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1 Introduction 

We consider the parallel evaluation of logic pro- 
grams. This has been the subject of much research 
in the logic programming and, recently, the deductive 
database communities. We review this work, and ob- 
serve that there is a commonly used measure of par- 
allelism based on a top-down evaluation paradigm of 
identifying subgoals and answers. To formalize this 
intuition, we propose a simple abstract model of com- 
putation that makes precise the tension between the 

objectives of restricting the computation on the one 

hand and extracting parallelism on the other. In 
essence, if a subgoal is restricted by bindings gen- 

erated in the solution of another, the latter subgoal 
must be solved first. This precedence is reflected in 
our model of computation by the choice of sideways 
information propagation graphs, or sips, which, infor- 

mally, describe the order in which the literals in the 
body of a rule are to be solved. 

Our thesis is that parallel evaluation methods can 
be viewed as implementing a choice of sips, a choice 
that determines the set of goals and facts that must be 
evaluated. Two evaluation methods that implement 
the same sips can then be compared to see which ob- 
tains a greater degree of parallelism, and we provide a 
formal measure of parallelism to do this. It is impor- 
tant to understand what is and - more importantly, 
perhaps - what is not implied by the statement that 
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evaluation method M is “more parallel in our model ” 
than evaluation method n/. First, our model only al- 
lows comparison of methods that fit the sip paradigm 
of computation, which is that some choice of sips for 
the rules in the logic program is implemented by the 
evaluation method. In Section 3, we show that most 
proposed methods for parallel evaluation of logic pro- 
grams do fit this paradigm; in Section 7 we consider 
some methods that do not. Second, we compare the 
parallelism obtained by methods when they use the 
same sips. Thus, informally, M is more parallel than 
n/ if for every choice of sips, it succeeds in obtain- 
ing as much or more parallelism. Similarly, when we 
say that an evaluation method is “most parallel in 
our model”, this does not mean that a faster paral- 
lel method cannot be found for a given problem. It 
does mean that once we choose to represent a prob- 
lem - any problem - as a particular logic program 
and make a choice of sips, then the evaluation method 
obtains as much or more parallelism than any other 
method for evaluating the program according to the 
sips. Third, our model implicitly assumes that there 
are enough resources to work on all identified subcom- 
putations in parallel, and therefore ignores implemen- 
tation overheads and resource constraints. Any real 
evaluation method (or at least an implementation of 
it) must contend with the problem of mapping a com- 
putation onto the available resources, and in doing so 
must often sacrifice either restriction or parallelism. 
This aspect of the computation is not captured by 
our abstract model; however, it clearly affects results 
obtained using the model. 

An important result that we establish is that 
transforming a program using the Magic Templates 
algorithm [Ra88] and then evaluating the fixpoint 
bottom-up provides a “most parallel” implementa- 
tion for a given choice of sips, provided that there 
are no resource constraints. We emphasize a fun- 
damental difference between this approach and top- 
down, process-oriented evaluation methods: whereas 
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a top-down evaluation method proceeds by creating 
processes to solve subgoals, the bottom-up approach 
proceeds by applying rules to facts to produce new 
facts. Indeed, the bottom-up method has no inherent 
notion of a “process”, nor of a “goal”, although we 
will establish a correspondence between certain facts 
generated in the bottom-up evaluation of a rewrit- 
ten program (as per the Magic Templates algorithm) 
and goals generated in top-down evaluation methods, 
and refer to these facts as goals. This distinction is 
significant in terms of implementation overhead. 

A number of other issues must be considered when 
comparing a bottom-up memoing method with top- 
down methods. These include relative implementa- 
tion overheads and flexibility, and the use of memoing 
for multiple query optimization, incremental evalua 
tion, and termination detection. While an investiga- 
tion of these issues is beyond the scope of this paper, 
we discuss their impact in the full version. 

The abstract model also allows us to establish sev- 
eral results comparing other proposed parallel evalu- 
ation methods in the logic programming and deduc- 
tive database literature, thereby showing some natu- 
ral, and sometimes surprising, connections. This sug- 
gests that our model does indeed capture the informal 
notion of parallelism that is used in parallel logic pro- 
gramming. Our results shed light on the limitsof the 
sip paradigm of computation, which we extend in the 
process. 

The paper is organized as follows. Following pre- 
liminary definitions in Section 2, we survey some pro- 
posed parallel evaluation methods for logic programs 
in Section 3. In Section 4, we develop a model of 
computation that allows us to view a class of evalua- 
tion methods based on sips at an abstract level, and 
a measure of parallelism that can be used to compare 
them. The class includes all the methods surveyed 
in Section 3, and several others as well. In Section 
5, we present a bottom-up evaluation method based 
on rewriting a program, according to the Magic Tem- 
plates algorithm, and evaluating the fixpoint of the 
rewritten program bottom-up. In Section 6, we com- 
pare the parallelism obtained using several proposed 
parallel evaluation methods. We consider the limita- 
tions of sips in Section 7, and discuss possible exten- 
sions. We then discuss some practical considerations 
in Section 8 and present our conclusions in Section 9. 

2 Preliminaries 

The language considered in this paper is that of Horn 
logic, and we assume the standard definitions of h-m, 
definite clause, etc. We also refer to a vector of terms 

as a tuple, and denote it by the use of an overbar, e.g., 
t. Following the syntax of Edinburgh Prolog, definite 
clauses (rules) are written as 

p :-Ql,...rqn- 

read declaratively as q1 and q2 and . . . and q,, implies 
p. A logic program is a pair (P, Q) where P is a set of 
predicate definitions and Q is the input, which con- 
sists of a query, or goal, and possibly a set of facts for 
‘Ldatabase predicates” appearing in the program. We 
follow the convention in deductive database literature 
of separating the set of rules with non-empty bodies 
(the set P) from the set offacts, or unit clauses, which 
appear in Q and are called the database. P is referred 
to as the program, or the set of rules. The meaning of 
a logic program is given by its least Herbrand model 
[vEK76]. 

A substitution is an idempotent mapping from the 
set of variables of the language under consideration 
to the set of terms, that is, the identity mapping at 
all but finitely many points. A substitution u is more 
general than a substitution B if there is a substitution 
‘p such that 0 = ‘p o CT. Substitutions are denoted 
by lower case Greek letters 8, CT, 4, etc. Two terms tl 
and 22 are said to be unifiable if there is a substitution 
u such that a(tr) = a(i2); u is said to be a unifier 
of tr and 12. Note that if two terms have a unifier, 
they have a most general unifier that is unique upto 
renaming of variables. 

3 A Survey of Proposed Paral- 
lel Evaluation Methods 

We discuss several proposed parallel evaluation meth- 
ods, focusing on the parallelism that is realized, that 
is, what subgoal computations are allowed to proceed 
in parallel. The survey in this section motivates our 
development of an abstract model of computation to 
compare the parallelism in different methods. We de- 
velop the model in the next section; it abstracts the 
behaviour of a class of methods called “sip-methods”. 
The methods discussed in this section all fall into this 
class, unless otherwise noted. 

One of the objectives of this paper is to identify the 
similarities and differences in proposed parallel eval- 
uation methods, both top-down and bottom-up, and 
to this end, we provide a uniform and sufficiently de- 
tailed description of the major approaches. While the 
relationship between bottom-up and top-down eval- 
uation methods has recently been studied widely in 
the deductive database community, the more compli- 
cated nature of parallel evaluation methods has made 
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the connections harder to see. Indeed, it has been re- 
marked that the work on parallel evaluation in the 
logic programming community, typically top-down 
methods, is not likely to be useful in the context of 
bottom-up parallel evaluation [CW89]. We think that 
on the contrary much can be gained by a careful study 
of the literature of both top-down and bottom-up 
approaches. There is a strong relationship between 
the structure of top-down and bottom-up computa- 
tions, as demonstrated in IBr89, Ra88, Se891 and aIso 
[BMSU86, BeR87, Ul89b, Ul89a, Vi89, KL86, KL88], 
etc. While the details of an implementation of a top- 
down method would differ considerably from that of a 
bottom-up method, we believe that many ideas, such 
as schemes for structure-sharing, are likely to work in 
either approach. 

The parallelism in logic programs is often broadly 
classified into And-, Or- and Stream parallelism. 
And-parallelism refers to the parallel solution of sub- 
goals generated from literals in the same rule body. 
Or-parallelism refers to the parallel evaluation of dif- 
ferent rules that unify with a given goal. Stream- 
parallelism refers to the eager processing by a sub- 
goal (the “consumer”) of an argument value, such as a 
list, that is being constructed by another subgoal (the 
“producer”). We will restrict our attention to the first 
two, since the last typically forces us to consider ad- 
ditional properties of the computation such as deter- 
minacy and structure-sharing in some detail. Most 
of the methods that we discuss in this section pro- 
ceed by identifying subgoals and creating processes 
to solve them. However, there has been some work 
on achieving similar results through bottom-up fix- 
point evaluation, and we discuss this work as well. 

3.1 The And-Or Tree Model 

An And-Or tree for a logic program has the query as 
the root node, which is an Or-node. An Or-node is 
always labeled with a goal, and has one child And- 
node per rule whose head unifies with this label. The 
label of a child And-node is the corresponding rule 
with the unifying substitution applied to it. The uni- 
fying substitution is used to label the arc from the 
parent Or-node to this And-node. An And-node has 
at most one child Or-node per body literal in its la- 
bel. The label of a child Or-node is a variant of the 
corresponding body literal. 

The And-Or model presented in [Co831 builds And- 
Or trees by generating a process for each node in a 
top-down order. The query is the root node. The chil- 
dren of an Or-node are generated as described above. 
We now describe how the children of an And-node 
are generated: A child Or-node is created for the 

left-most body literal in the label of the And-node. 
The arc to the Or-node is labeled with the identity 
substitution. For each answer, which can be viewed 
as a substitution 0, to the Or-node corresponding to 
a body literal, an Or-node is generated for the next 
body literal. If the path from the And-node to the 
first Or-node is labeled with 8, the label of the sec- 
ond Or-node is the corresponding body literal with 
the substitution cr@ applied to it. This substitution is 
used to label the arc to it. 

At any time, an And-node has at most one child 
Or-node per body literal in the label. Solutions to 
Or-nodes are saved as they are generated, and And- 
nodes are solved by generating all combinations of 
children through backtracking. 

Much work has been done on this model; in par- 
ticular, the ordering could be a partial order and sib- 
ling Or-nodes corresponding to different body liter- 
als could be generated simultaneously. In general, 
this creates problems if these children share variables. 
Therefore sibling Or-nodes are generated simultane- 
ously only if they do not share variables. Since a 
variable that is shared between the corresponding lit- 
erals could be bound to a ground term by a preceding 
Or-node, detecting such opportunities for solving the 
children of an And-node in parallel is a difficult prob- 
lem. Several researchers have addressed this issue, 
e.g., [De84, CDD85]. A no th er area of research has 
been to identify intelligent ways to backtrack past 
predecessor nodes when a node fails (i.e., to recog- 
nize that alternative solutions to these predecessors 
would not enable the given node to succeed, and thus 
avoid generating further solutions to them.) Conery 
also suggested schemes for dynamically re-ordering 
the nodes in the And-Or tree [Co83]; these cannot 
always be described as sip-methods, and this is dis- 
cussed further in Section 7. 

An important restriction of the And-Or model is 
to simply avoid Or-parallelism by generating the chil- 
dren And-nodes of an Or-node one at a time. This 
restriction ensures the property that every variable 
instance in the computation has a unique binding at 
any time. (With Or-parallelism, recall that an Or- 
node saves multiple answers; these provide multiple 
bindings for the variables that appear in it.) This typ- 
ically results in the loss of much parallelism, but re- 
duces implementation overhead (e.g. [De84, HR89]). 

3.2 F’ull Or-Parallelism 

Full Or-parallelism is best understood in terms of 
SLD-irees. The SLD-tree for a logic program has the 
query as the root node. Every node in the tree is a 
conjunction of goals. A node has one child for each 
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resolvent obtained by resolving one of the goals in the 
node with some rule in the program. The leaves are 
empty nodes. The conjunction of substitutions along 
a path from the root to a leaf, applied to the query, 
yields an answer. 

Full Or-parallelism consists of exploring each 
branch of 1 the SLD-tree in parallel, as initially 
proposed in [CH83]. Thus, if we have a node 
“p1(5,X),p2(X,Y)” and two rules “pl(U, V) :- 
ql(U, V).” and ‘pl(W, 2) :- q2(W,Z).“, there are 
two children for this node: “ql(5, V), p2(V, Y)” and 
“q2(5,Z),p2(Z,Y)“. This leads to an unnecessary du- 
plication of effort - with no real gain in parallelism 
- in the repeated solution of the goal p2(Z,Y)?. 

A solution to this problem is to solve ql(5, V)? and 
q2(5, Z)? in parallel, and to then solve the p2 goal 
for each binding of the first argument in parallel. We 
describe the solution in the general case in terms of a 
modified And-Or tree, with the only difference being 
that at any time, an And-node could have more than 
one child Or-node corresponding to a given body lit- 
eral. As before, for the left-most body literal in its 
label, an And-node has one child Or-node per rule 
whose head unifies with it, and the arc to this Or- 
node is labeled with the unifying substitution. The 
Or-nodes for every other body literal are generated as 
follows: When a child Or-node for the ith body literal 
returns an answer, which can be viewed as a substi- 
tution u for the variables in it, this is composed with 
the substitution, say 8, on the arc to this Or-node and 
the resulting substitution 00 is applied to the i + 1st 
body literal in the label of the And-node. This re- 
sults in a goal, generated from the i + 1st literal, and 
one child Or-node is created with this label. The arc 
from the And-node to this Or-node is labeled with 
the substitution 0~. 

This is indeed how the Or-parallel model proposed 
in [CH83] is implemented, as described in [CH84]. In 
essence, rules are solved left to right, and for each 
goal, all rules with which it unifies are solved in par- 
ailel. Notice that, except for the root, each Or-node is 
created in response to the answer to another Or-node; 
the creation of And-nodes can be avoided by directly 
creating tokens for all the Or-nodes that are its left- 
most children. Thus, with each Or-node in the tree, 
we can associate a set of Or-nodes that were gener- 
ated because of answers to it. Let us call this the set 
of successors. The computation proceeds by creating 
“tokens” in a top-down order for each Or-node in the 
modified And-Or tree. A token contains enough in- 
formation to generate tokens for all its successors. (In 
particular, this includes information about the label 
of the parent And-node; this is achieved by means of 
a “continuation”, and we refer the reader to [CH84] 

for details.) 
Note that there is no And-parallelism; a rule is al- 

ways solved from left to right. 

3.3 The Reduce-Or Model 

Kale observed that many of the proposed evaluation 
methods were either incomplete or did not extract all 
available parallelism, or both. This was the motiva- 
tion for the development of the Reduce-Or evaluation 
model. It is in effect a combination of the And-Or 
and the fully Or-parallel models as we have described 
them. 

The model is essentially the fully Or-parallel model 
extended to solve And-nodes according to a partial 
order, rather than a total left to right order, thereby 
also exploiting And-parallelism. The only change 
concerns the generation of the children Or-nodes of 
an And-node. A partial order is associated with each 
rule (and thus, any And-node that it labels). Con- 
sider an And-node, and the associated partial order 
over the body literals of the label. A node with 
no predecessors is treated like a left-most literal in 
the fully Or-parallel model - one Or-node is gener- 
ated for each rule that unifies with it, and the arc 
to this Or-node is labeled with the unifying substi- 
tution. Consider a body literal p with predecessors 

Plr..*r pk in the partial order. Let Bi,i = 1,. . . , k be 
an answer substitution for pi, and let the composi- 
tion 8 = 01,. . ,8k be consistent. Then, an Or-node 
is generated for the goal ~0, and the arc from the 
And-node to this Or-node is given the label pb’. Kale 
does not insist that sibling Or-nodes that correspond 
to different body literals and that are generated in 
parallel should contain no shared variables. Instead, 
any conflicts are resolved by explicitly composing an- 
swer substitutions for all the body literals, one per 
literal. In effect, this corresponds to taking a join on 
the body of a rule to generate an answer fact for the 
head predicate. 

We conclude this discussion of top-down methods 
by formally defining And- and Or- parallel steps in 
terms of And-Or trees. 

Definition 3.1 An And-parallel step is the simulta- 
neous generation of two goals that correspond to dif- 
ferent body literals in the label of an And-node. 

Definition 3.2 An Or-parallel siep is the simultane- 
ous generation of goals 91, . . , gk from a given goal g 
by unifying g with the heads of two different rules 
and generating 91, . . . , gk by instantiating body liter- 
als with no predecessors. The generated goals must 
not all be obtained from just one of the rules. 
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We assume that once a goal is “generated”, it can 
be processed immediately. (In effect, a goal is consid- 
ered to be generated when its processing begins.) 

3.4 Bottom-Up Methods 

The literature on bottom-up evaluation is extensive, 
and we do not propose to cover it in detail here. We 
refer the reader to surveys and expositions presented 
in [BaR86, Br89, NR89, Ul89a]. We note that while 
most of this literature deals with the implementation 
of Datalog, which is a subset of logic programs with- 
out function symbols, recent proposals treat full logic 
programs [Ra88, Se89]. We will examine one of these 
proposals ([Ra88]) in detail later. The following brief 
discussion should be supplemented by consulting Sec- 
tion 5. 

The fundamental operation in bottom-up ap- 
proaches is the application of a rule to a set of facts 
to generate new facts, which is similar to the use of 
the Tp operator to construct the least fixpoint model 
[vEK76]. An obvious drawback is that all conse- 
quences of the program are generated, not just the 
facts relevant to processing the given query. From 
our presentation of the top-down methods, it is clear 
that these methods restrict the computation by prop- 
agating bindings from the query as the construct the 
And-Or trees in top-down order. The essential idea in 
most bottom-up methods is to combine a top-down 
generation of goals with a bottom-up generation of 
facts. In general, this requires that all generated goals 
and facts should be retained and the process repeated 
iteratively until no new goals and facts are generated. 

hlost of the proposed methods use a top-down con- 
trol strategy to generate goals, e.g., [DW87, Lo85, 
Vi89]. Some use a graph structure over the rules 
of the program for this purpose, e.g., [KL86, KL88, 
vG86]. It has been shown however, that this can be 
achieved through source-to-source program transfor- 
mations, and this is the approach that we will pursue 
[BMSU86, RLK86, BeR87, Ra88, Se89]. We believe 
that this has significant advantages to offer in terms 
of uniformity, overheads, and implementation alter- 
natives. 

4 A Computation Model 

\Ve consider how the evaluation of a logic program 
can be formalized at an abstract level in a way that 
allows us to make precise the degree of parallelism. 
We emphasize that the model we develop in this sec- 
‘tion is not an execution model, in that it does not 
specify how to evaluate a program, and should not 

be confused with execution models such as And-Or 
models or the Reduce-Or Process Model. Rather, it 
is a formal model in which we can abstractly represent 
computations that correspond to execution of a logic 
program using some execution model (i.e., evaluation 
method). 

We begin by observing that while the semantics of 
a logic program is purely declarative in that it does 
not depend on how the program is evaluated or on 
any concept of a program state, there is a natural 
notion of state associated with any execution of a 
logic program. 

The following definitions provide a starting point, 
and are subsequently refined: The state of a program 
execution is a pair (F, g), where 9 and 6 are sets 
of facts and goals, respectively. The initial state is 
defined by F = set of given facts in the program (the 
EDB, in database terminology, or the set of rules 
with empty bodies), and G = the initial query. A 
computation is a progression from the initial state to a 
final state, in which F contains all facts in the answer 
to the query, through a sequence of transitions from 
one state to another. 

To complete our model of computation, we must. 
define the notion of a state transition. Intuitively, 
we seek to describe a single step of computation. To 
do this, we must make explicit certain assumptions 
about the class of evaluation methods that we con- 
sider, and we do this in the following subsection. 

4.1 Sip-Met hod 

The class of evaluation methods that we consider pro- 
ceed by generating subgoals and facts (that are solu- 
tions to some of the subgoals), using the logic pro- 

gram (p, 9). 1 n order to account for the restrictions 
placed upon the sets of goals and facts that can be 
generated at any given time by different evaluation 
methods, we will assume a “hidden state” XFI. At 
any point in the computation, the state is a triple 
(F’, G, H). A new fact or goal can be generated by 
the use of a rule in P on FUG, subject to restric- 
tions imposed hy the hidden state and the evaluation 
method. 

Initially, the set of facts F consists of the EDB 
facts in Q. The set of goals G contains the given 
query, also in Q. (The hidden state X is assumed to 
be properly initialized.) New facts can be generated 
as follows. 

Consider a rule: r : p :- ~1, . , q,,. 
We can generate a new fact ptl by applying 
a substitution 0 such that for i = 1,. . . , n: 
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1. there is a fact di in 3 and a substitu- 
tion ui such that qib’ = diui, and 

2. there is a goal c? in g and a substitu- 
tion (TO such that p0 = CUO. 

In most evaluation methods, only the substitution 

4 = mw((p, a, . . . , qn), (c, 4, . . . , d,)) is applied, 
since applications of other substitutions only gener- 
ate facts that are subsumed by the fact pb. We will 
assume this in the rest, of this paper, and also make a 
similar assumption in the following description of how 
goals can be generated. The effect of the hidden state 
‘H and the evaluation method M - which we do not 
specify in further detail - is to allow only a subset 
of the above new facts to be generated. Generated 
facts are added to 3; further, a (newly generated or 
previously known) fact f E 3 can be discarded if it is 
subsumed by another fact in 3. The cost of detecting 
that a fact is subsumed may sometimes override the 
gains, and some methods do not discard such facts; 
we will not require this as part of our definition of sip 
methods. However, not discarding subsumed facts 
may lead to unnecessary derivations of new facts. 

To specify how goals can be generated, we must in- 
troduce the notion of a sideways information passing, 
or sip, graph. We define a sip graph for a rule to be 
a partial ordering of the body literals. 1 New goals 
are generated by invoking a rule, in a top-down sense, 
with some known goal. Further, they literals in the 
body of a rule are solved in some order, more gener- 
ally a partial order. Each literal is solved by gener- 
ating a subgoal from it and then obtaining solutions 
to this subgoal. In generating a subgoal from a lit- 
eral, the goal with which the rule was invoked and the 
solutions obtained to literals that precede the given 
literal in the sip partial order are all used to bind vari- 
ables and thereby restrict the new subgoal. Thus, to 
generate a subgoal from a literal qk, we need the goal 
with which the rule was invoked, and the facts (solu- 
tions) corresponding to literals that precede it in the 
sip order. 

Formally: 

Let the predecessors of qk be the literals 
qi,. . ,qj, let C. E Q and {di,. . ., dj} c 3, 
and 
let 0 = mgu((p,qi,...,qj),(c,di,...,dj)). 
Then, we can generate the goal qkB?. 

Generated goals are added to G, and as for facts, sub- 

sumed goals can be discarded. The effect of the hid- 
den state 3-1 and the evaluation method M is again to 

1 We will assume that the choice of sips is made for us - 
making a good choice is a hard problem, and orthogona1 to the 
results in this paper. 

allow only a subset, of the new goals to be generated. 
Henceforth, we will refer to the above operations as 
simply “applying a rule” (in a given state, according 
to a given evaluation method) to generate a fact or 
a goal. In a given state, we will in general be able 
to apply several rules simultaneously to produce new 
goals and facts. Indeed, the same rule could be ap- 
plied to produce several new goals and facts from the 
sets 3 and G. Thus, a state transition can add a set 
of facts or goals, each of which can be generated by 
a single application of a rule to 3 U G. 

We now summarize our description of sip-methods. 

Definition 4.1 Sip-Method 
Consider a logic program (P, Q) and a choice of sips 
for the rules in P. A sip-method is defined to be an 
evaluation method that generates only facts and goals 
that can be generated from Q by applying the rules 
in P in some order according to the chosen sips un- 
der the assumption of a hidden state that disallows 
the generation of no fact or goal. A subsumption- 
checking sip-method is one that discards subsumed 
facts and goals as soon as possible. A complete (resp. 
subsumption-checking) sip-method is one that com- 
putes maximal sets of facts and goals, as per the defi- 
nition of a (resp. subsumption-checking) sip-method. 

The maximal sets of goals and facts that may be 
computed are independent of the details of the eval- 
uation method (and the associated encoding of the 
hidden state), and are determined by the program 
and the sips. If the evaluation method is to guaran- 
tee all answers that follow from the least Herbrand 
model semantics, all these goals and facts must be 
generated, since it is otherwise possible to construct 
inputs such that some answer is not generated. This 
motivates the definition of complete sip-methods; we 
note that not all proposed evaluation methods are 
complete. 

While a broad class of evaluation methods can be 
viewed as sip-methods, it is important to note that 
methods that allow “coroutining” -the computation 
of two goals is interleaved, and typically, the bindings 
generated by each are used to restrict the other - 
cannot be considered sip-methods. We pursue this 
point further in Section 7. 

4.2 A Summary of Our Model of Com- 
putation 

We now present the formal definitions of states, tran- 
sitions and computations. 

Definition .4.2 Consider a program (P, Q) 
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The slate of a nrogram execution is a triple 
(7, G,3t), where 3 and G are sets of facts and 
queries, respectively, and 7-L denotes a hidden 
component of the state. 

The initial stale is defined by F = set of given 
facts in the program (the EDB, in database ter- 
minology, or the set of rules with empty bodies), 
and G = the initial query. 

A state transition according to evaluation 
method M in state S1 = (?=I, Gl,‘?fz) changes 
the state to Sz = (Tz, Gz, ‘Hz), and is denoted as 
&t-MSZ. 

& = FlU {flj is a fact that can be generated 
from Tl U G1 in hidden state 311 according to 
method M by a single rule application.} 

& = (ilU (gig is a goal that can be generated 
from ,Tl U G1 in hidden state ?fl according to 
method M by a single rule application.} 

Note that U can lead to facts or goals being dis- 
carded because they are now subsumed. Further, 
we assume that the hidden state 7-f~ is obtained 
by suitably updating ‘El to reflect the behaviour 
ofM. 

A final state is a state such that no new facts or 
goals can be generated and no rule applications 
change the hidden state. 

b A computation sequence according to method M 
is a progression from the initial state to a final 
state, through a sequence of state transitions ac- 
cording to M from one state to another. 

The length of a computation sequence is the num- 
ber of state transitions in it. 

According to our model, in a given state, there is 
a unique transition according to a given evaluation 
method, and thus a unique computation sequence for 
a given program and choice of sips. This essentially 
reflects the most optimistic situation, where all possi- 
ble generations of new goals and facts are carried out 
simultaneously at each st.ep, and makes the assump- 
tion that there are no resource constraints. It is worth 
remarking that the sets F and 6 may not change in 
a state transition, and only the hidden state 31 is up- 
dated. This corresponds to the situation that all the 
facts and goals that can be generated are previously 
known, and the only effect of generating them is to 
possibly make them visible in some subcomputations 
where they were not visible earlier. The details are 
germane to how ?i is to be updated; we do not con- 
sider this updating process in our abstraction of a 
computation. 

In subsequent sections, we denote the hidden state 
as T for evaluation methods in which all goals and 
facts are visible to all computations. However, in 
the following example, we simply omit the hidden 
state, for simplicity, with the understanding that it is 
manipulated appropriately by the evaluation metjhod 
and influences the generation of the computation se- 
quence. 

Example 4.1 We now present an example that illus- 
trates our model of computation by listing the compu- 
tation sequences in our model for execution according 
to several different evaluation methods. We use the 
following program; the only rule with a body that 
contains more than one literal is the first, and we as- 
sume that the chosen sip leaves the first two literals 
relatively unordered but before the third. 

p(X, I’) :- bl(X), b2(Y), b3(X, Y, 2). 
p(X,Y) :- 64(X, Y). 
bl(5). 
b2(6). b2(7). 
b3(5,6,8). b3(5,7,9). 
b4(1,2). 

Pm w 

We mark goals by a terminal “?“, and represent the 
sets F and G as a single set of goals and facts. For 
brevity we use the notation “U{. . .)” to denote a state 
in a computation sequence that is obtained by adding 
the set between { and } to the set in the previous 
state in the sequence (and updating the hidden state, 
which is not shown). 

Prolog Prolog is a left-to-right evaluation method 
that does not exploit any parallelism. Its computa.- 
tion sequence is: 
{p(U, V)?} l- U{bl(X)?} I- U(bl(5)) !- U{b2(Y)?} 
I- U(b2(6)} I- U{b3(5,6, Z)?} 

I-- W3(5,6,8)) 
I- U{p(5,8)} I- U{b2(7)} l- U(b3(5,7, Z)?} 
I- u{b3(5,7,9)} I- u {p(5,9)} I- u{b4(X, Y)?} 

I- W4(1,2)) I- U{P(l, 2>> 
Note that the goal 62(Y)? is generated a second 

time after backtracking. We do not see this in the 
above sequence since its only effect in our model is 
to affect the hidden state; the set of known facts and 
goals is unaffected by the re-derivation of a previously 
known goal. 

Ciepielewski-Haridi This is a fully Or-parallel 
method proposed in [CH83]. It does not exploit an) 
And-parallelism. 
{p(U, V)?} t u{bl(X)?, b4(X, Y)?} I- u 

W(5), Ml, ‘41 i- u{P(~, 2>, b‘W’)?) t- u 
{b2(6), b2(7)} t- u{b3(5,6, Z)?, b3(5,7, Z)?} 

1 WW, 6, a), bW,‘J, 9)) I- ‘J{p(5,8),~(5,9>> 
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Observe that the parallelism has resulted in a much 
shorter computation sequence. There is no And- 
parallelism since in no one transition do we add goals 
corresponding to different body literals. 

DeGroot This is an And-parallel method that ex- 
ploits no Or-parallelism, and was proposed in [De84]. 
{p(U, V)?} I- u{bl(X)?, 62(Y)?} t- u{b1(5), b2(6)} I- 

u@W,W)W- '-@3(5,VW- u{~(5,8)) 
I- u(b2(7)} I- u{b3(5,7, Z)?} I- u{b3(5,7,9)) I- u 

~r+,W t- WWW?) I- uW(L2)) t- ‘JMh 2)) 
Conery This is a method that attempts to real- 

ize both And- and Or- parallelism, and is one of the 
methods proposed in [Co83]. 

(p(U, V)?} t- u{bl(X)?, b2(Y)?} l- 
u{b1(5), b2(6), b2(7)} t- u{b3(5,6, Z)?} I- 

W3(5,6,8)) I- U{P(~, 8)) I- ‘-J{b3(5,7, Z)?) 
I- u{b3(5,7,9)) I- u {~(5,9)9 
I- u{b4(X, Y)?} I- u{b4(1,2)} I- u{p(l,2)} 

Notice that in this method, the two b3 goals are 
sequentialized. 

Reduce-Or This is also a method that exploits 
both And- and Or- parallelism, and is proposed in 
[I<a87a]. It identifies all the available parallelism in 
this example. 

{p(U, V)?} t- u{bl(X)?, b2(Y)?, b4(X,Y)?} 

I- ‘-W(5), b2(6), W’), b4(1,2)) 
t- u{p(l, 2), b3(5,6, Z)?, b3(5,7, Z)?} 

t- WW, 6,8), b3(5,7,9)) I- ‘J(p(5, 8),~(5,9)1 0 

4.3 A Measure of Parallelism 

We now describe how the parallelism allowed by two 
evaluation methods can be compared. 

Definition 4.3 Given two evaluation methods Ml 
and Mz, we say that Ml is more parallel than Ma if 
and only if for every choice of a program (P, Q) and 
a set of sips S, the computation sequence according 
to Ml is no longer than the computation sequence 
according to Mz. 

By definition, our measure of parallelism will not 
allow us to compare computations that use different 
choices of sips, since the rneasure is defined in terms 
of a property that must hold for every choice of sips 
(and programs). 

We remark that the length of a computation se- 
quence corresponds to the time taken by the algo- 
rithm. For example, if we consider bottom-up fix- 
point computation of a (rewritten) program, this 
length is equal to the number of stages or iterations. 

We now present a result that is useful for proving 
that one method is more parallel than another. 

Theorem 4.1 Ml is more parallel than Mz if the 
following holds for every program (P,Q) and choice 
of sips s: 

Let 3-1, and Gli denote the set of facts 
and goals in the state of the computation se- 
quence S1 according to Ml at Step i, and let 
-72, and &, denote the corresponding sets 
for the computation sequence Sz according 
to Mz. For all i less than or equal to the 

length of Sl- 3’2, G 6, and G2, E G’I,. 

The theorem does not hold in the only-if direction 
because we can choose arbitrary hidden states. Typi- 
cally, considering methods in the literature, the only- 
if direction also holds. However, it is difficult to iden- 
tify abstract conditions on hidden states that allow 
us to prove the claim in the only-if direction. 

We identify two extreme classes of methods. 

Definition 4.4 An evaluation method is said to be 
mazimally parallel if no other method that imple- 
ments the same choice of sips is more parallel in our 
abstract model of computation. 

Definition 4.5 An evaluation method is said to be 
sequential if it is not more parallel in our abstract 
model of computation than any other method that 
implements the same choice of sips. 

5 Bottom-Up Evaluation 

The bottom-up approach that we consider is to take 
the program (P, Q), rewrite P according to the choice 
of sips, and to then evaluate the fixpoint by a bottom- 
up iteration. 

To keep this paper self-contained, we present brief 
descriptions of the rewriting and iteration phases in 
this section. 

5.1 The Magic Templates Rewriting 

We present a simplified version of the algorithm, tai- 
lored to the case that sips are just partial orderings 
of the body literals in a rule, and that a single sip is 
associated with a rule, for all goals that invoke this 
rule. The reader is referred to [Ra88] for a more gen- 
eral algorithm capable of implementing more sophis- 
ticated sip choices, and also for a detailed discussion 
of bottom-up fixpoint computation in the presence of 
non-ground facts. 

The idea is to compute a set of auxiliary predicates 
that contain the goals. The rules in the program are 
then modified by attaching additional literals that act 
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as filters and prevent the rule from generating irrele- 
vant tuples. 

Definition 5.1 The Magic Templates Algo- 
rithm 

We construct a new program Pmg. Initially, Pm9 
is empty. 

1. Create a new predicate magic-p for each predi- 
cate p in P. The arity is that of p. 

2. For each rule in P, add the modified version of 
the rule to Pmg. If rule r has head, say, ~(0, the 
modified version is obtained by adding the literal 
rnagicq(t3 to the body. 

3. For each rule r in P with head, say, ~(9, and for 
each literal qi(ti) in its body, add a magic rule to 
P”‘g. The head is magic-qi(fi). The body con- 
tains all literals that precede qi in the sip associ- 
ated with this rule, and the literal magic-p(f). 

4. Create a seed fact mug&q((Z)) from the query. 

Example 5.1 Consider the following program. 

sg(X, Y) :- fld(X, Y). 
sg(X, Y) :- up(X, U), sg(&J, V),down(V, I’). 
sg(john, Z)? 

For a choice of sips that orders body literals from left 
to right, as in Prolog, the Magic Templates algorithm 
rewrites it as follows: 

sg(X, Y) :- magic~sg(X, Y)) fld(X, Y). 
sg(X, Y) :- 

magicsg(X, Y), up(X, U), sg(U, V), down(V, Y) 

magicsg(U, V) :- 
magic-sg(X, Y), up(X, U). 

mugic~sg(john, Z). 

cl 

We have the following results characterizing the 
transformed program P mg with respect to the origi- 
nal program P, from [Ra88]. 

Theorem 5.1 [Ra88] 
(P, Q) is equivalent to (Pmg, Q) with respect to the 
set of answers to the query. 

Definition 5.2 Let us define the Magic Templates 
Evaluation Method as follows: 

1. Rewrite the program (P, Q) according to the 
choice of sips using Magic Templates. 

We remark that in this section, positive results, of 
the form that one method is more parallel than an- 
other, are typically proved by an induction on the 
height of derivation trees for the program. Negative 
results, of the form that some degree of parallelism 
cannot (always) be achieved by a method, are typi- 
cally established by considering an example and prov- 
ing that the claim holds on this program. Several 
proofs are omitted from this extended abstract due 
to space constraints. 
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Our first result provides strong evidence in favor of 
the Magic Templates approach to parallel evaluation. 
We show that rewriting a program using the h4agic 
Templates algorithm and then computing the fixpoint 
bottom-up realizes all the parallelism allowed by the 
choice of sips. 

Theorem 6.1 Parallelism of Magic Templates 

The Magic Templates evaluation method is maxi- 
mally parallel. 

Proof (Sketch) Let us denote the bottom-up fix- 
point evaluation of the rewritten program as M. We 

2. Evaluate the fixpoint of the rewritten program. 

Theorem 5.2 [Ra88] The Magic Templates Evalua- 
tion Method is a complete sip-method. 

The careful reader will notice that some joins are 
repeated in the bodies of rules defining magic pred- 
icates and modified rules. The supplementary ver- 
sion of the rewriting algorithm essentially identi- 
fies these common sub-expressions and stores them 
(with some optimizations that allow us to delete some 
columns from these intermediate, or supplementary, 
relations). We refer the reader to [BeR87] for de- 
tails, with the remark that the variant is similar to 
the basic Magic Templates algorithm with respect to 
parallelism. 

The problem of mapping a bottom-up fixpoint com- 
putation onto a fixed set of processors has received at- 
tention lately [WSSS, CW89, Do89, GST89]. While 
considering this work is beyond the scope of this pa- 
per, we remark that the interaction of the techniques 
used in this work and the Magic Templates algorithm 
remains little understood and is an area for further 
study. 

6 Comparing Met hods 

We now present some results characterizing the par- 
allelism obtained by some proposed evaluation meth- 
ods, using the abstract model of computation a.nd 
measure of parallelism developed in Section 4. 



show that if there is a transition (&, G1,3tl) t-s 
(Fz, &, ‘Hz) according to a sip-method S that uses 
the same sips chosen for the rewriting algorithm, then 
there is a transition (Fl, 61, T) I-M (Fz,&, T). The 
proof proceeds by induction on the length of compu- 
tations. As a basis, the initial state is always of the 
form (T,G,T). The induction relies on the structure 
of rules defining “magic” predicates, and the fact that 
the hidden state for a bottom-up computation is al- 
ways T since all goals and facts are visible (in the form 
of facts, the distinction no longer being significant) to 
all subcomputations. 0 

We remarked in Section 4 that the length of the 
computation sequence for an evaluation method (in 
our abstract model) corresponds to the time taken by 
the method. We have the following corollary. 

Corollary 6.1 Consider a logic program (P, Q). Let 
Pmg be the program obtained by applying the Magic 
Templates transformation to P. The length of the 
computation sequence (in our abstract model) for the 
bottom-up fixpoint evaluation of (P”‘g, Q) is less than 
or equal to the length of the computation sequence GOT 

any sip-method on the same program and sips. 

Next, we consider similar results for other proposed 
evaluation methods. Let us define a memoing method 
to be one that maintains a copy of all generated goals 
and facts. The next theorem indicates that memoing 
methods achieve more parallelism since they avoid 
recomputing goals. 

Theorem 6.2 Power of Memoing 

No non-memoing method is maximally parallel. 

Proof (Sketch) We show that the bottom-up evalu- 
ation of (Pmg, Q), a memoing method, obtains more 
parallelism on the following program (P, Q) : 

P(Xl Y) :- ql(X, Z), q2(2, Y). 
ql(X, Y) :- b(X, Y). 

qqx, y> :- al(X, q, !$qz, Y). 
93(X, Y) :- b(X, Y). 

VA 5). 
P(5, U)? 

Intuitively, when the goal q1(5,2)? is generated a 
second time, in Rule 3, the solution q1(5,5) has al- 
ready been generated. Bottom-up evaluation can use 
this solution directly at the next step to identify the 
goal q3(5, Y)?. On the other hand, without memoing, 
we must re-solve this goal (generating the subgoal 
b(5, Z)? and the facts b(5,5),q1(5,5) in subsequent 
steps) before we can identify the goal q3(2, Y)?. c7 

The difference in the program used in the above 
proof can be significant if the computation of the goal 
ql(5, Z)? is expensive. The following result shows 
that the length of the computation sequence accord- 
ing to a non-memoing method may not even be poly- 
nomial in the length of the computation sequence ac- 
cording to bottom-up (memoing) evaluation of the 
rewritten program. This is not surprising if we re- 
quire that both methods use the same sip: Consider 
the well-known Fibonacci program. It is easy to see 
that the bottom-up method is polynomial and that 
the non-memoing method is exponential in terms of 
the number of inferences. If we choose a left-to-right 
sip for the recursive rule, the computation is made 
sequential, and the difference in the number of infer- 
ences directly translates into a difference in the length 
of the computation sequence. The following result is 
stronger in that it is independent of the choice of sips. 
That is, there are programs such that the difference 
cannot be bridged by any choice of sips for the non- 
memoing method. 

Theorem 6.3 Consider a logic program (P, Q). Let 
the length of the computation sequence (in our ab- 
stract model, for some choice of sips) of the bpttom- 
up evaluation of (Pmg, Q) be m, and let the length 
for computation according to a non-memoing method 
for some choice of sips be n. In general, the function 
g such that n = g(m) is at least exponential, inde- 
pendent of the choice of sips for the non-memoing 
method. 

Since evaluation under the Reduce-Or model does 
not do memoing, the previous theorems show that it 
is not maximally parallel, and that the length of a 
computation may be exponentially longer than that 
of a computation according to the Magic Templates 
method. 

KalC discusses the parallelism obtained by several 
methods in [Ka87b], but without reference to a pre- 
cise measure of parallelism, and the following theo- 
rems may be viewed as formalizations of the discus- 
sion in that paper. 

Theorem 6.4 Evaluation according to the Reduce- 
Or Model is maximally parallel relative to the class of 
methods that do not do any memoing. 

Theorem 6.5 Evaluation according 20 a non- mem- 
oing method ihat exploits only And- OT Or- paral- 
lelism, but not both, is strictly less parallel than eval- 
uation according to the Reduce-Or process model. 

Proof (Sketch) The proof is similar to that of The- 
orem 6.2. We consider examples from [Ka87b], and 
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show that the computation sequences for such meth- 
ods are longer than the carresponding sequences ac- 
cording to the Reduce-Or model. a 

Our next result illustrates a limitation of our mea 
sure of parallelism, which is that it does not allow us 
to compare certain pairs of evaluation methods. 

Theorem 6.6 Consider a method whose allowed 
iransitions contain no Or-parallel steps, and one 
whose allowed transitions contain no And-parallel 
steps. Let both methods be more parallel than a se- 
quential method. Then, neither method is more par- 
allel than the other. 

6.1 Methods That Sacrifice Restric- 
tion for Parallelism 

We present a result that indicates why we chose a def- 
inition of a sip-method that differs from the definition 
in [RaSS]. It also illustrates the trade-off between re- 
stricting search and parallelizing the computation. 

Let us relax our definition of a sip-method in this 
subsection to also include methods that compute a 
set of the facts and goals, say Tr and Gr, such that 
grouncl(F U 6) s ground(Tr U Gr), where ZF and S 
are the sets that must be computed according to the 
definition of a sip-method in Section 4. This allows us 
to consider methods that are not sip-optimal, in that 
they do not eliminate all computation that is irrele- 
vant according to the sips. As an extreme example, 
the bottom-up evaluation of the original program can 
be seen to implement any choice of sips (extremely in- 
efficiently), since we can view it as generating a goal 
containing a vector of R distinct variables for each 
n-ary predicate, and obtaining all solutions. Thus, 
every possible goal with predicate name p is an in- 
stance of this most general goal for p. Intuitively, 
this allows us to work on all relevant goals imme- 
diately, but at the cost of additionally working on 
irrelevant goals. From the proof of Theorem 6.3, it 
is easy to see that any irrelevant computation can be 
made arbitrarily complex, even non-terminating, and 
thus the unrestricted computation sequence could be 
much longer than a restricted computation sequence. 
Thus, bottom-up evaluation of the original program 
is not necessarily more parallel than another evalua- 
tion method, by our measure of parallelism. This is 
pertinent when we wish to compute all answers and 
terminate, or if (as is likely) resources are limited. 
However, termination is in general undecidable, and 
even the restricted computation may not terminate. 
If resources are (effectively) unlimited, and we are 
only interested in obtaining answers as soon as possi- 
ble, then, it might be worth evaluating the fixpoint of 

the original program without rewriting it to restrict 
the computation. This is justified by the following 
simple proposition. 

Proposition 6.7 Consider a logic program (P,Q). 
Lei C1 be the computation sequence in our abstract 

model for bottom-up fixpoint evaluation of this pro- 
gram, and let C2 be the computation sequence for 
some other evaluation method, for some choice of 
sips. Zf a goal or fact appears at Step n in Cz, then it 
is subsumed by some fact that appears in Cl at Step 

m, for some m 5 n. 

6.2 A Note on Magic Templates 

The above results lead us to the following observation. 
Remark: A claim such as Theorem 6.1 cannot 

be made for any other evaluation method that we 
are aware of. (It is possible to extend some of the 
methods so that such a claim holds.) 

Such a remark is tedious to prove given the num- 
ber of proposed methods, and so we simply offer an 
informal justification. First, from Theorem 6.2 it fol- 
lows that we need only consider memoing methods 
as candidates. Of these, Alexander Templates [Se891 
is the only one (other than Magic Templates) that is 
capable of dealing with non-ground facts. Examples 
are readily found where dealing with such facts is nec- 
essary to restrict search as per the sips we consider. 
Alexander Templates, like Magic Templates, rewrites 
the program and then evaluates the fixpoint, but it 
cannot deal with And-parallelism since it only allows 
left-to-right sips. 

We note that this remark should be read with all 
the limitations of sip-methods and our measure of 
parallelism in mind; nevertheless, we believe that it 
is significant. First, as Kale observes [Ka87a], iden- 
tifying the available parallelism is a useful first step; 
it remains to consider efficient realizations. In this, 
we believe that the Magic Templates method offers 
considerable flexibility since it frees us from the con- 
straints imposed by maintaining a network of pro- 
cesses and associated binding environments. We con- 
sider this point further in Section 8. 

7 More On Sip-Methods 

We have restricted out attention to evaluation meth- 
ods that are sip-methods. This has allowed a funda- 
mental separation of concerns: the sips specify the 
order in which rules are to be evaluated, that is, how 
bindings are to be propagated in order to restrict 
the computation, and the evaluation method imple- 
ments this decision (a step that includes some choice 
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of a control strategy). Not all proposed evaluation 
methods qualify as sip-methods. We now consider 
behaviour that cannot be captured by sip-methods, 
and attempt to extend our definition of sips, simulta- 
neously indicating the necessary changes to the Magic 
Templates method. These extensions preserve the es- 
sential separation of concerns in the sip paradigm of 
computation. There are certain evaluation methods, 
however, whose behaviour we cannot capture even 
with the extended definitions of sips. We examine 
this and observe that there are some fundamental lim- 
itations to the sip paradigm; this implies that certain 
top-down methods cannot be mimicked by rewriting 
followed by fixpoint evaluation. 

7.1 Multiple Sips Per Rule 

Let us return to the survey in Section 3, and the dis- 
cussion of And-Or trees. We made the assumption 
that for each And-node, there was a unique partial 
order that determined by the associated label. That 
is, each rule in the program has a unique partial or- 
dering according to which the body literals are to be 
solved in any invocation of the rule. We could re- 
lax this assumption in several ways. Consider the set 
of possible goals with predicate name p. We could 
partition this set into several - preferably, but not 
necessarily, non-intersecting - subsets. For each rule 
defining p, for each such subset, we could choose a sip 
that indicates the order in which body literals are to 
be solved when the this must be done for each subset 
of goals. 

One way to partition the set of goals is by means 
of a compile-time analysis that indicates which argu- 
ment positions we expect to be bound. This leads to 
a notion of “bound” and “free” arguments, similar to 
“input” and “output” modes, that has been proposed 
and used by a number of researchers. We note that 
[Rags] incorporates such an analysis into the Magic 
Templates algorithm. Recall that the algorithm adds 
a modified rule and a set of magic rules for each rule 
in t.he original program. If we wish to use a different 
ordering of body literals for goals in different subsets, 
in essence a modified rule and magic rules must be 
added for each subset. 

All of the methods in Section 3 choose sips at com- 
piIe time. 

7.2 Dynamic Sips 

It is possible that the choice of the order in which 
the body literals are to be solved is made at run-time 
wtlen the rule is invoked. We briehy outline one way 

to incorporate this into the Magic Templates. algo- 
rithm. The crux of the problem is that for each rule, 
we may wish to choose a different partial order at. run- 
time for each goal. Noting that there are only a finite 
number of different partial orders over a finite set, 
we could simply generate modified and magic rules 
corresponding to each partial order. Now, we must 
determine which group of modified and magic rules 
is to be used for solving a given goal. To do this, 
we observe that the goal is described in these rules 
by a magic literal in the body, say mp(i). We now 
add an additional literal classify,-,(t) to the body. 
The s subscript denotes the subset of goals, and the 
corresponding choice of sips or partial ordering, for 
which this (modified or magic) rule was generated. If 
p(q? is a generated goal, classify,-,(o must be true 
for some s (since it must be a member of one of the 
subsets of goals that we consider). 

In effect, we have taken advantage of the finite 
number of partial orders to rewrite the program at 
compile time. However, we have abandoned a static 
classification of goals based on a compile-time analp- 
sis, such as “bound” and “free” arguments, in favor of 
a dynamic classification. We remark that this is not 
necessarily a win; our objective here is to examine the 
limits of the sip paradigm of computation, which we 
believe is essentially reached with the above formula- 
tion of dynamic sips. 

7.3 Limitations of the Sip Paradigm 

These limitations are seen when we examine evalua- 
tion methods that re-order goals in And-Or trees dy- 
namically, but they can also be observed with a static 
ordering. Let us return to the discussion of And-Or 
trees, and consider And-nodes again. Let p and q be 
two body literals in the label of an And-node. Let pl 
and p2 be body literals in a descendant And-node of 
p, and similarly ql and q2 for q. A sip-method, even 
one that uses the dynamic sip selection of the previous 
subsection, must either order both pl and p2 ahead 
of both ql and q2, order the q’s ahead of the p’s, or 
leave the p’s unordered relative to the q’s. In particu- 
lar, an evaluation method that requires the following 
solution order is not a sip-method: pl, ql, ~2, q2. 

This limitation arises, of course, because the sip 
mechanism only allows us to order goals that arise as 
body literals in a single rule. All subgoals of these 
goals must respect the above order. The sip formal- 
ism does not allow us to consider the resolvent that 
is the set of all subgoals and then pick an arbitrary 
order. 

This is precisely what committed choice languages 
such as Parlog [CG86] and Concurrent Prolog [Sh86], 
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the freeze primitive in Nu-Prolog [Na87], and some 
other proposed methods, e.g. in [Co83], achieve by 
dynamically suspending and starting goals. The or- 
dering is controlled typically by variable annotations 
that, for example, suspend a goal until one of its 
variables is instantiated [CG86, Sh86, Na87]; it can 
also be controlled by a sophisticated run-time sched- 
uler [Co83]. Methods that use annotations typically 
sacrifice completeness. Completely unrestricted dy- 
namic re-ordering carries a high run-time overhead. 
Nevertheless, there may be situations where such ap- 
proaches perform better than any sip-method. In par- 
titular, they permit coroutining. 

8 Pragmatics 

We brielly discuss several practical considerations. 

8.1 Overheads 

There are a number of important differences in the 
overheads associated with top-down and bottom-up 
evaluation. Top-down evaluation uses a recursive 
control strategy. A sequential implementation such 
as Prolog uses stacks to manage goals. Parallel meth- 
ods generate a new process each goal, which carries a 
significant overhead on most systems. (Token based 
methods, e.g. ICH84], have their own additional 
overheads such as managing shared environments.) 
Bottom-up methods do not create a process per goal, 
but they recover the connections between facts and 
goals by explicit additional joins. This is typically 
also done by top-down methods that do memoing and 
aim to exploit both And- and Or- parallelism; how- 
ever, significant optimization is possible in methods 
that only exploit a limited form of And-parallelism 
that results in a single binding for each variable at 
any point in the execution. 

In this paper, we have assumed that the resources 
are sufficient to exploit all available parallelism. In 
the case that resources are limited, as is likely, the 
act,ual parallelism obtained will be curtailed by how 
efficiently the computation can be mapped onto the 
resources. 

8.2 Load Sharing in Bottom-up Eval- 
uation 

The problem of mapping a bottom-up fixpoint com- 
putation onto a fixed set of processors has received 
attention lately. While considering this work is be- 
yond the scope of this paper, we remark that the in- 
teractions of the techniques used in this work and the 

Magic Templates algorithm remain little understood 
and suggest an area for further study. We direct the 
interested reader to [WSSS, CW89, Do89, GST89J. 

8.3 Some Added Advantages of haem- 
oing 

The remarks in this subsection apply equally to top- 
down and bottom-up methods that do memoing. As 
we have already seen, memoing offers gains in terms of 
avoiding redundant computation and increased par- 
allelism. It also offers other important advantages: 

1. Multiple Query Optimization Multiple queries 
may be seen as providing multiple “seeds” for 
the Magic Templates algorithm. Redundancy is 
avoided as before, whether it arises in the com- 
putation of one of the queries alone, or whether it 
arises due to common subcomputations in differ- 
ent top-level queries. In either case, some goal is 
generated more than once, and can be discarded 
after the first time, as before, if we have memoed 
the goal and solutions to it. 

2. Incremental Evaluation If we wish to re-evaluate 
a query after adding some facts or rules to the 
program, the memoed results of the previous 
evaluation naturally enable us to avoid much 
recomputation. In the context of the Magic 
Templates algorithm, all memoed results can be 
taken to be assertions. Re-evaluation after dele- 
tions is more difficult, but some analysis of the 
affected predicates may allow us to retain many 
of the memoed relations. 

3. Improved Termination Properties It is possi’sle 
that memoing makes the difference between ter- 
mination and non-termination. For example, 
consider the following program: 

t(X, Y) :- 1(X, Z), b(Z, Y). 
1(X, Y) :- b(X, Y). 
t(5, Y)? 

This is a program on which Prolog will not ter- 
minate, repeatedly generating the goal t( 5 ,Z)? , 
but memoing enables us to recognize that the 
goal has been generated before, and thereby de- 
vise modifications to Prolog that do terminate 
(e.g., see [ViSS]). In fact, this causes Prolog to 
be incomplete. We note that memoing is not es- 
sential for completeness; the Reduce-Or model 
[Ka87a] is complete, although it does not mem- 
oing. This is essentially because all paths are 
explored in parallel, and so even if some paths 
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are non-terminating - and will never produce 
new solutions - all paths that do produce so- 
lutions are considered. However, the Reduce-Or 
computation will not terminate on this program. 
Memoing methods, including Magic Templates, 
terminate on it. 

9 Conclusions 

The main contributions of this paper are: (1) an ab- 
stract model of computation that allows us to make 
precise the degree of parahelism that is obtained by 
several proposed evaluation methods, (2) compar- 
isons between methods based on this model, includ- 
ing the result that the Magic Templates algorithm is 
maximally parallel in this model, and (3) a discussion 
of the limitations of the abstract model, and in par- 
ticular, the limitations of the sip paradigm on which 
the model is based. 

In summary, we believe that our results provide 
strong motivation for a careful study of parallel eval- 
uation of logic programs based on rewriting and sub- 
sequent fixpoint evaluation, as well as a sound basis 
for comparisons of parallelism in various logic pro- 
gram evaluation methods. 
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