, for any ad- 
dition methods Ft, makes sense on an object of type 
CIaSSt.{FtIml:al,...,?nk:(Tk,n:7},where7isthe 
type of result of sending message n to the new object. 
The constraint at the binding occurrence of F is that 
for any argument t, the type Ft must be a subtype of 

o\m1 ‘. . mk. This is a formal way of saying that Ft 
may be any finite function from field names to types 
“containing” t which does not associate a type to any 

ml,. ..,mk,n. 
The rule for replacing one method by another is 

similar, but somewhat less complicated. If we begin 
with an object er : class t .{mr : ~1,. . . , mk : bk) and 
wish to replace rni, then we need an alternate method 
body with the type required to produce a result of 
type CT~. While it seems reasonable to allow the new 
method body to have a type corresponding to some 
subtype of gi, we will make the simplifying assump- 
tion that the new method returns the same type of 
result as the old. The formal rule which-accomplishes 
appears in Table 1. 

Since we may only add methods one-at-a-time, the 
reader may wonder whether it is possible to define an 
object with two mutually recursive methods, m and 
n, for example. It is generally possible to do this, but 
in a fuller development of the calculus it would prob- 
ably be worthwhile to use more general rules allowing 
simultaneous addition of several methods. There is 
no technical problem in doing this, but the typing 
rules become more difficult to read. 

The typing rule for message send specifies that 



roeI: classt.{ml : ul,. . . ,7nk : ~7k) 
(add &$rbez :VF <:(Xt ::T.{)\m1 . ..mkn).[classt.{Ft~m~ :ul,“‘) mk:ak,n:r}/t)(t-+T) 

I 
I’ D {el 1 n(m1,. ..mk,n)=Q} :clasSt.{ml :ul,..., mk :uk,n:T} 

rbel: ClaSSt-{ml :ul,...,mk :uk} 

t 
I? b e2 : VF c: (A i! :: T.()\ml . . . mk) .[classt.{Ft 1 ml : cl,. . . , mk : ‘Tk}/t](t -+ ci) 

ovw 773&d 
rD{el+m;(ml,... ,mk)=e2} : daSSt.{ml : ul,. . .,mk : uk} 

(class E) 

{oIm(ml,... ,mk)=e} em = e (At :: T-1)) (0 1 m(ml, . , . , mk)=e}xS 

Table 1: Typing and evaluation rules for objects. 

the result of sending the message has whatever type 
is specified. The formal rule (class E) appears in 
Table 1. To illustrate (class E) by example, 
a object representing a number, with its own ad- 
dition method (as described in [GR83], for exam- 
ple) might be defined by an expression with type 
e : class t . { ual : num , plus : t + t}. Sending the addi- 
tion message to this object produces a function from 
this class to itself 

e-kplus :classt.{val:num,plus:t-+t} 
-,classi.{vaZ:num,pIvs:t--tt} 

order of methods is given in Ta.ble 2, where the cha.nge 
in method body accounts for the presence of n’. In- 
tuitively, this type manipulation is related to the fact 
that a natural transformation must be applied t,o tile 
type of an argument before it is applied to the ar- 
gument itself. H owever, in our calculus, we + not 
have a basic operation that returns the type of an ex- 
pression. Therefore, we must “precompute” the type 
of a method argument incrementally as we build the 
object itself. 

Therefore, e C= plus e produces another object of the 
same class. 

4.4 An example 

The evaluation rules for objects Fompute the result 
of message send by applying the appropriate method 
to the object itself. The equational axiom at the bot- 
tom of Table 1 is based on this idea, with type appli- 
cation to the constant “empty record type” function 
used to make the applicatiqn type correct. The cor- 
responding axiom for a redefined method is similar. 

There are several equational axioms for manipu- 
lating object expressions, most of them following the 
pattern of record axioms explained in [CM89]. &e 
nontrivial axiom allows us to permute the order of 
methods. In general, an. object which has been .ex- 
tended twice will have the form 

As an example, we will show how to define an ob- 
ject of class point. Recall that a point has I, y and 
moue methods. We will define a point whose x and 
y methods are constant functions, returning integer 
coordinates 20 and yo The move method will return 
a function which, given a pair of integers, returns a 
point with 2: and y coordinates altered accordingly. 
We begin by adding polymorphic constant functions 
(as methods) to the empty object {} : classl.{}. 
Since we will also use constant functions in the defi- 
nition of move, it is helpful to introduce the following 
general form for methods returning constant meth- 
ods, 

{ (0 1 n(ml, . . , mk, n)=e} In’(ml , . . . , mk, 72, n’)=e’} 

c-methm,ii[e] :: = XF <: (xt :: T.((j)\rn). 
~2:(class~.{FtIm:~)).e 

Note that the method body e does not assume the ob- for any sequence ti of method names, sequence 5 of 
ject has a method named n’, since the second method corresponding types, and expression e not containing 
was added later. However, e’ assumes a method E’orxfree. (IfrTa=ml...mkand~=ol...ak,we 
named n. The equational axiom for exchdnging the write ti : ii for ml : u1 . . . , rnk : bk.) For any integer 
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r D {{O 1 n(fiz, n)=e} ) n’(ti, n, n’)=e’} : classi .{h! ( 71 : T, n’ : T’} 

r D ii0 1 n(m, ,,J=,) 1 nf(m, n, n’)=etj = ((01 n’(% n, n’)=e’l I 4% n, n’)= 
n’ not among r7r, n 

A G <: (A t :: T.()\%nn’).e (it :: T.QGt 1 n’ : T’))] 

Table 2: Equational rule for permuting methods. 

expression e without F or 2 free, the constant func- 
tion c-mefh,,,[e] h<as the following “bounded poly- 
morphic type.” 

v F <: (xt :: T.(o\rn). 
(classt.{Ft ] ??I: a}) --+ inI 

Therefore, by the object extension rule, the object 

with method 2 ret,urning the integer coordinate ze 
has type classi. (2 : int}. This object may he, ex- 
tended with a constant y method returning integer 
coordinate ye. 

PZY :: = {({}I x(x) = c-meth,,jnt[xo] 

I I y(xclvj = c-naelh(,y),(intint)[YOl 
I 

This gives us an object with two integer methods. 
It it useful to make several observations about the 

object p,,,. First, note that the first method,added, 

x, “expects” to be passed an object with only one 
method, while the second method expects both 2 and 
y. This is indicated by the lists of method names in 
t.he object expression. If we send the message y to 
p,,,, the the result, may be computed directly using 
the equa.tional rule at the bottom of Table 1. How- 
ever, if we send the z message, then we must first 
permute the order of methods using the equational 
rule on Table 2. This rule changes the type of the 
method body for x so that the function may be ap- 
plied to any object with at least the two methods z 
and y. We now continue the example by adding a 
moue method to ~,r,~. 

The move rnethotl for p,,, will be a polymorphic 
function of type 

VF <: (X1 :: T.{)\xymove). 
classt.{F~ ] z: inl, y : i&, move : in1 x int dt} 

- int x in2 i 

since mo’ue must map any object with x, y, mave 
and additional met,llods to another object of the same 
type. An appropria.te method body for mozle is given 
at t.he top of Table 3. This function takes any object 

with x, y and move methods and replaces the x and y 
methods by constant functions returning new coordi- 
nates. Note that the new coordinates are calculated 
by sending x and y messages to the object and in- 
crementing the results. We obtain a point object by 
adding this method to the object p,, 

Pi : : = {pry 1 move(x, y, move) = move-meth} 

To complete the example, we will compute the value 
of pl e= move in Table 3. Thus pt + move is a func- 
tion which, given a displacement d : inl x int, returns 
an object which is identical to ~2, but with x and y 
coordinates incremented by the first and second com- 
ponents of d. 

One very important fact about this calculation is 
that if we had a more “specialized” kind of point pt’, 
with any number of additional methods, the same cal- 
culation would give us a new point identical to pt’, 
but with z and y methods replaced by constant func- 
tions returning new coordinates. It is exactly this 
uniform behavior of methods, guaranteed by the typ- 
ing rules, that allows us to inherit move from pt and 
use it on extensions of pt. 

5 A translation of objects into 
records 

The object and class expressions introduced in the 
previous section may be interpreted in the calculus 
with records and recursive type definitions summa- 
rized in Appendix B, in the sense that under an ap- 
propriate syntactic translation, all of the typing and 
equational rules for objects are derived rules of the 
record calculus. Although we have not studied the 
semantics of the target record calculus when recur- 
sive type declarations are allowed [CM89], the calcu- 
lus i’s close enough to other systems so that semantic 
soundness seems very likely (see [BTCGS89]). How- 
ever, as ‘outlined in Section 6, this translation does 
not respect the natural subtyping relation on classes. 
Thus a semantic account of class subtyping remains 
an open problem. 

The translation into records is syntax-directed, 
proceeding by induction on the formation of an ex- 
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moue-meih :: = X F <: (At :: T-Q)\2 y moue). 
Xo:classt.{Ft] z : id, y : inl, mwe : inI x inl it} . 

A d : int x int. 
((0 + ~(2, y, move)=c-meth[(o + 2:) + fkt d]} 
ty(z,y, l,rotle)=c-),leth((oe=y) + snddj) 

pt (: move = (pzy 1 move(z, y, move) = moue2neth) X= moue 

= (move-meih) (At :: T.(j)) pl 

= Ed : int x id. 

{{pi +-- t(z, y, moue)=cmet/~~[(pt X=x) + fst dj} 

- y(z, y, move)=c-meth[(pt X= y) + sn$ dj} 

Table 3: Move method body and example calculation. 

pression. The transla.tion of an object is essen- 
tially a record containing the methods of the object. 
More precisely, we translate the empty object to the 
empty record, and {el 1 m(ml, . . . , mk, m)=ez : F} to 
the record expression (Trans,,F(el) 1 nt=ez), where 
~rnnS~:F is a translation which makes sure that the 
type of each method in e is “adjusted” to take the 
presence of the additional method into account. A 
class type expression class t . (~121 : ~1, . . . , ntk : 0~) 
may be interpreted as t.he recursive type expression 

pt.(TTq :t-+q,.. .,?nk :t+uk) 

Note however that we may select components directly 
from a record of this type, whereas message send only 
gives us “indirect” access to the methods of an ob- 
ject. This is the main reason why the translation of 
objects into records does not respect the natural sub- 
typeordering on class types. The translation becomes 
slightly more complicated in the presence of record 
type variables (which must also be translated), but is 
essentially routine given the development of [CM89]. 
Details are omitted from this conference paper. 

6 Subtyping 

The subtype relation on classes is rela.t.ively subtle. 
However, since ordinary bounded quantification is not 
the only way to define polymorphic functions over 
all classes of a certain form [CCH+89], our ability 
to write useful programs is not as dependent on the 
subtyping relation as might at first appear. By anal- 
ogy with record types, one might think thc7.t if one 
class type is obtained from another by adding meth- 
ods, this should be a subclass. However, consider the 

classes 

A : :‘= classt.{z : int, y : int, plus : t --+1} 
B ::= classt.{z:inl,plus:t~2} 

Should we consider A <: B? The bottom line is that 
we may only adopt A <: B if, in any context, any 
expression of type B could safely be replaced by an 
expression of type A. But consider the expression 
o (: plus u, where o : 13. If the plus method for some 
o’ : A is implemented by using both I and y methods. 
then it certainly does not make sense to replace the 
fiist occurrence of o by o’:A. Thus A <: B is unsound. 
On the other hand, it certainly seems reasonable that 
any cla.ss of the form 

class i . { . , pr’inl : string, . . } 

should be a subtype of printable : : = class t.{pnnt : 
shing}. This would be useful, for example, in writ- 
ing a print queue which collects printable 0bject.s and 
prints each one in turn (each using its own print 
methpd). 

This example raises an important issue regarding 
the difference between the natural subtyping relation 
on classes and subtyping on recursive record types. 
For example, a class with print, method might be in- 
t&preted, under the translation.mentioned above, as 
the recursive record type 

R ::= ~t.(2::t~a,print:t-string) 

while the class print&/e would be interpreted as 

pGIt.lnble-rcff : : = p t.((pri& : t - siring)) 

Under the accepted notion of subtyping for recur- 
sive record types [see Appendix R), we do noi. have 
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R <: prinfnble-red. (This is similar to the A <: B ex- 
ample above.) This illust.rates that in semantic motl- 
els of the calculus of 0bject.s and classes, it is impor- 
tant to take seriously the fact that methods may not 
be selected from objects, only applied to t,he object 
itself. For without this consideration, the expected 
subtyping relation on classes cannot be semantically 
justified. 

7 Conclusion 

We have developed a preliminary function calculus 
with objects and classes, and justified the typing rules 
by translation into a more commonly studied calcu- 
lus which is believed sound. Although we may ex- 
plain method specialization using the more familiar 
framework of recursively-defined record types, seman- 
t,ic justification of reasonable subt,yping rules seems a 
difficult open problem. 

The calculus of objects and classes is presented us- 
ing record type expressions from the record calculus 
of [CM89]. This is convenient when it comes to trans- 
lating objects into records, but from a programming 
point of view it seems unnecessarily compfex. In fu- 
ture work, it might be useful to simplify t,he language 
to those type expressions that are absolutely neces- 
sary to program realistic object-oriented examples, 
and eliminate records in favor of objects. 

The main long-term objectives of this work are to 
provide a basis for reasoning about object-oriented 
programming languages, and to design flesible poly- 
morphic type systems. In future work, it seems 
worthwhile to consider languages with different sets of 
basic operations, in hopes that we could more easily 
guarantee that the meanings of expressions have the 
types outline here, without requiring as much type 
information in the syntax itself. Although type infer- 
ence algorithms might help, it seems more useful to 
take up the connection with natura.1 transforma.tions 
in earnest and define a language in which applica- 
tion of natural transformation is a basic operation. 
Or, since many of the t.ype functions do not induce 
functors (i.e., do not respect subtyping), a treatment 
based on presheaf categories seems more promising. 
This might alleviate much of the complication and 
could lead to a more elegant language. Another re- 
search direction is to t,ry to adapt, the typing concepts 
presented here to a prototyping-based language such 
as Self. It is hoped that some of the optimizations 
achieved through dynamic typing in [CU89], for ex- 
ample, could be gua.rantecd by a static typing disci- 
pline along the lines suggested here. 
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A Summary of Cardelli- 
Mitchell record operations 

A.1 Introduction 

This appendix contains an intuitive summary of the 
record operations presented in [CM89]. The general 
idea of [CM891 is to extend a polymorphic type sys- 
tem with a notion of subtyping at all types. Record 
types a.re then introduced as specialized type con- 
structions with some specialized subtyping rules. 

A.2 Record values 

A record value is essentially a finite map from labels 
to values, where the values may belong to different 
types. Syntactically, a record value is a collection of 
fields, where each field is a labeled value. To cap- 
ture the notion of a map, the labels in a given record 
must be distinct. Hence the labels can be used to 
ideutify the fields, and the fields should be regarded 
as unordered. This is the notation we use: 

0 the empty record. 
(x = 3, y = true) a record with two fields, 

labeled x and y, and 
equivalent to (y = true, x = 3). 

There are three basic operations on record values, 
extension, restriction, a.nd extraction. These have the 
following basic properties. 

Eziension (r/z = u) adds a field of label x and value a 
to a record T, provided a field of label x is not already 
present. This restriction will be enforced statically 
by the type system. The additional brackets placed 
a.round the operator help to make the examples more 
rexlable; we also write (T]X = a/y = 6) for ((r]~ = 
a)ly = 6). 

Restriction 7*\2 removes the field of label z, if any, 
from t,he record r. We write r\xy for (r\z)\y. 

Extraction r.x extracts the value corresponding to the 
la.bel z from the record r, provided a field having 
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((z = 3)]y = true) = (x = 3, y = true) extension 
(z = 3,y = true)\y = (x = 3) restriction (canceling y) 
(z = 3, y = drue)\z = {z = 3, y = true) restriction (no effect) 
ix = 3,y= t7wej.i = iii 

invalid extension 
invalid extraction 

extraction 

Table 4: Example record expressions 

that label is present. This restriction will be enforced 
statically by the type system. 

We have chosen these three operations because 
they seem to be fundamental constituents of more 
complex operations. Some examples are given in Ta- 
ble 4. 

Some additional operators may be defined in terms 
of the ones above. 

Renaming r[x +. y] dsf (r\xly = r.x) changes the 
name of a record field. 

Overriding (r +-- x = u) d2f (r\xlx = a). If z is 
present in r, replace its value with one of a possi- 
bly unrelated type, otherwise extend r with x = a 
(compare with [Wan89]). Given adequate type re- 
strictions, this can be seen as an upda.ting oper- 
ator, or a method overriding operator. We write 
(r t x = a, y = b) for ((r t x = u) + y = b). 

It is clear that any record may be constructed from 
the empty record using extension operations. In fact, 
it is convenient to regard the syntax for a record of 
many fields as an abbreviation for iterated extensions 
of the empty record, e.g., 

(x = 3, y = true) d2f ((()1x = 3)ly = true). 

This approach to record values allows us to express 
the fundamental properties of records using combina- 
tions of simple operators of fixed arity, as opposed to 
n-ary operators. Hence we never have to use schemes 
with ellipses, such as (21 = or, . . . . z,, = a,), in our 
formal treatment. 

Since r\x = r whenever r lacks a field of label 2, we 
may write (z = 3, y = true) using any of the following 
expressions: 

(()1x = 31~ = true) = ((()\xIx = 3)\yly = true) 
= (0,x = 3, y = true) 

The latter forms match a similar definition for record 
types, given in the next section. 

A.3 Record types 

In describing operations on record values, we made 
positive assumptions of the form “a field of label x 
must occur in record 7” and negative assumptions of 
the form “a field of label z must not occur in record 
1”‘. These constraints will be verified statically by the 
type system. To accomplish this, record types must 
convey both positive and negative information. Posi- 
tive information describes the fields that members of 
a record type must have, while negative information 
describes the fields the members of that type must 
not have. Within these constraints, the members of 
a record type may or may not have additional fields 
or lack additional fields. It is worth emphasizing t.hat 
both positive and negative constra.ints restrict the el- 
ements of a type, hence increasing either kind of con- 
straint will lead to smaller sets of values. The smallest 
amount of information is expressed by the “empty” 
record type (1. Tl ie “empty” record type is empty 
only in that it places no constraints on its illembers 
- every record has type ((1, since all records have at 
least no fields and lack at least no fields. Some es- 
amples are given in Table 5. 

As with record values, we have three basic opera- 
tions on record types. 

Extension((RIx : A)) This type denotes the collection 
obtained from R by adding + fields with values in A 
in all possible ways (provided that none of the ele- 
ments of R have 2 fields). More precisely, this is the 
collection of those records (rlt = a) such that r is in 
R and a is in A, provided that a positive type field 
zr is not already present in R (this will be enforced 
statically). We sometime write (Rlz : Aly : EQ for 
(((Rjx : A) Iy : B). 

Restriction R\x This type denotes the collection ob- 
tained from R by removing the field 3: (if a.ny) from 
all its elements. More precisely, this is the collection 
of those records r\x such that r is in R. We writ,e 
R\xy for (R\x)\y. 

Extraction R.x This is the type associated to label 
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0) the type of all records. 
Contains, e.g., () and (z = 3). 

o)\x the type of all records which lack a field labeledz. 
E.g., 0, (y = true), but not (x = 3). 

(x : Id, y : Bool)) t1 le ype of all records which have at least fields t 
labeled 2 and y, with values of types Int and Bool. 
E.g.,(z. = 3,~ = true), (z = 3,y = true,2 = str) but not (z = 3,y = 4), (z = 3). 

(x : Jntj)\y the type of all records which have at least a field 
labeled 2 of type Int, and no field with label y. 
E.g.,(z = 3, z = str), but not (z = 3,y = true). 

Table 5: Example record type expressions 

((z : Int))\yyly : Bool] = (x : Int, y : Bool) extension 
(x : Int, y : Bool)\y = (z : Int)\y restriction (canceling y) 
(x : Id, y : Bool))\z = (z : Int, y : Bool)\z restriction (no effect) 
(x : lnt, y : Bool)).z = Int extraction 

((0 lx : Bo4 invalid extension 
(x : Int).y invalid extraction 

Table 6: Record type extension examples 

x in R, provided R has such a positive field. This 
provision will be enforced statically. Again, several 
derived operators can be defined from these. 

Renaming R[x, y] dsf ((R\xly = R.z) changes the 
name of a record type field. 

Overriding ((R e x : A) dsf (R\xlx : A) if a type 
field 3: is present in R, replaces it with a field x of 
type A, otherwise extends R. Given adequate type 
restrictions, this can be used to override a method 
type in a class signature (i.e. record type) with a more 
specialized one, to produce a subclass signature. 

One crucial formal difference between these opera- 
tors on types and the similar ones on values is that 
()\y # (1, since records belonging to the “empty” 
type may have y fields, whereas ()\y = (). In forming 
record types, one must always make a field restriction 
before a type extension, as illustrated by example in 
Table G. 

It helps to read the examples in terms of the collec- 
tions they represent. For example, the first example 
for restriction says that if we take the collection of 
records that have x and y (and possibly more) fields, 
and remove the y field from all the elements in the 
collection, then we obtain the collection of records 
that have 2 (and possibly more) but no y. In partic- 
ular, we do not obtain the collection of records that 

have 2 and possibly more fields, because those would 
include y. 

The way positive and negative information is for- 
mally manipulated is actually easier to understand if 
we regard record types as abbreviations, as we did for 
record values: 

lx : Int, y : Boo]) %f (((o\xlx : Int)\yjy : Boo/) 

Then, when considering {y: BooQ\y, we actually have 

(O\YIY:BOO~)\Y- If we allow the outside positive and 
negative y labels to cancel, we are still left with (I\,. 
The inner y restriction reminds us that y fields have 
been eliminated from records of this type. 

A.4 Subtyping 

The subtyping rules for record types are essentially 
that every record type is a subtype of 0, and the 
subtyping relation respects the type operations of ex- 
tension, restriction a.nd extraction. Writing A <: B 
for A is a subtype of B, we have the following exam- 
ples. 

(x : Int, u : Boolj) <: 0) 
(R/x : A)) <: (SIX : A)) if R <: S <: {)\x 
R\x <: S\z ifR<:S<:() 
R.x <: S.x ifR<:S<:Qlx:A) 

In general, a record type R will be a subtype of an- 
other record type S if every positive constraint (la- 



beled field) associated with R is also a positive con- 
straint imposed by S, and similarly for negative cou- 
straints (fields required to be absent). There are some 
subtleties. For example, (R\zlz : Int) is not necessar- 
ily a subtype of R, and never a subtype of R\x, even 
though this might seem consistent with the point of 
view expressed in [Car88], for example. 

B Summary of full typed cal- 
culus 

B. 1 Overview 

The basic calculus we use is a higher-order typed 
lambda calculus, ‘in the general style of Girard’s F, 
[Gir71, Gir72] d an many subsequent systems. In ad- 
dition to function types and polymorphism, we will 
use recursive type definitions, subtyping and a rela- 
tively elaborate form of record types and operations. 
All of this is quite “standard,” in the sense of being 
syntactically familiar to type theorists, with the ex- 
ception of the record calculus and subtyping. The 
main subtyping notions are primarily due to Cardelli 
[Car88, CW85], with some remnants of [Mit84]. The 
record calculus with subtyping is explored in some 
depth in [CM89], although certain semantic and prag- 
matic questions remain. While many of the syntactic 
aspects of this .calculus will be familiar, the reader 
should not take this as an indication that the se- 
mantics are,well-understood. In particular, the com- 
bination of record operations, subtyping and recur- 
sive types poses a number of mathematical challenges 
However, it seems that’ the bulk of the the problems 
here have been identified and discussed in the liter- 
ature (see, for example,’ [BTCGS89, BL88, CM89]). 
Due to space limitations, we will only summarize the 
basic parts of the calculus. 

B.2 Kinds 

The types and type-producing functions of the cal- 
culus are characterized by kinds, following [Gir72, 
MPS86, BMM89]; kinds are called ix-dew in [Gir72] 
and some subsequent work. The kinds-consist of the 
base kind T, the kind of all types, and kinds of func- 
tions over T. Since we wish- to consider type con- 
structors defined only on subtypes of some type A, 
for example, we will allow “dependent” kinds of the 
form v s < : A ..Ic~, where A :: .ICZ. While we could a.lso 
introduce product kinds ~1 x ~2, we have no imme- 
diate need for them in this paper. We write “K kind” 
if n is a well-formed kind expression. 
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B.3 Contexts 

Free variables are given types or kinds using c&e+ 
which are ordered lists of assumptions about vari- 
ables. We write ‘T context” if I’ is a well formed 
context. The basic rules for context are standard, 
with 0 context. We write v :: K to indicate that v 
has kind K, and x : 7 to indicate that 3: has type r. 
Kinded variables are added to contexts using the rule 

r context, K kind 
l?,v :: IE context 

v 6 bm(r). 

We omit the analogous rule for typed variables. 
Since subtyping is a basic notion of the calculus, 

we may assert in a context that a fresh type variable 
denotes a subtype of a given type. It is also useful t,o 
have “subtyping” at higher kinds, with the intuitive 
meaning that <: on kind ~~ 3 n2 is the pointwise 
ordering 

F c:n, a Ic1 G iff vv : Kl.fv <:K3 gv. 

We generally omit subscripts from the subtype rela- 
tion. 

Subtyping assumptions are added to contexts ac- 
cording to the rule 

rbA::tc 

I’, U <: A context 

B.4 Subtyping 

The main typing rule associated with subtyping is 
called subsumption. 

(subsum) 
rDe:U, rDa<:T 

rDe:T 

This rule lets us apply a function f : u -+ T to an 
argument x : u’, whenever cr’ <: B, for example. 

B.5 Function Types 

We have ordinary function types, formed according 
to the typing rule 

(-3 
roA::T, rDB::T 

I?t>A-+B::T 

and polymorphism over all kinds, as in F,. 

w 
r,v :: K.D A :: T 

rDjiV ::tc.B ::T 

In addition, as in [CWSS], we have bounded polymor- 
phism. 

(V bdd) 
I’,u<:At>B::T 

I’r>Vu <: A& ::T 



Introduction and elimination rules defining terms of 
these types are standard and omitted. 

We do not seem to need the so-called F-bounded 
polymorphism of [CCH+89], since most useful cases 
seein to be handled by ordinary bounded quautifica- 
tion over kind T *T. (We have not done a thorough 
study of this point, and it may eventually be neces- 
sary to introduce F-bounded polymorphism.) 

B.6 Record Types 

The “empty” or “universal” record type is written (), 
following [CM89]. 

r context 

r D () :: T 

This type contains all records. 
Additional types of records are formed by adding 

constraints of the form z : T, which assert that all ele- 
ments of this type must have an 2: component of type 
T, and constraints of the form \;c, which assert that 
no elements of this type may have an z component. 

I?DR<: ())\x, I’DA ::T 

r D (RIX : -4) :: T 

FD R-C: (1 

I’DR\x:T 

In [CM89), if R . 1s a type of records, with every record 
guaranteed to have an x component; then R.x is the 
type of all 2 components of records from R. However, 
we do not seem to need type expressions of the form 
R.x in this paper. 

Using equational rules, which we omit, every record 
type of the pure calculus may he simplified to the 
form 

(R\xI\Q.. . 1~1 : Al I .) 

where R is either the empty record type (1, a record 
type variable, or an application beginning with a vari- 
able of some functional kind. It is convenient to 
write (xi : Al,. . ,x1: : Ak) for { (O\X~\Q ( x1 : 
AlI . . . IX:kAk). 

B.7 Record Subtyping 

Every record type is a subtype of the type () contain- 
ing all records. Moreover, subtyping respects record 
type extension and restriction . 

AderivedruleisisthatfromJ?Dal <:rr, . . ..rD 

uk <:?-k wemayderivethat (ml:ol,...,mk:Uk,121: 

Pi,..., nc : pt) is a subtype of (ml : ~1,. . . , mk : Q), 
which may be familiar from [CarSS]. 

B.8 Recursive Types 

Recursive types will be used to describe records which 
contain methods applicable to the records themselves. 
Rather than write recursive types in the common pro- 
gramming language form 

tree = leaf + (1 : tree, r : tree) 

we will use the more concise syntax 

jhi!.leaf+(l:t,r:t). 

The formation rule for record types is 

r, v :: T b u :: T 

l?c.~v::T.c::T 

and the natural subtyping rule for record types 
[Car86, BTCGS89] is 

r, (S <Z t) b u C: 7, rbt::T 
r D (p zt :: TAT) <: (p V :: T.r) 

The usual term formation rules associated with re- 
cursive types are 

b 0 
r D e : bV :: T.u/t]a 

I’Dabse:pv::T.u 

(cl El 
rDe :clV ::?b 

r D rep e : i)HJ :: Ta/t]s 

where abs and rep are names for the isomorphism be- 
tween p v :: T a and [p v :: Tn/t]c. For simplicity of 
notation, we will omit a6s and rep from expressions. 

rdks<:(]\X, r'bA<:B 

r D (RlX : A) C: (sl% : k?) 

rr>R<:s<: 0) 
r D R\X <: s\X 
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