
Parallelism in Logic Programs

Raghu Ramakrishnan
Computer Sciences Department

University of Wisconsin-Madison, WI 53706) U.S.A.
raghuQcs.wisc.edu

1 Introduction

We consider the parallel evaluation of logic pro-
grams. This has been the subject of much research
in the logic programming and, recently, the deductive
database communities. We review this work, and ob-
serve that there is a commonly used measure of par-
allelism based on a top-down evaluation paradigm of
identifying subgoals and answers. To formalize this
intuition, we propose a simple abstract model of com-
putation that makes precise the tension between the

objectives of restricting the computation on the one

hand and extracting parallelism on the other. In
essence, if a subgoal is restricted by bindings gen-

erated in the solution of another, the latter subgoal
must be solved first. This precedence is reflected in
our model of computation by the choice of sideways
information propagation graphs, or sips, which, infor-

mally, describe the order in which the literals in the
body of a rule are to be solved.

Our thesis is that parallel evaluation methods can
be viewed as implementing a choice of sips, a choice
that determines the set of goals and facts that must be
evaluated. Two evaluation methods that implement
the same sips can then be compared to see which ob-
tains a greater degree of parallelism, and we provide a
formal measure of parallelism to do this. It is impor-
tant to understand what is and - more importantly,
perhaps - what is not implied by the statement that

*This work was supported in part by au IBM Faculty Devel-
opment Award, a David and Lucile Packard Foundation Fellow-
ship in Science and Engineering and NSF grant IRI-8804319.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise , or to republish, requires a fee and/or specific permission.

evaluation method M is “more parallel in our model ”
than evaluation method n/. First, our model only al-
lows comparison of methods that fit the sip paradigm
of computation, which is that some choice of sips for
the rules in the logic program is implemented by the
evaluation method. In Section 3, we show that most
proposed methods for parallel evaluation of logic pro-
grams do fit this paradigm; in Section 7 we consider
some methods that do not. Second, we compare the
parallelism obtained by methods when they use the
same sips. Thus, informally, M is more parallel than
n/ if for every choice of sips, it succeeds in obtain-
ing as much or more parallelism. Similarly, when we
say that an evaluation method is “most parallel in
our model”, this does not mean that a faster paral-
lel method cannot be found for a given problem. It
does mean that once we choose to represent a prob-
lem - any problem - as a particular logic program
and make a choice of sips, then the evaluation method
obtains as much or more parallelism than any other
method for evaluating the program according to the
sips. Third, our model implicitly assumes that there
are enough resources to work on all identified subcom-
putations in parallel, and therefore ignores implemen-
tation overheads and resource constraints. Any real
evaluation method (or at least an implementation of
it) must contend with the problem of mapping a com-
putation onto the available resources, and in doing so
must often sacrifice either restriction or parallelism.
This aspect of the computation is not captured by
our abstract model; however, it clearly affects results
obtained using the model.

An important result that we establish is that
transforming a program using the Magic Templates
algorithm [Ra88] and then evaluating the fixpoint
bottom-up provides a “most parallel” implementa-
tion for a given choice of sips, provided that there
are no resource constraints. We emphasize a fun-
damental difference between this approach and top-
down, process-oriented evaluation methods: whereas

@ 1990 ACM 089791-3434/9O/OOOI/O246 $1.50 246

a top-down evaluation method proceeds by creating
processes to solve subgoals, the bottom-up approach
proceeds by applying rules to facts to produce new
facts. Indeed, the bottom-up method has no inherent
notion of a “process”, nor of a “goal”, although we
will establish a correspondence between certain facts
generated in the bottom-up evaluation of a rewrit-
ten program (as per the Magic Templates algorithm)
and goals generated in top-down evaluation methods,
and refer to these facts as goals. This distinction is
significant in terms of implementation overhead.

A number of other issues must be considered when
comparing a bottom-up memoing method with top-
down methods. These include relative implementa-
tion overheads and flexibility, and the use of memoing
for multiple query optimization, incremental evalua
tion, and termination detection. While an investiga-
tion of these issues is beyond the scope of this paper,
we discuss their impact in the full version.

The abstract model also allows us to establish sev-
eral results comparing other proposed parallel evalu-
ation methods in the logic programming and deduc-
tive database literature, thereby showing some natu-
ral, and sometimes surprising, connections. This sug-
gests that our model does indeed capture the informal
notion of parallelism that is used in parallel logic pro-
gramming. Our results shed light on the limitsof the
sip paradigm of computation, which we extend in the
process.

The paper is organized as follows. Following pre-
liminary definitions in Section 2, we survey some pro-
posed parallel evaluation methods for logic programs
in Section 3. In Section 4, we develop a model of
computation that allows us to view a class of evalua-
tion methods based on sips at an abstract level, and
a measure of parallelism that can be used to compare
them. The class includes all the methods surveyed
in Section 3, and several others as well. In Section
5, we present a bottom-up evaluation method based
on rewriting a program, according to the Magic Tem-
plates algorithm, and evaluating the fixpoint of the
rewritten program bottom-up. In Section 6, we com-
pare the parallelism obtained using several proposed
parallel evaluation methods. We consider the limita-
tions of sips in Section 7, and discuss possible exten-
sions. We then discuss some practical considerations
in Section 8 and present our conclusions in Section 9.

2 Preliminaries

The language considered in this paper is that of Horn
logic, and we assume the standard definitions of h-m,
definite clause, etc. We also refer to a vector of terms

as a tuple, and denote it by the use of an overbar, e.g.,
t. Following the syntax of Edinburgh Prolog, definite
clauses (rules) are written as

p :-Ql,...rqn-

read declaratively as q1 and q2 and . . . and q,, implies
p. A logic program is a pair (P, Q) where P is a set of
predicate definitions and Q is the input, which con-
sists of a query, or goal, and possibly a set of facts for
‘Ldatabase predicates” appearing in the program. We
follow the convention in deductive database literature
of separating the set of rules with non-empty bodies
(the set P) from the set offacts, or unit clauses, which
appear in Q and are called the database. P is referred
to as the program, or the set of rules. The meaning of
a logic program is given by its least Herbrand model
[vEK76].

A substitution is an idempotent mapping from the
set of variables of the language under consideration
to the set of terms, that is, the identity mapping at
all but finitely many points. A substitution u is more
general than a substitution B if there is a substitution
‘p such that 0 = ‘p o CT. Substitutions are denoted
by lower case Greek letters 8, CT, 4, etc. Two terms tl
and 22 are said to be unifiable if there is a substitution
u such that a(tr) = a(i2); u is said to be a unifier
of tr and 12. Note that if two terms have a unifier,
they have a most general unifier that is unique upto
renaming of variables.

3 A Survey of Proposed Paral-
lel Evaluation Methods

We discuss several proposed parallel evaluation meth-
ods, focusing on the parallelism that is realized, that
is, what subgoal computations are allowed to proceed
in parallel. The survey in this section motivates our
development of an abstract model of computation to
compare the parallelism in different methods. We de-
velop the model in the next section; it abstracts the
behaviour of a class of methods called “sip-methods”.
The methods discussed in this section all fall into this
class, unless otherwise noted.

One of the objectives of this paper is to identify the
similarities and differences in proposed parallel eval-
uation methods, both top-down and bottom-up, and
to this end, we provide a uniform and sufficiently de-
tailed description of the major approaches. While the
relationship between bottom-up and top-down eval-
uation methods has recently been studied widely in
the deductive database community, the more compli-
cated nature of parallel evaluation methods has made

247

the connections harder to see. Indeed, it has been re-
marked that the work on parallel evaluation in the
logic programming community, typically top-down
methods, is not likely to be useful in the context of
bottom-up parallel evaluation [CW89]. We think that
on the contrary much can be gained by a careful study
of the literature of both top-down and bottom-up
approaches. There is a strong relationship between
the structure of top-down and bottom-up computa-
tions, as demonstrated in IBr89, Ra88, Se891 and aIso
[BMSU86, BeR87, Ul89b, Ul89a, Vi89, KL86, KL88],
etc. While the details of an implementation of a top-
down method would differ considerably from that of a
bottom-up method, we believe that many ideas, such
as schemes for structure-sharing, are likely to work in
either approach.

The parallelism in logic programs is often broadly
classified into And-, Or- and Stream parallelism.
And-parallelism refers to the parallel solution of sub-
goals generated from literals in the same rule body.
Or-parallelism refers to the parallel evaluation of dif-
ferent rules that unify with a given goal. Stream-
parallelism refers to the eager processing by a sub-
goal (the “consumer”) of an argument value, such as a
list, that is being constructed by another subgoal (the
“producer”). We will restrict our attention to the first
two, since the last typically forces us to consider ad-
ditional properties of the computation such as deter-
minacy and structure-sharing in some detail. Most
of the methods that we discuss in this section pro-
ceed by identifying subgoals and creating processes
to solve them. However, there has been some work
on achieving similar results through bottom-up fix-
point evaluation, and we discuss this work as well.

3.1 The And-Or Tree Model

An And-Or tree for a logic program has the query as
the root node, which is an Or-node. An Or-node is
always labeled with a goal, and has one child And-
node per rule whose head unifies with this label. The
label of a child And-node is the corresponding rule
with the unifying substitution applied to it. The uni-
fying substitution is used to label the arc from the
parent Or-node to this And-node. An And-node has
at most one child Or-node per body literal in its la-
bel. The label of a child Or-node is a variant of the
corresponding body literal.

The And-Or model presented in [Co831 builds And-
Or trees by generating a process for each node in a
top-down order. The query is the root node. The chil-
dren of an Or-node are generated as described above.
We now describe how the children of an And-node
are generated: A child Or-node is created for the

left-most body literal in the label of the And-node.
The arc to the Or-node is labeled with the identity
substitution. For each answer, which can be viewed
as a substitution 0, to the Or-node corresponding to
a body literal, an Or-node is generated for the next
body literal. If the path from the And-node to the
first Or-node is labeled with 8, the label of the sec-
ond Or-node is the corresponding body literal with
the substitution cr@ applied to it. This substitution is
used to label the arc to it.

At any time, an And-node has at most one child
Or-node per body literal in the label. Solutions to
Or-nodes are saved as they are generated, and And-
nodes are solved by generating all combinations of
children through backtracking.

Much work has been done on this model; in par-
ticular, the ordering could be a partial order and sib-
ling Or-nodes corresponding to different body liter-
als could be generated simultaneously. In general,
this creates problems if these children share variables.
Therefore sibling Or-nodes are generated simultane-
ously only if they do not share variables. Since a
variable that is shared between the corresponding lit-
erals could be bound to a ground term by a preceding
Or-node, detecting such opportunities for solving the
children of an And-node in parallel is a difficult prob-
lem. Several researchers have addressed this issue,
e.g., [De84, CDD85]. A no th er area of research has
been to identify intelligent ways to backtrack past
predecessor nodes when a node fails (i.e., to recog-
nize that alternative solutions to these predecessors
would not enable the given node to succeed, and thus
avoid generating further solutions to them.) Conery
also suggested schemes for dynamically re-ordering
the nodes in the And-Or tree [Co83]; these cannot
always be described as sip-methods, and this is dis-
cussed further in Section 7.

An important restriction of the And-Or model is
to simply avoid Or-parallelism by generating the chil-
dren And-nodes of an Or-node one at a time. This
restriction ensures the property that every variable
instance in the computation has a unique binding at
any time. (With Or-parallelism, recall that an Or-
node saves multiple answers; these provide multiple
bindings for the variables that appear in it.) This typ-
ically results in the loss of much parallelism, but re-
duces implementation overhead (e.g. [De84, HR89]).

3.2 F’ull Or-Parallelism

Full Or-parallelism is best understood in terms of
SLD-irees. The SLD-tree for a logic program has the
query as the root node. Every node in the tree is a
conjunction of goals. A node has one child for each

248

resolvent obtained by resolving one of the goals in the
node with some rule in the program. The leaves are
empty nodes. The conjunction of substitutions along
a path from the root to a leaf, applied to the query,
yields an answer.

Full Or-parallelism consists of exploring each
branch of 1 the SLD-tree in parallel, as initially
proposed in [CH83]. Thus, if we have a node
“p1(5,X),p2(X,Y)” and two rules “pl(U, V) :-
ql(U, V).” and ‘pl(W, 2) :- q2(W,Z).“, there are
two children for this node: “ql(5, V), p2(V, Y)” and
“q2(5,Z),p2(Z,Y)“. This leads to an unnecessary du-
plication of effort - with no real gain in parallelism
- in the repeated solution of the goal p2(Z,Y)?.

A solution to this problem is to solve ql(5, V)? and
q2(5, Z)? in parallel, and to then solve the p2 goal
for each binding of the first argument in parallel. We
describe the solution in the general case in terms of a
modified And-Or tree, with the only difference being
that at any time, an And-node could have more than
one child Or-node corresponding to a given body lit-
eral. As before, for the left-most body literal in its
label, an And-node has one child Or-node per rule
whose head unifies with it, and the arc to this Or-
node is labeled with the unifying substitution. The
Or-nodes for every other body literal are generated as
follows: When a child Or-node for the ith body literal
returns an answer, which can be viewed as a substi-
tution u for the variables in it, this is composed with
the substitution, say 8, on the arc to this Or-node and
the resulting substitution 00 is applied to the i + 1st
body literal in the label of the And-node. This re-
sults in a goal, generated from the i + 1st literal, and
one child Or-node is created with this label. The arc
from the And-node to this Or-node is labeled with
the substitution 0~.

This is indeed how the Or-parallel model proposed
in [CH83] is implemented, as described in [CH84]. In
essence, rules are solved left to right, and for each
goal, all rules with which it unifies are solved in par-
ailel. Notice that, except for the root, each Or-node is
created in response to the answer to another Or-node;
the creation of And-nodes can be avoided by directly
creating tokens for all the Or-nodes that are its left-
most children. Thus, with each Or-node in the tree,
we can associate a set of Or-nodes that were gener-
ated because of answers to it. Let us call this the set
of successors. The computation proceeds by creating
“tokens” in a top-down order for each Or-node in the
modified And-Or tree. A token contains enough in-
formation to generate tokens for all its successors. (In
particular, this includes information about the label
of the parent And-node; this is achieved by means of
a “continuation”, and we refer the reader to [CH84]

for details.)
Note that there is no And-parallelism; a rule is al-

ways solved from left to right.

3.3 The Reduce-Or Model

Kale observed that many of the proposed evaluation
methods were either incomplete or did not extract all
available parallelism, or both. This was the motiva-
tion for the development of the Reduce-Or evaluation
model. It is in effect a combination of the And-Or
and the fully Or-parallel models as we have described
them.

The model is essentially the fully Or-parallel model
extended to solve And-nodes according to a partial
order, rather than a total left to right order, thereby
also exploiting And-parallelism. The only change
concerns the generation of the children Or-nodes of
an And-node. A partial order is associated with each
rule (and thus, any And-node that it labels). Con-
sider an And-node, and the associated partial order
over the body literals of the label. A node with
no predecessors is treated like a left-most literal in
the fully Or-parallel model - one Or-node is gener-
ated for each rule that unifies with it, and the arc
to this Or-node is labeled with the unifying substi-
tution. Consider a body literal p with predecessors

Plr..*r pk in the partial order. Let Bi,i = 1,. . . , k be
an answer substitution for pi, and let the composi-
tion 8 = 01,. . ,8k be consistent. Then, an Or-node
is generated for the goal ~0, and the arc from the
And-node to this Or-node is given the label pb’. Kale
does not insist that sibling Or-nodes that correspond
to different body literals and that are generated in
parallel should contain no shared variables. Instead,
any conflicts are resolved by explicitly composing an-
swer substitutions for all the body literals, one per
literal. In effect, this corresponds to taking a join on
the body of a rule to generate an answer fact for the
head predicate.

We conclude this discussion of top-down methods
by formally defining And- and Or- parallel steps in
terms of And-Or trees.

Definition 3.1 An And-parallel step is the simulta-
neous generation of two goals that correspond to dif-
ferent body literals in the label of an And-node.

Definition 3.2 An Or-parallel siep is the simultane-
ous generation of goals 91, . . , gk from a given goal g
by unifying g with the heads of two different rules
and generating 91, . . . , gk by instantiating body liter-
als with no predecessors. The generated goals must
not all be obtained from just one of the rules.

249

We assume that once a goal is “generated”, it can
be processed immediately. (In effect, a goal is consid-
ered to be generated when its processing begins.)

3.4 Bottom-Up Methods

The literature on bottom-up evaluation is extensive,
and we do not propose to cover it in detail here. We
refer the reader to surveys and expositions presented
in [BaR86, Br89, NR89, Ul89a]. We note that while
most of this literature deals with the implementation
of Datalog, which is a subset of logic programs with-
out function symbols, recent proposals treat full logic
programs [Ra88, Se89]. We will examine one of these
proposals ([Ra88]) in detail later. The following brief
discussion should be supplemented by consulting Sec-
tion 5.

The fundamental operation in bottom-up ap-
proaches is the application of a rule to a set of facts
to generate new facts, which is similar to the use of
the Tp operator to construct the least fixpoint model
[vEK76]. An obvious drawback is that all conse-
quences of the program are generated, not just the
facts relevant to processing the given query. From
our presentation of the top-down methods, it is clear
that these methods restrict the computation by prop-
agating bindings from the query as the construct the
And-Or trees in top-down order. The essential idea in
most bottom-up methods is to combine a top-down
generation of goals with a bottom-up generation of
facts. In general, this requires that all generated goals
and facts should be retained and the process repeated
iteratively until no new goals and facts are generated.

hlost of the proposed methods use a top-down con-
trol strategy to generate goals, e.g., [DW87, Lo85,
Vi89]. Some use a graph structure over the rules
of the program for this purpose, e.g., [KL86, KL88,
vG86]. It has been shown however, that this can be
achieved through source-to-source program transfor-
mations, and this is the approach that we will pursue
[BMSU86, RLK86, BeR87, Ra88, Se89]. We believe
that this has significant advantages to offer in terms
of uniformity, overheads, and implementation alter-
natives.

4 A Computation Model

\Ve consider how the evaluation of a logic program
can be formalized at an abstract level in a way that
allows us to make precise the degree of parallelism.
We emphasize that the model we develop in this sec-
‘tion is not an execution model, in that it does not
specify how to evaluate a program, and should not

be confused with execution models such as And-Or
models or the Reduce-Or Process Model. Rather, it
is a formal model in which we can abstractly represent
computations that correspond to execution of a logic
program using some execution model (i.e., evaluation
method).

We begin by observing that while the semantics of
a logic program is purely declarative in that it does
not depend on how the program is evaluated or on
any concept of a program state, there is a natural
notion of state associated with any execution of a
logic program.

The following definitions provide a starting point,
and are subsequently refined: The state of a program
execution is a pair (F, g), where 9 and 6 are sets
of facts and goals, respectively. The initial state is
defined by F = set of given facts in the program (the
EDB, in database terminology, or the set of rules
with empty bodies), and G = the initial query. A
computation is a progression from the initial state to a
final state, in which F contains all facts in the answer
to the query, through a sequence of transitions from
one state to another.

To complete our model of computation, we must.
define the notion of a state transition. Intuitively,
we seek to describe a single step of computation. To
do this, we must make explicit certain assumptions
about the class of evaluation methods that we con-
sider, and we do this in the following subsection.

4.1 Sip-Met hod

The class of evaluation methods that we consider pro-
ceed by generating subgoals and facts (that are solu-
tions to some of the subgoals), using the logic pro-

gram (p, 9). 1 n order to account for the restrictions
placed upon the sets of goals and facts that can be
generated at any given time by different evaluation
methods, we will assume a “hidden state” XFI. At
any point in the computation, the state is a triple
(F’, G, H). A new fact or goal can be generated by
the use of a rule in P on FUG, subject to restric-
tions imposed hy the hidden state and the evaluation
method.

Initially, the set of facts F consists of the EDB
facts in Q. The set of goals G contains the given
query, also in Q. (The hidden state X is assumed to
be properly initialized.) New facts can be generated
as follows.

Consider a rule: r : p :- ~1, . , q,,.
We can generate a new fact ptl by applying
a substitution 0 such that for i = 1,. . . , n:

250

1. there is a fact di in 3 and a substitu-
tion ui such that qib’ = diui, and

2. there is a goal c? in g and a substitu-
tion (TO such that p0 = CUO.

In most evaluation methods, only the substitution

4 = mw((p, a, . . . , qn), (c, 4, . . . , d,)) is applied,
since applications of other substitutions only gener-
ate facts that are subsumed by the fact pb. We will
assume this in the rest, of this paper, and also make a
similar assumption in the following description of how
goals can be generated. The effect of the hidden state
‘H and the evaluation method M - which we do not
specify in further detail - is to allow only a subset
of the above new facts to be generated. Generated
facts are added to 3; further, a (newly generated or
previously known) fact f E 3 can be discarded if it is
subsumed by another fact in 3. The cost of detecting
that a fact is subsumed may sometimes override the
gains, and some methods do not discard such facts;
we will not require this as part of our definition of sip
methods. However, not discarding subsumed facts
may lead to unnecessary derivations of new facts.

To specify how goals can be generated, we must in-
troduce the notion of a sideways information passing,
or sip, graph. We define a sip graph for a rule to be
a partial ordering of the body literals. 1 New goals
are generated by invoking a rule, in a top-down sense,
with some known goal. Further, they literals in the
body of a rule are solved in some order, more gener-
ally a partial order. Each literal is solved by gener-
ating a subgoal from it and then obtaining solutions
to this subgoal. In generating a subgoal from a lit-
eral, the goal with which the rule was invoked and the
solutions obtained to literals that precede the given
literal in the sip partial order are all used to bind vari-
ables and thereby restrict the new subgoal. Thus, to
generate a subgoal from a literal qk, we need the goal
with which the rule was invoked, and the facts (solu-
tions) corresponding to literals that precede it in the
sip order.

Formally:

Let the predecessors of qk be the literals
qi,. . ,qj, let C. E Q and {di,. . ., dj} c 3,
and
let 0 = mgu((p,qi,...,qj),(c,di,...,dj)).
Then, we can generate the goal qkB?.

Generated goals are added to G, and as for facts, sub-

sumed goals can be discarded. The effect of the hid-
den state 3-1 and the evaluation method M is again to

1 We will assume that the choice of sips is made for us -
making a good choice is a hard problem, and orthogona1 to the
results in this paper.

allow only a subset, of the new goals to be generated.
Henceforth, we will refer to the above operations as
simply “applying a rule” (in a given state, according
to a given evaluation method) to generate a fact or
a goal. In a given state, we will in general be able
to apply several rules simultaneously to produce new
goals and facts. Indeed, the same rule could be ap-
plied to produce several new goals and facts from the
sets 3 and G. Thus, a state transition can add a set
of facts or goals, each of which can be generated by
a single application of a rule to 3 U G.

We now summarize our description of sip-methods.

Definition 4.1 Sip-Method
Consider a logic program (P, Q) and a choice of sips
for the rules in P. A sip-method is defined to be an
evaluation method that generates only facts and goals
that can be generated from Q by applying the rules
in P in some order according to the chosen sips un-
der the assumption of a hidden state that disallows
the generation of no fact or goal. A subsumption-
checking sip-method is one that discards subsumed
facts and goals as soon as possible. A complete (resp.
subsumption-checking) sip-method is one that com-
putes maximal sets of facts and goals, as per the defi-
nition of a (resp. subsumption-checking) sip-method.

The maximal sets of goals and facts that may be
computed are independent of the details of the eval-
uation method (and the associated encoding of the
hidden state), and are determined by the program
and the sips. If the evaluation method is to guaran-
tee all answers that follow from the least Herbrand
model semantics, all these goals and facts must be
generated, since it is otherwise possible to construct
inputs such that some answer is not generated. This
motivates the definition of complete sip-methods; we
note that not all proposed evaluation methods are
complete.

While a broad class of evaluation methods can be
viewed as sip-methods, it is important to note that
methods that allow “coroutining” -the computation
of two goals is interleaved, and typically, the bindings
generated by each are used to restrict the other -
cannot be considered sip-methods. We pursue this
point further in Section 7.

4.2 A Summary of Our Model of Com-
putation

We now present the formal definitions of states, tran-
sitions and computations.

Definition .4.2 Consider a program (P, Q)

251

The slate of a nrogram execution is a triple
(7, G,3t), where 3 and G are sets of facts and
queries, respectively, and 7-L denotes a hidden
component of the state.

The initial stale is defined by F = set of given
facts in the program (the EDB, in database ter-
minology, or the set of rules with empty bodies),
and G = the initial query.

A state transition according to evaluation
method M in state S1 = (?=I, Gl,‘?fz) changes
the state to Sz = (Tz, Gz, ‘Hz), and is denoted as
&t-MSZ.

& = FlU {flj is a fact that can be generated
from Tl U G1 in hidden state 311 according to
method M by a single rule application.}

& = (ilU (gig is a goal that can be generated
from ,Tl U G1 in hidden state ?fl according to
method M by a single rule application.}

Note that U can lead to facts or goals being dis-
carded because they are now subsumed. Further,
we assume that the hidden state 7-f~ is obtained
by suitably updating ‘El to reflect the behaviour
ofM.

A final state is a state such that no new facts or
goals can be generated and no rule applications
change the hidden state.

b A computation sequence according to method M
is a progression from the initial state to a final
state, through a sequence of state transitions ac-
cording to M from one state to another.

The length of a computation sequence is the num-
ber of state transitions in it.

According to our model, in a given state, there is
a unique transition according to a given evaluation
method, and thus a unique computation sequence for
a given program and choice of sips. This essentially
reflects the most optimistic situation, where all possi-
ble generations of new goals and facts are carried out
simultaneously at each st.ep, and makes the assump-
tion that there are no resource constraints. It is worth
remarking that the sets F and 6 may not change in
a state transition, and only the hidden state 31 is up-
dated. This corresponds to the situation that all the
facts and goals that can be generated are previously
known, and the only effect of generating them is to
possibly make them visible in some subcomputations
where they were not visible earlier. The details are
germane to how ?i is to be updated; we do not con-
sider this updating process in our abstraction of a
computation.

In subsequent sections, we denote the hidden state
as T for evaluation methods in which all goals and
facts are visible to all computations. However, in
the following example, we simply omit the hidden
state, for simplicity, with the understanding that it is
manipulated appropriately by the evaluation metjhod
and influences the generation of the computation se-
quence.

Example 4.1 We now present an example that illus-
trates our model of computation by listing the compu-
tation sequences in our model for execution according
to several different evaluation methods. We use the
following program; the only rule with a body that
contains more than one literal is the first, and we as-
sume that the chosen sip leaves the first two literals
relatively unordered but before the third.

p(X, I’) :- bl(X), b2(Y), b3(X, Y, 2).
p(X,Y) :- 64(X, Y).
bl(5).
b2(6). b2(7).
b3(5,6,8). b3(5,7,9).
b4(1,2).

Pm w

We mark goals by a terminal “?“, and represent the
sets F and G as a single set of goals and facts. For
brevity we use the notation “U{. . .)” to denote a state
in a computation sequence that is obtained by adding
the set between { and } to the set in the previous
state in the sequence (and updating the hidden state,
which is not shown).

Prolog Prolog is a left-to-right evaluation method
that does not exploit any parallelism. Its computa.-
tion sequence is:
{p(U, V)?} l- U{bl(X)?} I- U(bl(5)) !- U{b2(Y)?}
I- U(b2(6)} I- U{b3(5,6, Z)?}

I-- W3(5,6,8))
I- U{p(5,8)} I- U{b2(7)} l- U(b3(5,7, Z)?}
I- u{b3(5,7,9)} I- u {p(5,9)} I- u{b4(X, Y)?}

I- W4(1,2)) I- U{P(l, 2>>
Note that the goal 62(Y)? is generated a second

time after backtracking. We do not see this in the
above sequence since its only effect in our model is
to affect the hidden state; the set of known facts and
goals is unaffected by the re-derivation of a previously
known goal.

Ciepielewski-Haridi This is a fully Or-parallel
method proposed in [CH83]. It does not exploit an)
And-parallelism.
{p(U, V)?} t u{bl(X)?, b4(X, Y)?} I- u

W(5), Ml, ‘41 i- u{P(~, 2>, b‘W’)?) t- u
{b2(6), b2(7)} t- u{b3(5,6, Z)?, b3(5,7, Z)?}

1 WW, 6, a), bW,‘J, 9)) I- ‘J{p(5,8),~(5,9>>

252

Observe that the parallelism has resulted in a much
shorter computation sequence. There is no And-
parallelism since in no one transition do we add goals
corresponding to different body literals.

DeGroot This is an And-parallel method that ex-
ploits no Or-parallelism, and was proposed in [De84].
{p(U, V)?} I- u{bl(X)?, 62(Y)?} t- u{b1(5), b2(6)} I-

u@W,W)W- '-@3(5,VW- u{~(5,8))
I- u(b2(7)} I- u{b3(5,7, Z)?} I- u{b3(5,7,9)) I- u

~r+,W t- WWW?) I- uW(L2)) t- ‘JMh 2))
Conery This is a method that attempts to real-

ize both And- and Or- parallelism, and is one of the
methods proposed in [Co83].

(p(U, V)?} t- u{bl(X)?, b2(Y)?} l-
u{b1(5), b2(6), b2(7)} t- u{b3(5,6, Z)?} I-

W3(5,6,8)) I- U{P(~, 8)) I- ‘-J{b3(5,7, Z)?)
I- u{b3(5,7,9)) I- u {~(5,9)9
I- u{b4(X, Y)?} I- u{b4(1,2)} I- u{p(l,2)}

Notice that in this method, the two b3 goals are
sequentialized.

Reduce-Or This is also a method that exploits
both And- and Or- parallelism, and is proposed in
[I<a87a]. It identifies all the available parallelism in
this example.

{p(U, V)?} t- u{bl(X)?, b2(Y)?, b4(X,Y)?}

I- ‘-W(5), b2(6), W’), b4(1,2))
t- u{p(l, 2), b3(5,6, Z)?, b3(5,7, Z)?}

t- WW, 6,8), b3(5,7,9)) I- ‘J(p(5, 8),~(5,9)1 0

4.3 A Measure of Parallelism

We now describe how the parallelism allowed by two
evaluation methods can be compared.

Definition 4.3 Given two evaluation methods Ml
and Mz, we say that Ml is more parallel than Ma if
and only if for every choice of a program (P, Q) and
a set of sips S, the computation sequence according
to Ml is no longer than the computation sequence
according to Mz.

By definition, our measure of parallelism will not
allow us to compare computations that use different
choices of sips, since the rneasure is defined in terms
of a property that must hold for every choice of sips
(and programs).

We remark that the length of a computation se-
quence corresponds to the time taken by the algo-
rithm. For example, if we consider bottom-up fix-
point computation of a (rewritten) program, this
length is equal to the number of stages or iterations.

We now present a result that is useful for proving
that one method is more parallel than another.

Theorem 4.1 Ml is more parallel than Mz if the
following holds for every program (P,Q) and choice
of sips s:

Let 3-1, and Gli denote the set of facts
and goals in the state of the computation se-
quence S1 according to Ml at Step i, and let
-72, and &, denote the corresponding sets
for the computation sequence Sz according
to Mz. For all i less than or equal to the

length of Sl- 3’2, G 6, and G2, E G’I,.

The theorem does not hold in the only-if direction
because we can choose arbitrary hidden states. Typi-
cally, considering methods in the literature, the only-
if direction also holds. However, it is difficult to iden-
tify abstract conditions on hidden states that allow
us to prove the claim in the only-if direction.

We identify two extreme classes of methods.

Definition 4.4 An evaluation method is said to be
mazimally parallel if no other method that imple-
ments the same choice of sips is more parallel in our
abstract model of computation.

Definition 4.5 An evaluation method is said to be
sequential if it is not more parallel in our abstract
model of computation than any other method that
implements the same choice of sips.

5 Bottom-Up Evaluation

The bottom-up approach that we consider is to take
the program (P, Q), rewrite P according to the choice
of sips, and to then evaluate the fixpoint by a bottom-
up iteration.

To keep this paper self-contained, we present brief
descriptions of the rewriting and iteration phases in
this section.

5.1 The Magic Templates Rewriting

We present a simplified version of the algorithm, tai-
lored to the case that sips are just partial orderings
of the body literals in a rule, and that a single sip is
associated with a rule, for all goals that invoke this
rule. The reader is referred to [Ra88] for a more gen-
eral algorithm capable of implementing more sophis-
ticated sip choices, and also for a detailed discussion
of bottom-up fixpoint computation in the presence of
non-ground facts.

The idea is to compute a set of auxiliary predicates
that contain the goals. The rules in the program are
then modified by attaching additional literals that act

253

as filters and prevent the rule from generating irrele-
vant tuples.

Definition 5.1 The Magic Templates Algo-
rithm

We construct a new program Pmg. Initially, Pm9
is empty.

1. Create a new predicate magic-p for each predi-
cate p in P. The arity is that of p.

2. For each rule in P, add the modified version of
the rule to Pmg. If rule r has head, say, ~(0, the
modified version is obtained by adding the literal
rnagicq(t3 to the body.

3. For each rule r in P with head, say, ~(9, and for
each literal qi(ti) in its body, add a magic rule to
P”‘g. The head is magic-qi(fi). The body con-
tains all literals that precede qi in the sip associ-
ated with this rule, and the literal magic-p(f).

4. Create a seed fact mug&q((Z)) from the query.

Example 5.1 Consider the following program.

sg(X, Y) :- fld(X, Y).
sg(X, Y) :- up(X, U), sg(&J, V),down(V, I’).
sg(john, Z)?

For a choice of sips that orders body literals from left
to right, as in Prolog, the Magic Templates algorithm
rewrites it as follows:

sg(X, Y) :- magic~sg(X, Y)) fld(X, Y).
sg(X, Y) :-

magicsg(X, Y), up(X, U), sg(U, V), down(V, Y)

magicsg(U, V) :-
magic-sg(X, Y), up(X, U).

mugic~sg(john, Z).

cl

We have the following results characterizing the
transformed program P mg with respect to the origi-
nal program P, from [Ra88].

Theorem 5.1 [Ra88]
(P, Q) is equivalent to (Pmg, Q) with respect to the
set of answers to the query.

Definition 5.2 Let us define the Magic Templates
Evaluation Method as follows:

1. Rewrite the program (P, Q) according to the
choice of sips using Magic Templates.

We remark that in this section, positive results, of
the form that one method is more parallel than an-
other, are typically proved by an induction on the
height of derivation trees for the program. Negative
results, of the form that some degree of parallelism
cannot (always) be achieved by a method, are typi-
cally established by considering an example and prov-
ing that the claim holds on this program. Several
proofs are omitted from this extended abstract due
to space constraints.

254

Our first result provides strong evidence in favor of
the Magic Templates approach to parallel evaluation.
We show that rewriting a program using the h4agic
Templates algorithm and then computing the fixpoint
bottom-up realizes all the parallelism allowed by the
choice of sips.

Theorem 6.1 Parallelism of Magic Templates

The Magic Templates evaluation method is maxi-
mally parallel.

Proof (Sketch) Let us denote the bottom-up fix-
point evaluation of the rewritten program as M. We

2. Evaluate the fixpoint of the rewritten program.

Theorem 5.2 [Ra88] The Magic Templates Evalua-
tion Method is a complete sip-method.

The careful reader will notice that some joins are
repeated in the bodies of rules defining magic pred-
icates and modified rules. The supplementary ver-
sion of the rewriting algorithm essentially identi-
fies these common sub-expressions and stores them
(with some optimizations that allow us to delete some
columns from these intermediate, or supplementary,
relations). We refer the reader to [BeR87] for de-
tails, with the remark that the variant is similar to
the basic Magic Templates algorithm with respect to
parallelism.

The problem of mapping a bottom-up fixpoint com-
putation onto a fixed set of processors has received at-
tention lately [WSSS, CW89, Do89, GST89]. While
considering this work is beyond the scope of this pa-
per, we remark that the interaction of the techniques
used in this work and the Magic Templates algorithm
remains little understood and is an area for further
study.

6 Comparing Met hods

We now present some results characterizing the par-
allelism obtained by some proposed evaluation meth-
ods, using the abstract model of computation a.nd
measure of parallelism developed in Section 4.

show that if there is a transition (&, G1,3tl) t-s
(Fz, &, ‘Hz) according to a sip-method S that uses
the same sips chosen for the rewriting algorithm, then
there is a transition (Fl, 61, T) I-M (Fz,&, T). The
proof proceeds by induction on the length of compu-
tations. As a basis, the initial state is always of the
form (T,G,T). The induction relies on the structure
of rules defining “magic” predicates, and the fact that
the hidden state for a bottom-up computation is al-
ways T since all goals and facts are visible (in the form
of facts, the distinction no longer being significant) to
all subcomputations. 0

We remarked in Section 4 that the length of the
computation sequence for an evaluation method (in
our abstract model) corresponds to the time taken by
the method. We have the following corollary.

Corollary 6.1 Consider a logic program (P, Q). Let
Pmg be the program obtained by applying the Magic
Templates transformation to P. The length of the
computation sequence (in our abstract model) for the
bottom-up fixpoint evaluation of (P”‘g, Q) is less than
or equal to the length of the computation sequence GOT

any sip-method on the same program and sips.

Next, we consider similar results for other proposed
evaluation methods. Let us define a memoing method
to be one that maintains a copy of all generated goals
and facts. The next theorem indicates that memoing
methods achieve more parallelism since they avoid
recomputing goals.

Theorem 6.2 Power of Memoing

No non-memoing method is maximally parallel.

Proof (Sketch) We show that the bottom-up evalu-
ation of (Pmg, Q), a memoing method, obtains more
parallelism on the following program (P, Q) :

P(Xl Y) :- ql(X, Z), q2(2, Y).
ql(X, Y) :- b(X, Y).

qqx, y> :- al(X, q, !$qz, Y).
93(X, Y) :- b(X, Y).

VA 5).
P(5, U)?

Intuitively, when the goal q1(5,2)? is generated a
second time, in Rule 3, the solution q1(5,5) has al-
ready been generated. Bottom-up evaluation can use
this solution directly at the next step to identify the
goal q3(5, Y)?. On the other hand, without memoing,
we must re-solve this goal (generating the subgoal
b(5, Z)? and the facts b(5,5),q1(5,5) in subsequent
steps) before we can identify the goal q3(2, Y)?. c7

The difference in the program used in the above
proof can be significant if the computation of the goal
ql(5, Z)? is expensive. The following result shows
that the length of the computation sequence accord-
ing to a non-memoing method may not even be poly-
nomial in the length of the computation sequence ac-
cording to bottom-up (memoing) evaluation of the
rewritten program. This is not surprising if we re-
quire that both methods use the same sip: Consider
the well-known Fibonacci program. It is easy to see
that the bottom-up method is polynomial and that
the non-memoing method is exponential in terms of
the number of inferences. If we choose a left-to-right
sip for the recursive rule, the computation is made
sequential, and the difference in the number of infer-
ences directly translates into a difference in the length
of the computation sequence. The following result is
stronger in that it is independent of the choice of sips.
That is, there are programs such that the difference
cannot be bridged by any choice of sips for the non-
memoing method.

Theorem 6.3 Consider a logic program (P, Q). Let
the length of the computation sequence (in our ab-
stract model, for some choice of sips) of the bpttom-
up evaluation of (Pmg, Q) be m, and let the length
for computation according to a non-memoing method
for some choice of sips be n. In general, the function
g such that n = g(m) is at least exponential, inde-
pendent of the choice of sips for the non-memoing
method.

Since evaluation under the Reduce-Or model does
not do memoing, the previous theorems show that it
is not maximally parallel, and that the length of a
computation may be exponentially longer than that
of a computation according to the Magic Templates
method.

KalC discusses the parallelism obtained by several
methods in [Ka87b], but without reference to a pre-
cise measure of parallelism, and the following theo-
rems may be viewed as formalizations of the discus-
sion in that paper.

Theorem 6.4 Evaluation according to the Reduce-
Or Model is maximally parallel relative to the class of
methods that do not do any memoing.

Theorem 6.5 Evaluation according 20 a non- mem-
oing method ihat exploits only And- OT Or- paral-
lelism, but not both, is strictly less parallel than eval-
uation according to the Reduce-Or process model.

Proof (Sketch) The proof is similar to that of The-
orem 6.2. We consider examples from [Ka87b], and

255

show that the computation sequences for such meth-
ods are longer than the carresponding sequences ac-
cording to the Reduce-Or model. a

Our next result illustrates a limitation of our mea
sure of parallelism, which is that it does not allow us
to compare certain pairs of evaluation methods.

Theorem 6.6 Consider a method whose allowed
iransitions contain no Or-parallel steps, and one
whose allowed transitions contain no And-parallel
steps. Let both methods be more parallel than a se-
quential method. Then, neither method is more par-
allel than the other.

6.1 Methods That Sacrifice Restric-
tion for Parallelism

We present a result that indicates why we chose a def-
inition of a sip-method that differs from the definition
in [RaSS]. It also illustrates the trade-off between re-
stricting search and parallelizing the computation.

Let us relax our definition of a sip-method in this
subsection to also include methods that compute a
set of the facts and goals, say Tr and Gr, such that
grouncl(F U 6) s ground(Tr U Gr), where ZF and S
are the sets that must be computed according to the
definition of a sip-method in Section 4. This allows us
to consider methods that are not sip-optimal, in that
they do not eliminate all computation that is irrele-
vant according to the sips. As an extreme example,
the bottom-up evaluation of the original program can
be seen to implement any choice of sips (extremely in-
efficiently), since we can view it as generating a goal
containing a vector of R distinct variables for each
n-ary predicate, and obtaining all solutions. Thus,
every possible goal with predicate name p is an in-
stance of this most general goal for p. Intuitively,
this allows us to work on all relevant goals imme-
diately, but at the cost of additionally working on
irrelevant goals. From the proof of Theorem 6.3, it
is easy to see that any irrelevant computation can be
made arbitrarily complex, even non-terminating, and
thus the unrestricted computation sequence could be
much longer than a restricted computation sequence.
Thus, bottom-up evaluation of the original program
is not necessarily more parallel than another evalua-
tion method, by our measure of parallelism. This is
pertinent when we wish to compute all answers and
terminate, or if (as is likely) resources are limited.
However, termination is in general undecidable, and
even the restricted computation may not terminate.
If resources are (effectively) unlimited, and we are
only interested in obtaining answers as soon as possi-
ble, then, it might be worth evaluating the fixpoint of

the original program without rewriting it to restrict
the computation. This is justified by the following
simple proposition.

Proposition 6.7 Consider a logic program (P,Q).
Lei C1 be the computation sequence in our abstract

model for bottom-up fixpoint evaluation of this pro-
gram, and let C2 be the computation sequence for
some other evaluation method, for some choice of
sips. Zf a goal or fact appears at Step n in Cz, then it
is subsumed by some fact that appears in Cl at Step

m, for some m 5 n.

6.2 A Note on Magic Templates

The above results lead us to the following observation.
Remark: A claim such as Theorem 6.1 cannot

be made for any other evaluation method that we
are aware of. (It is possible to extend some of the
methods so that such a claim holds.)

Such a remark is tedious to prove given the num-
ber of proposed methods, and so we simply offer an
informal justification. First, from Theorem 6.2 it fol-
lows that we need only consider memoing methods
as candidates. Of these, Alexander Templates [Se891
is the only one (other than Magic Templates) that is
capable of dealing with non-ground facts. Examples
are readily found where dealing with such facts is nec-
essary to restrict search as per the sips we consider.
Alexander Templates, like Magic Templates, rewrites
the program and then evaluates the fixpoint, but it
cannot deal with And-parallelism since it only allows
left-to-right sips.

We note that this remark should be read with all
the limitations of sip-methods and our measure of
parallelism in mind; nevertheless, we believe that it
is significant. First, as Kale observes [Ka87a], iden-
tifying the available parallelism is a useful first step;
it remains to consider efficient realizations. In this,
we believe that the Magic Templates method offers
considerable flexibility since it frees us from the con-
straints imposed by maintaining a network of pro-
cesses and associated binding environments. We con-
sider this point further in Section 8.

7 More On Sip-Methods

We have restricted out attention to evaluation meth-
ods that are sip-methods. This has allowed a funda-
mental separation of concerns: the sips specify the
order in which rules are to be evaluated, that is, how
bindings are to be propagated in order to restrict
the computation, and the evaluation method imple-
ments this decision (a step that includes some choice

256

of a control strategy). Not all proposed evaluation
methods qualify as sip-methods. We now consider
behaviour that cannot be captured by sip-methods,
and attempt to extend our definition of sips, simulta-
neously indicating the necessary changes to the Magic
Templates method. These extensions preserve the es-
sential separation of concerns in the sip paradigm of
computation. There are certain evaluation methods,
however, whose behaviour we cannot capture even
with the extended definitions of sips. We examine
this and observe that there are some fundamental lim-
itations to the sip paradigm; this implies that certain
top-down methods cannot be mimicked by rewriting
followed by fixpoint evaluation.

7.1 Multiple Sips Per Rule

Let us return to the survey in Section 3, and the dis-
cussion of And-Or trees. We made the assumption
that for each And-node, there was a unique partial
order that determined by the associated label. That
is, each rule in the program has a unique partial or-
dering according to which the body literals are to be
solved in any invocation of the rule. We could re-
lax this assumption in several ways. Consider the set
of possible goals with predicate name p. We could
partition this set into several - preferably, but not
necessarily, non-intersecting - subsets. For each rule
defining p, for each such subset, we could choose a sip
that indicates the order in which body literals are to
be solved when the this must be done for each subset
of goals.

One way to partition the set of goals is by means
of a compile-time analysis that indicates which argu-
ment positions we expect to be bound. This leads to
a notion of “bound” and “free” arguments, similar to
“input” and “output” modes, that has been proposed
and used by a number of researchers. We note that
[Rags] incorporates such an analysis into the Magic
Templates algorithm. Recall that the algorithm adds
a modified rule and a set of magic rules for each rule
in t.he original program. If we wish to use a different
ordering of body literals for goals in different subsets,
in essence a modified rule and magic rules must be
added for each subset.

All of the methods in Section 3 choose sips at com-
piIe time.

7.2 Dynamic Sips

It is possible that the choice of the order in which
the body literals are to be solved is made at run-time
wtlen the rule is invoked. We briehy outline one way

to incorporate this into the Magic Templates. algo-
rithm. The crux of the problem is that for each rule,
we may wish to choose a different partial order at. run-
time for each goal. Noting that there are only a finite
number of different partial orders over a finite set,
we could simply generate modified and magic rules
corresponding to each partial order. Now, we must
determine which group of modified and magic rules
is to be used for solving a given goal. To do this,
we observe that the goal is described in these rules
by a magic literal in the body, say mp(i). We now
add an additional literal classify,-,(t) to the body.
The s subscript denotes the subset of goals, and the
corresponding choice of sips or partial ordering, for
which this (modified or magic) rule was generated. If
p(q? is a generated goal, classify,-,(o must be true
for some s (since it must be a member of one of the
subsets of goals that we consider).

In effect, we have taken advantage of the finite
number of partial orders to rewrite the program at
compile time. However, we have abandoned a static
classification of goals based on a compile-time analp-
sis, such as “bound” and “free” arguments, in favor of
a dynamic classification. We remark that this is not
necessarily a win; our objective here is to examine the
limits of the sip paradigm of computation, which we
believe is essentially reached with the above formula-
tion of dynamic sips.

7.3 Limitations of the Sip Paradigm

These limitations are seen when we examine evalua-
tion methods that re-order goals in And-Or trees dy-
namically, but they can also be observed with a static
ordering. Let us return to the discussion of And-Or
trees, and consider And-nodes again. Let p and q be
two body literals in the label of an And-node. Let pl
and p2 be body literals in a descendant And-node of
p, and similarly ql and q2 for q. A sip-method, even
one that uses the dynamic sip selection of the previous
subsection, must either order both pl and p2 ahead
of both ql and q2, order the q’s ahead of the p’s, or
leave the p’s unordered relative to the q’s. In particu-
lar, an evaluation method that requires the following
solution order is not a sip-method: pl, ql, ~2, q2.

This limitation arises, of course, because the sip
mechanism only allows us to order goals that arise as
body literals in a single rule. All subgoals of these
goals must respect the above order. The sip formal-
ism does not allow us to consider the resolvent that
is the set of all subgoals and then pick an arbitrary
order.

This is precisely what committed choice languages
such as Parlog [CG86] and Concurrent Prolog [Sh86],

257

the freeze primitive in Nu-Prolog [Na87], and some
other proposed methods, e.g. in [Co83], achieve by
dynamically suspending and starting goals. The or-
dering is controlled typically by variable annotations
that, for example, suspend a goal until one of its
variables is instantiated [CG86, Sh86, Na87]; it can
also be controlled by a sophisticated run-time sched-
uler [Co83]. Methods that use annotations typically
sacrifice completeness. Completely unrestricted dy-
namic re-ordering carries a high run-time overhead.
Nevertheless, there may be situations where such ap-
proaches perform better than any sip-method. In par-
titular, they permit coroutining.

8 Pragmatics

We brielly discuss several practical considerations.

8.1 Overheads

There are a number of important differences in the
overheads associated with top-down and bottom-up
evaluation. Top-down evaluation uses a recursive
control strategy. A sequential implementation such
as Prolog uses stacks to manage goals. Parallel meth-
ods generate a new process each goal, which carries a
significant overhead on most systems. (Token based
methods, e.g. ICH84], have their own additional
overheads such as managing shared environments.)
Bottom-up methods do not create a process per goal,
but they recover the connections between facts and
goals by explicit additional joins. This is typically
also done by top-down methods that do memoing and
aim to exploit both And- and Or- parallelism; how-
ever, significant optimization is possible in methods
that only exploit a limited form of And-parallelism
that results in a single binding for each variable at
any point in the execution.

In this paper, we have assumed that the resources
are sufficient to exploit all available parallelism. In
the case that resources are limited, as is likely, the
act,ual parallelism obtained will be curtailed by how
efficiently the computation can be mapped onto the
resources.

8.2 Load Sharing in Bottom-up Eval-
uation

The problem of mapping a bottom-up fixpoint com-
putation onto a fixed set of processors has received
attention lately. While considering this work is be-
yond the scope of this paper, we remark that the in-
teractions of the techniques used in this work and the

Magic Templates algorithm remain little understood
and suggest an area for further study. We direct the
interested reader to [WSSS, CW89, Do89, GST89J.

8.3 Some Added Advantages of haem-
oing

The remarks in this subsection apply equally to top-
down and bottom-up methods that do memoing. As
we have already seen, memoing offers gains in terms of
avoiding redundant computation and increased par-
allelism. It also offers other important advantages:

1. Multiple Query Optimization Multiple queries
may be seen as providing multiple “seeds” for
the Magic Templates algorithm. Redundancy is
avoided as before, whether it arises in the com-
putation of one of the queries alone, or whether it
arises due to common subcomputations in differ-
ent top-level queries. In either case, some goal is
generated more than once, and can be discarded
after the first time, as before, if we have memoed
the goal and solutions to it.

2. Incremental Evaluation If we wish to re-evaluate
a query after adding some facts or rules to the
program, the memoed results of the previous
evaluation naturally enable us to avoid much
recomputation. In the context of the Magic
Templates algorithm, all memoed results can be
taken to be assertions. Re-evaluation after dele-
tions is more difficult, but some analysis of the
affected predicates may allow us to retain many
of the memoed relations.

3. Improved Termination Properties It is possi’sle
that memoing makes the difference between ter-
mination and non-termination. For example,
consider the following program:

t(X, Y) :- 1(X, Z), b(Z, Y).
1(X, Y) :- b(X, Y).
t(5, Y)?

This is a program on which Prolog will not ter-
minate, repeatedly generating the goal t(5 ,Z)? ,
but memoing enables us to recognize that the
goal has been generated before, and thereby de-
vise modifications to Prolog that do terminate
(e.g., see [ViSS]). In fact, this causes Prolog to
be incomplete. We note that memoing is not es-
sential for completeness; the Reduce-Or model
[Ka87a] is complete, although it does not mem-
oing. This is essentially because all paths are
explored in parallel, and so even if some paths

258

are non-terminating - and will never produce
new solutions - all paths that do produce so-
lutions are considered. However, the Reduce-Or
computation will not terminate on this program.
Memoing methods, including Magic Templates,
terminate on it.

9 Conclusions

The main contributions of this paper are: (1) an ab-
stract model of computation that allows us to make
precise the degree of parahelism that is obtained by
several proposed evaluation methods, (2) compar-
isons between methods based on this model, includ-
ing the result that the Magic Templates algorithm is
maximally parallel in this model, and (3) a discussion
of the limitations of the abstract model, and in par-
ticular, the limitations of the sip paradigm on which
the model is based.

In summary, we believe that our results provide
strong motivation for a careful study of parallel eval-
uation of logic programs based on rewriting and sub-
sequent fixpoint evaluation, as well as a sound basis
for comparisons of parallelism in various logic pro-
gram evaluation methods.

10 Acknowledgements

Conversations with Catriel Beeri, Sanjay Kale,
,\,lichsel Kifer, Jeff Naughton, Dives11 Srivastava and
S. Sudarshan have influenced this paper. I tha.nk
them for their generous input.

References

[BMW%] F. B ancilhon, D. Maier, Y. Sagiv and J.D.
Ullman, Magic Sets and Other Strange
Ways to Implement Logic Programs. In
Proc. ACM Symposium on Principles of
Database Systems, pages 1-15, Boston,
Massachusetts, March 1986.

[BaR8G] F. Bancilhon and R. Ramakrishnan, An
Amateur’s Introduction to Recursive Query
Processing Strategies. In Proc. ACM SIG-
MOD International Conference on Manage-
ment of Data, pages 16-53, Washington,
D. C., 1986. Revised and reprinted in Read-
ings in. AI and Databases, Eds. M. Brodie
and J. Mylopoulos, pages 376-430, 1988.

[BeR87] C. B eeri and R. Ramakrishnan, On the
Power of Magic. In Proc. ACM Syna-

posium on Principles of Database Sys-
tems, pages 269-283, San Diego, California,
March 198’7.

[Br89] F. Bry, Query Evaluation in Recursive
Databases: Bottom-up and Top-Down Rec-
onciled. ECRC TR IR-KB-64, April 1989.

[CDD85] J.-H. Chang, A.M. Despain and D. DeG-
root, AND-Parallelism of Logic Programs
Based on A Static Data Dependency Analy-
sis. In Digest of Papers, Compcon 85, IEEE
Computer Society, Feb. 1985.

[CH83]

[CH84]

[CG86]

[CW89]

[Co831

[De841

[DW87]

[Do891

A. Ciepielewski and S. Haridi, A Formal
Model for Or-Parallel Execution of Logic
Programs. In Information Processing 83,
pages 299-305, North-Holland, Sept. 1983.

A. Ciepielewski and S. Haridi, Control of
Activities in the Or-Parallel Token Machine
In PFOC. I.&%?? SympOSiUm On LOgiC Pro-

gramming, Atlantic City, Feb. 1984.

K.L. Clark and S. Gregory, Parlog: Parallel
Programming in Logic. In Transactions on
Programming Languages, pages l-49, Jan-
uary 1986.

S.R. Cohen and 0. Wolfson, Why a Sin-
gle Parallelization Strategy is Not Enough
in Knowledge Bases. In Proc. ACM Sym-
posium on Principles of Database Systems,
pages 200-216, Philadelphia, Pennsylvania,
March 1989.

J. Conery, The And-Or Process Model for
Parallel Interpretation of Logic Programs.
Ph.D. thesis, TR 204, Univ. of California,
Irvine, June 1983.

D. DeGroot, Restricted And-Parallelism. In
Proc. Intl. Conf. on Generation Computer
Systems, ICOT, 1984.

S.W. Dietrich and D.S. Warren, Extension
Tables: Memo Relations in Logic Program-
ming. In Proc. IEEE Symposium on Logic
Programming, San Francisco, Sept. 1987.

G. Dong, On Distributed Processing of Dat-
alog Queries by Decomposing Databases. In
Proc. A CM SIGMOD International Confer-
ence on Management of Data, pages 26-35,
Portland, 1986.

[EKM82] N. Eisinger, S. Kasif, J. Minker, Logic Pro-
gramming: A Parallel Approach. In Proc.
First Logic Programming Conference, 1982.

259

[GST89]

[HR89]

iKa87a]

[Ka87b]

[KL86]

[KL88]

[Lo851

[Sa87]

[NR89]

[Po81]

[Ra88]

S. Ganguly, A,. Silberschatz, S. Tsur, A
Framework for the Parallel Processing of
Datalog Queries. Manuscripi.

M. Hermenegildo and F. Rossi, On the Cor-
rectness and Efficiency of Independent And-
Parallelism in Logic Programms. In Proc.
N. American Conference on Logic Program-
ming, pages 369-389, Cleveland, 1989.

L.V. Kale, Paralfel Execution of Logic Pro-
grams: The Reduce-Or Process Model. In
Proc. Intl. Conference on Logic Program-
ming, pages 616-632, Melbourne, May 1987.

L.V. Kale, Completeness and Full Par-
allelism of Parallel Logic Programming
Schemes. In Proc. IEEE Symposium OIL

Logic Programming, pages 125-l 33, San
Francisco, Sept. 1987.

hl. Kifer and E. Lozinskii, A Framework
for an Efficient Implementation of Deduc-
tive Databases. In Proc. Advanced Database
Symposium, Tokyo, 1986.

M. Kifer and E. Lozinskii, Sygraf: Im-
plementing Logic Programs in a Database
Style. In Trans. on Software Engineering,
pages 922-935, July 1988.

E. Lozinskii, Evaluating Queries in Deduc-
tive Databases by Generating. In Proc. Intl.
Joint Conf. on Artificial Intelligence, pages
17.3-177, 1985.

L. Naish, Parallelizing Nu-Prolog. Ijept. of
Computer Science, Univ. of Melbourne, Tit
17, 1987.

J. Naughton and R. Ramakrishnan, A Uni-
fied Approach to Logic Program Evalua-
tion. Technical Report, Computer Sciences
Department, Univ. of Wisconsin, Madison,
1989.

G.B. Pollard, Parallel Execution of Horn
Clause Programs. Ph.D. thesis, Imperial
College of Science and Technology, Univ. of
London, 1981.

R. Ramakrishnan, Magic Templates: A
Spellbinding Approach to Logic Programs.
In Proc. Intl. Conference on Logic Program-
ming, pages 140- 1.59, Seattle, Washington,
August 198R.

[RLK86]

[Se891

[Sh86]

[UiSSa]

[U189b]

[vG86]

J. Rohmer , R. Lescoeur and J.M. Kerisit,
The Alexander Method, a Technique for the
Processing of Recursive Axioms in Deduc-
tive Databases. In New Generation Com-

puting, 4, 3, pages 273-285, 1986.

H. Seki, On the Power of Alexan-
der Templates. In Proc. 8th ACM
SIGMOD-SIGACT Symposium on Princi-
ples of Database Systems, pages 150-159,
1989.

E. Shapiro, Concurrent Prolog: A Progress
Report. In IEEE Computer, pages 44-58,
August 1986.

J.D. Ullman, Principles of Database and
Knowledge-Base Systems, Volumes 1 and 2.
Computer Science Press, 1989.

J.D. Ullman, Bottom-Up Beats Top-
Down for Datalog, In Proc. 8th ACM
SIGMOD-SIGACT Symposium on Princi-
ples of Database Systems, pages 140-149,
1989.

A. van Gelder, A Message Passing Frame-
work for Logical Query Evaluation. In
Proc. ACM SIGMOD International Confer-
ence on Management of Data, pages 16-53,
Washington, D. C., 1986.

[vEK76] M. van Emden and R. Kowalski, The Se-
mantics of Predicate Logic as a Program-
ming Language. In JACM 28, no. 4, pages
733-742, Oct. 1976.

[Vi891 L. Vieille, R ccursive Query Processing: ‘l’l!~
Power of Logic To appea.r in Th CYJ/Y~/~CY~/
Computer Science, 1989.

[WSSS] 0. Wolfson and A. Silberschatz, Sharing
the Load of Logic Program Evaluations. In
Proc. 7th ACM SIGMOD-SIGACT Sympo-
sium on Principles of Database Systems,
1988.

260

