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A B S T R A C T  

The 7r-calculus is a fbrmalism of computing in which we 
can compositionally represent dynamics of major program- 
ming constructs by decomposing them into a single com- 
munication primitive, the name passing. This work reports 
our experience in using a linear/affine typed 7r-calculus tbr 
the analysis and development of type systems of program- 
ming languages, focussing on secure information flow anal- 
ysis. After presenting a basic typed calculus for secrecy, 
we demonstrate its usage by a sound embedding of the de- 
pendency core calculus (DCC) and by the development of a 
novel type discipline for imperative programs which extends 
both a secure multi-threaded imperative language by Smith 
and Volpano and (a call-by-value version of) DCC. In each 
case, the embedding gives a simple proof of noninterference. 

1. I N T R O D U C T I O N  
M o t i v a t i o n .  Large software is made up of many different 
components with different properties. Further it is a norm 
in modern distributed applications that a number of dif- 
i~rent programming constructs, or even difl>rent languages, 
are used in a single application. Types for programming 
offer a primary means to classii~y and control programs' be- 
haviour with rigour and precision, which now have both well- 
developed theories and an increasing number of applications. 
Can we use types to describe, reason about and control the 
behaviour of such an aggregation? For this to be effective, 
it should be possible to type-check one component with a 
specific type, say (N ~ N) ~ N (where N is a type for a 
natural number and ~ is a function type constructor), and 
combine it with other parts, which may have difl>rent type 
structures, with a guarantee that it behaves as decreed by 
the original type discipline. For example, if ( N ~  N ) ~  N is 
int>rred in a strongly normalising type discipline, we want 
the piece of code to behave as a total function producing 
a natural number. Note a program of this type needs a 
procedure given by its peer to perform its function: thus 
we cannot achieve our objective unless we have a consistent 
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integration of multiple type disciplines, 
A central technical difficulty in having such an integrated 

framework, even tbr basic type structures, comes from ditU 
t~rent nature of operations each typed formalism deals with. 
Assignment, function application, controls, method invoca- 
tion, diverse forms of synchronisation, all have quite diffEr- 
ent dynamics: we can see this difference clearly when we 
write down their formal operational semantics and compare 
them. It is largely due to this difference why it is so hard 
to consistently merge individually coherent theories for iso- 
lated constructs, or to apply what was found in one realm 
to another realm. A well-known example is issues in trans- 
planting polymorphism, initially developed for pure higher- 
order functions, to the universe of imperative programming 
idioms [86]. The difl>rent nature of dynamics of assignment 
commands fl'om that of pure higher-order functions is the 
culprit of this difficulty. Given this variety, it looks hard to 
conceive any uniform framework of type structure for difl>r- 
ent language constructs: unless we have a tool, say syntax, 
which can represent them using a single format. 

T h e  w-Calculus .  The w-calculus [26, 25, 7, 17] is an ex- 
tension of CCS based on name passing. A basic form of its 
dynamics can be written down as the tbllowing reduction. 

Here a vector of names a7 are communicated, via x, to an 
input process, resulting in name instantiation. Perhaps sur- 
prisingly, this single operation can compositionally represent 
dynamics of diverse language constructs, including function 
application, sequencing, assignment, exception, object, not 
to speak of communication and concurrency. }V~ are thus 
prompted by the following question: can we have a foun- 
dational type structure for this calculus, similar to those 
for the A-calculus, in which we can precisely capture di- 
verse classes of computational behaviour uniformly? Unlike 
those for functions, types for interaction is an unexplored 
realm. More concretely, the preceding studies, cf. [25, 24, 
30, 39], have shown that, even though operational encodings 
of diverse typed calculi into the 7r-calculus are possible, they 
rarely capture the original type structures fully. The issue 
is visible through, for example, the almost omnipresent lack 
of full abstraction in such encodings. At a deeper level, this 
means the encoded types guarantee only a weaker notion of 
behavioural properties than the original ones: the essential 
content of types is partially lost through the translation. 

Gaining insights fl'om the preceding studies on types tbr 
interaction including types for the 7r-calculus [25, 30, 15, 39, 
24] and game semantics [3, 4, 23, 20], the present authors, 
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with Martin Berger, recently reported [6, 40] that  basic type 
structures for the re-calculus which precisely capture existing 
type structure do exist, allowing fully abstract  translation of 
prominent functional typed calculi. In [6, 40], we have pre- 
sented two type disciplines for the re-calculus which precisely 
characterise two classes of sequential higher-order functional 
behaviours, which we call e/fine and linear. These terms are 
used with the ibllowing meaning: 

• Ai.finity. This denotes possibly diverging behaviour in 
which a question is given an answer at most once. 

• Lineari ty .  This denotes terminating behaviour in which 
a question is always given an answer precisely once. 

As a theoretical underpinning, [6, 40] have shown PCF and 
strongly normalising A-calculi are fully abstract ly embed- 
d a n e  in the affine and linear re-calculus, respectively. In 
spite of faithfulness in embeddings, the tbrm of types is quite 
dift~rent from that  of function types, articulating a broader 
realm of typed behaviour. In particular,  both call-by-value 
and call-by-name A-calculi are embeddable into a single typ- 
ing system by changing translation of types. 

S e c u r e  I n f o r m a t i o n  F low.  The present paper reports how 
we can apply the linear and affine type structures of the re- 
calculus, as proposed in [6, 40], for the s tudy of type disci- 
plines of programming languages, taking type-based analysis 
of secure information flow [2, 12, 29, 33, 34, 35, 38] as an 
application domain. In this analysis, we use a typing system 
to ensure the sat~ty of intbrmation flow in a given program, 
i.e. a high-level (secure) da ta  never flows down to low-level 
(public) channels. Intbrmation flow analysis needs precise 
understanding of observable behaviour of program phrases 
and their interplay, because of the existence of covert chan- 
nels [9]. In the re-calculus representation, computational  dy- 
namics is decomposed into interaction, where the notion of 
observables is made explicit. This makes the re-calculus a po- 
tentially eft~ctive tool for analysing subtle information flow 
among program phrases. Further,  in many type-based intbr- 
marion flow analysis, distinction between total i ty and par- 
t iali ty is crucial, both in functional [2] and imperative [a8] 
settings, strongly suggesting its connection to linear/affine 
type structures. A uniform treatment  of call-by-name and 
call-by-value pure functions as well as stateful computat ion 
in secrecy is another motivation for using the re-calculus. 

S u m m a r y  o f  C o n t r i b u t i o n s .  The tbllowing summarises 
the main technical contributions of the present work. 

• A typed re-calculus for secure information flow based on 
linear/affine type disciplines, which enjoys a basic nonin- 
teri>rence property. 

• The embeddabil i ty  of the dependency core calculus (DCC) 
[2] in the secrecy-enhanced linear/affine re-calculus, and a 
simple operational proof of its noninterference property. 
~¥~ also present a novel call-by-value version of DCC. 

• A new type system for secrecy in concurrent impera- 
tive programs with ret>rences and higher-order proce- 
dures. Its embeddabil i ty  in the linear/affine re-calculus 
with state again gives a simple proof of non-interi>rence. 

A picture of typed calculi used in this text is given in Figure 
1. Each box represents a name of the typed re-calculus with a 
specific type structure ("k", "A" and "/u" mean linear, affine 
and state, respectively). The right-hand side of the box 

Multi-threaded Multi-threaded 
Smith-Volpano Imperative Language 
+ References + References 
+ Procedure + Procedure 

DCC PCF 
DCCv PCFv 

with Pointed Types 

J " \  

/ \ 4 \  

A ~ PCF - - I  SimplyTyped 
PCFv ~ J  CBV/CBN 

Lambda 

F i g u r e  1: A F a m i l y  o f  L i n e a r / A t t i n e  7r-Calculi  

shows systems we can embed in the basic typed 7r-calculus. 
The left-hand side shows the secure languages we can embed 
in the secure version of the ~v-calculus. The grey box shows 
a basic property satisfied by the calculus. 

R e l a t e d  W o r k .  There are a f~w prominent examples of 
integrated function-based type disciplines, which often use 
monads. Basic examples include pointed types [21, 27] and 
the incorporation of imperative constructs in Haskell [22]. 

The dependency core calculus [2] is a powerful functional 
metalanguage for secrecy, using pointed types. The seman- 
ties is given by a denotational universe based on logical re- 
lations. The calculus is effective ibr analysing diverse se- 
quential notions of dependency and secrecy. At the same 
time, the ibrmalism is difficult to apply to the realm outside 
of sequential higher-order functions. The present work oi: 
i~rs an alternative tool which can easily incorporate impure 
i~atures such as concurrency and state. 

Smith and Volpano (cf.[84, 85, 88]) studied various aspects 
of secrecy in imperative languages. Sequential procedures 
are studied in [88]. Multi- threading is studied in [35], whose 
typabil i ty  was enlarged by our work with Vasconcelos [18] 
using the re-calculus, based on which a further enhancement 
was done in [84] (cf.[8]). A proper extension of the concur- 
rent language of [85, 84] integrating higher-order procedures 
and general ret~rences would be new. 

A recent work [42] presents a typed control calculus with 
rei~rences, intended as a meta-language via CPS translation. 
Its type discipline is adapted to this end, in part icular in its 
use of linear continuations. As secrecy typing for imperative 
languages, [42] does not t reat  multi-threading, and is not 
(intended as) an extension of the language in [a5, a4]. 

Linearity has been studied in diverse forms, both for func- 
tions, cf. [11] and for processes, cf. [15, 24, a9]. Clear be- 
havioural articulation and characterisation of linearity and 
affinity as typed processes are first presented in [6, 40], one 
of whose initial applications is reported here. 

Secrecy and other security issues in processes are widely 
studied recently, cf. [1, 81, 10, 18, 18]. [1] includes insight- 
%1 discussions on secrecy. These studies focus on modelling 
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security concerns in d is t r ibuted systems, and do not  pursue 
integrated secrecy typing t'or language constructs.  

O u t l i n e .  Section 2 introduces the secrecy re-calculus based 
on l inear/atf ine type  disciplines. Section 3 embeds DCC and  
its call-by-version in the calculus. Section 4 presents a state- 
ful extension of the calculus in Section 2. Section 5 presents 
applications to imperat ive secrecy. 

A c k n o w l e d g e m e n t s .  }V~ thank  anonymous  rei~rees t'or help- 
ful comments  and Mart in  Berger t'or our ongoing collabo- 
ration. The first author  is part ial ly supported by EPSRC 
grant  GR/N/a76aa. The second author  is part ial ly sup- 
ported by EPSRC grant  GR/Raa465/01 .  

2. SECURE LINEAR/AFFINE TYPES 

2.1 Processes 
Following [6, 40], we use the asynchronous version of the 
re-calculus [7, 17] with b o u n d  ou tpu t  [32] and  branching [14, 
16, 18]. Let at ' ,y, . . ,  and  sometimes a , b , . . ,  range over a 
countable  set of names  (also called channels).  The set of 
un typed  terms, which we often call processes, is given by 
the t'ollowing grammar.  

P : := at'(//)../:' input  I P I Q  parallel 
I ~<~>P output I ( u x ) P  hiding 
I x[&~ (/g/)..Pi] branching I 0 inact ion 
I ~ini (2)) P selection I !P replication 

In !P we require P to be an input  or a branching.  The 
bound/ f ree  names  are defined as usual. Here and hence- 
t'orth we assume names  in a vector /7 are pairwise distinct.  
Up to the s t ructural  equality, whose definition is given in 
[6, 40], the ou tpu t  x(ff)(2 acts as (~'Y)(~(uglC2) in the stan- 
dard syntax. Bound name  passing has essentially equivalent 
expressive power as free name  passing [a2], and is conve- 
nient  t'or obta in ing  precise correspondence with functional  
type s tructures  [6, 40]. }¥~ assume the branching allows 
t'or any countable  indexing set with cardinal i ty more t han  
one. Branching is used t'or representing base values as well 
as condit ionals [6, 40], and  plays an essential r61e in the 
ini 'ormation flow analysis later. 

The reduct ion relation is generated by the tbllowing rules, 
closing under  parallel composit ion,  restriction and  output ,  
taking processes modulo ~.  

!x(g).~l~(g) Q --~ 

and, i'or branching,  

!x[&~(gd.~] I ~ ( ~ )  Q 

!x(~).P I ( ~ ) ( P  I Q), 

(~' ~)(P5 I Q) 
~ at[~(~).P~] I (~ ~)(P~ IO) 

d e f  
The mult i -s tep reduct ion - ~  is given as: - ~  = z U ----~. 

d e f  1 ~ x - .  As a simple example of processes, [ n ~  =.mc).c:tm~ is a 
natural number agent, which acts as a server tha t  necessarily 
re turns  a fixed answer, n. 

2.2 Action modes and channel types 
The type s t ructure  we shall use combines atfine types [6] 
and linear types [40], and is enhanced by secrecy. First  
we introduce action modes [6, 15, 18, 40], which prescribe 
dift~rent modes of interact ion at each channel.  

$~ Linear input  % Linear ou tpu t  
Sx Atfine input  Sx Atfine ou tpu t  
!~ Linear server ?~ Client request to k 
!x Atfine server ?x Client request to !x 

}V~ also use the mode * to indicate uncomposabil i ty,  p , p , . . .  
range over action modes. The modes in the left co lumn are 
input modes while those in the right are output modes. The 
pair of modes in each row are dual to each other, writ ing 
for the dual  ofp.  ~V~ set M 4. = {$~,$x}, similarly for M : ,  
.Mr etc. The L-modes correspond to linear modes in [40] 
while the A-modes to affine modes in [6]. The dift~rence 
between linearity and affinity in non-repl icated channels is 
that ,  in a linear channel,  an interact ion takes place precisely 
once, while it does so at most once in an atfine channel.  

Fix a complete lattice (12, E, 7-, _L) of secrecy levels (higher 
means  more secure), whose elements are wri t ten  s , J ,  . . . .  
Then  char~nd types are given by the following grammar.  Be- 
low p~ (resp. po) denotes input  (resp. output )  modes. 

\ ~ /JO 

(#)s is called input/output unary type, [&i~/] p and  [@i~/] p 
brur~chir~g/selection type. ~V~ write see(r) for the outermost  
secrecy level of r ;  see(*) = 7-. Y is the dual of r by dualising 
all action modes and exchanging & and  @. The mode of r ,  
denoted rod(r), is * if r = *, else its outermost  mode. 

On types we define @ as the least commuta t ive  part ial  
operat ion s.t. (1) T @ Y = *  (md(r)  ¢ ,A4, ) ,  (2) r @ ~ = r  
(rod(r) ¢ M , )  and  (3) r ~ r  = r (rod(r) ¢ M r ) .  Intuit ively,  
(1) savs once we compose inpu t -ou tpu t  l inear/atf ine chan- 
nels, the channel  becomes uncomposable;  while (2) and (3) 
together s~v that  a server should be unique,  to which an ar- 
b i t ra ry  number  of clients can request interactions. Note the 
composit ion between atfine and  linear types is prohibited; 
• "or example, ()~L ¢ ( ) ~  is undefined,  while ()~L @ ()~L = , .  
V~  also assume the sequential  constraint  on channel  types 
as given in [6, 40], which we list in Appendix  A. 

2.3 Action types 
Following [6, 40], we use an action type which is essentially 
an assignment of channel  types to tYee names  in a process to- 
gether with causality int 'ormation. Formally an action type  
is a finite directed acyclic graph such that: 

(G1) Each node has t'orm x : r .  No two nodes in the graph 
have identical subjects. 

(G2) Each edge has t'orm ;c : r  --~ ; c ' : r '  with either rod(r) = 
$~ and  md(r ' )  = $~, or rod(r) = !~ and md(r ' )  = 7~. 

Note, in (G2) we do not  record dependency t'or atfine chan- 
nels. This  is because we permit  circularity, hence divergence, 
tbr atfine channels. A, B , . . .  range over action types. A node 
(or its name)  is active in A if it has no incoming edges. 

The part ial  operator A @ B is defined iff channel  types in 
common names  compose by @ given above, and,  moreover, 
the adjoined graph do not  have a cycle. If so, the result is a 
graph in which, in the adjoined graph, each maximal  causal 
chain is collapsed into an edge connect ing its two ends (see 
[40] t'or a t'ormal definition). To avoid divergence at linear 
channels,  this operator ensures tha t  processes never exhibit  
circular dependency in actions. For example, at' : rz -~ y : r2 
and y : ~ - - ~ x : ~  are not  composable. ~¥~ write IAI, rod(A), 
fn(A) and  active(A) t'or the sets of nodes, modes, names  and  
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(Par) (Res) (Weak) 
(Zero) PI~ > Ai ( i=1,2)  P P >  A(x:r) P P >  A -~ 
- A~ × A2 rod(r) ~ 2¢l~,: rod(r) ~ 2¢l~,? 

H 0 > _ HPzIIa2 > A~@A2 (u x )P  > A / x  b P > A ® x : r  

(Out) (p ¢ ~ r , r )  
e P > c(ff:¢> 

c / ~  = A × x :  (e)g  

(In*L) (In4~) s ~ tamp(B) (In'L) (InL~) 
PP>~:~®$~A-~®$:flB-~®?C-~ PP>~:~®$,~?B -~ pI~>~:~®'%A-~®?,JB -~ pp>~:~®?~?,~A -~ 

~L 

Figure 2: Linear /Att ine  Secrecy  Typing  Rules  

active names  in A, respectively. Fur ther  notat ions:  

A(~:<} y~:r~ occurs in A. 
A/a7 the result of taking off at'~ : r i in A 

/TA A such tha t  md(A) = {/7.} 
?A A such tha t  rod(A) C 34r  

A -~ A such tha t  at' g~ fn(A) 
A ® B a disjoint un ion  of A and B s.t. fn(A) ~ fn(B) = (~. 

Final ly  x : r - -~  A adds edges from x : r  to A's  active nodes. 

2.4 Tamper level 
A tamper level indicates a lower b o u n d  of eft~cts the process 
would have on its environment .  It is first defined on types, 
and is lifted to action types. In its definition, modes of ac- 
t ions play an impor tan t  role. Below we say r is irr~rr~ediategy 
tampering if either r = [~3~/]% or md(r)  = $,~. 

D~F~N~T~ON 2.1. tamp(w) is induct ively given by: 

tamp(w) = sec(r) if r is immediate ly  tampering.  

tamp(w) = T if rod(r) ¢ {?~,?x,*}.  

tamp((g)~) = Vl{tamp(Ti)} with p ¢ A4,,$,%. 

tamp([&~gd~ ) = H{tamp(raj)} with p ¢ 34,,$. 

~¥~ set tamp(A) dzf H{tamp(r)  I x : r C A } .  

As an i l lustration,  let N~ d-~f([@ie~]~c)!c and consider [2~  d.~f 
!x(c).Y&n2, which emits "2" after gett ing invoked and  which 
has type N~ at at' (in the typing system we introduce be- 
low). This process does contain information,  bu t  it only 
comes after a replicated input ,  which itself does not  emit 
information.  Thus  its observable informat ion is located at 
the linear selection. Similarly, with at' typed as r = (0~'~) :-a, 
!x(c).~ has in tbrmat ion  at c since ou tpu t  at c may not  come 
out (in fact, ~ in Example 2.2 (4) later has the same type). 
?~/?x actions do not  t amper  since they only touch stateless 
replication. For a %rther  account,  see [41]. 

2.5 Typing 
The sequent has the form P P > A, which we read: P is 
tgpabge by A. The typing  rules are given in Figure 2, where 
in (In *~) we st ipulate  IA @ BI is at most a singleton (this 
condit ion corresponds to the condit ion for sequential isat ion 
used in [40], and is current ly  used in the proof of noninter-  
t>rence). (Par) uses x and  ~ for controlling composition. 
(Res) allows hiding of a name  only when its action mode 
is * or ! (which intui t ively says channels of modes $, $ or 
? are always compensated by their duals before restricted). 
For prefix, Figure 2 lists the una ry  rules (for the branching 
rules see Appendix  A). Among them, only (In *~) uses a 

secrecy level non-trivially.  Intui t ively it says tha t  if a pro- 
cess receives non-tr ivial  informat ion at .s, then  it should not  
t ransmi t  this eft~ct to the levels lower t han  .s. Other  unary  
prefixes do not  directly receive information,  hence are not  
constrained by secrecy levels. }¥~ also observe tha t  input  
never suppresses input ,  !~ and !,~ never suppress $~ or $.a, 
$.~ never suppresses $~, and that  $~ may suppress j'~ and  $,~ 
(the last two points are crucial for integrat ing affinity into 
l ineari ty consistently).  Also note the outermost  secrecy lev- 
els of !~, !~ and  una ry  $~-types, as well as their duals, are 
irrelevant in typing,  which we shall often omit from now on. 

The result ing typed calculus, which we hereafter call LA 71-e e c ,  

satisfies subject  reduction,  and  inheri ts  behavioural  proper- 
ties from the systems in [6] and  [40], including liveness at 
linear channels. Some examples of typed terms follow. 

EXAMPLE 2.2. 1. F [n]~ > ;c:N~. 

2. For arbi t rary  s and s', P a:.~ > a:: ()~ ~ --~y: ()~Y is well- 

typed, bu t  P a:.~ > a:: ( ) ~  ®y: 0 )  is not  well-typed. 
Also ~ ~[a:~=~,~.x(u)li]~] > u:[a:~,2]tT ~ x : ,  ~,~, 

well-typed iff s = T (note tamp((N~)~, ) = s). % 

3. (copy-cat) Let [a: -+ a:'] ~ be given by: [a: -+ a:'] [ ~ d ~  d~f 
~[a~(g~).~wi~(y~)n~[y~ -~ y~] ~--7] (v ¢ M+) and 
[;t' ~ a.'t] [&i7 i ]~  d e f , .  ~ 717/- J t - -  = .<~(ud.x i~(u ~)n~{u~ -~ u~]~J] 
(p ¢ 34!), similarly for the una ry  cases. This is the 
copy-cat agent , l inking two locations, at' and at". 

4. (omega) ~ de f (uy ) ( [u  -4- y]Tl[y --~ u] T) immediate ly  
def ]~k) Lk 

diverges after the initial  input .  If r = ([@~e~, 
then  ~ is typable  bu t  if r = 5r~, it is untypable .  

In LA too,o, we can na tura l ly  define a contextual  congruence 
relativised by secrecy levels. }¥¥ite p x  g~ when P ----~ P '  

8 and  either F ~ F '  g: ini(g)Ftt  s.t. sec(A(x)) g " ' XY(g)P" or ~_ 
(that  is, P has an action observable at level s). }¥~ then  say 
a typed congruence ~ is s-sound when (1) it is reduction- 
closed [19], i.e. F _/~ ~ ~e > A and  _/~ ~ P~ implies ~e 
P~, with P P~ ~ P~, > A, and  (2) it respects g~, i.e. if P P,  
P~ > x : r  s.t. rod(r) = $~, then  F~ :T g~ implies ./2S :T g~. 
The m ax im um  s-sound congruence is denoted =~.~; Using 
~ r c  =~,  we can state a basic proper ty  of rco~.o~A, underp inn ing  its 
theory and  applications. The proof uses a secrecy-sensitive 
bisimulat ion,  see [41]. 

PROPOSYi'ION 2.a. (non-interference) I f  p .1~,2 > A s.t. 
tamp(A) = s and s [~ s',  then P .t~ ~ B  P2 > A. 
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[w~ 

[Lain] 

[ U,~i~M] 

[Lift] 

I ' , x : T ~ x  : T  

I ' , x : T  ~ M : T'  

I ' ~ M  :T~ 
I" ~ in l (M)  : T1 + ~/) 

I ' b M : T  
I" ~ M : (7% 

I ' ~ M : T  
I" ~ Zif~(M) : d/5 

I ' , x : T  ~ M : T  .7' pointed I" P t,tco:T.M : T 

[ Unit] 

[App] 

[c'~se] 

[BindM] 

I" k M : T ~ T '  I ' k N : T  
I ' k  M N : T '  

I" ~ M : T1 + T'2 I',x:~/~ ~ Mi : T 
r ~ ¢~=, M o~ inz(x)M, or inr(x)Mz : T 

I" k N : (T)a I ' , x : T k  M : T '  
I" ~ bind X" : N in M ; ~/,t s ~ protect(T') 

I ' k N : d 5  I ' , x ' : T k M : T '  T'  
I" ~ seq x = N in M : T' pointed 

F i g u r e  3: D e p e n d e n c y  C o r e  C a l c u l u s  

3.  S E C R E C Y  I N  P U R E  F U N C T I O N S  

3 .1  D e p e n d e n c y  c o r e  c a l c u l u s  
The dependency core calculus [2] (DCC) is interest ing in 
the present context at least in two ways. First  it is one 
of the effective examples of a functional  meta- language for 
type-based in tbrmat ion  flow analysis. Second it crucially 
relies on pointed types to combine total  funct ion types and  
part ial  ones [21, 27]. After out l ining DCC in this subsection, 
we show a faithful embedding of DCC in rc})~, leading to a 
new proof of its non-intert~rence. 

}¥~ use a slightly dift>rent, bu t  equivalent,  presentat ion 
of DCC. This is to allow a simpler presentat ion of the em- 
bedding.  In part icular  the lifting associated with secrecy is 
used implicitly. }¥~ omit products  tbr brevi ty (their incorpo- 
rat ion poses no technical difficulty). The set of DCC-types  
are given by the tbllowing grammar.  }¥~ use the same lattice 
12 of secrecy levels. 

}¥~ omit .s if .s = _L. Unit ,  sums and  funct ion types should 
be familiar. The lifted type t..T_~ is a so-called pointed type, 
which denotes potent ial  divergence. The level .s in (T)~ in- 
dicates a secrecy level which protects a da tum.  }¥~ consider 
types modulo the tbllowing equat ions (which come Dora iso- 
morphisms in the denota t ional  universe in [2]). 

( = i ~ ) ~ ,  = ( = i ~ , ) ,  (T~ +~ ~)~, = T~ + ~ ,  ~ ,  
(T~ ~ T 2 ) ~  = T~ ~ (T2)~, (t..T_~)~, = t..T.~u~, and  

By reading the above equat ions fl'om left to right, we can 
rewrite types to simpler tbrms. In fact each type  has a 
unique  normal  tbrm, which has shape T, ~ (Te ~ ( . . .  (T,~_, 
7 ) . . . )  with n _> 1, where ? is given by the g rammar  (with 
T, T,,2 being normal  forms again): 

We write [T, Te...T,~-,7] tbr T, ~ (Te ~ ( . . .  (T,~_, ~ ? ) . . . ) .  
Two key ideas in the DCC-types:  

* The protection level o f T ,  denoted protect(T), is given by: 
protect(uai%) = protect(T~ +~ T2) = protect(LT_~) = .s 
and  protect([T~...T,&]) = protect(?). 

. T is pointed if T = [T~....T,~LT%] (n > 0). 

}¥~ can check tha t  T is protected at .s in the sense of [2] iff 

.s E protect(T). Similarly the not ion of pointedness coincides 
with [2]. 

Figure 3 presents the typing rules of DCC. The sequent 
has form F b M : T where M is a A-preterm with units ,  
sums and  recursion. ~V~ can check the typabi l i ty  coincides 
with the system in [2] up to the erasure of type annotat ions .  
The H-reduction is defined in the s tandard  way (with s e q x  = 
l i f t ( N )  in  M ---~13 M { N / x } ) ,  for which we can easily veri[v 
the subject  reduct ion property. 1 

~V~ conclude the presentat ion by s t ipulat ing a Morris-like 
contextual  congruence on DCC-terms,  relativised by secrecy 
levels. It  suffices to use the simplest possible pointed observ- 

able. Let O3 d~f t_u.D.it.Js and  g denote t e rmina t ion  by the 
s tandard  H-reduction. Then  E P M ~ c c  N : T  when, for 
any context C[ .  ]T: O3 such tha t  C[i///] and C[N] are closed, 
we have C[M] .¢ iX" Cb:] .¢. 

3 .2  E m b e d d i n g  

The embedding of DCC in rc})~ is done by mapping  non- 
pointed types to linear types and pointed ones to airline ones. 
The lifting t_.T_J is replaced by a t ransformat ion from linearity 
to affinity. Apar t  Dora this, the overall scheme comes Dora 
[25, 2a, 6]. First,  the t rans la t ion  of types is performed on 
their normal  forms: 

(type) . . def ()~ = ~o1% 11~it~ = L (Ti -t-~ri)" def [T~ @~21~ 

t_ri~ def= (TO)~k 

[T*...T,~-*q ° d2 j (T,...T~_,V)'~ V pointed 
--o --o • ! L 

[ ( T l . . . T ~ - 1 7 ) "  else 

(base) Oo de.~' 0 ( E .  ;t ' :T) ° %f E ° .  at':~7 

/ ( ~ : T ° - + A )  ® B T non-pointed,  

(action) ~tT\/~,lc def_ E ° = ?~A ® ?~B 

[ u : T  ® E  else 

The above t rans la t ion  elucidates the operat ional  content  of 
DCC-types:  the type [T1...T,~-lT] is now interpreted as in- 
teract ion which may receive da ta  at each Ta (at dift~rent 

1~¥~ observe the original DCC does not  satist~ the subject  
reduct ion because of the coercion f i lM. As an example, take 
at' : ur~it k at' : ur~it and  x : ur~it k rlTx : (ur~it)T. Then  
rig at" ~ at', bu t  at' : ur~it ~/ at' : (ar~it)T. In our presenta- 
t ion this issue does not  arise due to implicit  t r ea tmen t  of 
coercion. 

85



( T o t a l )  [ Vat] 

[Lain] 

( P a r t i a l )  [LamP] 

[z{~o] 

( C o m m o n )  [/f] 

E , x : T ~ x : T  [co,m] E ~ ~:N~ [s~4 

E , , c ; S ~ M ; T  
E ~ Ax;S ,M ; S ~ T  [App] 

E,,c;U' k M ; U 
E ~ Ax;U'.M ; U'~U [AppP] 

E ~  M ;b' E, x: U ~ M :  U U pointed [Lift] [Seq] 
E k t~x : U.M : U E k M : ~bh 

E ~ M ; N s  E ~ N i : T  
E ~ if M t&en Ni e l s e  N2 : 7 '  s ~ protect(T) [UnitM] 

I" k N : (T)s I ' , x : T k  M : T '  
I" ~ b i n d  vC : N i n  M : T '  s ~ protect(T') 

E k e : N a  
E e succ(e )  : 1% 

E k M : S ~ T  E k N : S  
E k M N : T  

E k M : U i ' ~ s U  2 E k N : Ui protect(U~) M s 
E ~ M N  : U2 ~ protect(U2) 

E k N : ~ b 3  E , x : S k M : U  
E k  s e q x - - N  in M :U 

I ' k M : T  
I" ~ M : (T)s 

F i g u r e  4: T y p i n g  R u l e s  o f  C a l l - b y - V a l u e  D C C  

secrecy levels) and  re turns  a result at 7 (again at a specific 
secrecy level). This  sheds a new light on DCC in a way 
quite different fl'om the original denotat ional  in terpre ta t ion  
[2]. Also we observe protect(T) = t amp(T  °) except when T 
has shape [T,..T,~_,urLi%] (note s in urLi% is insignificant 
in its denota t ion  since urLi¢ is a singleton). 

The t rans la t ion  of DCC-terms,  wri t ten [M : T ~ ,  closely 
follows that  of types, see Figure 8 in Appendix.  Basic prop- 
erties of the embedding follow. Below in (2), ~ appears in 
Example 2.2 (4). 

P R o e o s m o a  3.1. 

1. ( typabili ty) E ~ M : T  irr~plies ~ [ a ~  > (T}~,E. 

2. (adequacy) Let k- M : 03.  Then M g i f f  [21II~ ~ ~ .  

3. (soundness) [2/ll]~ ~ [2iII2]~ implies 2ill :~vcc 312. 

~¥~ are now ready to establish the non-interi~rence of DCC- 
terms. The result also follows from the soundness of the 
denotat ional  in terpre ta t ion  in [2]. The present proof method  
has interest  in tha t  it smoothly extends to other sett ings 
such as stateful computat ion,  cf. § 5, ~Vk'ite E k- ~, ~ ~2 
if, for well-typed subs t i tu t ions  ~*,2, we have ~, (x) = ~2(x) 
whenever protect(E(x)) ~ s. The theorem follows. The 
corresponding results hold for other non-tr ivial  types. 

TIiEOREM 3.2. (non-interference) Let E ~ M : O ~ .  Then 
Jbr ~uy closiug ~*,2 s.t. E ~ ~, ~ ~ ~2, M ~ ,  g i f f  M(r2 g. 

PROOF: Let k- 2Va : T (i = 1, 2) with protect(T) ~ s. Since 
p r o t e c t ( T )  ~ t amp(T  °) we can apply Prop. 2.3 to obta in  
[ N ~  ~ [N2~ .  Now assume x : T  ~ M:O~ (the reasoning 
trivially extends to mult iple  variables). ~V~ now reason as 
follows. The second implicat ion is by the replication theo- 
rem [6, 40], while the thi rd  is by Proposi t ion a.1 (a). 

D~Uv,/xHu ~;  D~Uv~/xHu 
MUv,/x} eff~ Murk/x} 
MUrk~x} .¢ i~ MUrk~x} .¢, • 

rc}~ may also be used for just i (ying a call-by-value DCC 
given in [2]. Interestingly, rc}~ motivates a more direct for- 
mula t ion  of a call-by-value version of DCC, which is useful 

when we consider combinat ion  with imperat ive t~atures, in- 
cluding concurrency. }V~ use PCF-l ike types and  syntax,  
which is more convenient  tbr our discussion in Section 5. 

(type) T : := 5' I U I <T)s 

Here S is a total  type, while U is a part ial  one (among 
part ial  types those of form U1 ~ ~2 are pointed).  ~V~ use 
a non-s tandard  lifting for brevi ty of encoding, pro tec t (T)  
is defined as before for total  types and fbr others by the 
outermost  secrecy level. The typing rules are given in Figure 
4. The non-interi~rence is proved in the same way, using an 
embedding into rCo~.oLA. The encoding of types is given by: 

(type) ,5" de.~' (,5,o)% U" de.~' (UO)~A ( s e e ( U ) :  8) 

= ( U i . ~ .  U2)O def 

Here sec(T) is T ' s  outermost  secrecy level. Base is mapped  

as beibre, using ( )o. Then  (T}u~,E def T" E °, = u : ® The 
encoding of terms is given in Figure 9 in Appendix.  

4. INTEGRATING STATE 

4.1 Mutable interaction 
In this section we present a fl 'amework for a consistent inte- 
grat ion of stateful, or mutable ,  computa t ion  into linear/affiue 
type disciplines. ~V~ only discuss the incorporat ion of linear 
mutab le  replication, which is all we use in the application in 
the next  section. ~V~ first extend the set of processes. 

P :: . . . .  I r e f ( x q }  T 

Here ref(xy} T is a constant  with tile following dynamics,  

where ~<//}T d--~fx(z)[Z - +  y]T ( n o t e  this agent has an ou tpu t  
at y). ~V~ use this constant  together with replication in- 
stead of recursion, because the class of realizable (typed) be- 
haviour is identical, cf. [4]. For information,  we also present 
the recursive definition of ref(xy}. 

ref(xy}T def r r = a:[(c).(ref(xy} IT(y} )&(wc).(ref(xw}~lF)] 
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For types, we write !~¢ and 7~¢ for the mutab le  versions 
of l~ and  ?~, which are mutua l ly  dual. }V~ add 1~¢/?~¢ to 
5 4 ! / f l 4 r .  The channel  types are extended as ibllows. 

[sc~u> p~ ~ {k,  k~J 
r ,, ~I{P;} 

V~  let each branch of a branching/selection type take an 
action mode, The channel types of t im above shape are 
called mutable. Let p~ ¢ {l~,l~,}.  }V~ set Vl{p~}~ej = l~ if 
pi = k for each i ~ 1 else ~{pi}ieJ = l~,. Then  we define 
md([&i~/]~ m}) = m{p d .  Dual ly  for selection. ~V~ also add: 

~siv-ij~ = L~SiTd~ (pi Pi = pi) 

~iv-d~ D [@iTs]/ ' = L~iv-d~ n ' 

~k~ again assume the same sequential i ty constraint  as in Ap- 
pendix A (with I~, and  ? ~  acting as I~ and  ?~, respectively). 

Action types now use the extended set of channel  types, 
where we addit ionally consider x :v .  --~ y:v . '  with md(v.) = 
! ~ ,  v.' mutab le  and md(v.') ¢ {7~, 7 ~ }  when 7- and v.' have 
the same height (the heiyh~ of a channel  type is given in 
Appendix  B). The use of height of types is to avoid an 
analogue of well-known discrepancy between strong normal-  
isability and state in A-calculi. ~V~ note there are several 
ways to ma in ta in  l ineari ty in the presence of mutab le  inter- 
action, which will be discussed elsewhere. 

4.2 Structural security 
A new element in secrecy typing  is a welM'ormedness con- 
dit ion for channel  types. It reflects a dift~rent way in which 
in%rmat ion  leaks in stateful computing.  }V~ first s tate the 
condit ion,  then  i l lustrate the idea. Below tamp(v.) is given 
by the same clauses as Definition 2.1, set t ing 7- such that  
md(v.) = ?~, to be immediate ly  aft~cting. 

D E F I N I T I O N  4.1. 7- is structural ly  secure i ffbr  each occur- 
rence 7-' in 7- (1) SeC(___T' ) G tamp(v-') when md(v.') = l~,, and  
(2) sec(v.') g tamp(v.') when md(v.') : 7~,. 

The definition says a mutab le  type should have higher tam-  
pering levels in carried types. This is to prevent leakage 
of in ibrmat ion,  as the %llowing example shows. Below N:: 
s tands  ibr ([@ie~ ]~) t~ ;  H and L for T and _k; ref(xl} ibr 
(v'v)(ref(xv} I [1],);  and  igir~2(2c)P ibr 5Yir~2(wc)([2],o I P) .  

- -  !L !L EXAMPLE 4.2. Let 7-¢~f [ (N~)%&N;~0%]J  ' ", which is 
not  s t ructura l ly  secure. Now consider: 

where P1 = u.ian and/az  = tl~. By the racing condit ion at 
at', this agent may or may not  emit  at u, i.e. we have either: 

P > + ref(x2} I gim~ or P ---~+ ref(x2} I tl~. 

Hence writ ing at the high-level channel  at' aft~cts an action 
at a low-level channel  u. 

The anomaly  takes place because stateful agents can trans-  
mi t  i n tb rmadon  using dme-dift~rence, storing what  has hap- 
pened in its state to t r ansmi t  it later [25]. St ructural ly  se- 
cure types prevent this leakage by requiring tha t  a stateful 
replication to t ransmi t  i n tb rmadon  at the same, or higher, 
level t han  it receives. H e r v @ e r  we assume all channel  types 
arv s tructural ly  secure. 

4.3 Secrecy typing 
~V~ have dm ibllowing addit ional  typing  rule ibr constant .  

(Ref) 

ifmd(v.) =!~/~ t h e n p = ! ~ / ~  e l s e p = ! ~  
p l  

C F ref(as'y}Tt> at': [(v.)%&~0%]~ ''~" ® y : T  

The r ight-branch of a ret~rence receives the "write" action, 
so it is always mutable;  while the left-branch receives the 
"read" action, whose mode depends on that  y (at which it 
has an output ,  cf.§ 4.1). ~¥~ also need the typing rules for 
mutab le  prefixes, which we list in Appendix  B. The result ing 
typed calculus, which we hereat~er LA, call rc . . . .  satisfies subject  
reduct ion as well as the following non-inter%rence property. 
Below =~; is defined precisely as betbre. 

PROPOSYrlON 4.3. (non-interference) Let  F P1,2 > A such 
that  tamp(A) = .s. Then  .s ~ d irr~plies k P1 ~ 5  izz ~ A.  

5. CONCURRENCY, REFERENCE AND PRO- 
CEDURE 

5.1 A Volpano-Smith language 
V~ briefly overview the syntax and operat ional  semantics of 
an imperat ive language we consider. Below x , y , . . ,  range 
over a countable  set of names,  used both  for (function) vari- 
ables and  labels for rei~rence. A-abstraction ment ions  type  
T,  which will be in t roduced later. 

(expression) e : := 1,2,. . .  I x I sa te (e )  

(value) v : : = 1 , 2 , . . .  I x I A x : T . e  

(command)  ¢ : := s k i p  I x : = ~  I < ;¢~  

[ if v then ci else c2 

[ while !y do c 

[ let x = e in c 

[ let x = ! y in c 

[ ~ew x ~ v i~ c 

(threads) o : := 1-Iici 

The syntax of commands  is fl'om [35], extended with general 
re%rences, local variable declaration and higher-order proce- 
dures. ~V~ use two let commands  for simpler presentat ion of 
typing rules, though we shall be sometimes informal about  
them, writ ing e.g. x := !y instead of l e t  z = !y ir~ x :=  z. 
For brevi ty of presentat ion we do not  include l e t s  and  r~ew 
in expressions. 

The reduct ion rules of commands  are given in Figure 5. 
The reduct ion takes form (c,G) > (c ' ,G')  where G ,G ' , . . .  
denote envirvnmer4s ,  i.e. finite maps  fl'om names  to values. 
~V~ use a special command  0 for which we set: (c,g) >~ 
(0,¢') when (~,¢)  - -+~ ¢ ' .  W~ wri te  (o ,¢)  .~ ¢ '  when 
(oo, g) ---+~ (IL0, g ' ) .  For expressions we assume the stan- 
dard call-by-value (single-step) reduction.  

5.2 Secrecy with reference and procedure 
~V~ first i l lustrate the subt le ty  in secrecy with local ret~r- 
ences and procedure by examples. For bTsvity we assume 
u, v, w aTv low- levd  variables while x,  y, z aTv high-level vari- 
ables in the fo l lowiny  eaamples. 
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(skip, if) ~ 

( c l , ~ )  ~ ( c i , ~ ' )  

(~l;~,~) ---~(~i;~,~') 

(w~iZ~ !y ao c,~) ---~(c;w~iZ~ !y ao c,~) 

(whiZ, !v ao ~,~) ---~(skip,~) 

(~ : -v ,~)  - - + ~ [ ~ v ]  
(~l,~) - - + ¢  
(~l;~,~) - -+(~,~ ' )  

(~(v) - o) 

(~(v) # o) 

(~(v) - o )  

(~(v) #o) 

((~,~)---~(¢,~')) 

(~,~ ~ = v i~ ~,~) - - ~ ( 4 v / ~ } ,  ~) 

(~,~ ~ = !v i~ ~,~) - -~(¢{v/v} ,  ~) 

(~, ~ u E ~ v ] ) - - + ( ~ ' ,  C u E ~ v ' ] )  

(~(v) = v) 

(new X ~ V ill (C, ff) --'--~ (new X ~ V t ill (Ct,ff t) 

(~'~, ~) ---+ (~.~, ~') 

(IL ~'~,~) --+ (IL ~'~,~') 

We omit reduction rules for expressions. 

F i g u r e  5: R e d u c t i o n  o f  V S - C a l c u l u s  w i t h  R e f e r e n c e  
a n d  P r o c e d u r e  

L o c a l  r e f e r e n c e s .  Local rei~rences give abstract ion,  while 
aliasing may  break this abstract ion.  As all example,  let u 
be a low-level re%rence to a natura l  number  and consider 
the  ibllowing command.  

def  
c~ = new u ~ 0 in u : = ! v ;  x : = ! u ;  

Here the  locali ty raises abstract ion,  hiding the  low-level writ- 
ing at u: only the  wri t ing at x is visible. Thus ill efi~ct cl 
only writes at the  high-level. Now consider the  following: 

def  
c2 = n e w  x ~ v  i n  ( x ; = u ; l e t  z = ! x  i n  z ; =  3).  

The command  writes at x and z, which are bo th  local; how- 
ever ill fact it is writ ing at u, which is Dee. Thus c2 t ampers  
at the  low-level. 

I i n p e r a t i v e  p r o c e d u r e s .  DCC and its CBV version ill § 3 
capture  non-tr ivial  %atures of secrecy ill pure higher-order 
functions. Wi th  impera t ive  i~atures, procedures  add dift~r- 
ent kinds of subtlety. 

def  def  
• (Divergence) Let el = ky.(!x)y, e2 ~-~f k y . y  and ca = 

u :=  1; (if z then at' :=  el e l s e  at' :=  e2); ff  : =  (!x)0; u :=  0. 
Then  ca reveals z at u by diverging when z = t r u e .  

def  )tX (Side efi~cts) Take ea = ~'. u :=  x r e t u r n  0. Then  

def  
c4 = if z then let y = (<3)0 in skip. 

leaks infbrmation at u, though ea is secure as a function. 

def  AU !!U i retl~rn 0, • (Aliasing) Given e~ = . :=  

c5 ~ f  if z then new v ~ w in let at' = ( e s ) v  in skip 

is not  secure since w call be aliased. However if we further  
hide w, the  command  becomes secure. 

The  aim of the  proposed typing system is to detect  ally pos- 
sible danger involving aliasing and side-eft~cts, while type- 
checking pure functions as generously as, say, DCC.  

5.3  T y p e s  
The syntax  of types ibr commands  and expressions ibllows. 
V ~  only t rea t  to ta l  types ill the  sense of call-by-value DCC 
(see § 3.2). The  incorporat ion of part ial  types  easily ibllows, 
which is briefly ment ioned ill § 5.5. For command  types we 
use a c t i o n  se t s ,  denoted X ,Y,  . . . .  All action set contains 
elements  of form wx and rat', which respect ively indicate a 
possible wri te  and a possible read at at'. Ill E .  at' T below, 
we assume at' does not  occur ill E .  

(value) T : :=N~ I r e f ~ ( T )  I T l ~ T 2  T l ~ T 2  

(base) E : := 0 I E . x : T  

(commaild) e ::=cmdT~X (T¢ D,~}) 

Ill value types, ~ indicates a pure (total) funct ion space, 

while ~ indicates a (total) %nct ion  type  with side eft~cts. 

ment ions  a secrecy level, jus t  as re%rence types. ~¥~ say 

T is m u t a b l e  if it is of tbrm either r e l y ( T )  or T l ~ T 2 .  }¥~ 
write E F X when: (1) r n x  ¢ X implies at' ¢ ¢Iom(E) (dom(E) 
is the  domain  of E) ,  and (2) wx ¢ X implies E ( x )  is mutable .  

Ill c m d r ~ X ,  r = g  (resp. r =~ ' )  indicates convergence 
(resp. potent ia l  divergence); a is a lower bound  at which the  
te rmina t ion  may  be observed (or, as Smi th  [84] puts  it, at 
which variables a t e rmina t ion  depends  upon),  wx (resp. rat') 
indicate at' may  be wri t ten  to (resp. read from). 

}¥~ use the  subtyping on value and command  types,  which 
largely come from [85, 18, 84]. For value types, we have: 

8 E 8  t 8t E 8  

• ~f 8 f  • "f • ' f  <~l'1 T2 < 2  2 K s  

Note T does not  vary ill r e l y ( T ) ,  see i l lustrat ion ill § 5.4. 
The  subtyping on command  types uses E F X defined above. 

X C Y I2b Y X C Y I2b Y 
cmd $~X _<E cmd $~, Y cmd $~X _<E cmd )~ Y 

s f K s X C Y E b Y 
cmd )a X <E cmd )a, Y 

Note  secrecy levels are irrelevant ill converging commands .  

5 .4  I n f o r m a t i o n  l e v e l  a n d  s a f e t y  
As ill DCC,  we use the  protect ion level of value types. As 
before, sec(T) gives the  outermost  secrecy level of T. 

• protect(N~) = a, protect(T1 ~ T2) = protect(T2). 

• p ro tec t ( re ly (T) )  = protect(T) n sec(T) if T is mutable .  
protect(ref~ (T)) = protect(T) if else. 

• p r o t e c t ( T l ~ T 2 )  = sec(T1) M protect(T2) if T1 is mutable .  

p r o t e c t ( T l ~ T 2 )  = protect(TD if else. 

The  definition takes into account the  level of types which 
occur contravar iant ly  (cf. Def.2.1). The  condit ion on mu- 
tabi l i ty  will be i l lustrated later via its t ransla t ion into the  

LAp 7ro~,o -types. ~¥~ call IiOW introduce a basic Collditioll Oil value 
types, which plays a key r61e for harnessing aliases. 

DEFINVnON 5.1. (sat~ty) T is s @  when: (a) T = N~, 
(b) T = T l ~ T 2  andT1,2 a r e sa%,  (c) T = r e f ~ ( T ' ) , T '  

is sat~ and .s E protect(T),  and (d) T = T l ~ T 2 ,  T1,2 are 
sat~ and .s E protect(T).  
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[ship] 

[se4 

[Let] 

[Ne~ 

Eb skip:cmd $~ X 

Ebci : cmd%~Xi  ( i - -  1,2) 
E k c l ; c 2  : c m d % 2 X l  toX2 

E k v : N a , O  E k ci: cmd%, X 
E ~ if v ~hen cl  else c2 : cmd %, X 

E b e : T , X  E . a c ' : T b c : c m d % , Y  
Eb let x-- e in c : c m d % , X t o  Y/x 

E ~ v ' : T , X  
E . x : r e f a ( T )  b c : c m d % 0  Y 

E ~ X [As 4 

if r = )  then [Sub] 
s, g_ sz n tamp~c(Xz) 

s _ tam PE (X) [ While] 
if r = ) t h e n  s ___ s' 

[~)e,'e]] 

E ~ co" :-- v : cmd$a X tO {wx} 

E~c:p 
Ebc:p' 

E b  5 l ; r e f j ( ~ ) , @  E b c ; c m d  "~o X 
E ~ while !y  ~hen c : cmd )~o X 

Eb z:ref~(T)~Y 
E , x : T ~ c : c m d %  o Y 

Eblet x - -  !z in c : c m d %  0X/,c  

E b c t  : c m d % X  

E~newx~+v in  c : cmd rao X to Y / x  E ~ IIi ci : cmd ra X 

F i g u r e  6: T y p i n g  S y s t e I n  for  V S - C a l c u l u s  w i t h  R e f e r e n c e  a n d  P r o c e d u r e  ( c o i n i n a n d )  

P<E pt 

8 ~ 8 0  
s ~ tampE(X ) 

if T mutable 
then wz C X 

The condit ion is directly suggested by rc~)~ (cf. Def. 4.1). In 
essence, it says that ,  as a command  unfolds a sequence of 
ret~rences, the secrecy level either remains  the same or gets 
higher. As an example, take the tbllowing program: 

let z =!x in let tc =!z in if tc then u:= 0 else u:= i 

The condit ion statically ensures tha t  w is higher t han  x and  
z. From the viewpoint tha t  a program should be prohib- 
ited fi'om writ ing at a low-level as the result of gett ing a 
high-level information,  as well as observing we may sat>ly 
raise the secrecy level of a local resource, we claim that  the 
constraint  is reasonable in practice, at least for basic pro- 
gramming.  Her~@er we assume we ordy use s @  tgpes. 

5.5 Typing 
The typing  rules are given in Figure 6 (tbr commands)  and  
7 (tbr expressions), using judgements  E k- e : T , X  (tbr ex- 
pressions), E k- c :  cmdr~ X (for commands) ,  and E k- o :  
cmdr~ X (tbr threads).  In the rules, rod(X) denotes the set 
of w and  r in X.  X / x  is the result of taking off rat' and war' (if 
any) from X.  The height of T,  ht(T),  is given as: ht(N~ ) = 1, 

h t ( re f~(T))  = ht(T) + 2, and ht(T1 ~ T z )  = h t ( T l ~ T z )  = 
h t ( T j  + ht(T2) + 2 (this is in accordance with the encoding 
of types in § 5.6 later), t ampx (E  ) (cf. Def.2.1) is defined as: 

t ampE(X)  de=./ H{protect(E(x)) ] war' C X}  

The system is a conservative extension of [34] (neglecting 
protect [8, 18]). Below we i l lustrate the typing rules, concen- 
t ra t ing  on those points  which are new in the present system. 

• General The typing  system uses an action set for cap- 
tur ing  the level of writ ing and  for ensuring convergence 
for total  types. Its manipu la t ion  is crucial for captur ing 
aliasing eft~ct s. 

• Assiynment. The rule crucial relies on the sat>ty condi- 
t ion (Definition &l) .  For example, u :=!x with u and  x 
typed as r e f L ( N r )  and  r e f n ( N L )  (which is unsaid), re- 
spectively, becomes typable  without  sat>ty. As expected, 
the rule adds war' as a write variable. 

• Seq, I]; While. [Seqfs side condit ion is equivalent to [34], 
which enhances [18, 35]. If the preceding command  may 
not  terminate ,  the t e rmina t ion  (at s l )  should not  flow 
down to cz's t e rmina t ion  (sz) and tamper ing  (tampE (X)).  
[I]7 and  [While] are s tandard ,  requiring the condit ional  
variable cannot  influence later behaviour at lower levels. 

• De,vii Note war' is added if x is mutable ,  even though x is 
read. To see its necessity, consider: 

let z =!x in z := 3. 

looks local, bu t  may be aliased to a ti'ee name. By 
keeping x (which is lower t han  z by sat~ty) in the action 
set, we eft~ctively record the writ ing at z. 

• Id. Similar to [Der'e]], we record war' when it is a ret~rence. 
To under s t and  its necessity, consider: 

new x ~-+/jAn z = ! x  An z : =  3. 

Note / /  (like z) should have a ret~rence type. Hence when 
x ~-+ // is interred, w// is recorded, which subsumes the 
writ ing at z since z is higher t h a n / / b y  sat>ty. 

• Lain, Lain-*. [Lain] prohibits  access to ti'ee names  of mu- 
table types inside a pure procedure. In [Lam-*], this con- 
s traint  does not  exist. In [Lam-*] we require constraint  
on the height of types, to avoid divergence on total  types 
(which are dropped if we treat  a part ial  type).  

• App, App-,. These rules do not  ment ion  secrecy levels 
since they assume the a rguments  always terminate .  If 
we assume possibly n o n t e r m i n a d n g  arguments ,  applica- 
t ions become secrecy-sensitive tbr bo th  t e rmina t ion  and 
tamper ing  as in [Seq], cf. [AppP] in Figure 4. 

Typing examples follow (commands/express ions  are from 
§ 5.2; x,//,  z are high while u, v, te are low in E).  

(i) E / u  b cl : cmd g~ war',rv tbr arbi t rary  .s (we omit  
such s from now on). Hence its t amper  level is high. 

(ii) E / x z  k- cz : cmd g wu (with bound  x and  z typed 
low). Hence its t amper  level is low. 

(iii) el,  hence ca, is un typable  by the condit ion on heights 
in [Lain-*]. 

(iv) E / x  k- ea : Ni~ ~LNi~,  wu while c4 is i l l- typed under  E,  
not  because of ~z ,  bu t  by wu. 

(v) cs is i l l- typed by recording ww in the action set. 

The typing  system satisfies s tandard  properties such as sub- 
ject reduction.  For the nonintert~rence property, we again 
use the embedding into secure processes. 
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[Id] E , x : T ~  x : T , X  ( E ~ X )  

E , x : T  ~ e : T ' , X  
[Lain] E b Ax:T.e : T ~ T' ,X/ac 

[Lain-*] E , x : T  N e : T ' , X  
E ~ A:c :T.e : T ~ T ' , X / c c "  

E~cre't:ura e:T,  XtJY 

(*) ht(T~T')_~ ht(E(y)) for each y ~ f n ( X / x )  s.t. E(y) mutable. 

if 7' mutable then 
wx ~ X else rx  ~ X [Co,~st] E ~ ~ :  N~,X (E ~ X) 

If x ~ fn(X) then E ~ e : T ~ T ' , X  E ~ e ' : T , Y  
E(x) not mutable. [App] E ~ ee ' :  T ' ,X  tJ Y 

s K t a m p E ( X / x ) ,  (,) lApp-*] E b e : T = ~ a T ' , X  E k e '  :T ,Y  
E bee '  : T ' , X  0 Y 

[Sub] E~e:T~X TILT' 
E ~ e : T ' , X  

Figure 7: Typing  Syste in  for VS-Calculus  wi th  Reference  and Procedure  (express ions)  

5.6 E m b e d d i n g  and  n o n i n t e r f e r e n c e  
~,¥~ now embed the typing system in rc~' .  First we embed 
types. Below in (base), r ( r )  is the result of replacing all 
outermost ?~/* (if any) with ?~ in r .  

(value) T" d:2' (To) % ~ = ([~ ]~)'~ 

def ~ [( T°)% & T-----70 % ]:~" ':~" (T mutable) 

=°f~ (T)° - [ [(T ° )% a T-~0%]'2'<' (else) 

f(mi" x:=(T ~) (~x ¢ X) 
(base> 

( E ' J : T ) ~ x = [ ( E ) ~  x x : T  --~ (else) 

(action) ~yt?j 0% ~yt?j ()~ 
(cmdr~ X}~,s def o 

(T,X}~,E d~f :T" = ~ @ ( m l  

The subtyping in command types tbr converging commands, 
cf. § 5.3, is now given a clear account: the termination chan- 
nel has a unary $~-type, so its level is insignificant. Simi- 
larly, the invariance in subtyping of rei~rence types is eluci- 
dated by observing the content type now occurs both covari- 
antly and contravariantly [4, 30] (in fact the subtyping on 
value types in § 5.3 precisely corresponds to a natural ly de- 
fined secrecy subtyping in 7r~{:~-types). Finally protect(T) = 
t amp(T°) (=  tamp(T°)),  using which we also know T is sat~ 
iff T ° (hence T °) is s tructural ly secure. 

The encoding of commands and expressions is given in 
Figure 10 in Appendix. Expressions use call-by-value en- 
coding [25, 20]. whi le  is t ranslated using tail recursiom }¥~ 
can easily verily: 

PROPOSITION 5.2. E F- e :T, X irr~plies ~- [e]~ > (T, X}~,E, 
E ~ c : p irr~plies ~ [c]f > (p}~,E end E ~ o : p irr~plies 

Now define E ~ a l  ~ a2 precisely as in § 3.2 and let 

[O_]E clef Hi  ref(xivi} ~i" Then we have E b a l  ~ az iff 

In, I s  ~ [  [a2]s  ["only if" is from Proposition 4.3, while 
for "if" we use contextual reasoning for each i- th compo- 
nent]. Using the simulation in reduction in addition and 
reasoning just  as in Section 3, we conclude: 

THEOREM 5.3. (non-inter%rence) Let E ~ o : cmdr~ X 
and E ~- cr~ ~ cry. Then (o, cry) --+~ cr i irr~plies (o, cry) >~ 
a~ such ~ha~ E k- a~ ~ ~ a~. 

There are a %w remaining topics. First  the semantic coun- 
terpart  of 7r~{~' is worth studying, which can be used for 
refining typing rules and justi[ving sa%ty of untypable pro- 
grams. See [41] for a recent work in this direction. Second 
we have not touched the possibility of refining 7r~)~ ' to take 
information leak by t ime consumption into account [5, 8, 
34]. Since the simulation in the given embeddings is close, 
we believe this direction is %asible. Finally we have not 
considered in this report  how other elements such as poly- 
morphism and control as well as other security concerns can 
be incorporated in the present framework. 
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A P P E N D I X  

A. A D D I T I O N A L  D E F I N I T I O N S  F O R  r ~ :  

The fbllowing gives the sequentiality constraint fbr unary 
types: %r branching/selection, we require the same con- 
straint for each summand. Let ~ = rl..r,~ below. 

(C1) In (g)v with p C ,t4#, rod@a) C ,t4r for each 1 < i < n. 
Dually when p C .M/t. 

(C2) In (g):~ md(r~) C ,t4r for each 1 < i < n except at 
most one j for which md(u ) C ,t4 t. Dually for (g)r~. 

(C3) In (~):'~, md(ra) ¢ .Air fbr each 1 < i < n except at 
most one j for which md(u ) = Sx. Dually for (g)rx. 

The key constraint for integration is that  $~ can only be 
carried by a linear replication !~. If this is violated, then 
linearity can no longer be maintained. This IO-alternation 
and a unique answer at $ at each server type come from 
game semantics [3, 20, 23] (see [6]). The typing rules for 
selection and branching are defined as follows. 

(Se,) (p ~ ~r,r) 
[e~ ~]~ F ±, ~ c(J:~a> C / j = A x = :  ~-,~-~" 

(Bra $~) s K tamp(A) 
F ]~ > ~:¢~ ® t t ~  -~ ® t 2 : ~ B  -~ 

F x [ ~ d k ) . ] q  > (x : [~q]}~-+A) @ B 

Note that  we need to check tampering level in (Bra *~) in 
contrast to (In*~). (BraaX), (Bra :~) and (Bra :x) are defined 
just as (InaX), (In :~) and (In:X), respectively. 

B. A D D I T I O N A L  D E F I N I T I O N S  F O R  ~ '  

The height of types, ht(.), is given as: 

ht((f)~) = ( E i  ht(r~)) + 1 
ht([&~]} m}) : ht([Qigd~ m}) : max({ht((g~)~')}) 

Then ht(A) = max({ht(A(x0)  I xi C active(A)}). In typing, 
?[/,A indicates all types in A have ?l-modes but they can be 
mutable, while ?~A indicates rod(A) = ?~ as well as no types 
in A are mutable. With this convention, the typing rules are 
those in Figure 2 and the rule for reference in § 43, together 
with the following rules for mutable replicated input /output .  

(In'l,,) s Ktamp(A@B) 
!L !L ht(('~), ") _~ ht(B) ht(('~js ") = ht(A(xj) (Vx C fn(Aj) 

F P > y . r @  ~" ~ '7'.Lff.Lff d ' ? r  -a @ ?Ll,?[i,]_~-a @ "?L'? k C - a .  . :  

~ ! x ( g ) . r  ~ (x:(¢) '2" ~ A) O B O C 

(O°t:~,,) active(m - {j} 
?L ht(('~)s " )) _~ ht(E) 

e I '  > B(ff:~} -~ ® C B / f f  -- ":~/ : [~E ® "%':,~F 

The rules for mutable branching/selection are similar. 
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Below we set T -- [-~k..~/~-*7] and 2 -- x , . . . x n - , .  

Ix: ~']~ ~ f  b -+ x] ~'° 

[kxo :: /b.M : :/b ~ : / ' ] ~  ~ f  ! u(xo2z).(~, u ' ) ( [ M  : T]~, I Arg(u'~Tz) ~') 

~MN:  :/']~ ~ f  ! u(~z) . (~ mxo)(~M : % ~ : / ' ] ~  I~N:  %]~0 I Arg(mxo2z} TaT) 

[ i n l ( M )  : Tz + 2:e]~ ~ f !  u(c )2 in , (m)[M : Tz].~ 

[case L of i n l ( x , ) M ,  or inr (x2)M2 : T]~ 

(~f! u(K).(~, l)([L : Tz ÷ T2]~ I S°m(g~, (xOMd r) 

[se~ x - iv: T' ~n ~ : ~']~ ~ f  (-x~O([~ : ~']~ lilY: T %  I uft(x~) r ' )  

ig(~} ~ ~ f  ig(f)Ili[zi -+ W] ~- (md(~i) ~ ..t4? U ..t47) 

Arg(x~z}[T~..T,,v] ~ f  .ffy(ffz,}7.'~'..T,~v" 
S.m(~, (~.~)M~) ~' 

Lift(x~O r ~b/ !x(e,o,).~(~.)4~O.A~g(~S,o,) r 

[x -e x ' ] [<~*k  ~ ~Ef x [ e ~ ( f f d . T i n d ~ d u  u [v~ -e vu]~- ]  

b" ~ x,]I<~,] '~ ~Ef !x [e~(~d.T in~(gduu [v~ ~ vu]~- ]  

The copy-cats of unary types are defined by reducing the indexing sets to singletons. Similarly for the copy cats of afline types. 

F i g u r e  8: E n c o d i n g  o f  D e p e n d e n c y  C o r e  C a l c u l u s  

(x :  T}u~ (~f g@c} 2'-~- (sec .c -- N in M :  T}~ d-~f ( .  r~)((N : Tt}n I r@c).(M : T}u~) 

(~: r~>~ dkf~.(~.)Dd~ (~,x: U.M : U>~ d2f ~C[~.(~')(,,x)(±~ Ib" -e ~']v°)]~ (x ~ re(C)) 
(Xx: S.M: S~'>~ d:f ~.(~)! 4x~0.(M>,~ [ ( - ~ 0 ( ~  ")'~ I~(~F")  (x ~ f.(C)) 

= def , • (M~V: ~'>~ d~f (-~0((M : s~'>,~ I ~4~).(-~0(Uv : sb~ I~ (~?  -w~'') ((M : u>~ = c[~#.)±&) 

<if M then N1 e l s e  N2 : T}~ ~ f  (~.rn)((M : Na)n~ Im(c').~(e)e[&i<Ni : T}~]) (Nj = N2 if'/, > 2) 

(Ax : ~/k.M : Ui~U2}~  and (bind Jr = /V in M}~ are the same as (Ax : S.M : S ~ T } ~  and (seq x = N in M}~, respectively. 

F i g u r e  9: E n c o d i n g  o f  C a l l - b y - V a l u e  D C C  

( E x p r e s s i o n )  

(A.c.e}~ def g,(c')k'(xr@@}#~. (succ(y)}~ def , = = g.(c).c(e).gial(c)c[&ieiai+l] 
. - -  _ _  ~ , t  o T o  

( C o m m a n d )  

[skip]f d~f K, 

Ix := v']~ d_~f (u m)( (v}~ I m(w).xia2(wu} ~ -0 .~ )  ( E ~ v :  T) 

~C'l;C'2]f clef (v e)(~c'l]~ I e.~c'2]f) 

else 0 2  V,t'e" ~,' ,t" z z ,,~.5~ C~ ./n e" U "'E = ( " )(( >~ I=( ) [ ~" ] ( ]1  7 )  (~.~=~.2ifi _> 2) ~±f v then Cl Edef  E 

[while ! x do ~']~ 
tee (,.~)(e(k)k.~, I [f  -+ ~] 

1 1 /n I .~(k)z nl(~.)4v).;,7(~)4(, 0 (B]f  I a.j(k').k'.k)ek]) 

F i g u r e  10:  E n c o d i n g  o f  V S - C a l c u l u s  w i t h  R e f e r e n c e  a n d  P r o c e d u r e  

[ l e t  x : e i n  c']~ d~f (~,c)((e}c E i u (x ) , [ c ]~  ) 

[new x ~-+ y in  c ' ]~¢~f ( l / x ) ( re f (xy}  T° I [c']~) 

[ l e t  x : ZV i n  ~']~ d : f  ; ,T in l (~>(x) ,B ' ]~  

( s t y : T )  
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