
A Meta Lambda Calculus with Cross-Level Computation

Kazunori Tobisawa
Graduate School of Mathematical Sciences, The University of Tokyo, Japan

tobisawa@ms.u-tokyo.ac.jp

Abstract
We propose meta lambda calculus λ∗ as a basic model of tex-
tual substitution via metavariables. The most important feature of
the calculus is that every β-redex can be reduced regardless of
whether the β-redex contains meta-level variables or not. Such a
meta lambda calculus has never been achieved before due to diffi-
culty to manage binding structure consistently with α-renaming in
the presence of meta-level variables. We overcome the difficulty by
introducing a new mechanism to deal with substitution and binding
structure in a systematic way without the notion of free variables
and α-renaming.

Calculus λ∗ enables us to investigate cross-level terms that
include a certain type of level mismatch. Cross-level terms have
been regarded as meaningless terms and left out of consideration
thus far. We find that some cross-level terms behave as quotes and
‘eval’ command in programming languages. With these terms, we
show a procedural language as an application of the calculus, which
sheds new light on the notions of stores and recursion via meta-
level variables.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic – lambda calculus
and related systems

Keywords lambda calculus; metavariables; textual substitution;
dynamic binding

1. Introduction
1.1 Metavariables and Meta Lambda Calculi
When discussing a formal language, we use metavariables. A
metavariable is a symbol that stands for some syntactic object in a
discussed language. For example, we use the following expression
when defining β-reduction of the lambda calculus:

“(λx.M)N →β M{N/x} for variables x and terms M , N.”

In this case, ‘x’, ‘M ’ and ‘N ’ are metavariables. If we instantiate
the metavariables ‘x’, ‘M ’, ‘N ’ with specific syntactic objects in
the lambda calculus, for example, x, xy, z respectively, then we
get ‘(λx.xy)z→β (xy){z/x}’ as an instance of β-reduction. Note
that the expression ‘(xy){z/x}’ signifies the syntactic object zy
in the lambda calculus, since we can calculate as (xy){z/x} =

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676976

(x{z/x})(y{z/x}) = zy after the instantiation of the metavari-
ables.

Recently, several formal systems are proposed as extensions
of the lambda calculus to internalize the notion of metavariables
[9–11, 17, 18]. In this paper, such formal systems are collectively
called meta lambda calculi. The most important feature of meta
lambda calculi is that they include textual substitution to model
instantiation of metavariables. The ordinary substitution in the
lambda calculus is performed with α-renaming to avoid incidental
variable binding, whereas textual substitution is performed without
α-renaming by replacing each occurrence of a variable simply with
a term. Thus textual substitution generates new bindings dynami-
cally.

We illustrate a sketch of meta lambda calculi. Consider an
extension of the syntax of the lambda calculus defined by the
following BNF presented in [12]:

Terms M= x | λx.M |M M |X | δX.M |M⊙M

where x ranges over the set of object-level variables and X ranges
over the set of meta-level variables. The first three in the above BNF
represent the object-level constructs, namely, the constructs in the
lambda calculus. The last three represent meta-level constructs as
counterparts of the object-level constructs. In the syntax, we have
the following reduction sequence corresponding to the example
discussed before:

(δM.((δN.(λx.M)N)⊙z))⊙xy
⇒β (δM.(λx.M)z)⊙xy⇒β (λx.xy)z→β zy,

where upper-case letters M and N are meta-level variables, and
lower-case letters x, y and z are object-level variables. In this paper,
a meta-level application containing a meta-level abstraction as the
left part is called a meta-level β-redex, and an object-level counter-
part is called an object-level β-redex. For instance, (δN.(λx.M)N)⊙z
is a meta-level β-redex, and (λx.M)N is an object-level β-redex.
Meta-level β-reduction, denoted by⇒β in Section 1 and Section 2,
is performed on a meta-level β-redex in a similar way to the ordi-
nary β-reduction but by textual substitution. In the above example,
meta-level variable M is instantiated with the term xy by meta-level
β-reduction, and the object-level variable x is dynamically bound
by the binder λx.

1.2 Problem in Designing a Meta Lambda Calculus
When trying to define a meta lambda calculus formally, we face a
subtle problem resulting from coexistence of the ordinary substitu-
tion with textual substitution [12]. Consider the following cases to
examine object-level β-redexes containing meta-level variables.

(1) Consider a term (λx.M)z. We cannot reduce the term simply by
the ordinary substitution as (λx.M)z →β M{z/x} = M, since
such reduction gives us the following two reduction sequences

383

that are not confluent:

(δM.(λx.M)z)⊙xy→β (δM.M)⊙xy⇒β xy,
(δM.(λx.M)z)⊙xy⇒β (λx.xy)z→β zy.

The term zy in the second line is the intended result of the term
(δM.(λx.M)z)⊙xy as shown before. It is obviously a mistake to
consider that M{z/x} = M, since M is a meta-level variable to be
instantiated later with a term that may contain the object-level
variable x.

(2) Consider a term (λx.λy.x)M. We cannot reduce the term simply
as (λx.λy.x)M→β (λy.x){M/x} = λy.(x{M/x}) = λy.M, since
such reduction gives us the following two reduction sequences
that are not confluent:

(δM.(λx.λy.x)M)⊙y→β (δM.λy.M)⊙y⇒β λy.y,
(δM.(λx.λy.x)M)⊙y⇒β (λx.λy.x)y→α (λx.λz.x)y→β λz.y.
The second reduction sequence gives us the intended result.
Note that we have the following expression with a side con-
dition in the definition of substitution in the lambda calculus:

“(λy.N){M/x} = λy.(N{M/x}) if y /∈ FV(M,x).”

Hence we cannot actually have (λy.x){M/x} = λy.(x{M/x})
without satisfying a side condition such as the one above. How-
ever, we do not have such side condition in the first place, since
we have no information about the free variables occurring in
the term for which M stands, namely, the term with which the
meta-level variable M is instantiated later.

The above cases indicate that we cannot define easily object-level
substitution for terms containing meta-level variables. The heart
of the problem is that a meta-level variable is just a placeholder
standing for some object-level term unknown yet.

1.3 Approaches in Previous Works
Approaches in previous works related to modeling metavariables
and the problem discussed above are classified broadly into two
categories. Here we explain briefly the essential points of the two
categories respectively. Features of individual works are mentioned
in Section 5.

(1) Meta-Level Variables Assigned with Interfaces
One approach is to assign each meta-level variable X with a fi-
nite list of object-level variables to be bound dynamically, which
is called the interface of meta-level variable X in this paper. With
assigning an appropriate interface to each meta-level variable, and
with embedding such additional information into terms explicitly,
instantiation of meta-level variables can be emulated by computa-
tion in calculi dealing with only static binding, in particular, the
ordinary lambda calculus [12].

For example, consider the following meta-level β-reduction:

(δM.(λx.(λy.Mx)x)(My))⊙(yx)
⇒β (λx.(λy.(yx)x)x)((yx)y).

The meta-level β-reduction can be emulated by the following
lambda term, which is obtained from the above term by assign-
ing meta-level variable M with the interface (x, y):

(λm.(λx.(λy.(mxy)x)x)((mxy)y))(λx.λy.yx)

→∗
β (λx.(λy.(yx)x)x)((yx)y).

To take a familiar example, the above fact corresponds to the fact
that the C program with macros in Figure 1 can be emulated by
the C program without macros in Figure 2. A meta-level variable
assigned with an interface, for example, the list of x and y, is
roughly equivalent to an ordinary function of x and y.

Figure 1. WithMacros.c
1: int main() {

2: int x = 1;

3: int y = x + 1;

4: #define M y + x

5: x = M + y;

6: y = x;

7: return M + x;

8: }

Figure 2. ViaInterface.c
1: int main() {

2: int x = 1;

3: int y = x + 1;

4: int m(int x, int y)

5: { return y + x; }

6: x = m(x, y) + y;

7: y = x;

8: return m(x, y) + x;

9: }

Calculus λm in [18] and the calculi in [4, 12, 14–16] adopt
similar approaches to the one discussed above so as to consider
metavariables to be assigned with interfaces. These calculi are in-
herently designed to deal with only static binding as the ordinary
lambda calculus, and hence in these calculi, the notion of textual
substitution is modeled by a mechanism like the ordinary substitu-
tion as illustrated above. As a result, the problem in question dis-
appears from these calculi. In this paper, these calculi are called
lambda calculi with interfaces distinctively from meta lambda
calculi, since there is a difference between the concept modeled
in meta lambda calculi and the concept modeled in lambda calculi
with interfaces.

In order to clarify the challenge tackled in meta lambda calculi,
we explain the essence of the difference between meta lambda
calculi and lambda calculi with interfaces. In meta lambda calculi,
meta-level variable M must satisfy the following principle for any
object-level variables x and y:

λx.M ∼= λy.M if and only if x = y,

where ∼= denotes the equivalence induced from rewriting rules.
This principle is a consequence of the requirement that the term
λx.M is the counterpart of the expression ‘λx.M ’ in the meta-
language, and the term δM.λx.M is the counterpart of the func-
tion ‘M 7→ λx.M ’ on the set of all lambda terms. The princi-
ple corresponds to the fact that two functions ‘M 7→ λx.M ’ and
‘M 7→ λy.M ’ are equal if and only if x = y. Note that if the prin-
ciple did not hold and we had some distinct object-level variables x
and y such that λx.M ∼= λy.M, then we would have nonsense equiv-
alence such as λx.y ∼= (δM.λx.M)⊙y ∼= (δM.λy.M)⊙y ∼= λy.y.

The goal of meta lambda calculi is to add new syntactic objects
called meta-level variables satisfying the above principle into the
ordinary lambda calculus. In contrast, lambda calculi with inter-
faces as well as the ordinary lambda calculus do not contain any
term that corresponds to a meta-level variable. Namely, they do not
contain a term N satisfying the following property for all variables
x and y:

λx.N ∼= λy.N if and only if x = y.

In the example shown before, the term mxy can be used in the
ordinary lambda calculus to emulate the behavior of meta-level
variable M. However, the term mxy itself cannot be an alternative
to meta-level variable M generally. For instance, we have distinct
variables a and b satisfying λa.mxy =α λb.mxy in the ordinary
lambda calculus, whereas λa.M ̸∼= λb.M in meta lambda calculi.

(2) Level-Controlled Reduction
The other approach to resolve the problem in Section 1.2 is to re-
strict reduction rules by side conditions taking levels into account.
To cite a case of calculus λM in [18], object-level β-reduction
(λx.M)N →β M{N/x} is defined with the following side condi-
tion:

“M and N contain no meta-level constructs.”

384

The other previous meta lambda calculi [9–11] also adopt simi-
lar approaches, although there are various technical differences.
A reduction defined with such side conditions is called a level-
controlled reduction in this paper. Level-controlled reductions
bring confluence in meta lambda calculi, since wrong reduction se-
quences mentioned in Section 1.2 are eliminated by such side con-
ditions. However, level-controlled reductions make some β-redexes
stuck. For instance, the following object-level β-redex containing
meta-level variables cannot be reduced in the previous meta lambda
calculi due to such side conditions shown above:

(λy.λz.yMN)(λx.λy.z).

In other words, we cannot reduce an object-level β-redex until we
instantiate meta-level variables in the β-redex with some object-
level terms.

1.4 Our Purpose
In this paper, we propose meta lambda calculus λ∗ with a new
mechanism to reduce object-level β-redexes containing meta-level
variables. Calculus λ∗ enables us to advance computation in the
presence of meta-level variables, and hence opens up new possi-
bilities for reduction strategies that have been restricted by level-
controlled reductions in previous meta lambda calculi. For exam-
ple, we are able to introduce the notion of lazy evaluation in the
presence of meta-level variables.

Another purpose of calculus λ∗ is to examine those terms that
include a certain type of level mismatch, such as an object-level ab-
straction applied to a meta-level abstraction like (λx.(x⊙M))(δM.M).
Such terms are called cross-level terms in this paper. Cross-level
terms have been regarded as meaningless terms, and left out of con-
sideration by type systems or by level-controlled reductions in pre-
vious meta lambda calculi. One of distinct features of calculus λ∗

is that the calculus makes it possible to compute cross-level terms.
In Section 4, we show that some cross-level terms behave as quotes
and ‘eval’ command in programming languages through an exam-
ple. These terms provide us new insight into the notions of stores
and recursion via meta-level variables.

2. Overview of Our Approach
2.1 An Analysis of Calculation in the Metalanguage
In the metalanguage, we can always:

• rewrite a β-redex ‘(λx.M)N ’ to the expression ‘M{N/x}’,
• perform α-renaming with some fresh variable, and
• pass down substitution ‘{N/x}’ on a term to its subterms.

In this way, we can calculate a β-redex to perform substitution of
variables even if the β-redex contains metavariables. For example,
we can have the following calculation in the metalanguage:

(λx.(λy.Mx)x)(My)

→α (λx.(λv.M{v/y}x)x)(My) where v is fresh,
→β (λv.M{v/y}{My/x}(My))(My)

= (λv.M{v/y,My/x}(My))(My)

→β M{v/y,My/x}{My/v}(M{My/v}y)
=M{My/y,M{My/v}y/x,My/v}(M{My/v}y)
=M{My/y,My/x}(My) since v is fresh.

Note that x and y are variables as syntactic objects in the lambda
calculus, whereas ‘v’ is a metavariable that stands for some variable
in the lambda calculus. If we instantiate metavariables ‘M ’ in the

last line with term yx, we get the following result:

(yx){(yx)y/y, (yx)y/x}((yx)y)
= (yxy)(yxy)(yxy).

The key factors that enable us to advance calculation in the pres-
ence of metavariables are:

• substitution operators, and
• freshness conditions accompanied with α-renaming.

Note that these two factors interact with each other. In the above
example, the freshness condition ‘v is fresh’ first arises in asso-
ciation with α-renaming of the binder λy to λv. In the process of
the calculation, the freshness condition deletes substitution oper-
ators ‘{My/v}’ following metavariables ‘M ’. Furthermore, the
last β-reduction that yields substitution operator ‘{My/v}’ actu-
ally eliminates the freshness condition ‘v is fresh’ at the end of the
calculation. Consequently, we have

(λx.(λy.Mx)x)(My)→∗
β M{My/y,My/x}(My)

for any term M .
We attempt to incorporate the two notions of substitution op-

erators and freshness conditions into a meta lambda calculus to
achieve our purpose. It is not difficult to embed substitution op-
erators as syntactic objects. A major obstacle is how to deal with
freshness conditions and the interaction with substitution operators
in a meta lambda calculus. As explained in the subsequent discus-
sion, we overcome the obstacle by adopting indexed variables and
skip operators as alternatives of freshness conditions.

2.2 Indexed Variables
Consider the extended syntax of the lambda calculus defined by the
following BNF:

Terms M= vd | λv.M |M M

where v ranges over a set of names and d ranges over the set of
nonnegative integers. In this syntax, a variable consists of a name
v and a nonnegative integer d called the index of the variable. In
a term, variable vd skips d binders of v and hence is bound by the
(d + 1)-th binder of v. For instance, in term λx.λy.λx.y0x1, the
variable y

0 is bound by the binder λy as in the ordinary lambda
calculus, whereas the variable x

1 skips the rightmost binder λx
and is bound by the leftmost binder λx. In a word, we consider
an extension of the lambda calculus accompanied with de Bruijn
indices [5, 16].

The extended syntax enables us to perform β-reduction without
α-renaming, although we can still have the notion of α-renaming.
For example, we can reduce a term (λx.λy.y0x0)(λx.y0) in the
following two ways:

(λx.λy.y0x0)(λx.y0)→β λy.y0(λx.y1)→α λz.z0(λx.y0),
(λx.λy.y0x0)(λx.y0)→α (λx.λz.z0x0)(λx.y0)→β λz.z0(λx.y0).
The reduction sequence in the second line is regarded as the one in
the ordinary lambda calculus. Note that if we equate α-equivalent
terms as we usually do in the ordinary lambda calculus, then the
above two reduction sequences are identical. As a result, the ex-
tended syntax provides us a more expressive notation virtually
without changing the theory of the lambda calculus.

2.3 Skip Operators as Alternatives of Freshness Conditions
In the extended syntax, we no longer need the notion of freshness
of variables. For example, we can calculate with metavariables as
follows:

(λx.λy.y0x0)M →β (λy.y0x0){M/x} = λy.y0(M ∗ ↑y),

385

where ↑y is a skip operator acting on the term M to increment
indices of y in term M appropriately so as to skip the binder λy.
For instance, (λx.y0) ∗ ↑y denotes λx.y1. The above calculation
corresponds to the following calculation with a freshness condition
in the ordinary lambda calculus:

(λx.λy.yx)M →α (λx.λv.vx)M →β λv.vM where v is fresh.

Skip operators free us from the need to perform α-renaming and the
need to keep freshness conditions outside of terms. Consequently,
skip operators can be more easily embedded into a meta lambda
calculus than freshness conditions.

2.4 A Sketch of Meta Lambda Calculus λ∗

We construct meta lambda calculus λ∗ in Section 3 by adopting
indexed variables and by embedding both substitution operators
and skip operators as syntactic objects in the calculus. Here we
show a sketch to give an intuition about the calculus.

The syntax defined by the following BNF is a part of the syntax
of calculus λ∗:

Terms M= vd | λv.M |M M | X[σ] | δX.M |M⊙M
Substitutions σ= id | v↓(M) · σ | ↑v · σ

where v ranges over a set of names, d ranges over the set of non-
negative integers, X ranges over the set of meta-level variables,
and id signifies the empty sequence. The elements of form v↓(M),
called push-elements, are counterparts of substitution operators
‘{M/v}’, and the elements of form ↑v , called pop-elements, are
counterparts of skip operators. In calculus λ∗, a substitution σ is
dealt with as a finite sequence of push-elements and pop-elements
in order to calculate the two kinds of elements in an integrated way
to model the interaction between substitution operators and fresh-
ness conditions in the metalanguage. Note that a substitution σ can
occur only with a meta-level variable X in the form X[σ]. The σ
represents a substitution that is suspended to wait for instantiation
of the meta-level variable X . For instance, term M[x↓(z0)] corre-
sponds to the expression ‘M{z/x}’ that cannot be calculated any
more in the metalanguage.

Action of a substitution σ on a term M , denoted by M ∗ σ,
is designed to reflect the behaviors of substitution operators and
skip operators as alternatives of freshness conditions. For instance,
the expression (x0M) ∗ x↓(z0) denotes the term z

0
M[x↓(z0)], as the

expression ‘(xM){z/x}’ is reduced to ‘z(M{z/x})’ in the or-
dinary lambda calculus. Note that the substitution x↓(z0) is sus-
pended on the meta-level variable M, since the substitution can-
not act any more until M is instantiated later. Also, the expression
(λy.y0x0)∗ x↓(M) denotes λy.y0M[↑y], which corresponds to the ex-
pression ‘λy.y0(M ∗ ↑y)’ shown in Section 2.3.

The syntax enables us to advance computation in the presence
of meta-level variables in the same way as the metalanguage. For
example, the calculation shown in Section 2.1 is represented by the
following reduction sequence in calculus λ∗:

(λx.(λy.Mx)x)(My)

→β ((λy.Mx)x) ∗ x↓(My)
= (λy.M[y↓(y) ·x↓(M[↑y]y1) ·↑y](M[↑y]y1))(My)
→β (M[y↓(y) ·x↓(M[↑y]y1) ·↑y](M[↑y]y1)) ∗ y↓(My)
= M[y↓(My) ·x↓(M[↑y ·y↓(My)]y) ·↑y ·y↓(My)](M[↑y ·y↓(My)]y)
→∗
ε M[

y↓(My) ·x↓(My)](My),

where indices equal to 0 are omitted. In the last line, ε-reduction
eliminates substitutions of form ↑v · v↓(N) to simulate the interac-
tion between substitution operators and freshness conditions. If we
instantiate the meta-level variables M in the last line with term yx,

we get the following intended result:

(M[y↓(My) ·x↓(My)](My)) ∗ M↓(yx)
= ((yx) ∗ (y↓((yx)y) ·x↓((yx)y)))((yx)y)
= (yxy)(yxy)(yxy),

where the meta-level push-element M↓(yx) represents the instantia-
tion of M. Note that the suspended substitution for object-level vari-
ables y and x following the meta-level variable M in the first line is
resumed to obtain the result after the instantiation of M.

In the discussion thus far, we illustrate a sketch of an exten-
sion of the lambda calculus added meta-level constructs. In the
same way, we can easily add meta-meta-level constructs, meta-
meta-meta-level constructs and so on. As a result, we obtain meta
lambda calculus λ∗ that includes infinitely hierarchical levels as
meta lambda calculi in [9, 10, 18].

2.5 Blocks to Variable Binding
Lastly, we make a remark about a connection between object-level
variable binding and meta-level application. In calculus λ∗, we have
the following equality:

(M1 ⊙M2) ∗ v↓(N) = (M1 ∗ v↓(N))⊙M2.

This equality states that object-level variables vd occurring in the
right part M2 of meta-level application M1⊙M2 are prevented
from being bound by outer binders of v [13]. As an example,
we take a term (λy.((δM.(λx.(λy.Mx)x)(My))⊙(yx)))(x1) that
roughly corresponds to a part of the C program with macros in
Figure 1. We should consider that the variable y in the right part
‘yx’ of the meta-level application is not bound by the leftmost
binder λy. Otherwise, we could perform substitution for the y as
follows:

(λy.((δM.(λx.(λy.Mx)x)(My))⊙(yx)))(x1)
→β ((δM.(λx.(λy.Mx)x)(My))⊙(yx)) ∗ y↓(x1)
= ((δM.(λx.(λy.Mx)x)(My)) ∗ y↓(x1))⊙((yx) ∗ y↓(x1))
= ((δM.(λx.(λy.Mx)x)(My)) ∗ y↓(x1))⊙((x1)x).

Such a reduction prevents a calculus from satisfying confluence,
since we also have the following reduction sequence that generates
new bindings dynamically:

(λy.((δM.(λx.(λy.Mx)x)(My))⊙(yx)))(x1)

⇒β (λy.(((λx.(λy.Mx)x)(My)) ∗ M↓(yx)))(x1)
= (λy.(λx.(λy.(yx)x)x)((yx)y))(x1).

Note that in the term after the meta-level β-reduction, the variables
y in the two copies ‘yx’ are newly bound by one of the two binders
λy respectively. This fact indicates that in the term before the meta-
level β-reduction, we should consider that the variable y in the right
part ‘yx’ of the meta-level application copied by instantiation is
not bound yet by any binder. Stated differently, in the C program
with macros in Figure 1, the variable y in the fifth line signifies
the value of y determined by assignment in the third line, whereas
the variable y on the right of #define command in the fourth line
signifies the text ‘y’ itself, which does not refer any value yet.

3. Meta Lambda Calculus λ∗

We formally define meta lambda calculus λ∗ and show that the
calculus satisfies confluence.

3.1 Terms and Substitutions
We consider the set L of levels as the set of positive integers. The
object-level is 1, the meta-level is 2, the meta-meta-level is 3, and so

386

on. We assume that we are given the set N of names and function
Lv ofN into L that assigns a level to each name.

Definition 3.1. We define inductively the set Ter of terms and the
auxiliary set Subℓ for each level ℓ as follows:

vd[σ] ∈ Ter if v ∈ N , d ∈ N, σ ∈ SubLv(v),

λv.M ∈ Ter if v ∈ N , M ∈ Ter ,

M @ℓN ∈ Ter if ℓ ∈ L, M,N ∈ Ter ,

id ∈ Subℓ,
v↓(M) · σ ∈ Subℓ if v ∈ N<ℓ, M ∈ Ter , σ ∈ Subℓ,

↑v · σ ∈ Subℓ if v ∈ N<ℓ, σ ∈ Subℓ,

where N<ℓ = {v ∈ N | Lv(v) < ℓ}, N is the set of nonnegative
integers, and id signifies the empty sequence. We define the set Sub
of substitutions as the union

∪
ℓ∈L Subℓ. Note that a substitution

is a finite sequence of push-elements v↓(M) and pop-elements ↑v
for names v and terms M . Push-elements and pop-elements are
collectively called push-pop-elements.

Notation. As defined above, dots ‘ · ’ represent punctuation marks
for substitutions. We use the same dot to represent concatenation of
substitutions. For instance, if substitution σ equals v↓(M) · ↑v for
name v and term M , then σ · σ denotes v↓(M) · ↑v · v↓(M) · ↑v .
In particular, id · σ = σ · id = σ holds. We also use exponential
notation, namely, σ0 = id and σn+1 = σ · σn for substitutions
σ and nonnegative integers n. We omit superscripts ‘0’ following
names and brackets ‘[id]’ around the empty sequence, when no
confusion may occur.

Example 3.2. The following are terms, where x, y, z are names of
level 1, and M, N are names of level 2:

(λx.y0[id])@1 z
0[id],

M
0[x↓(N1[id]) · ↑x · y↓(λx.M2[↑y · ↑z])].

We usually represent the term in the first line simply as (λx.y)@1 z.

3.2 Action of Substitutions on Terms
Definition 3.3. Let v be a name and d a nonnegative integer. The
⟨v, d⟩-component σ⟨v, d⟩ of a substitution σ is the term defined
inductively as follows:

id⟨v, d⟩ ..= vd[id],

(w↓(M) · σ)⟨v, d⟩ ..=

{
M if v = w and d = 0,
σ⟨v, d− δvw⟩ otherwise,

(↑w · σ)⟨v, d⟩ ..= σ⟨v, d+ δvw⟩,

where δvw is the integer defined by

δvw ..=

{
1 if v = w,
0 otherwise.

We give an intuitive explanation about ⟨v, d⟩-components of a
substitution σ. Consider an N -indexed family of infinite stacks of
terms. Such a family of stacks is called an environment here. Push-
elements v↓(M) and pop-elements ↑v represent operations on the
stack indexed by name v. Hence substitution σ as a composition
of push-pop-elements represents an operation on environments. In
what follows, the stack indexed by name v in an environment is
simply called the v-stack. The environment whose v-stack consists
of the infinite sequence v0, v1, v2, . . . for each name v, is called the
identity environment. The ⟨v, d⟩-component σ⟨v, d⟩ signifies the
element at depth d in the v-stack in the environment obtained by
operating σ on the identity environment.

For instance, consider a substitution σ = v↓(M) · ↑v · ↑v .
Substitution σ means the operation “pop from the v-stack, and

then pop from the v-stack, and then push the term M into the
v-stack.” By operating σ on the identity environment, we obtain
an environment whose v-stack consists of the infinite sequence
M , v2, v3, . . . , and thus we have σ⟨v, 0⟩ = M , σ⟨v, 1⟩ = v2,
σ⟨v, 2⟩ = v3, and so on.

Definition 3.4. Let S be a subset of the set N of names. The
S-restriction σ↾S of a substitution σ is the substitution defined
inductively as follows:

id↾S ..= id,

(v↓(M) · σ)↾S ..=

{
v↓(M) · (σ↾S) if v ∈ S,
σ↾S otherwise,

(↑v · σ)↾S ..=

{
↑v · (σ↾S) if v ∈ S,
σ↾S otherwise.

For levels ℓ and substitutions σ, we define σ<ℓ and σ≥ℓ by

σ<ℓ
..= σ↾{v ∈ N | Lv(v) < ℓ},

σ≥ℓ
..= σ↾{v ∈ N | Lv(v) ≥ ℓ}.

We abbreviate σ<Lv(v) and σ≥Lv(v) to σ<v and σ≥v respectively
for names v.

Definition 3.5. We define inductively the termM∗σ resulting from
action of a substitution σ on a term M , and the substitution τ ◦ σ
resulting from composition of substitutions σ and τ , as follows:

vd[τ] ∗ σ ..=

{
vd[σ] if σ≥v = τ = id,
σ⟨v, d⟩ ∗ (τ ◦ σ)<v otherwise,

(λv.M) ∗ σ ..= λv.(M ∗ ⇑v(σ)),
(M @ℓN) ∗ σ ..= (M ∗ σ)@ℓ(N ∗ σ≥ℓ),

id ◦ σ ..= σ,

(v↓(M) · τ) ◦ σ ..= v↓(M ∗ σ≥v) · (τ ◦ σ),
(↑v · τ) ◦ σ ..= ↑v · (τ ◦ σ),

where ⇑v(σ) denotes v↓(v0[id]) · (σ ◦ ↑v).
The first branch in the first line for action on a variable of name

v states that substitution σ does nothing and stays as the suspended
substitution on the variable, if the σ does not contain any push-
pop-elements of level ℓ ≥ Lv(v). The second branch states that
substitution σ replaces the variable vd[τ] with the corresponding
term σ⟨v, d⟩, and the suspended substitution τ composed with
σ further acts on the term. The restriction represented by ‘<’
indicates that all push-pop-elements of level ℓ ≥ Lv(v) in σ are
consumed by substitution for the variable vd[τ]. The expression
⇑v(σ) in the second line represents a substitution obtained by
adjusting σ to skip the binder ‘λv’ appropriately. The restriction
represented by ‘≥’ in the third line and the fifth line is due to blocks
to variable binding discussed in Section 2.5. Note that vd[τ] ∗ σ =
σ⟨v, d⟩ ∗ (τ ◦ σ)<v always holds by definition.

We show that M ∗ σ and σ ◦ τ are well-defined for all terms M
and all substitutions σ and τ by induction on height of terms and
level of substitutions defined below.

Definition 3.6. The height Ht(M) of a term M and the height
Ht(σ) of a substitution σ are the nonnegative integers defined
inductively as follows:

Ht(vd[σ]) ..= Ht(σ),

Ht(λv.M) ..= Ht(M) + 1,

Ht(M @ℓN) ..= max{Ht(M),Ht(N)}+ 1,

Ht(id) ..= 0,

Ht(v↓(M) · σ) ..= max{Ht(M) + 1,Ht(σ)},
Ht(↑v · σ) ..= Ht(σ).

387

Definition 3.7. The level Lv(σ) of a substitution σ is the nonneg-
ative integer defined inductively as follows:

Lv(id) ..= 0,

Lv(v↓(M) · σ) ..=

{
Lv(σ) if M = vd[id] for some d ∈ N,
max{Lv(v),Lv(σ)} otherwise,

Lv(↑v · σ) ..= Lv(σ).

Proposition 3.8. Let M be a term and σ be a substitution. Then
M ∗ σ is well-defined.
Proof. We give a detailed proof for this proposition to clarify the
mechanism of the calculus. Many other propositions in this section
are proved in a similar way.

The above proposition is proved by induction on lexicographic
ordering of pairs ⟨Lv(σ),Ht(M)⟩.

(1) Consider the case of M = vd[τ].
First, we show that τ ◦ σ is well-defined by induction on length

of τ . The case of τ = id and the case of τ = ↑w · τ1 are trivial.
Consider the case of τ = w↓(N) ·τ1. Then τ ◦σ = w↓(N ∗ σ≥w) ·
(τ1◦σ). Note thatN ∗σ≥w is well-defined by induction hypothesis
since Lv(σ≥w) ≤ Lv(σ) and Ht(N) < Ht(M). Thus τ ◦ σ is
well-defined.

Next, we show that σ⟨v, d⟩ ∗ (τ ◦ σ)<v is well-defined. If
Lv(σ) ≥ Lv(v), then by induction hypothesis σ⟨v, d⟩ ∗ (τ ◦ σ)<v

is well-defined since Lv((τ ◦ σ)<v) < Lv(σ). If Lv(σ) < Lv(v),
then σ⟨v, d⟩ = ve for some e ∈ N, and hence σ⟨v, d⟩∗(τ ◦σ)<v =
ve[(τ ◦ σ)<v] by definition.

(2) Consider the case of M = λv.M1.
We show that σ ◦ ↑v is well-defined and Lv(σ ◦ ↑v) = Lv(σ)

by induction on length of σ. The case of σ = id and the case of
σ = ↑w · σ1 are trivial. Consider the case of σ = w↓(N) · σ1.
Then σ ◦ ↑v = w↓(N ∗ (↑v)≥w) · (σ1 ◦ ↑v). We prove below that
N ∗ (↑v)≥w is well-defined.

If Lv(σ) > 0, then N ∗ (↑v)≥w is well-defined by induction
hypothesis since Lv((↑v)≥w) = 0. If Lv(σ) = 0, then N = we

for some e ∈ N, and thus N ∗ (↑v)≥w = we+δvw .
Note that N = we for some e ∈ N if and only if N ∗ (↑v)≥w =

wc for some c ∈ N. Thus we have Lv(σ ◦ ↑v) = Lv(σ).
Consequently, M ∗ σ = λv.(M1 ∗ ⇑v(σ)) is well-defined by

induction hypothesis since ⇑v(σ) = v↓(v) ·(σ◦ ↑v) is well-defined
and we have Lv(⇑v(σ)) = Lv(σ) and Ht(M1) < Ht(M).

(3) The case of M =M1 @ℓM2 is trivial.

Corollary 3.9. Let σ and τ be substitutions. Then σ ◦ τ is well-
defined.

3.3 Reductions on Terms
Definition 3.10. Let ↣ be a binary relation on the set Ter of
terms. We say that ↣ is a reduction relation if ↣ satisfies the
following conditions:

vd[σ · w↓(M) · τ]↣ vd[σ · w↓(M ′) · τ] if M ↣M ′,

λv.M ↣ λv.M ′ if M ↣M ′,

M @ℓN ↣M ′ @ℓN if M ↣M ′,

N @ℓM ↣ N @ℓM
′ if M ↣M ′.

We define β-reduction→β as the least reduction relation satisfying
the following expression:

(λv.M)@ℓN →β M ∗ v↓(N) if Lv(v) = ℓ.

We also define α-renaming→α and η-reduction→η as the least
reduction relations satisfying the following expressions:

λv.M →α λw.(M ∗ (v↓(w) · ↑w)) if Lv(v) = Lv(w),

and

λv.((M ∗ ↑v)@ℓ v)→η M if Lv(v) = ℓ,

respectively.

Notation. Let↣ and↣′ be binary relations on a set. The com-
position of binary relations↣ and↣′ is denoted by↣ ·↣′. The
transitive closure of↣ is denoted by↣∗.

Remark 3.11. A term is said to be annotation-free if all indices
in the term equal 0 and all substitutions in the term equal id.
Consider the set Λ1 of annotation-free terms consisting only of
constructs of level 1. Then the set Λ1 is just the set of terms
in the ordinary lambda calculus under the assumption that we
have infinitely many names of level 1 in the set N of names.
Furthermore, β-reduction, α-renaming and η-reduction on the set
Λ1 coincide with the counterparts in the ordinary lambda calculus.
As a result, the formalization of calculus λ∗ provides us another
definition of the ordinary lambda calculus in which β-reduction is
defined without the notion of free variables and α-renaming.

3.4 Equivalence on Terms
The β-reduction defined in Definition 3.10 is not strictly confluent.
Consider a term M = (λx.((λy.N)@1 z))@1 y with names x, y,
z of level 1 and name N of level 2. We can obtain two distinct β-
normal forms from M as follows:

M →∗
β N[

y↓(z) · x↓(y)], and

M →∗
β N[

y↓(z) · x↓(y) · ↑y · y↓(z)].
The two substitutions σ = y↓(z) · x↓(y) and τ = y↓(z) · x↓(y) · ↑y ·
y↓(z) in the above are obviously distinct sequences of push-pop-
elements. However, σ and τ have the same ⟨v, d⟩-component for all
names v and nonnegative integers d. We introduce an equivalence
relation to equate such two substitutions. The equivalence relation
leads the β-reduction to be confluent.

Definition 3.12. We define equivalence relations ≃t on the set
Ter of terms and ≃s on the set Sub of substitutions inductively
as follows:

id ≃s id,

σ ≃s τ if σ⟨v, d⟩ ≃t τ⟨v, d⟩ for any v ∈ N , d ∈ N,
vd[σ] ≃t v

d[τ] if σ ≃s τ,

λv.M ≃t λv.N if M ≃t N,

M1 @ℓM2 ≃t N1 @ℓN2 if M1 ≃t N1 and M2 ≃t N2.

The symbols ≃t and ≃s are written simply as ≃ by omitting the
subscripts, when no confusion may occur.

We give another possible formalization of the equivalence on
terms to illustrate the connection between equivalent terms more
concretely by providing canonical form of substitutions.

Definition 3.13. We define ε-reduction on terms as the least re-
duction relation satisfying the following three expressions:

vd[σ · ↑w · w↓(M) · τ]→ε vd[σ · τ],
vd[σ · w↓(we) · ↑we+1]→ε vd[σ · ↑we],

and

vd[σ · ρ1 · ρ2 · τ]→ε vd[σ · ρ2 · ρ1 · τ]
for any ρ1 ∈ {w↓(M), ↑w} and ρ2 ∈ {u↓(N), ↑u} with w ̸= u.

Definition 3.14. For each term M , we define #M as the number
of push-pop-elements in M , namely, the number of up-arrows and
down-arrows occurring in M . A term M is said to be canonical
if #M ≤ #M ′ holds for any term M ′ satisfying M →∗

ε M
′. A

388

substitution σ is also said to be canonical if vd[σ] is a canonical
term for some name v and nonnegative integer d.

Remark 3.15. A substitution σ is canonical, if and only if for each
name v we have

σ↾{v} = v↓(Mv
0) · v↓(Mv

1) · · · · · v↓(Mv
pv−1) · ↑vqv

for some nonnegative integers pv , qv and canonical termsMv
0 ,Mv

1 ,
. . . , Mv

pv−1, such that Mv
pv−1 ̸= vqv−1 if pv > 0 and qv > 0.

Suppose that the above equality hold. Then we have

σ⟨v, d⟩ =
{
Mv

d if 0 ≤ d < pv,
vd−pv+qv otherwise,

for each nonnegative integer d.

Proposition 3.16. Let M and N be terms. Then M ≃ N holds if
and only if M →∗

ε · ←∗
ε N holds.

Proof. It is straightforward that M →ε N implies M ≃ N . We
show that M ≃ N implies M →∗

ε · ←∗
ε N .

We have canonical terms Mc and Nc such that M →∗
ε Mc and

N →∗
ε Nc. Note that M ≃ N implies Mc ≃ Nc. We can prove

that if Mc ≃ Nc then Mc →∗
ε Nc by straightforward induction on

Ht(Mc) + Ht(Nc).

Theorem 3.17. The following properties hold:

M ∗ σ ≃M ′ ∗ σ′ if M ≃M ′ and σ ≃ σ′,

σ ◦ τ ≃ σ′ ◦ τ ′ if σ ≃ σ′ and τ ≃ τ ′,
id ◦ σ ≃ σ ≃ σ ◦ id,

(ρ ◦ σ) ◦ τ ≃ ρ ◦ (σ ◦ τ),
M ∗ id ≃M,

(M ∗ σ) ∗ τ ≃M ∗ (σ ◦ τ),

for terms M , M ′ and substitutions ρ, σ, σ′, τ .

In short, action of substitutions on terms and composition of
substitutions preserve equivalence, and the set Sub of substitutions
amounts to a monoid acting on the set Ter of terms up to equiva-
lence. We prove the above properties in what follows.

Proposition 3.18. Let M be a term. Then M ∗ id ≃M holds.
Proof. We prove the stronger proposition that M ∗ σ ≃ M holds
for any term M and any substitution σ satisfying the following
condition: for any name v there exists a nonnegative integer p such
that

σ↾{v} = v↓(v0) · v↓(v1) · · · · · v↓(vp−1) · ↑vp.
The stronger proposition is proved by straightforward induction on
Ht(M).

Lemma 3.19. Let σ and τ be substitutions, v a name, d a nonneg-
ative integer. Then (τ ◦ σ)⟨v, d⟩ ≃ τ⟨v, d⟩ ∗ σ≥v holds.
Proof. By straightforward induction on length of τ .

Proposition 3.20. LetM andM ′ be terms, σ and σ′ substitutions.
If M ≃M ′ and σ ≃ σ′, then M ∗ σ ≃M ′ ∗ σ′ holds.
Proof. The proposition is proved by induction on the lexicographic
ordering of pairs ⟨max{Lv(σ),Lv(σ′)},Ht(M)+Ht(M ′)⟩ as in
the proof of Proposition 3.8.

Corollary 3.21. Let σ, σ′, τ and τ ′ be substitutions such that
σ ≃ σ′ and τ ≃ τ ′. Then τ ◦ σ ≃ τ ′ ◦ σ′ holds.

Proposition 3.22. Let M be a term, σ and τ substitutions. Then
(M ∗ σ) ∗ τ ≃M ∗ (σ ◦ τ) holds.
Proof. The proposition is proved by induction on lexicographic
ordering of pairs ⟨Lv(σ) + Lv(τ),Ht(M)⟩.

(1) Consider the case of M = vd[ρ].

We can prove that (ρ◦σ)◦τ ≃ ρ◦(σ◦τ) by induction hypothesis
and by the fact that (σ ◦ τ)≥ℓ = σ≥ℓ ◦ τ≥ℓ for each level ℓ. We
show below that (vd[ρ] ∗ σ) ∗ τ ≃ vd[ρ] ∗ (σ ◦ τ).

Suppose that Lv(σ) ≥ Lv(v). Then (vd[ρ]∗σ)∗τ = (σ⟨v, d⟩∗
(ρ◦σ)<v)∗ τ ≃ σ⟨v, d⟩ ∗ ((ρ◦σ)<v ◦ τ) ≃ σ⟨v, d⟩ ∗ (τ≥v ◦ ((ρ◦
σ) ◦ τ)<v) ≃ (σ⟨v, d⟩ ∗ τ≥v) ∗ ((ρ ◦ σ) ◦ τ)<v ≃ (σ ◦ τ)⟨v, d⟩ ∗
(ρ ◦ (σ ◦ τ))<v = vd[ρ] ∗ (σ ◦ τ) by induction hypothesis and by
the fact that (ρ ◦ σ)<v ◦ τ ≃ τ≥v ◦ ((ρ ◦ σ) ◦ τ)<v .

Suppose that Lv(σ) < Lv(v). Then σ⟨v, d⟩ = ve holds for
some e ∈ N. We have (vd[ρ] ∗ σ) ∗ τ = ve[(ρ ◦ σ)<v] ∗ τ =
τ⟨v, e⟩ ∗ ((ρ ◦ σ)<v ◦ τ)<v = τ⟨v, e⟩ ∗ ((ρ ◦ σ) ◦ τ)<v ≃
(σ ◦ τ)⟨v, d⟩ ∗ (ρ ◦ (σ ◦ τ))<v = vd[ρ] ∗ (σ ◦ τ).

(2) Consider the case of M = λv.M1.
We show that (σ ◦ ↑v) ◦ ⇑v(τ) ≃ (σ ◦ τ) ◦ ↑v .
Suppose that Lv(σ) > 0. Then ((σ ◦ ↑v) ◦ ⇑v(τ))⟨w, d⟩ ≃

(σ⟨w, d⟩ ∗ (↑v)≥w) ∗ ⇑v(τ)≥w ≃ σ⟨w, d⟩ ∗ (↑v ◦ ⇑v(τ))≥w ≃
σ⟨w, d⟩ ∗ (τ ◦ ↑v)≥w ≃ (σ⟨w, d⟩ ∗ τ≥w) ∗ (↑v)≥w ≃ ((σ ◦ τ) ◦
↑v)⟨w, d⟩ by induction hypothesis.

Suppose that Lv(σ) = 0. Then σ⟨w, d⟩ = we holds for some
e ∈ N. We have ((σ ◦ ↑v) ◦ ⇑v(τ))⟨w, d⟩ ≃ (σ⟨w, d⟩ ∗ (↑v)≥w) ∗
⇑v(τ)≥w = (we ∗ (↑v)≥w) ∗ ⇑v(τ)≥w = we+δvw ∗ ⇑v(τ)≥w ≃
(τ ◦ ↑v)⟨w, e⟩ ≃ τ⟨w, e⟩ ∗ (↑v)≥w ≃ (we ∗ τ≥w) ∗ (↑v)≥w =
(σ⟨w, d⟩ ∗ τ≥w) ∗ (↑v)≥w ≃ ((σ ◦ τ) ◦ ↑v)⟨w, d⟩.

Therefore we have (M ∗σ)∗τ = λv.((M1∗⇑v(σ))∗⇑v(τ)) ≃
λv.(M1 ∗ (⇑v(σ) ◦ ⇑v(τ))) = λv.(M1 ∗ (v↓(v ∗ ⇑v(τ)≥v) ·
((σ ◦ ↑v) ◦ ⇑v(τ)))) ≃ λv.(M1 ∗ (v↓(v) · ((σ ◦ τ) ◦ ↑v))) =
λv.(M1 ∗ ⇑v(σ ◦ τ)) =M ∗ (σ ◦ τ) by induction hypothesis.

(3) The case of M =M1 @ℓM2 is trivial.

Corollary 3.23. Let ρ, σ and τ be substitutions. Then we have
(ρ ◦ σ) ◦ τ ≃ ρ ◦ (σ ◦ τ).

3.5 Confluence of Reductions
We prove that β-reduction is confluent up to equivalence by the
technique of parallel reduction [19]. In other words, we prove
confluence of βε-reduction.

Definition 3.24. We define auxiliary binary relations ⇚t on the set
Ter of terms and ⇚s on the set Sub of substitutions inductively as
follows:

(λv.M)@Lv(v)N ⇚t M ′ ∗ v↓(N ′) if M ⇚t M ′, N ⇚t N ′,

vd[σ] ⇚t vd[σ′] if σ ⇚s σ′,

λv.M ⇚t λv.M ′ if M ⇚t M ′,

M1 @ℓM2 ⇚t M ′
1 @ℓM

′
2 if M1 ⇚t M ′

1, M2 ⇚t M ′
2,

id ⇚s id,
v↓(M) · σ ⇚s v↓(M ′) · σ′ if M ⇚t M ′, σ ⇚s σ′,

↑v · σ ⇚s ↑v · σ′ if σ ⇚s σ′.

Note that we have→∗
β = ⇚∗t . The symbols ⇚t and ⇚s are written

simply as ⇚by omitting the subscripts, when no confusion may
occur.

Lemma 3.25. Let M and M ′ be terms, σ and σ′ substitutions. If
M ⇚· ≃M ′ and σ ⇚· ≃ σ′, thenM ∗ σ ⇚· ≃M ′ ∗ σ′ holds.
Proof. By straightforward induction on the lexicographic ordering
of pairs ⟨Lv(σ),Ht(M)⟩.

Lemma 3.26. Let M and N be terms. If M ≃ · ⇚N holds, then
we have M ⇚· ≃ N .
Proof. We can prove the following proposition by straightforward
induction on Ht(L): if M ≃ L ⇚N for some term L, then there
exists a term L′ such that M ⇚L′ ≃ N .

389

Definition 3.27. For each term M and each substitution σ, we
define term M∧ and substitution σ∧ inductively as follows:

(vd[σ])∧ ..= vd[σ∧],

(λv.M)∧ ..= λv.(M∧),

(M @ℓN)∧ ..=

{
L∧ ∗ v↓(N∧) if M = λv.L,Lv(v) = ℓ,
M∧ @ℓN

∧ otherwise,

id∧ ..= id,

(v↓(M) · σ)∧ ..= v↓(M∧) · σ∧,

(↑v · σ)∧ ..= ↑v · σ∧.

Lemma 3.28. Let M and N be terms such that M ⇚N . Then
N ⇚· ≃M∧ holds.
Proof. By straightforward induction on Ht(M).

Theorem 3.29. Let M and N be terms. If M ←∗
β · ≃ · →∗

β N ,
then M →∗

β · ≃ · ←∗
β N holds.

Proof. By Lemma 3.26 and Lemma 3.28, we can easily prove that
M ⇚ · ≃ · ⇚N implies M ⇚· ≃ · ⇚ N for any terms M
and N . By this proposition and Lemma 3.26, the above theorem is
proved.

Corollary 3.30. Let M and N be terms, and →βε be the union
of reduction relations→β and→ε. If M ←∗

βε · →∗
βε N , then we

have M →∗
βε · ←∗

βε N .

4. An Application
Calculus λ∗ provides us a way to manipulate binding structure flex-
ibly with dynamic binding via meta-level variables. We illustrate
the feature through an application of the calculus to a procedural
language.

4.1 Procedural Language PROC
We introduce a simple procedural language PROC as an exten-
sion of imperative language IMP in [20]. PROC permits us to store
and retrieve not only numbers but also procedures. We implement
PROC in λ∗ by exploiting the feature to manipulate binding struc-
ture dynamically. The implementation of PROC demonstrates that
some notions related to names in procedural languages, such as
stores, recursion, and localization of names, can be realized by dy-
namic binding via meta-level variables.

Definition 4.1. We define the syntax of PROC by the following
BNF:

N-expressions E= x | n | plus E E | minus E E

P-expressions F= z | proc P
Commands C= x = E | z = F | exec F | if E P P |

while E P | local P export
x1x2...xh
z1z2...zk

Procedures P= id | C;P

where n, h, k range over the set N of nonnegative integers, x, x1,
x2, . . . , xh range over a setNN of names for numbers, z, z1, z2, . . . ,
zk range over a set NP of names for procedures, and id signifies
the empty sequence. The sets NN and NP are disjoint. We define
P as the set of all procedures. Note that a procedure P is a finite
sequence of commands. We represent concatenation of procedures
P1 and P2 as P1;P2.

Definition 4.2. A pair ⟨φN, φP⟩ of a function φN of NN into N
and a function φP of NP into P, is called a state of stores. We
define S as the set of all states of stores, and call an element of the
set S simply a state. Let φ = ⟨φN, φP⟩ be a state. Then the value
Eφ of n-expression E in state φ is the nonnegative integer defined

inductively as follows:

xφ ..= φN(x),

nφ ..= n,

(plus E1 E2)
φ ..= E1

φ + E2
φ,

(minus E1 E2)
φ ..= max{E1

φ − E2
φ, 0}.

Similarly, the value Fφ of p-expression F in state φ is the proce-
dure defined as follows:

zφ ..= φP(z),

(proc P)φ ..= P.

Definition 4.3. Let φ = ⟨φN, φP⟩ be a state. For nonnegative
integers n and names x inNN, state φ{n/x} is defined as follows:

φ{n/x} ..= ⟨φ′
N, φP⟩ where φ′

N(x
′) =

{
n if x′ = x,
φN(x

′) otherwise,

for names x′ in NN. Similarly, state φ{P/z} is defined for proce-
dures P and names z inNP as follows:

φ{P/z} ..= ⟨φN, φ
′
P⟩ where φ′

P(z
′) =

{
P if z′ = z,
φP(z

′) otherwise,

for names z′ inNP.

Definition 4.4. For procedures P , P ′, and states φ, φ′, we define
transition relation ⟨P |φ⟩ → ⟨P ′ |φ′⟩ as follows:

⟨x = E;P |φ⟩ → ⟨P |φ{Eφ/x}⟩,
⟨z = F ;P |φ⟩ → ⟨P |φ{Fφ/z}⟩,
⟨exec F ;P |φ⟩ → ⟨Fφ

;P |φ⟩,
⟨if E P1 P2;P |φ⟩ → ⟨P1;P |φ⟩ if Eφ > 0,

⟨if E P1 P2;P |φ⟩ → ⟨P2;P |φ⟩ if Eφ = 0,

⟨while E P1;P |φ⟩ → ⟨if E {P1;while E P1} id;P |φ⟩,

and, if ⟨P1 |φ⟩ →∗ ⟨id |φ′⟩ for some state φ′ then

⟨local P1 export
x1···xh
z1···zk ;P |φ⟩ → ⟨P |ψ⟩

with ψ = φ{x1φ
′
/x1} · · · {xhφ′

/xh}{z1φ
′
/z1} · · · {zkφ′

/zk}.

4.2 Implementation of PROC in λ∗

In the subsequent discussion, we assume that the set NN of names
for numbers and the set NP of names for procedures are disjoint
finite sets {x̄1, x̄2, . . . , x̄a} and {z̄1, z̄2, . . . , z̄b} respectively for
some nonnegative integers a and b. Note that we can adopt such
assumption when computing a procedure in PROC, since every
procedure contains only finitely many names. Furthermore, we
assume that the set of names of level 1 in calculus λ∗ contains all
names in PROC.

Notation. In this section, applications of each level are left-
associative, and the body of an abstraction extends as far right
as possible, in a customary way. Upper-case letters are names of
level 2, and lower-case letters are names of level 1. We omit marks
‘@1’ for applications of level 1. For instance, (λM.Mxy)@2 M@2 N

signifies ((λM.((M@1 x)@1 y))@2 M)@2 N.

Definition 4.5. To n-expressions E, p-expressions F , commands
C and procedures P in PROC, we assign terms JEK, JF K, LCM and

390

JP K in calculus λ∗ respectively, as follows:JxK ..= x, J0K ..= zero, Jn+ 1K ..= sccJnK,Jplus E1 E2K ..= plusJE1KJE2K,Jminus E1 E2K ..= minusJE1KJE2K,JzK ..= z, Jproc P K ..= block @2JP K,Lx = EM ..= setx @2JEK, Lz = F M ..= setz @2JF K,Lexec F M ..= unblock @2JF K,Lif E P1 P2M ..= if @2JEK@2JP1K@2JP2K,Lwhile E P M ..= while @2JEK@2JP K,Llocal P export
x1...xk
z1...zk M ..= local x1...xh

z1...zk @2JP K,JidK ..= id , JC;P K ..= comp@2LCM@2JP K,
where

zero ..= λs.λz.z, fst ..= λa.λb.a, snd ..= λa.λb.b,

scc ..= λn.λs.λz.s(nsz),

prd ..= λn.n(λp.λc.c(p snd)(scc(p snd)))(λc.c(zero)zero)fst ,

plus ..= λm.λn.n(scc)m, minus ..= λm.λn.n(prd)m,

block ..= λY.λx.(x@2 Y), unblock ..= λZ.Z(λY.Y),

setv ..= λE.λK.(λv.K)E,

if ..= λE.λP.λQ.λK.E(λz.fst)snd(P@2 K)(Q@2 K),

while ..= fix @2(λW.λE.λP.(if @2 E@2 loop@2 id)),

fix ..= λF.((λX.(F@2(X@2 X)))@2(λX.(F@2(X@2 X)))),

loop ..= comp@2 P@2(W@2 E@2 P),

local x1...xh
z1...zk

..= λP.λK.(export x1...xh
z1...zk

)(λK.λx1. . . . λzk.K)P,

export x1...xh
z1...zk

..= λe.λr.(e@2 K)(r@2 x1) · · · (r@2 zk),

id ..= λK.K, comp ..= λP.λQ.λK.(P@2(Q@2 K)).

Definition 4.6. For each state φ in PROC, we define JφK as the
substitution σN · σP in calculus λ∗, where σN and σP are the
substitutions defined as follows:

σN
..= x̄1↓(Jx̄φ1 K) · · · · · x̄a↓(Jx̄φa K),

σP
..= z̄1↓(block @2Jz̄φ1 K) · · · · · z̄b↓(block @2Jz̄φb K).

We also define a relation σ ≈0 τ for substitutions σ and τ as
follows:

σ ≈0 τ if and only if σ⟨v, 0⟩ = τ⟨v, 0⟩ for each name v.

Notation. In what follows, the relation→∗
β · ≃ is denoted by⇝β,

and the relation→∗
β · ≃ · ←∗

β is denoted by ∼=β .

With the above setting, a transition sequence in PROC is sim-
ulated by the corresponding reduction sequence in calculus λ∗, as
stated in the following propositions.

Proposition 4.7. Let P be a procedure, φ and φ′ states, and σ
a substitution. If ⟨P |φ⟩ →∗ ⟨id |φ′⟩ and σ ≈0 JφK hold, then
there exists a substitution σ′ such that JP K ∗ σ ⇝β JidK ∗ σ′ and
σ′ ≈0 Jφ′K.
Proof. By straightforward induction on size of transition sequence
⟨P |φ⟩ →∗ ⟨id |φ′⟩.

Corollary 4.8. Let P and P ′ be procedures, φ and φ′ states, and
σ a substitution. If ⟨P |φ⟩ → ⟨P ′ |φ′⟩ and σ ≈0 JφK hold, then
there exists a substitution σ′ such that JP K ∗ σ ∼=β JP ′K ∗ σ′ and
σ′ ≈0 Jφ′K.

Remark 4.9. Stated differently, we have the following as an alter-
native to Proposition 4.7. Let P be a procedure, φ and φ′ states,
and σ a substitution. If ⟨P |φ⟩ →∗ ⟨id |φ′⟩ and σ ≈0 JφK hold,

then we have

comp@2(λK.K[σ])@2JP K⇝β λK.K[σ′]

for some substitution σ′ such that σ′ ≈0 Jφ′K.

Example 4.10. Let P be the following procedure in PROC that
corresponds to the Ruby program in Figure 3:

sum = proc { n = ar;

ct = plus ct 1;

if n {

local {ar = minus n 1; exec sum} export rv, ct;

rv = n + rv

} { rv = 0 }

}; ct = 0; local {ar = 3; exec sum} export rv, ct

Then JP K is reduced to the following term in normal form:JP K⇝β λK.K[ct↓(4̂) · ct↓(0̂) · rv↓(6̂) · sum↓(M)]

where 0̂, 4̂ and 6̂ are the Church numerals of 0, 4 and 6 respectively,
and M is the term that corresponds to the procedure assigned to
name sum.

Figure 3. Sum.rb
1: def sum(n)

2: $ct = $ct + 1

3: if n > 0

4: n + sum(n - 1)

5: else 0 end

6: end

7: $ct = 0

8: sum(3)

Figure 4. DynamicLiar.rb
1: p = "not(eval(p))"

2: print eval(p)

Figure 5. StaticLiar.rb
1: p = not(p)

2: print p

4.3 Recursion via Names and Textual Substitution
In PROC, we can write recursive procedures in the usual manner.
This feature stems from the fact that we can store and retrieve pro-
cedures textually via names, and the feature is implemented with
terms block and unblock in calculus λ∗. Actually, the terms block
and unblock behave as quotes and ‘eval’ command in program-
ming languages. For example, consider the following term L that
corresponds to the Ruby program in Figure 4:

L = (λp.(unblock @2 p))(block @2(n(unblock @2 p))).

Then we have the following infinite reduction sequence that corre-
sponds to the infinite loop caused by the program in Figure 4:

L⇝β M ⇝β nM ⇝β n(nM)⇝β n(n(nM))⇝β · · ·
where M is the term defined as follows:

M = (λZ.Z[p↓(N)](λY.Y[p↓(N)]))@2 p,

N = block @2(n(unblock @2 p)).

Note that the terms block and unblock play fundamental roles to
generate the infinite reduction sequence. In fact, if we remove the
applications of the terms block and unblock in term L, then we
get the term (λp.p)(np), which corresponds to the Ruby program
in Figure 5 that causes no infinite loops. From viewpoint of vari-
able binding, quotes are considered as blocks to variable binding
discussed in Section 2.5, and ‘eval’ command destroys blocks to
variable binding. The terms block and unblock behave in the same
way.

4.4 A Comment from Viewpoint of Type Systems
To make a brief comment about properties of calculus λ∗, we
introduce a rough type system similar to the simple type system
for the lambda calculus.

391

Definition 4.11. We assume that we are given a set of atomic types.
The set Typ of types is defined inductively as follows:

T ∈ Typ if T is an atomic type,
T1 →ℓ T2 ∈ Typ if ℓ is a level and T1, T2 ∈ Typ.

Definition 4.12. A function ofN into Typ is called a type assign-
ment. For type assignments ξ, terms M , substitutions σ, and types
T , we define typing relations ξ ⊢ M : T and ξ ⊢ σ inductively as
follows:

ξ ⊢ vd[σ] : ξ(v) if ξ ⊢ σ,
ξ ⊢ λv.M : ξ(v)→ℓ T if ℓ = Lv(v) and ξ ⊢M : T,

ξ ⊢M1 @ℓM2 : T ′ if ξ ⊢M1 : T →ℓ T
′ and ξ ⊢M2 : T,

ξ ⊢ id,

ξ ⊢ v↓(M) · σ if ξ ⊢M : ξ(v) and ξ ⊢ σ,
ξ ⊢ ↑v · σ if ξ ⊢ σ.
With the rough type system defined above, we can have subject

reduction property stated by the following proposition.

Proposition 4.13. Let ξ be a type assignment, T a type, M and
M ′ terms. If ξ ⊢M : T and M →β M ′, then ξ ⊢M ′ : T holds.

However, the rough type system does not provide us strong
normalization property, in contrast to the type system for calculus
λM [18]. For example, consider a type assignment ξx satisfying
the following conditions:

ξx(n) = B →1 B, ξx(p) = Block(B), ξx(x) = B →2 B,

ξx(Y) = B, ξx(Z) = Block(B),

where B is a type, and Block(B) signifies (B →2 B) →1 B.
Then the following expressions hold:

ξx ⊢ block : B →2 Block(B),

ξx ⊢ unblock : Block(B)→2 B,

ξx ⊢ L : B,

where L is the term defined in Section 4.3. The term L has type B,
and thus we may expect that the term L signifies a value of type
B. However, the term L actually has no normal form and hence
signifies nothing, as in the case of the liar paradox.

In order to eliminate such unwanted situations and achieve
strong normalization property, we need a more elaborate type sys-
tem. In fact, the rough type system permits term L′ = λn.L to
have type (B →1 B) →1 B in the type assignment ξx, whereas
L′ is a fixed-point operator of level 1 in a sense that we have
L′M ∼=β M(L′M) for any term M . A key difference from cal-
culus λM providing strong normalization property is caused by
the existence of cross-level terms that bring on level-increasing
reduction, such as object-level β-reduction generating new meta-
level β-redexes. A term is said to be cross-level if the term can
be typed only in cross-level type assignments. A type assignment
ξ is said to be cross-level if there exists a name v such that the
type ξ(v) of v in the type assignment ξ contains an arrow ‘→ℓ’ of
level ℓ greater than Lv(v). For instance, the above ξx is a cross-
level type assignment, and the terms block and export

x1...xh
z1...zk are

cross-level terms as well as the term L mentioned above. Cross-
level type assignments and cross-level terms are seemingly mean-
ingless. Hence, cross-level terms have been left out of consideration
by type systems or by level-controlled reductions in previous meta
lambda calculi. However, we consider that cross-level terms may
be worth investigating, since cross-level terms seem to have con-
nections with notions related to names and bindings in program-
ming languages, such as stores, quotes, recursion, and localization
of names, as demonstrated in this section. We leave further research
about this topic as a future work.

5. Related Works
5.1 Meta Lambda Calculi
We discuss connections with previous meta lambda calculi that
include inherently textual substitution via meta-level variables.

Calculus λM proposed by Sato, Sakurai, Kameyama and
Igarashi [18] is a meta lambda calculus with infinitely hierarchical
levels. λM adopts level-controlled reductions and a type system
to achieve preferable properties in coexistence with textual sub-
stitution. The type system eliminates cross-level terms mentioned
in Section 4.4. λM is actually a subsystem of λ∗ consisting only
of annotation-free terms. The level-controlled reduction in λM is
viewed as a restriction of β-reduction in λ∗ on a set of annotation-
free terms.

Calculus LamCC in Gabbay and Lengrand [10] also includes
infinitely hierarchical levels. LamCC adopts level-controlled re-
ductions and explicit substitutions. Unlike other meta lambda cal-
culi, LamCC does not have the notion of level of application. In
other words, the level of each application occurring in a term is de-
termined dynamically in the process of computation. One of the
features of λ∗ different from LamCC is that substitutions in λ∗

have canonical representation. By this feature, terms signifying the
same substitution, for example, (λx.λy.M)Nz and (λy.λx.M)zN are
reduced to the same term M[x↓(N) · y↓(z)] by β-reduction and ε-
reduction in λ∗. In LamCC, the above two terms are reduced to
distinct two terms in normal form.

Gabbay’s NEW calculus of contexts [9] and two-level lambda
calculus [11] adopt level-controlled reductions and freshness con-
texts. A freshness context is regarded as an assumption about fresh-
ness conditions for meta-level variables. Reductions are controlled
by freshness contexts. In a word, a term is reduced under some as-
sumption about freshness conditions for meta-level variables.

The NEW calculus and LamCC mentioned above include NEW
binders ‘ N’ separately from ordinary lambda binders ‘λ’. A NEW
binder indicates that an object-level variable is fresh for meta-level
variables. For instance, Nx.λx.Mx →α Ny.λy.My holds, since the
object-level variables ‘x’ and ‘y’ in the above terms are considered
to be fresh for meta-level variable M. In calculus λ∗, such informa-
tion is represented by pop-elements. The above two terms and the
α-renaming are represented in λ∗ as λx.M[↑x]x→α→ε λy.M[↑y]y.

Bekki’s meta-lambda calculus [2] is a study of categorical se-
mantics for metavariables. The type system in the calculus elimi-
nates cross-level terms mentioned in Section 4.4. The formalization
shown in Bekki and Asai [3] and in Masuko and Bekki [13] adopts
assumption about free variables for meta-level variables in order to
perform α-renaming in the presence of meta-level variables. The
notion of blocks to variable binding discussed in Section 2.5 is
pointed out in [13].

5.2 Other Works
Attempts to model textual substitution via metavariables in a calcu-
lus are originated from Hashimoto and Ohori’s typed context calcu-
lus [12], which is designed to internalize the notion of lambda con-
texts. Their calculus adopts level-controlled reductions and a mech-
anism, called renamers, to manage binding structure consistently
with the notion of holes to represent lambda contexts. Holes are re-
garded as meta-level variables, and lambda contexts are regarded as
meta-level abstractions from viewpoint of meta lambda calculi. The
technique of renamers is considered a kind of approaches by inter-
faces assigned to meta-level variables mentioned in Section 1.3.
Sato, Sakurai and Kameyama’s simply typed context calculus [16],
calculus λm in Sato et al. [18], Nanevski, Pientka and Pfenning’s
calculi [14, 15] with modal types, and Boespflug and Pientka [4]
with multi-level modal types are also designed by approaches of in-
terfaces assigned to metavariables. These calculi are called lambda

392

calculi with interfaces distinctively from meta lambda calculi in this
paper. The goal of these calculi to provide type systems for meta-
level variables seems to lead the design to use information about
interfaces assigned to meta-level variables not only in type systems
but also in rewriting systems. This feature of the design makes the
difference between these calculi and meta lambda calculi as illus-
trated in Section 1.3. The technique of indexed variables is adopted
in [16].

The syntax of calculus λm in Davies [7] is similar to the syntax
of λ∗ in a sense that variables and applications are assigned with
numbers. The numbers in calculus λ∗ signify levels of variables,
which determine strength of substitution so that substitution of
level ℓ is performed by regarding variables of level less than ℓ as
mere texts. In contrast, the numbers in calculus λm signify stages
of computation, which determine time of substitution. In λm, all
variables occurring in a term are bound statically as usual, unlike
meta lambda calculi.

Methods to deal with substitutions as syntactic objects date back
to Abadi, Cardelli, Curien and Lévy’s explicit substitutions [1].
Dowek, Hardin and Kirchner [8] applies the method to the name-
less lambda calculus with meta-level variables. The formalization
of substitutions with push-elements and pop-elements in λ∗ is al-
most the same as their formalization, although substitutions in λ∗

are sorted by names and defined to occur only as suspended sub-
stitutions on meta-level variables. The slight difference from their
formalization stems from the purpose to make calculus λ∗ become
a supersystem of λM [18] as well as the ordinary lambda calculus.
In other words, this paper does not concern itself about modeling
concrete way and cost of performing substitution, which is the orig-
inal purpose of explicit substitutions in Abadi et al.

Calculus λN proposed by Dami [6] is an extension of the
lambda calculus to model dynamic binding. The syntax of λN
includes additional constructs called labels separately from ordi-
nary variables. A main difference between λN and λ∗ is their style
of dynamic binding. Calculus λ∗ deals with dynamic binding by
lambda binders via meta-level variables, whereas λN deals with
dynamic binding by labels, not by lambda binders.

6. Conclusion
We have proposed meta lambda calculus λ∗, in which any β-redex
of any level can be reduced to perform substitution for variables.
This feature makes it possible to advance computation even in
the presence of meta-level variables, and hence provides us new
possibilities for reduction strategies that have been restricted by
level-controlled reductions in previous meta lambda calculi.

Also, we have shown a procedural language as an application
of calculus λ∗. Through the implementation of the procedural lan-
guage, we have observed the connections between dynamic bind-
ing via meta-level variables and the notions of stores and recursion
in procedural languages. We hope that calculus λ∗ contributes to-
ward understanding metavariables and the association with notions
related to names and bindings in programming languages.

Acknowledgments
The author wishes to thank his supervisor, Ryu Hasegawa, sin-
cerely for the fruitful discussions. The author also thanks Brigitte
Pientka and anonymous reviewers for helpful comments.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien and J.-J. Lévy. 1991. Explicit

substitutions. Journal of Functional Programming 1, 4, 375–416.
[2] Daisuke Bekki. 2009. Monads and meta-lambda calculus. In New

Frontiers in Artificial Intelligence (JSAI 2008), LNAI 5447, 193–208.
[3] Daisuke Bekki and Kenichi Asai. 2010. Representing covert move-

ments by delimited continuations. In New Frontiers in Artificial Intel-
ligence (JSAI-isAI 2009), LNAI 6284, 161–180.

[4] Mathieu Boespflug and Brigitte Pientka. 2011. Multi-level contextual
type theory. In Proceedings of the 6th International Workshop on
Logical Frameworks and Meta-languages: Theory and Practice
(LFMTP 2011), EPTCS 71, 29–43.

[5] N. G. de Bruijn. 1972. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with application
to the Church-Rosser theorem. Indagationes Mathematicae 75, 5,
381–392.

[6] Laurent Dami. 1998. A lambda-calculus for dynamic binding.
Theoretical Computer Science 192, 2, 201–231.

[7] Rowan Davies. 1996. A temporal-logic approach to binding-time
analysis. In Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science (LICS ’96), 184–195.

[8] Gilles Dowek, Thérèse Hardin and Claude Kirchner. 2000. Higher
order unification via explicit substitutions. Information and Computa-
tion 157, 183–235.

[9] Murdoch J. Gabbay. 2005. A NEW calculus of contexts. In Proceed-
ings of the 7th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP ’05), 94–105.

[10] Murdoch J. Gabbay and Stéphane Lengrand. 2009. The lambda-
context calculus (extended version). Information and Computation
207, 12, 1369–1400.

[11] Murdoch J. Gabbay and Dominic P. Mulligan. 2009. Two-level
lambda-calculus. Electronic Notes in Theoretical Computer Science
246, 107–129.

[12] Masatomo Hashimoto and Atsushi Ohori. 2001. A typed context
calculus. Theoretical Computer Science 266, 249–272.

[13] Moe Masuko and Daisuke Bekki. 2011. Categorical semantics of
meta-lambda calculus (in Japanese). In Informal Proceedings of the
13th JSSST Workshop on Programming and Programming Languages,
60–74.

[14] Aleksandar Nanevski, Brigitte Pientka and Frank Pfenning. 2003. A
modal foundation for meta-variables. In Proceedings of the 2003 ACM
SIGPLAN Workshop on Mechanized Reasoning about Languages with
Variable Binding (MERLIN ’03), 1–6.

[15] Aleksandar Nanevski, Frank Pfenning and Brigitte Pientka. 2008.
Contextual modal type theory. ACM Transactions on Computational
Logic 9, 3, Article 23, 49 pages.

[16] Masahiko Sato, Takafumi Sakurai and Yukiyoshi Kameyama. 2002. A
simply typed context calculus with first-class environments. Journal
of Functional and Logic Programming 2002, 1–41.

[17] Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama and Atsushi
Igarashi. 2003. Calculi of meta-variables. In Computer Science Logic
(CSL 2003), LNCS 2803, 484–497.

[18] Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama and Atsushi
Igarashi. 2008. Calculi of meta-variables. Frontiers of Computer
Science in China 2, 1, 12–21.

[19] Masako Takahashi. 1995. Parallel reductions in λ-calculus. Informa-
tion and Computation 118, 1, 120–127.

[20] Glynn Winskel. 1993. The Formal Semantics of Programming
Languages. The MIT Press.

393

