
Typechecking records and variants in a natural extension of ML

Didier R&my

INRIA
Rocquencourt

France

Abstract

Strongly typed languages with records may have in-
clusion rules so that records with more fields can be
used instead of records with less fields. But these
rules lead to a global treatment of record types as
a special case. We solve this problem by giving an
ordinary status to records without any ad hoc asser-
tions, replacing inclusion rules by extra information
in record types. With this encoding ML naturally ex-
tends its polymorphism to records but any other host
language will also transmit its power.

Introduction

Strongly typed languages gain a lot in practice by
being polymorphic. They would also gain by allowing
type inclusion, and L. Cardelli preferred inclusion to
polymorphism in Amber [Car86]. For a long time it
was not known how to mix the two notions.

J. Mitchell introduced type containment in [Mit84]
in order to allow structural subtyping. He gave both
a checking algorithm (C2S) 1 for a second order type
system and an inference algorithm (IS) for the first
order case. Independently, L. Cardelli introduced

‘Ck stands for Checking at order k, Z for Inference, S for
Structural subtyping, q for Record subtyping where p and
p respectively measure the level and the power of inclusion,
and P- indicates a restriction of the property P. Variants, let

polymorphism and recursive types are not taken into account.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1989 ACM 0-89791-294-2/89/0001/0077 $1.50

a type system with records but no polymorphism
[Car84], and gave a type checking algorithm (C’RG).
He implemented a restriction of this system in Am-
ber [Car86]. L. Cardelli and P. Wegner proposed an
extension of this system in [CW85] to a second order
language introducing the notion of bounded quantifi-
cation, and gave a checking algorithm (C’RZ).

M. Wand first tried to encode record inclusion with
polymorphism but the original system [Wand871 was
incomplete. He introduced a with construction for
records 2 untypable by previous systems, but he has a
less powerful inclusion on records which we call semi-
inclusion, since he cannot forget fields from records
but has just inclusion between functions accessing
them. The inclusion is encoded with polymorphism
and is thus limited to the depth of quantification, i.e.
one. The whole system of M. Wand will be called
(IRAW). He presented a revised version [Wand88],
but here the typing algorithm is also exponential rel-
atively to the number of with.

R. Stansifer gave an inference algorithm (I-Rg)
for Cardelli’s system, but his principal types may be
empty since he does not check the consistency. Y-
C. Fuh and P. Mishra introduced a general notion
of subtyping (I-G) FM88]. In fact they essentially
applied their system to the case of structural inclusion
(IS). L. Jategaontar and J. Mitchell presented a new
system [JM88] which mixes both structural subtyping
(IS) and a restriction of Wand’s system (IRAW-)
which is complete and not exponential relatively to
the number of with.

The encoding of inclusion presented here is a
(IR: W) system. As Wand’s system it is based on
polymorphism, but it also codes inclusion between
records provided they have consistent fields, and it
keeps the full power of Wand’s with construction. It
is based on a re-understanding of records, indepen-
dent of any choice of the inclusion mechanism. With
a simple (I) system, we get (IR: W). Replacing (I)

2noted (W)

77

Year

1984
1984
1985
1987
1988
1988
1988

Author

L. Cardelli
J. Mitchell

L. Cardelli & P. Wegner
M. Wand

R. Stansifer
Y-C. Fuh & P. Mishra

L. Jategaontar & J. Mitchell

In this paper

Subtyping

IS, c2s

I-G, IS
IS

Records

CORm 00

C2Rm 00

I-R,”

With construction

IR;W

IRA W-

IR;W coded in I
IRFW coded in IS
IRZ W coded in IS+

Figure 1: Classification of systems with inclusion

by (IS) we get a system (IRT W) where inclusion
is coded at any level, but we still need an extension
(Is+) of (IS) t 0 non atomic inclusion relations to
get the final system (IR:: W) in order to be able to
forget arbitrary fields. It generalizes Stansifer’s sys-
tem including the with construction and checking the
consistency.

Most of the paper presents the encoding of in-
clusion with polymorphism, which is a solution to
Wand’s attempt but also a true extension since it in-
cludes polymorphic and recursive types and is more
flexible. The main idea is to understand Wand’s
row variables as abbreviation schemes for field pro-
jections. Indeed, inferring types of variants has much
more interest if we no longer need concrete type dec-
larations.This justifies the introduction of recursion
using unification on regular trees to infer more accu-
rate types.

First we study the inclusion mechanism in a very
simple language. Then we formally present our sys-
tem and show how the usual inference algorithm is
still applicable. Together with examples run on a
QMI, implementation [CAMLp][CAMLr], we com-
pare our system with previous ones, discover its flex-
ibility but also its limits in the encoding of inclusion.
Finally we apply the method to systems with sub-
types and recover the full power of inclusion.

1 An intuitive approach

Given a denumerable set of labels, records are partial
finite functions from labels to values. We study the
inclusion mechanism in a simple case:

- The set of labels is finite. Moreover we sup-
pose there are only two labels, To help the in-

tuition, we can represent partial functions by
their graphs in two-field-boxes.

- We suppose there is a unique value l of type A.
(read black of type up).

Without inclusion, we can write for instance:

but X and Y can neither be mixed, for example in
the two branches of an if. . . then. . . else . . . construct,
nor can they be passed as arguments to the same
function. With inclusion we would say that X and Y
should represent the set of values:

x=m I p-l-j

This agrees with the intuition that a record with
more fields can be used instead of a record with less
fields hiding some of them. But we do not want mul-
tiple values. So we give an ordinary status to empty
fields, filling them with a new basic constant o of
type V (read white of type down), which tells explic-
itly that the second projection does not make sense
on the record X. So:

x+-pq Y+-jq

We could type X and Y with

X : II(A,V) Y : II(A, A)

but Y could not be used instead of X. Thus we need
that l has also type V. This is not a real trouble, we
just assert that the basic constant l has both types
A and V, i.e. it has principal type e, where E ranges
only over the two types A and V. We have:

x : II(E,V) Y : II+, E’)

78

To access a component we must guarantee that it
makes sense, i.e. that its value is not o, or from the
point of view of types that its value has type A. The
projections are:

fst : II(A,E) + A snd : II(s, A) + A

We check that fst can be applied to both X and Y but
snd only to Y. In this view l and o are the positions
of a switch which tells whether the field is filled or
empty. In fact it is better to distinguish between the
value l which position the switch of a non empty field
and a value V of type void which fills it. In fact V is
the value returned by projections:

fst : II(A,e) -+ void snd : II(s’, A) + void

Variables e and e’ range over A and V but not over
void, they are of a different kind, say Aag, while vari-
ables (Y$,. . . are of the kind type and range over void
and the arrow and record types. We think of void, A
or V indifferently as sorts.

When values of fields are no more restricted to be
only V, it is clear that we must put into fields both
a switch and a value. We use an undefined value R
which has all types (all sorts of the kind type) to fill
previously empty fields. Records usually defined by

x+-/l Y=ppq

now stand for

and have types

X : II(.c.num, V.a) Y : lI(e.num, .&.void)

where “.” is an infix product constructor of types.
The first projection has type II(A.a, e./3) + (Y and
can be applied to both X and Y.

When labels are more numerous, but still finite,
records can still be thought as a huge box with as
many fields as the number of labels. In this view la-
bels are just a syntactic way of specifying the signifi-
cant fields. For instance, if labels are all strings with
at most six letters, the notation {A = V} stands for:

We give a complete formulation of the intuitive ap-
proach of the previous section, embedding the simple
types of ML into a more structured world of sorts.
The language of sorts is kinded in order to control
the range of variables, and it is regular so that it al-
lows recursive types.

We define a language K of kinds as follows: the
basic kinds are type, Bag and field and the only kind
constructor is =$ of arity two. The language K is
the closure of the set {type, field, Aag} by the arrow
constructor:

ifu E K and v E K then (u j v) E K

{A=e,V;B=o,~;C=o,R;...zzzzrr=o,R)

and has type:

We write

for

(Ul 63 u2 8. *. un =s- v)

~(E.void, v-h, v@2,. . . v-fl642544811)
(u1 * (IQ * . . . (Un * v) . . .))

Fortunately, the user will never see these structures Let L be a finite set of labels and 1 be its cardinality,
but a more compact representation with labels, which B be a set of basic constants of the kind type, C be

reflects the way they are encoded. This encoding even
allows to deal with a denumerable set of labels and
will be described below.

Variants are labelled sums. The inclusion mech-
anism for variants can be studied in the restricted
language. The switch of a sum field tells if the value
must (then it is A), may (it is a variable), or must
not (it is V) be injected into this field. For instance
with two fields left and right we have the following
types:

inleft : void ----f C(A,E)
inright : void -+ C(E, A)

outleft : x(A, V) + void

Variants are to concrete data types what records
are to named labelled products. Concrete data types
can be defined recursively, and variants encoding
them will be recursive. So we extend ordinary types
to recursive types. We formally present a language
of expressions, a language of types which is kinded
and regular, and show how Milner’s type inference
algorithm still prevails. Only the case of a finite or-
dered set of labels is studied, but an extension to a
denumerable set of labels is suggested.

2 A formulation of records

2.1 Language of type expressions

79

Figure 2: Primitives for records and variants

the set of constructors { --f, II, C, A, V} which have
the kinds:

-+ : type @I type * type
n : field @ field @ . . . field 3 type

--

C : field @I iI.4: @ . . . field j type
--

1
. : flag@ type + field
A : Aag
V : Aag

The constructors + and . are infixed. We denote by
S the union C U t3 of symbols. Let Vt, v’ and vb be
three denumerable sets of sort variables of respective
kinds type, field and Aag. We note V their union.The
set R of sorts is the set of first order kinded regu-
lar trees constructed over the set of variables V and
the set of symbols S. In. order to extend expressions
to generic expressions, we introduce three other de-
numerable sets of generic sort variables of the three
basic kinds and name them by 9 subscripts. The set
R, is defined as the set R, but replacing the sets of
non generic variables by their unions with the assc)
ciated sets of generic variables. Note that V n V, is
empty but R is included1 in 72,.

We denote sort variables by letters CY, 0, -,J adding a
subscript 9 for generic sort variables, and sorts by u, r
adding a subscript if we admit generic sorts. We also
use q5, II, but only for variables of the kind field, and
e, S for variables of the kind Aag. We note (ug) the
set of all sort variables occurring in us. All variables
used in toplevel definitions are obviously generic, but
we will omit the 9 subscripts in figures.

2.2 Results on regular trees

We recall below some results on regular trees. Most
of them are proved in [IIuet].

l A graft is a mapping from V to R respecting the
kinds. In the following we are only interested in
finite grafts, i.e. the grafts /J such that the set
{o 1 CX~ # Q} is finite. Then p is representable
by the finite set of pairs: {(cr, crp)] crp # CY}.

l Rational trees can be seen as the application of
a (finite) graft to a fixed variable E, thus they
are finitely representable by a variable c and a
set of pairs (cr, 0).

l Unification There exists an algorithm U such
that given two regular trees u and r:

- if the two trees are not unifiable then U
fails.

- Otherwise U returns a most general unifier
u, i.e. a graft such that if there exists a
graft v which unifies u and r then there
exists another graft < such that v = ut.

In fact algorithm U is just the usual algorithm
where the occur test has been removed. We
note ug z TV when the two generic sorts ug
and TV are unifiable and u is their most general
unifier.

We distinguish several classes of grafts:

l Grafts from V to R are denoted by /J, v, <, p.

l Grafts from V, to 72, have subscript.

l A principal unifier is noted u,~,. . . .

Grafts are extended to automorphisms of R or R,.
We note U,LA the application of the graft p to the tree
u, and pu for v o p in such a way that upu means
(up)u as well as u(pv).

80

‘ei 2 E In’2
let ‘& y = x in y E out’ 2
function ‘ei y + f y E f oout’
function Vi y + f y 1 x -+ c x = Case’ f c

0
{I- with f!i = x)
{ej, =x1, . . . tin =x,}
T.-t;
{r without 4)

G null
= - new’rx
E ((4, = x1 . . . ii,,-, = x,-1) with ej, = x,,}
s extract’ r
s forget’ r

Figure 3: Syntax for records and variants

2.3 Syntax of expressions

We use a very simple language defined by the follow-
ing grammar:

e .- .- b constant

I x variable

I Ax.e

abstraction

1 LZ.e
application
recursion

1 let x = e in e local definition

We have no special construction for products and
variants but a finite collection of primitive functions
(constants), which are listed in figure 2 with their
respective sorts. Combining these primitives we can
think of record and variant constructions as macro-
syntax facilities, summarized in figure 3. One can
change or add basic constructions just by modifying
the set of primitives. For instance we could take:

neti : n(Pl,...,iQ;-,9 v’P,Pi+l . ..(PI)-+~
-l-I<‘P 1l”‘>(Pi-19 E*a>Pi+l ***‘PI)

which would restrict the {r with .& = x} construction
to be W-. The other choice:

new’ : n(p,,...p,) +(Y

+ lx%, ***,cPi-l, A*as(Pi+l **.cP,)

would restrict the inclusion to semi-inclusion. Re-
mark that non generic accesses of semi-inclusive fields
can be compiled more efficiently.

2.4 Inference rules

We say that rg is a generic instance of a9 if and only
if there exists a graft p, such that 79 = ~7~~1~. Infer-
ence rules are applied to triples (A, e, ~~8) also called
judgements and noted A I- e : rg where:

l A is an environment, i.e. a set of assertions x :
ug where the expression x is either a constant or
a variable. We note A, the set of all assertions
in A which do not contain the expression x. We
also note (A) the set of sort variables occurring
in A.

l e is an expression

l Tg is a generic sort expression

The system (C) of inference rules is:

(TAUT)
Atx:ug

(x : ug E A)

(INST) A I- e : ug
Al-e:a,ps

@EN)
Al-e:ag

At e : u~[(Y~/(Y]
(a e (4)

(FUN)
A,U{z:u}l-e:T

Al-Xx.e:u-+T

(APP)
Al-e:u+r Ate’:u

A I- (e e’) : 7

(LET)
Al-e:ug A, U {x : ug} I- e’ : T

A I- let x = e in e’ : T

(MU)
A,U{x:u)ke:u

A I- px.e : u

We extend grafts to expressions with identity.
Then the grafting p of an assertion x : ~~ is the asser-
tion x : rg,u and the grafting of a judgement A I- e : ug
is the judgement Ap I- e : usp. The inference sys-
tem is just Milner’s system where types have been

81

x : ug E A

tNEWW) A kw z : Lug]

(FUNW)
(A, U {z : a})~/ l-w e : T

Av t-w Xx.e : CYY ---, r

(APPW)
Au l-w e : r Avv’ l-w et : r’ TY’ 2 7’ + cr

Avv’u kw (e e’) : cru

(LETW)
Av tw e : r (A, u {z : [Av, 71)) Y’ tw e’ : r’

Avv’ tw let x = e in e’ : r’

(A, U {x : cr})v l-W e : T CYv~r

WUW > Avu tw px.e : ru

Figure 4: Rules defining the algorithm W.

replaced by kinded recursive kinds, and substitutions
by kinded grafts. We note:

l [A,a,l the genera.lization of bg in the context
A, i.e. the grafting of all non generic variables
of u9 which do not appear in the context A by
new generic variab’les.

l [aSJ the instantiation of ug, i.e. the grafting of
all generic variables of ug by new non generic
variables.

Both instantiation and generalization are defined
modulo a renaming of variables. We mean by new
variables some which occur neither in the context A
nor in the sort u9. In fact we should note LA,csJ
rather than Lug] since the instantiation also depends
on the context A, but in a less important way than
the generalization. If an instantiation or a general-
ization occurs more than once in the same phrase it
will denote the same tree in all occurences.

Lemma 1 (SUB) The system C is stable under
non-generic grafls:

Al-e:u=+Apl-e:up

We define an algoritlhm W which for any envi-
ronment A and expression e either fails or returns
a pair (v,T). We note Au tw e : r instead of
(v, r) = W(A, e). See figure 4.

Theorem 1 (Soundness of W) IfApkW e:u
then Ap t e : u.

Theorem 2 (Completeness of W) For
any judgement A and any expression e, if there exist
a graft p and a generic sort ug such that A,u t e : ug

l there exist Y and r such that Av l-w e : T

a there exists < such that Ap = Av< and [u,J =

e.

Theorem 3 (Principal sort schemes) For any
environment A and expression e, either e is untypable
under some graft of A and W(A, e) fails or W(A, e)
succeeds with (,u,T) and [Ap, r1 is a principal sort
scheme of e under Ap.

Proofs just consist in checking that the introduc-
tion of several kinds and the replacement of terms by
trees do not alter the proofs with Milner’s system.
These use only the unification theorem and the sub-
stitution lemma. If we just replace “term” by “kinded
regular tree” and “substitution” by “kinded graft”,
the lemma and the unification theorem are still valid,
and so is Milner’s proof,

Obviously, the proofs neither depend on the present
kinds of sort constructors excepted the arrow one, nor
of the sorts of the primitive values of the language
of expressions. We can freely change the semantics

82

of basic constructions or add new ones (the set of
primitives we gave do not use all the possibilities of
the sorts) by changing simultaneously the semantics
and the sorts of their primitives in a consistent way.
One can also keep kinded but non recursive sorts, or
add some restriction on the construction of recursive
sorts, provided that this invalids neither the substi-
tution lemma nor the unification theorem.

3 Examples

We implemented a typechecking algorithm for our
type system in @L. The toplevel loop does not eval-
uate expressions but returns either an exception or a
list of identifiers with their types. The identifier it
is used when an expression is unnamed. The syntax
of expressions includes the constructions for variants
and records, and allows pattern matching in the usual
way. A typable toplevel expression is always typed
with a sort of kind type which is represented by a
finite tree and a set of equations between variables
and finite trees. The syntax of flags is + for A, - for
V and names of flag variables are only printed when
they occurs more than once in the same phrase, so
“.” stands for an arbitrary Aag variable. Most of the
fields have the same scheme (each instantiated with
distinct variables), and are gathered.

l the closed scheme V.a is the default one and is
not represented.

l the open scheme E.CX is represented by a row
variable or by “. . . ” if it occurs only once in a
phrase. Otherwise two occurrences of the same
scheme will assign the same flags and types to
the same projections.

Schemes are just abbreviations for the regular field
projections. Syntactically they correspond to the row
expressions used by Wand [Wand871 but also by R.
Stansifer [Sta88] and L. Jategaontar and J. Mitchell
[JMSg].

Record objects have always closed types:

#let r = {a-true; b=l) ; ;
r : (a: .bool, b: .nun)

they can be extended with other fields very freely.

#Cr with b=();c=3>;;
it : {a: .bool, b: .void, c: .num)

This allows the field being already present, even with
an incompatible type. The significant fields have

polymorphic flags and thus can be forgotten. The
infix operator -, defined by:

let x - y * if true then x else y;;
- . ‘a -> sa -> ‘a .

is used to shorten examples.

#r e {b=l) ; ;
it : Ca: -.bool. b: .num)

Notice that the typechecker keeps trace of the types
that have been put into fields. This avoids the strange
property of Amber [Car861 which assigns a type to:

({a=true) e {a=true; b=l)) - Ca=true; b=()>

but fails with:

Ea=true3 - ({altrue; b=l} - {a=true; b=()))

which is rather surprising. It also seems to prevent
us from mixing labels which should have nothing in
common, but this is rather a restriction of inclusion.
We shall come back to it later. The without con-
struction forgets a field explicitly in which case it is
regenerated, i.e. its type becomes a fresh variable.

#{r without b); ;
it : {a: .bool, b: -.?a)

First, the field cp of the b projection is withdrawn from
the scheme if it was not there yet, then the scheme
is used to create the type of the new record, so that
further constraints on it will not affect cp:

#fun r r’ ->
Cr without option3 - {r’ without option);;
it :
{option: .‘a , p...) ->
{option: . ‘b , p,..) -> {option: -.‘c , p...3

Fields are recalled either by pattern matching or by
one of the projections:

#fun r -> r.a;;
it : (a: +.‘a , . ..3 -> ‘a

Another restriction is due to non genericity of X-
bound values. We fail with:

#fun x -> if x.a then x else (b=l);;
Typing failed

although we succeed with:

#let x = {a=true;b=2)
#in if x.a then x else {b=l);;
it : {a: -.bool, b: .num3

This restriction is inherent to ML polymorphism
which stops at the lambda boundaries. The same
situation arises in:

83

#fun f -> if f 1 then f 1 else f();;

which is not typable though:

#let f _ = true in i.f f 1 then f 1 else f();;

is, indeed. The above counter-example could be
solved by rewriting the lambda expression into a let
expression, but this is not the general case.

Variant objects have naturally open types (they can
be constrained to be closed). They are created with
constructors which are quoted labels.

#let s = >A 1;;
s : [A: +.num I . ..I

Sums are destructured only by pattern matching:

#function 'A x -> x 1 'BO -> true;;
it : [A: .bool I B: .void] -> boo1

A “catch all” indicated by “-” matches all variants.

#let trap-all = function 'B x -> x 1 _ -> 0;;
trap-all : CB: .num I . ..I -> num

Recursive functions usually have recursive variant
types:

#let ret map foo = function
'Nil0 -> 'Nil0
#I 'Con5 1 ->
'Cons {hd= foo l.hd; tl- map foo l.tl);;
map :

(‘a -> 'b) -> 'c -> 'd
with

'd e
[Cons: +.Chd: .'b, tl: .'a

. . . I
'c 5:

ccons : .{hd: +.'a, tl: +.'c
Nil: .void]

I Nil: +-void I

9 . . . 3 I

Types are powerful enough to tell that a list must be
non empty. The function:

#let hd (‘Cons r) = r.hd;;
hd : ccons : .{hd: +-.‘a , . . .I1 -> ‘a

cannot be applied to the null list, but the function Hd
defined by:

#let check-cons = function
'Cons 1 -> 'Cons 1
#I 'Nil () -> failuith "check-cons";;
check-cons :

ccons: . *a I Nil: .voidl -> [Cons: +.‘a I . ..I

#let Hd = hd o check-cons;;
Hd :

ccons : .<hd: +.'a , . ..I I Nil: *void] -> 'a

will accept a null list and raise an exception. Dynamic
typechecking during pattern matching can be disso-
ciated from the active part, of the function. Longer
examples are given in the appendix.

We previously mentioned the possibility of chang-
ing the semantics of the basic constructions, or adding
new ones. In previous examples the flag of a field
could never depend on the flag of another field. The
reason is that all primitives already have this prop-
erty. But, there are interesting constructions where
this is no longer true, for instance a primitive which
exchanges two fields of a record.

#fun r -> <r rrhere gnu and gnat permuted);;
it :

ignu: u.'a, gnat: v.'b, . ..p) ->
{gnu: v.>b, gnat: u.'a, . ..p>.;

This operation cannot be typed in systems which en-
code inclusion of records with a global inclusion rela-
tion. With variants, similar constructions have also
great, interest. The function

#function ‘True0 -> ‘False0
I 'False0 -> 'Trueo;;
it :

[False: .void I True: .void] ->
[False: +-void I True: +.void I . ..I

could be written as

#transposition 'True0 -> 'False0
I 'False0 -> 'TrueO;;
it :

[False: u.void I True: v.voidl ->
[False: v.void I True: u.void I . ..I

and so better typed. We let the reader build his own
examples.

4 Recovering the full power of
inclusion

The system proposed is limited to a finite set, of labels.
This is sufficient from a pragmatic point of view since
in any real language, only a finite number of opera-
tions will ever be computed. It is always possible to
reason a posteriori in a large enough set, to assert that
what, has been done is correct. From a theoretical
point of view an infinite set of labels is obviously bet,-
ter and avoids the above meta-reasoning. Note that
in ML with concrete type constructors, a type decla-
ration is usually but, not, essentially a meta operation.

84

null : JJ(V,...V)

extract’ : n((P1>...>(Pi-l> A(Y>(P;+~ *..‘P,) ---t a

forget’ : lx%?.. *PO +~<~l~~**7Pi-~7 v,Pi+l ““Pt)

newi : n((pl,...(PI)--r(Y-tn((O,,...,~;-I, O~~cpi+l.-44

Figure 6: Primitives with stronger subtyping

Kinded regular trees could be extended to finitely
generated kinded regular trees. We could prove a uni-
fication theorem for them similar to the one for reg-
ular trees and the substitution lemma would not be
altered, so the results would still hold. Moreover, this
proof would justify the schemes we used in the imple-
mentation to abbreviate the non significant fields into
a compact representation.

The generality of our system is preserved for la-
belling. But there are two limits in the encoding of
inclusion.

l ML polymorphism is too restrictive to code the
full power of inclusion.

l Polymorphism can only code structural inclu-
sion .

However the approach followed here has interesting
points:

l From both a theoretical and practical point of
view, it is very simple.

l It is also modular because the mechanism of
inclusion on records is not an ad hoc assertion
but is built in.

l It allows interesting constructions which are not
typable in a system where inclusion on records
is defined globally, because there is no way to
specify any relation between fields.

So we try to recover the full power of inclusion keeping
these properties.

4.1 Records with structural subtyp-
ing

The first limitation can be re-examined in the simple
language used in the intuitive approach. The impor-
tant idea was to code the records:

X=p-rl Y=Fl

as the total functions:

x+-p-j y+jG-~

We first proposed to type X and Y with:

X : II(A,V) Y : II(A, A)

but X could not be used instead of Y.

Then we explained how to encode inclusion with
polymorphism. If the simple language has inclusion
between atomic types, we introduce a new basic flag
0 (read up and down) as a subflag of both A and
V. Then everything works as before. More precisely
in a language (IS) primitive functions would have
the sorts given in figure 5. In fact identifying A
and 0 leads to a very similar though weaker system.
It still codes (IRF W) inclusion but cannot encode
semi-inclusion any longer.

4.2 Records with stronger subtyping

We cannot yet forget the types of fields, but only their
flags. When we introduce multiple values we decided
to put into fields both switches and values. Another
solution consists in putting values only in fields which

85

have an open switch. From this point of view the kind
of fields is no longer a pair of a flag and a type, but
either A(Y or V. Obviously we add a third case Ocr
which is a subfield of both previous ones, we have:

We code the records:

X=lj Yq-Tp-1

as the total functions:

x+i-p-/ Y=W

which have types:

X : II(Onum, V) Y : II(Onum,Ovoid)

More precisely, primitive functions would have the
sorts of figure 6.

We shall identify A and 0. The inclusion is no
longer atomic and thus cannot be treated by struc-
tural subtyping. However it is a subcase of general
inclusion studied by Y-C. Fuh and P. Mishra. In-
ference of a set of constraints can be solved as in
[FM88]. Checking the consistency can be done using
the matching of [FM881 and looking for a solution
with lower fields. But we shall have to find efficient
algorithms to simplify the set of constraints.

The difficulty is shown by the example:

#fun x -> Ca=x; b=x> * {a=i; b=O);;

The type of this function is:

(Anum E cp

CY + H(cp, $) with Aa Ccp
Avoid C $

Aa Cll,

The set of constraints is not simplifiable, since both
variables ‘p and 1c, can be “up”. Remark that this
checking could be expensive in time. Moreover, only
one field can be “up” at a time, but this piece of
information cannot be coded with containment. Thus
type containment may not be a good way to express
the power of the language (IS+). A good candidate
might be a restriction of Coppo’s system [Coppo], but
this needs investigating.

Conclusion

We presented a new solution to typecheck records and
variants, which seems to have interesting properties:

it captmes the essential notions of inclusion, but in
a natural extension of ML polymorphism, and infers
more precise and recursive types which makes con-
crete type declarations optional. Most of these in-
gredients are very modular, and thus the language
designer may choose his own version.

We also checked that the algorithm allows the typ-
ing of huge expressions in reasonable time and is even
very competitive with the current algorithm used in
QML. Type expressions are much more complex, but
much of the information is not essential to the user.
It seems reasonable to show him only partial types,
unless he explicitly asks for complete information.

We limited this discussion to a very simple version
of polymorphism where ML type inference algorithm
is still applicable. The advantage is both a theoretical
and practical simplicity, but one of the drawbacks is a
limitation of inclusion. The method proposed is more
general, and can be applied to systems with subtypes
where the power of inclusion is increased.

References

[CAMLr]

WMLPI

[Car841

[Car861

[Car881

[COPPOI

Pierre Weis. “The CAML Reference Man-
ual”. INRIA 1987.

Guy Cousineau and Gerard Huet. “The
CAML Primer”. INRIA 1987.

Luca Cardelli. “A Semantics of Multiple
Inheritance”. In Information and Compu-
tation 1988. In Semantics of Data Types,
Lecture Notes in Computer Science n.
173, Springer Verlag, 1983.

Luca Cardelli. “Amber”. In Combina-
tors and Functional Programming Lan-
guages, Proceedings of the 13th Summer
School of the LITP, Le Val D’Ajol, Vos-
ges, France, May 1985, Lecture Notes in
Computer Science n. 242, Spinger Verlag,
1986.

Luca Cardelli. “Structural Subtyping and
the notion of Power Type”. In Proceed-
ings of the Fifteenth Annual Sympo-
sium on Principles Of Programming Lan-
guages, 1988.

Mario Coppo. “An Extended Polymor-
phic Type System for Applicative Lan-
guages”. In Proceedings of MFCS ‘80,

86

[CW85]

[FM881

[Huet]

[JM88]

[KTU88]

[Mit84]

[Mit88]

[Sta88]

[Wand871

[Wand881

Lectures Notes in Computer Science n.
88, Springer Verlag, pages 194204.

Luca Cardelli and Peter Wegner. “On un-
derstanding types, data abstraction, and
polymorphism”. Computing Surveys, vol.
17(4). 1985.

Y-C. Fuh and P. Mishra. “Type infer-
ence with subtypes”. In Proceedings of
ESOP ‘88, Lecture Notes in Computer
Science n. 300, Springer Verlag, pages 94-
114, 1988.

Gerard Huet. “R&solution d’equations
dans les langages d’ordre 1,2, . . . , w”.
Th&se de doctorat d’etat, Universite
Paris 7, 1976.

Lalita A. Jategaonkar and John C.
Mitchell. “ML with Extended Pattern
Matching and Subtypes”. In Proceedings
of the 1988 Conference on LISP and Func-
tional Programming.

A.J. Kfoury, J. Tiuryn and P. Urzy-
czyn. “On The Computational Power of
Universally Polymorphic Recursion”. In
Proceedings of the Third Symposium on
Logic In Computer Science, 1988.

John C. Mitchell. “Coercion and Type In-
ference”. In Proceedings of the Eleventh
Annual Symposium on Principles Of Pro-
gramming Languages, 1984.

John C. Mitchell. “Polymorphic Type In-
ference”. In Information and Computa-
tion, 1988.

Ryan Stansifer. “Type inference with
Subtypes”. In Proceedings of the Fif-
teenth Annual Symposium on Principles
of Programming Languages, San Diego,
California, 1988.

Mitchell Wand. “Complete type inference
for simple objects”. In Proceedings of the
Second Symposium on Logic In Com-
puter Science, 1987.

Mitchell Wand. “Corrigendum: Complete
type inference for simple objects”. In
Proceedings of the Third Symposium on
Logic In Computer Science, 1988.

87

Appendix

The following program implements the quicksort algorithm. In this example booleans are considered as sums.
The additional syntax is that x: :y stands for 'ConsIhd=x, tl=y), in both patterns and expressions.

#let select p =
let ret select,ret =
function
'Nil0 -> failvith "select"
I 'Cons 1 ->
if p l.hd
then 1
else (let L = select-ret l.tl in {hd= L.hd; tl= l.hd::L.tl))
in select,ret
*;;
select :

('a -> bool) -> 'b -> 'c
with 'b = [Cons: +.'c 1 Nil: .voidj
and 'c = {hd: +.'a, t:l: +.'b)

#let partition p 1 =
list-it
(fun a 1 ->
if p a then {hd= a::l,hd; tl= l.tl) else {hd= l.hd; tl= a::l.tl))
1 {hd= 'Nil; tl= 'Nil)
*;;
partition :

(‘a -> bool) -> 'b -> {hd: +.'c, tl: +.'d>
with

'c t CCons: +.Chd: .'a. tl: .'c) I Nil: +.void I . ..I
'd = [Cons: +.Chd: .'a, tl: .'a 1 Nil: +.void 1 . ..I
'b = ccons : .{hd: +.'a, tl: +.'b , . ..I 1 Nil: .voidl

#let sort-append p le =
let ret sort =
function
Cl -> I
I -::- as x ->
let 1 = select p :K in
let L = partition (fun y -> le y l.hd) l.tl in
(sort L.hd) o (cons l.hd) o (sort L.tl)
in sort
a;;
sort-append :

(‘a -> bool) -> (‘a -> ‘a -> bool) -> ‘b -> ‘c -> ‘c
with

Jc 7 [Cons: +.{hd: .'a, tl: .'c) I . ..I
'b = [Cons: +.{hd: +.'a, tl: +.'b) i Nil: +.voidl

#let sort order list =
sort-append (fun x -:r true) order list 'Nil
#-* IS
sort :

('a -> 'a -> bool) -> 'b -> 'c
with

'c = [Cons: +.<hd: .'a, tl: .'c) I Nil: +.void I . . .I
‘b = ccons : +.{hd: +.'a, tl: +.'b) 1 Nil: +.voidl

