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Abstract 

Strongly typed languages with records may have in- 
clusion rules so that records with more fields can be 
used instead of records with less fields. But these 
rules lead to a global treatment of record types as 
a special case. We solve this problem by giving an 
ordinary status to records without any ad hoc asser- 
tions, replacing inclusion rules by extra information 
in record types. With this encoding ML naturally ex- 
tends its polymorphism to records but any other host 
language will also transmit its power. 

Introduction 

Strongly typed languages gain a lot in practice by 
being polymorphic. They would also gain by allowing 
type inclusion, and L. Cardelli preferred inclusion to 
polymorphism in Amber [Car86]. For a long time it 
was not known how to mix the two notions. 

J. Mitchell introduced type containment in [Mit84] 
in order to allow structural subtyping. He gave both 
a checking algorithm (C2S) 1 for a second order type 
system and an inference algorithm (IS) for the first 
order case. Independently, L. Cardelli introduced 

‘Ck stands for Checking at order k, Z for Inference, S for 
Structural subtyping, q for Record subtyping where p and 
p respectively measure the level and the power of inclusion, 
and P- indicates a restriction of the property P. Variants, let 

polymorphism and recursive types are not taken into account. 
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a type system with records but no polymorphism 
[Car84], and gave a type checking algorithm (C’RG). 
He implemented a restriction of this system in Am- 
ber [Car86]. L. Cardelli and P. Wegner proposed an 
extension of this system in [CW85] to a second order 
language introducing the notion of bounded quantifi- 
cation, and gave a checking algorithm (C’RZ). 

M. Wand first tried to encode record inclusion with 
polymorphism but the original system [Wand871 was 
incomplete. He introduced a with construction for 
records 2 untypable by previous systems, but he has a 
less powerful inclusion on records which we call semi- 
inclusion, since he cannot forget fields from records 
but has just inclusion between functions accessing 
them. The inclusion is encoded with polymorphism 
and is thus limited to the depth of quantification, i.e. 
one. The whole system of M. Wand will be called 
(IRAW). He presented a revised version [Wand88], 
but here the typing algorithm is also exponential rel- 
atively to the number of with. 

R. Stansifer gave an inference algorithm (I-Rg) 
for Cardelli’s system, but his principal types may be 
empty since he does not check the consistency. Y- 
C. Fuh and P. Mishra introduced a general notion 
of subtyping (I-G) FM88]. In fact they essentially 
applied their system to the case of structural inclusion 
(IS). L. Jategaontar and J. Mitchell presented a new 
system [JM88] which mixes both structural subtyping 
(IS) and a restriction of Wand’s system (IRAW-) 
which is complete and not exponential relatively to 
the number of with. 

The encoding of inclusion presented here is a 
(IR: W) system. As Wand’s system it is based on 
polymorphism, but it also codes inclusion between 
records provided they have consistent fields, and it 
keeps the full power of Wand’s with construction. It 
is based on a re-understanding of records, indepen- 
dent of any choice of the inclusion mechanism. With 
a simple (I) system, we get (IR: W). Replacing (I) 

2noted (W) 
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In this paper 

Subtyping 
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IS 

Records 

CORm 00 

C2Rm 00 

I-R,” 

With construction 

IR;W 

IRA W- 

IR;W coded in I 
IRFW coded in IS 
IRZ W coded in IS+ 

Figure 1: Classification of systems with inclusion 

by (IS) we get a system (IRT W) where inclusion 
is coded at any level, but we still need an extension 
(Is+) of (IS) t 0 non atomic inclusion relations to 
get the final system (IR:: W) in order to be able to 
forget arbitrary fields. It generalizes Stansifer’s sys- 
tem including the with construction and checking the 
consistency. 

Most of the paper presents the encoding of in- 
clusion with polymorphism, which is a solution to 
Wand’s attempt but also a true extension since it in- 
cludes polymorphic and recursive types and is more 
flexible. The main idea is to understand Wand’s 
row variables as abbreviation schemes for field pro- 
jections. Indeed, inferring types of variants has much 
more interest if we no longer need concrete type dec- 
larations.This justifies the introduction of recursion 
using unification on regular trees to infer more accu- 
rate types. 

First we study the inclusion mechanism in a very 
simple language. Then we formally present our sys- 
tem and show how the usual inference algorithm is 
still applicable. Together with examples run on a 
QMI, implementation [CAMLp][CAMLr], we com- 
pare our system with previous ones, discover its flex- 
ibility but also its limits in the encoding of inclusion. 
Finally we apply the method to systems with sub- 
types and recover the full power of inclusion. 

1 An intuitive approach 

Given a denumerable set of labels, records are partial 
finite functions from labels to values. We study the 
inclusion mechanism in a simple case: 

- The set of labels is finite. Moreover we sup- 
pose there are only two labels, To help the in- 

tuition, we can represent partial functions by 
their graphs in two-field-boxes. 

- We suppose there is a unique value l of type A. 
(read black of type up). 

Without inclusion, we can write for instance: 

but X and Y can neither be mixed, for example in 
the two branches of an if. . . then. . . else . . . construct, 
nor can they be passed as arguments to the same 
function. With inclusion we would say that X and Y 
should represent the set of values: 

x=m I p-l-j 

This agrees with the intuition that a record with 
more fields can be used instead of a record with less 
fields hiding some of them. But we do not want mul- 
tiple values. So we give an ordinary status to empty 
fields, filling them with a new basic constant o of 
type V (read white of type down), which tells explic- 
itly that the second projection does not make sense 
on the record X. So: 

x+-pq Y+-jq 

We could type X and Y with 

X : II(A,V) Y : II(A, A) 

but Y could not be used instead of X. Thus we need 
that l has also type V. This is not a real trouble, we 
just assert that the basic constant l has both types 
A and V, i.e. it has principal type e, where E ranges 
only over the two types A and V. We have: 

x : II(E,V) Y : II+, E’) 
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To access a component we must guarantee that it 
makes sense, i.e. that its value is not o, or from the 
point of view of types that its value has type A. The 
projections are: 

fst : II(A,E) + A snd : II(s, A) + A 

We check that fst can be applied to both X and Y but 
snd only to Y. In this view l and o are the positions 
of a switch which tells whether the field is filled or 
empty. In fact it is better to distinguish between the 
value l which position the switch of a non empty field 
and a value V of type void which fills it. In fact V is 
the value returned by projections: 

fst : II(A,e) -+ void snd : II(s’, A) + void 

Variables e and e’ range over A and V but not over 
void, they are of a different kind, say Aag, while vari- 
ables (Y$,. . . are of the kind type and range over void 
and the arrow and record types. We think of void, A 
or V indifferently as sorts. 

When values of fields are no more restricted to be 
only V, it is clear that we must put into fields both 
a switch and a value. We use an undefined value R 
which has all types (all sorts of the kind type) to fill 
previously empty fields. Records usually defined by 

x+-/l Y=ppq 

now stand for 

and have types 

X : II(.c.num, V.a) Y : lI(e.num, .&.void) 

where “.” is an infix product constructor of types. 
The first projection has type II(A.a, e./3) + (Y and 
can be applied to both X and Y. 

When labels are more numerous, but still finite, 
records can still be thought as a huge box with as 
many fields as the number of labels. In this view la- 
bels are just a syntactic way of specifying the signifi- 
cant fields. For instance, if labels are all strings with 
at most six letters, the notation {A = V} stands for: 

We give a complete formulation of the intuitive ap- 
proach of the previous section, embedding the simple 
types of ML into a more structured world of sorts. 
The language of sorts is kinded in order to control 
the range of variables, and it is regular so that it al- 
lows recursive types. 

We define a language K of kinds as follows: the 
basic kinds are type, Bag and field and the only kind 
constructor is =$ of arity two. The language K is 
the closure of the set {type, field, Aag} by the arrow 
constructor: 

ifu E K and v E K then (u j v) E K 

{A=e,V;B=o,~;C=o,R;...zzzzrr=o,R) 

and has type: 

We write 

for 

(Ul 63 u2 8. *. un =s- v) 

~(E.void, v-h, v@2,. . . v-fl642544811) 
(u1 * (IQ * . . . (Un * v) . . .)) 

Fortunately, the user will never see these structures Let L be a finite set of labels and 1 be its cardinality, 
but a more compact representation with labels, which B be a set of basic constants of the kind type, C be 

reflects the way they are encoded. This encoding even 
allows to deal with a denumerable set of labels and 
will be described below. 

Variants are labelled sums. The inclusion mech- 
anism for variants can be studied in the restricted 
language. The switch of a sum field tells if the value 
must (then it is A), may (it is a variable), or must 
not (it is V) be injected into this field. For instance 
with two fields left and right we have the following 
types: 

inleft : void ----f C(A,E) 
inright : void -+ C(E, A) 

outleft : x(A, V) + void 

Variants are to concrete data types what records 
are to named labelled products. Concrete data types 
can be defined recursively, and variants encoding 
them will be recursive. So we extend ordinary types 
to recursive types. We formally present a language 
of expressions, a language of types which is kinded 
and regular, and show how Milner’s type inference 
algorithm still prevails. Only the case of a finite or- 
dered set of labels is studied, but an extension to a 
denumerable set of labels is suggested. 

2 A formulation of records 

2.1 Language of type expressions 
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Figure 2: Primitives for records and variants 

the set of constructors { --f, II, C, A, V} which have 
the kinds: 

-+ : type @I type * type 
n : field @ field @ . . . field 3 type 

-- 

C : field @I iI.4: @ . . . field j type 
-- 

1 
. : flag@ type + field 
A : Aag 
V : Aag 

The constructors + and . are infixed. We denote by 
S the union C U t3 of symbols. Let Vt, v’ and vb be 
three denumerable sets of sort variables of respective 
kinds type, field and Aag. We note V their union.The 
set R of sorts is the set of first order kinded regu- 
lar trees constructed over the set of variables V and 
the set of symbols S. In. order to extend expressions 
to generic expressions, we introduce three other de- 
numerable sets of generic sort variables of the three 
basic kinds and name them by 9 subscripts. The set 
R, is defined as the set R, but replacing the sets of 
non generic variables by their unions with the assc) 
ciated sets of generic variables. Note that V n V, is 
empty but R is included1 in 72,. 

We denote sort variables by letters CY, 0, -,J adding a 
subscript 9 for generic sort variables, and sorts by u, r 
adding a subscript if we admit generic sorts. We also 
use q5, II, but only for variables of the kind field, and 
e, S for variables of the kind Aag. We note (ug) the 
set of all sort variables occurring in us. All variables 
used in toplevel definitions are obviously generic, but 
we will omit the 9 subscripts in figures. 

2.2 Results on regular trees 

We recall below some results on regular trees. Most 
of them are proved in [IIuet]. 

l A graft is a mapping from V to R respecting the 
kinds. In the following we are only interested in 
finite grafts, i.e. the grafts /J such that the set 
{o 1 CX~ # Q} is finite. Then p is representable 
by the finite set of pairs: {(cr, crp) ] crp # CY}. 

l Rational trees can be seen as the application of 
a (finite) graft to a fixed variable E, thus they 
are finitely representable by a variable c and a 
set of pairs (cr, 0). 

l Unification There exists an algorithm U such 
that given two regular trees u and r: 

- if the two trees are not unifiable then U 
fails. 

- Otherwise U returns a most general unifier 
u, i.e. a graft such that if there exists a 
graft v which unifies u and r then there 
exists another graft < such that v = ut. 

In fact algorithm U is just the usual algorithm 
where the occur test has been removed. We 
note ug z TV when the two generic sorts ug 
and TV are unifiable and u is their most general 
unifier. 

We distinguish several classes of grafts: 

l Grafts from V to R are denoted by /J, v, <, p. 

l Grafts from V, to 72, have subscript. 

l A principal unifier is noted u,~,. . . . 

Grafts are extended to automorphisms of R or R,. 
We note U,LA the application of the graft p to the tree 
u, and pu for v o p in such a way that upu means 
(up)u as well as u(pv). 
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‘ei 2 E In’2 
let ‘& y = x in y E out’ 2 
function ‘ei y + f y E f oout’ 
function Vi y + f y 1 x -+ c x = Case’ f c 

0 
{I- with f!i = x) 
{ej, =x1, . . . tin =x,} 
T.-t; 
{r without 4) 

G null 
= - new’rx 
E ((4, = x1 . . . ii,,-, = x,-1) with ej, = x,,} 
s extract’ r 
s forget’ r 

Figure 3: Syntax for records and variants 

2.3 Syntax of expressions 

We use a very simple language defined by the follow- 
ing grammar: 

e .- .- b constant 

I x variable 

I Ax.e 

abstraction 

1 LZ.e 
application 
recursion 

1 let x = e in e local definition 

We have no special construction for products and 
variants but a finite collection of primitive functions 
(constants), which are listed in figure 2 with their 
respective sorts. Combining these primitives we can 
think of record and variant constructions as macro- 
syntax facilities, summarized in figure 3. One can 
change or add basic constructions just by modifying 
the set of primitives. For instance we could take: 

neti : n(Pl,...,iQ;-,9 v’P,Pi+l . ..(PI)-+~ 
-l-I<‘P 1l”‘>(Pi-19 E*a>Pi+l ***‘PI) 

which would restrict the {r with .& = x} construction 
to be W-. The other choice: 

new’ : n(p,,...p,) +(Y 

+ lx%, ***,cPi-l, A*as(Pi+l **.cP,) 

would restrict the inclusion to semi-inclusion. Re- 
mark that non generic accesses of semi-inclusive fields 
can be compiled more efficiently. 

2.4 Inference rules 

We say that rg is a generic instance of a9 if and only 
if there exists a graft p, such that 79 = ~7~~1~. Infer- 
ence rules are applied to triples (A, e, ~~8) also called 
judgements and noted A I- e : rg where: 

l A is an environment, i.e. a set of assertions x : 
ug where the expression x is either a constant or 
a variable. We note A, the set of all assertions 
in A which do not contain the expression x. We 
also note (A) the set of sort variables occurring 
in A. 

l e is an expression 

l Tg is a generic sort expression 

The system (C) of inference rules is: 

(TAUT) 
Atx:ug 

(x : ug E A) 

(INST) A I- e : ug 
Al-e:a,ps 

@EN) 
Al-e:ag 

At e : u~[(Y~/(Y] 
(a e (4) 

(FUN) 
A,U{z:u}l-e:T 

Al-Xx.e:u-+T 

(APP) 
Al-e:u+r Ate’:u 

A I- (e e’) : 7 

(LET) 
Al-e:ug A, U {x : ug} I- e’ : T 

A I- let x = e in e’ : T 

(MU) 
A,U{x:u)ke:u 

A I- px.e : u 

We extend grafts to expressions with identity. 
Then the grafting p of an assertion x : ~~ is the asser- 
tion x : rg,u and the grafting of a judgement A I- e : ug 
is the judgement Ap I- e : usp. The inference sys- 
tem is just Milner’s system where types have been 
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x : ug E A 

tNEWW) A kw z : Lug] 

(FUNW) 
(A, U {z : a})~/ l-w e : T 

Av t-w Xx.e : CYY ---, r 

(APPW) 
Au l-w e : r Avv’ l-w et : r’ TY’ 2 7’ + cr 

Avv’u kw (e e’) : cru 

(LETW) 
Av tw e : r (A, u {z : [Av, 71)) Y’ tw e’ : r’ 

Avv’ tw let x = e in e’ : r’ 

(A, U {x : cr})v l-W e : T CYv~r 

WUW > Avu tw px.e : ru 

Figure 4: Rules defining the algorithm W. 

replaced by kinded recursive kinds, and substitutions 
by kinded grafts. We note: 

l [A,a,l the genera.lization of bg in the context 
A, i.e. the grafting of all non generic variables 
of u9 which do not appear in the context A by 
new generic variab’les. 

l [aSJ the instantiation of ug, i.e. the grafting of 
all generic variables of ug by new non generic 
variables. 

Both instantiation and generalization are defined 
modulo a renaming of variables. We mean by new 
variables some which occur neither in the context A 
nor in the sort u9. In fact we should note LA,csJ 
rather than Lug] since the instantiation also depends 
on the context A, but in a less important way than 
the generalization. If an instantiation or a general- 
ization occurs more than once in the same phrase it 
will denote the same tree in all occurences. 

Lemma 1 (SUB) The system C is stable under 
non-generic grafls: 

Al-e:u=+Apl-e:up 

We define an algoritlhm W which for any envi- 
ronment A and expression e either fails or returns 
a pair (v,T). We note Au tw e : r instead of 
(v, r) = W(A, e). See figure 4. 

Theorem 1 (Soundness of W) IfApkW e:u 
then Ap t e : u. 

Theorem 2 (Completeness of W) For 
any judgement A and any expression e, if there exist 
a graft p and a generic sort ug such that A,u t e : ug 

l there exist Y and r such that Av l-w e : T 

a there exists < such that Ap = Av< and [u,J = 

e. 

Theorem 3 (Principal sort schemes) For any 
environment A and expression e, either e is untypable 
under some graft of A and W(A, e) fails or W(A, e) 
succeeds with (,u,T) and [Ap, r1 is a principal sort 
scheme of e under Ap. 

Proofs just consist in checking that the introduc- 
tion of several kinds and the replacement of terms by 
trees do not alter the proofs with Milner’s system. 
These use only the unification theorem and the sub- 
stitution lemma. If we just replace “term” by “kinded 
regular tree” and “substitution” by “kinded graft”, 
the lemma and the unification theorem are still valid, 
and so is Milner’s proof, 

Obviously, the proofs neither depend on the present 
kinds of sort constructors excepted the arrow one, nor 
of the sorts of the primitive values of the language 
of expressions. We can freely change the semantics 
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of basic constructions or add new ones (the set of 
primitives we gave do not use all the possibilities of 
the sorts) by changing simultaneously the semantics 
and the sorts of their primitives in a consistent way. 
One can also keep kinded but non recursive sorts, or 
add some restriction on the construction of recursive 
sorts, provided that this invalids neither the substi- 
tution lemma nor the unification theorem. 

3 Examples 

We implemented a typechecking algorithm for our 
type system in @L. The toplevel loop does not eval- 
uate expressions but returns either an exception or a 
list of identifiers with their types. The identifier it 
is used when an expression is unnamed. The syntax 
of expressions includes the constructions for variants 
and records, and allows pattern matching in the usual 
way. A typable toplevel expression is always typed 
with a sort of kind type which is represented by a 
finite tree and a set of equations between variables 
and finite trees. The syntax of flags is + for A, - for 
V and names of flag variables are only printed when 
they occurs more than once in the same phrase, so 
“.” stands for an arbitrary Aag variable. Most of the 
fields have the same scheme (each instantiated with 
distinct variables), and are gathered. 

l the closed scheme V.a is the default one and is 
not represented. 

l the open scheme E.CX is represented by a row 
variable or by “. . . ” if it occurs only once in a 
phrase. Otherwise two occurrences of the same 
scheme will assign the same flags and types to 
the same projections. 

Schemes are just abbreviations for the regular field 
projections. Syntactically they correspond to the row 
expressions used by Wand [Wand871 but also by R. 
Stansifer [Sta88] and L. Jategaontar and J. Mitchell 
[JMSg]. 

Record objects have always closed types: 

#let r = {a-true; b=l) ; ; 
r : (a: .bool, b: .nun) 

they can be extended with other fields very freely. 

#Cr with b=();c=3>;; 
it : {a: .bool, b: .void, c: .num) 

This allows the field being already present, even with 
an incompatible type. The significant fields have 

polymorphic flags and thus can be forgotten. The 
infix operator -, defined by: 

let x - y * if true then x else y;; 
- . ‘a -> sa -> ‘a . 

is used to shorten examples. 

#r e {b=l) ; ; 
it : Ca: -.bool. b: .num) 

Notice that the typechecker keeps trace of the types 
that have been put into fields. This avoids the strange 
property of Amber [Car861 which assigns a type to: 

({a=true) e {a=true; b=l)) - Ca=true; b=()> 

but fails with: 

Ea=true3 - ({altrue; b=l} - {a=true; b=())) 

which is rather surprising. It also seems to prevent 
us from mixing labels which should have nothing in 
common, but this is rather a restriction of inclusion. 
We shall come back to it later. The without con- 
struction forgets a field explicitly in which case it is 
regenerated, i.e. its type becomes a fresh variable. 

#{r without b); ; 
it : {a: .bool, b: -.?a) 

First, the field cp of the b projection is withdrawn from 
the scheme if it was not there yet, then the scheme 
is used to create the type of the new record, so that 
further constraints on it will not affect cp: 

#fun r r’ -> 
# Cr without option3 - {r’ without option);; 
it : 
{option: .‘a , p...) -> 
{option: . ‘b , p,..) -> {option: -.‘c , p...3 

Fields are recalled either by pattern matching or by 
one of the projections: 

#fun r -> r.a;; 
it : (a: +.‘a , . ..3 -> ‘a 

Another restriction is due to non genericity of X- 
bound values. We fail with: 

#fun x -> if x.a then x else (b=l);; 
Typing failed 

although we succeed with: 

#let x = {a=true;b=2) 
#in if x.a then x else {b=l);; 
it : {a: -.bool, b: .num3 

This restriction is inherent to ML polymorphism 
which stops at the lambda boundaries. The same 
situation arises in: 
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#fun f -> if f 1 then f 1 else f();; 

which is not typable though: 

#let f _ = true in i.f f 1 then f 1 else f();; 

is, indeed. The above counter-example could be 
solved by rewriting the lambda expression into a let 
expression, but this is not the general case. 

Variant objects have naturally open types (they can 
be constrained to be closed). They are created with 
constructors which are quoted labels. 

#let s = >A 1;; 
s : [A: +.num I . ..I 

Sums are destructured only by pattern matching: 

#function 'A x -> x 1 'BO -> true;; 
it : [A: .bool I B: .void] -> boo1 

A “catch all” indicated by “-” matches all variants. 

#let trap-all = function 'B x -> x 1 _ -> 0;; 
trap-all : CB: .num I . ..I -> num 

Recursive functions usually have recursive variant 
types: 

#let ret map foo = function 
# 'Nil0 -> 'Nil0 
#I 'Con5 1 -> 
# 'Cons {hd= foo l.hd; tl- map foo l.tl);; 
map : 

(‘a -> 'b) -> 'c -> 'd 
with 

'd e 
[Cons: +.Chd: .'b, tl: .'a 

. . . I 
'c 5: 

ccons : .{hd: +.'a, tl: +.'c 
Nil: .void] 

I Nil: +-void I 

9 . . . 3 I 

Types are powerful enough to tell that a list must be 
non empty. The function: 

#let hd (‘Cons r) = r.hd;; 
hd : ccons : .{hd: +-.‘a , . . .I1 -> ‘a 

cannot be applied to the null list, but the function Hd 
defined by: 

#let check-cons = function 
# 'Cons 1 -> 'Cons 1 
#I 'Nil () -> failuith "check-cons";; 
check-cons : 

ccons: . *a I Nil: .voidl -> [Cons: +.‘a I . ..I 

#let Hd = hd o check-cons;; 
Hd : 

ccons : .<hd: +.'a , . ..I I Nil: *void] -> 'a 

will accept a null list and raise an exception. Dynamic 
typechecking during pattern matching can be disso- 
ciated from the active part, of the function. Longer 
examples are given in the appendix. 

We previously mentioned the possibility of chang- 
ing the semantics of the basic constructions, or adding 
new ones. In previous examples the flag of a field 
could never depend on the flag of another field. The 
reason is that all primitives already have this prop- 
erty. But, there are interesting constructions where 
this is no longer true, for instance a primitive which 
exchanges two fields of a record. 

#fun r -> <r rrhere gnu and gnat permuted);; 
it : 

ignu: u.'a, gnat: v.'b, . ..p) -> 
{gnu: v.>b, gnat: u.'a, . ..p>.; 

This operation cannot be typed in systems which en- 
code inclusion of records with a global inclusion rela- 
tion. With variants, similar constructions have also 
great, interest. The function 

#function ‘True0 -> ‘False0 
# I 'False0 -> 'Trueo;; 
it : 

[False: .void I True: .void] -> 
[False: +-void I True: +.void I . ..I 

could be written as 

#transposition 'True0 -> 'False0 
# I 'False0 -> 'TrueO;; 
it : 

[False: u.void I True: v.voidl -> 
[False: v.void I True: u.void I . ..I 

and so better typed. We let the reader build his own 
examples. 

4 Recovering the full power of 
inclusion 

The system proposed is limited to a finite set, of labels. 
This is sufficient from a pragmatic point of view since 
in any real language, only a finite number of opera- 
tions will ever be computed. It is always possible to 
reason a posteriori in a large enough set, to assert that 
what, has been done is correct. From a theoretical 
point of view an infinite set of labels is obviously bet,- 
ter and avoids the above meta-reasoning. Note that 
in ML with concrete type constructors, a type decla- 
ration is usually but, not, essentially a meta operation. 
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null : JJ(V,...V) 

extract’ : n((P1>...>(Pi-l> A(Y>(P;+~ *..‘P,) ---t a 

forget’ : lx%?.. *PO +~<~l~~**7Pi-~7 v,Pi+l ““Pt) 

newi : n((pl,...(PI)--r(Y-tn((O,,...,~;-I, O~~cpi+l.-44 

Figure 6: Primitives with stronger subtyping 

Kinded regular trees could be extended to finitely 
generated kinded regular trees. We could prove a uni- 
fication theorem for them similar to the one for reg- 
ular trees and the substitution lemma would not be 
altered, so the results would still hold. Moreover, this 
proof would justify the schemes we used in the imple- 
mentation to abbreviate the non significant fields into 
a compact representation. 

The generality of our system is preserved for la- 
belling. But there are two limits in the encoding of 
inclusion. 

l ML polymorphism is too restrictive to code the 
full power of inclusion. 

l Polymorphism can only code structural inclu- 
sion . 

However the approach followed here has interesting 
points: 

l From both a theoretical and practical point of 
view, it is very simple. 

l It is also modular because the mechanism of 
inclusion on records is not an ad hoc assertion 
but is built in. 

l It allows interesting constructions which are not 
typable in a system where inclusion on records 
is defined globally, because there is no way to 
specify any relation between fields. 

So we try to recover the full power of inclusion keeping 
these properties. 

4.1 Records with structural subtyp- 
ing 

The first limitation can be re-examined in the simple 
language used in the intuitive approach. The impor- 
tant idea was to code the records: 

X=p-rl Y=Fl 

as the total functions: 

x+-p-j y+jG-~ 

We first proposed to type X and Y with: 

X : II(A,V) Y : II(A, A) 

but X could not be used instead of Y. 

Then we explained how to encode inclusion with 
polymorphism. If the simple language has inclusion 
between atomic types, we introduce a new basic flag 
0 (read up and down) as a subflag of both A and 
V. Then everything works as before. More precisely 
in a language (IS) primitive functions would have 
the sorts given in figure 5. In fact identifying A 
and 0 leads to a very similar though weaker system. 
It still codes (IRF W) inclusion but cannot encode 
semi-inclusion any longer. 

4.2 Records with stronger subtyping 

We cannot yet forget the types of fields, but only their 
flags. When we introduce multiple values we decided 
to put into fields both switches and values. Another 
solution consists in putting values only in fields which 
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have an open switch. From this point of view the kind 
of fields is no longer a pair of a flag and a type, but 
either A(Y or V. Obviously we add a third case Ocr 
which is a subfield of both previous ones, we have: 

We code the records: 

X=lj Yq-Tp-1 

as the total functions: 

x+i-p-/ Y=W 

which have types: 

X : II(Onum, V) Y : II(Onum,Ovoid) 

More precisely, primitive functions would have the 
sorts of figure 6. 

We shall identify A and 0. The inclusion is no 
longer atomic and thus cannot be treated by struc- 
tural subtyping. However it is a subcase of general 
inclusion studied by Y-C. Fuh and P. Mishra. In- 
ference of a set of constraints can be solved as in 
[FM88]. Checking the consistency can be done using 
the matching of [FM881 and looking for a solution 
with lower fields. But we shall have to find efficient 
algorithms to simplify the set of constraints. 

The difficulty is shown by the example: 

#fun x -> Ca=x; b=x> * {a=i; b=O);; 

The type of this function is: 

(Anum E cp 

CY + H(cp, $) with Aa Ccp 
Avoid C $ 

Aa Cll, 

The set of constraints is not simplifiable, since both 
variables ‘p and 1c, can be “up”. Remark that this 
checking could be expensive in time. Moreover, only 
one field can be “up” at a time, but this piece of 
information cannot be coded with containment. Thus 
type containment may not be a good way to express 
the power of the language (IS+). A good candidate 
might be a restriction of Coppo’s system [Coppo], but 
this needs investigating. 

Conclusion 

We presented a new solution to typecheck records and 
variants, which seems to have interesting properties: 

it captmes the essential notions of inclusion, but in 
a natural extension of ML polymorphism, and infers 
more precise and recursive types which makes con- 
crete type declarations optional. Most of these in- 
gredients are very modular, and thus the language 
designer may choose his own version. 

We also checked that the algorithm allows the typ- 
ing of huge expressions in reasonable time and is even 
very competitive with the current algorithm used in 
QML. Type expressions are much more complex, but 
much of the information is not essential to the user. 
It seems reasonable to show him only partial types, 
unless he explicitly asks for complete information. 

We limited this discussion to a very simple version 
of polymorphism where ML type inference algorithm 
is still applicable. The advantage is both a theoretical 
and practical simplicity, but one of the drawbacks is a 
limitation of inclusion. The method proposed is more 
general, and can be applied to systems with subtypes 
where the power of inclusion is increased. 
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Appendix 

The following program implements the quicksort algorithm. In this example booleans are considered as sums. 
The additional syntax is that x: :y stands for 'ConsIhd=x, tl=y), in both patterns and expressions. 

#let select p = 
# let ret select,ret = 
# function 
# 'Nil0 -> failvith "select" 
# I 'Cons 1 -> 
# if p l.hd 
# then 1 
# else (let L = select-ret l.tl in {hd= L.hd; tl= l.hd::L.tl)) 
# in select,ret 
*;; 
select : 

('a -> bool) -> 'b -> 'c 
with 'b = [Cons: +.'c 1 Nil: .voidj 
and 'c = {hd: +.'a, t:l: +.'b) 

#let partition p 1 = 
# list-it 
# (fun a 1 -> 
# if p a then {hd= a::l,hd; tl= l.tl) else {hd= l.hd; tl= a::l.tl)) 
# 1 {hd= 'Nil; tl= 'Nil) 
*;; 
partition : 

(‘a -> bool) -> 'b -> {hd: +.'c, tl: +.'d> 
with 

'c t CCons: +.Chd: .'a. tl: .'c) I Nil: +.void I . ..I 
'd = [Cons: +.Chd: .'a, tl: .'a 1 Nil: +.void 1 . ..I 
'b = ccons : .{hd: +.'a, tl: +.'b , . ..I 1 Nil: .voidl 

#let sort-append p le = 
# let ret sort = 
# function 
# Cl -> I 
# I -::- as x -> 
# let 1 = select p :K in 
# let L = partition (fun y -> le y l.hd) l.tl in 
# (sort L.hd) o (cons l.hd) o (sort L.tl) 
# in sort 
a;; 
sort-append : 

(‘a -> bool) -> (‘a -> ‘a -> bool) -> ‘b -> ‘c -> ‘c 
with 

Jc 7 [Cons: +.{hd: .'a, tl: .'c) I . ..I 
'b = [Cons: +.{hd: +.'a, tl: +.'b) i Nil: +.voidl 

#let sort order list = 
# sort-append (fun x -:r true) order list 'Nil 
#-* IS 
sort : 

('a -> 'a -> bool) -> 'b -> 'c 
with 

'c = [Cons: +.<hd: .'a, tl: .'c) I Nil: +.void I . . .I 
‘b = ccons : +.{hd: +.'a, tl: +.'b) 1 Nil: +.voidl 


