
A Uniform Type Structure for Secure Information Flow

Kohei Honda
Deptartment of Computer Science

Queen Mary
University of London, UK

kohei@dcs.qmw.ac.uk

Nobuko Yoshida
Department of Mathematics and

Computer Science
University of Leicester, UK.

nyl 1 @mcs.le.ac.uk

A B S T R A C T

The 7r-calculus is a fbrmalism of computing in which we
can compositionally represent dynamics of major program-
ming constructs by decomposing them into a single com-
munication primitive, the name passing. This work reports
our experience in using a linear/affine typed 7r-calculus tbr
the analysis and development of type systems of program-
ming languages, focussing on secure information flow anal-
ysis. After presenting a basic typed calculus for secrecy,
we demonstrate its usage by a sound embedding of the de-
pendency core calculus (DCC) and by the development of a
novel type discipline for imperative programs which extends
both a secure multi-threaded imperative language by Smith
and Volpano and (a call-by-value version of) DCC. In each
case, the embedding gives a simple proof of noninterference.

1. I N T R O D U C T I O N
M o t i v a t i o n . Large software is made up of many different
components with different properties. Further it is a norm
in modern distributed applications that a number of dif-
i~rent programming constructs, or even difl>rent languages,
are used in a single application. Types for programming
offer a primary means to classii~y and control programs' be-
haviour with rigour and precision, which now have both well-
developed theories and an increasing number of applications.
Can we use types to describe, reason about and control the
behaviour of such an aggregation? For this to be effective,
it should be possible to type-check one component with a
specific type, say (N ~ N) ~ N (where N is a type for a
natural number and ~ is a function type constructor), and
combine it with other parts, which may have difl>rent type
structures, with a guarantee that it behaves as decreed by
the original type discipline. For example, if (N ~ N) ~ N is
int>rred in a strongly normalising type discipline, we want
the piece of code to behave as a total function producing
a natural number. Note a program of this type needs a
procedure given by its peer to perform its function: thus
we cannot achieve our objective unless we have a consistent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL '02, Jan. 16-18, 2002 Portland, OR USA
Copyright 2002 ACM 1-58113-450-9/02/01 ...$5.00.

integration of multiple type disciplines,
A central technical difficulty in having such an integrated

framework, even tbr basic type structures, comes from ditU
t~rent nature of operations each typed formalism deals with.
Assignment, function application, controls, method invoca-
tion, diverse forms of synchronisation, all have quite diffEr-
ent dynamics: we can see this difference clearly when we
write down their formal operational semantics and compare
them. It is largely due to this difference why it is so hard
to consistently merge individually coherent theories for iso-
lated constructs, or to apply what was found in one realm
to another realm. A well-known example is issues in trans-
planting polymorphism, initially developed for pure higher-
order functions, to the universe of imperative programming
idioms [86]. The difl>rent nature of dynamics of assignment
commands fl'om that of pure higher-order functions is the
culprit of this difficulty. Given this variety, it looks hard to
conceive any uniform framework of type structure for difl>r-
ent language constructs: unless we have a tool, say syntax,
which can represent them using a single format.

T h e w-Calculus . The w-calculus [26, 25, 7, 17] is an ex-
tension of CCS based on name passing. A basic form of its
dynamics can be written down as the tbllowing reduction.

Here a vector of names a7 are communicated, via x, to an
input process, resulting in name instantiation. Perhaps sur-
prisingly, this single operation can compositionally represent
dynamics of diverse language constructs, including function
application, sequencing, assignment, exception, object, not
to speak of communication and concurrency. }V~ are thus
prompted by the following question: can we have a foun-
dational type structure for this calculus, similar to those
for the A-calculus, in which we can precisely capture di-
verse classes of computational behaviour uniformly? Unlike
those for functions, types for interaction is an unexplored
realm. More concretely, the preceding studies, cf. [25, 24,
30, 39], have shown that, even though operational encodings
of diverse typed calculi into the 7r-calculus are possible, they
rarely capture the original type structures fully. The issue
is visible through, for example, the almost omnipresent lack
of full abstraction in such encodings. At a deeper level, this
means the encoded types guarantee only a weaker notion of
behavioural properties than the original ones: the essential
content of types is partially lost through the translation.

Gaining insights fl'om the preceding studies on types tbr
interaction including types for the 7r-calculus [25, 30, 15, 39,
24] and game semantics [3, 4, 23, 20], the present authors,

81

with Martin Berger, recently reported [6, 40] that basic type
structures for the re-calculus which precisely capture existing
type structure do exist, allowing fully abstract translation of
prominent functional typed calculi. In [6, 40], we have pre-
sented two type disciplines for the re-calculus which precisely
characterise two classes of sequential higher-order functional
behaviours, which we call e/fine and linear. These terms are
used with the ibllowing meaning:

• Ai.finity. This denotes possibly diverging behaviour in
which a question is given an answer at most once.

• Lineari ty . This denotes terminating behaviour in which
a question is always given an answer precisely once.

As a theoretical underpinning, [6, 40] have shown PCF and
strongly normalising A-calculi are fully abstract ly embed-
d a n e in the affine and linear re-calculus, respectively. In
spite of faithfulness in embeddings, the tbrm of types is quite
dift~rent from that of function types, articulating a broader
realm of typed behaviour. In particular, both call-by-value
and call-by-name A-calculi are embeddable into a single typ-
ing system by changing translation of types.

S e c u r e I n f o r m a t i o n F low. The present paper reports how
we can apply the linear and affine type structures of the re-
calculus, as proposed in [6, 40], for the s tudy of type disci-
plines of programming languages, taking type-based analysis
of secure information flow [2, 12, 29, 33, 34, 35, 38] as an
application domain. In this analysis, we use a typing system
to ensure the sat~ty of intbrmation flow in a given program,
i.e. a high-level (secure) da ta never flows down to low-level
(public) channels. Intbrmation flow analysis needs precise
understanding of observable behaviour of program phrases
and their interplay, because of the existence of covert chan-
nels [9]. In the re-calculus representation, computational dy-
namics is decomposed into interaction, where the notion of
observables is made explicit. This makes the re-calculus a po-
tentially eft~ctive tool for analysing subtle information flow
among program phrases. Further, in many type-based intbr-
marion flow analysis, distinction between total i ty and par-
t iali ty is crucial, both in functional [2] and imperative [a8]
settings, strongly suggesting its connection to linear/affine
type structures. A uniform treatment of call-by-name and
call-by-value pure functions as well as stateful computat ion
in secrecy is another motivation for using the re-calculus.

S u m m a r y o f C o n t r i b u t i o n s . The tbllowing summarises
the main technical contributions of the present work.

• A typed re-calculus for secure information flow based on
linear/affine type disciplines, which enjoys a basic nonin-
teri>rence property.

• The embeddabil i ty of the dependency core calculus (DCC)
[2] in the secrecy-enhanced linear/affine re-calculus, and a
simple operational proof of its noninterference property.
~¥~ also present a novel call-by-value version of DCC.

• A new type system for secrecy in concurrent impera-
tive programs with ret>rences and higher-order proce-
dures. Its embeddabil i ty in the linear/affine re-calculus
with state again gives a simple proof of non-interi>rence.

A picture of typed calculi used in this text is given in Figure
1. Each box represents a name of the typed re-calculus with a
specific type structure ("k", "A" and "/u" mean linear, affine
and state, respectively). The right-hand side of the box

Multi-threaded Multi-threaded
Smith-Volpano Imperative Language
+ References + References
+ Procedure + Procedure

DCC PCF
DCCv PCFv

with Pointed Types

J " \

/ \ 4 \

A ~ PCF - - I SimplyTyped
PCFv ~ J CBV/CBN

Lambda

F i g u r e 1: A F a m i l y o f L i n e a r / A t t i n e 7r-Calculi

shows systems we can embed in the basic typed 7r-calculus.
The left-hand side shows the secure languages we can embed
in the secure version of the ~v-calculus. The grey box shows
a basic property satisfied by the calculus.

R e l a t e d W o r k . There are a f~w prominent examples of
integrated function-based type disciplines, which often use
monads. Basic examples include pointed types [21, 27] and
the incorporation of imperative constructs in Haskell [22].

The dependency core calculus [2] is a powerful functional
metalanguage for secrecy, using pointed types. The seman-
ties is given by a denotational universe based on logical re-
lations. The calculus is effective ibr analysing diverse se-
quential notions of dependency and secrecy. At the same
time, the ibrmalism is difficult to apply to the realm outside
of sequential higher-order functions. The present work oi:
i~rs an alternative tool which can easily incorporate impure
i~atures such as concurrency and state.

Smith and Volpano (cf.[84, 85, 88]) studied various aspects
of secrecy in imperative languages. Sequential procedures
are studied in [88]. Multi- threading is studied in [35], whose
typabil i ty was enlarged by our work with Vasconcelos [18]
using the re-calculus, based on which a further enhancement
was done in [84] (cf.[8]). A proper extension of the concur-
rent language of [85, 84] integrating higher-order procedures
and general ret~rences would be new.

A recent work [42] presents a typed control calculus with
rei~rences, intended as a meta-language via CPS translation.
Its type discipline is adapted to this end, in part icular in its
use of linear continuations. As secrecy typing for imperative
languages, [42] does not t reat multi-threading, and is not
(intended as) an extension of the language in [a5, a4].

Linearity has been studied in diverse forms, both for func-
tions, cf. [11] and for processes, cf. [15, 24, a9]. Clear be-
havioural articulation and characterisation of linearity and
affinity as typed processes are first presented in [6, 40], one
of whose initial applications is reported here.

Secrecy and other security issues in processes are widely
studied recently, cf. [1, 81, 10, 18, 18]. [1] includes insight-
%1 discussions on secrecy. These studies focus on modelling

82

security concerns in d is t r ibuted systems, and do not pursue
integrated secrecy typing t'or language constructs.

O u t l i n e . Section 2 introduces the secrecy re-calculus based
on l inear/atf ine type disciplines. Section 3 embeds DCC and
its call-by-version in the calculus. Section 4 presents a state-
ful extension of the calculus in Section 2. Section 5 presents
applications to imperat ive secrecy.

A c k n o w l e d g e m e n t s . }V~ thank anonymous rei~rees t'or help-
ful comments and Mart in Berger t'or our ongoing collabo-
ration. The first author is part ial ly supported by EPSRC
grant GR/N/a76aa. The second author is part ial ly sup-
ported by EPSRC grant GR/Raa465/01 .

2. SECURE LINEAR/AFFINE TYPES

2.1 Processes
Following [6, 40], we use the asynchronous version of the
re-calculus [7, 17] with b o u n d ou tpu t [32] and branching [14,
16, 18]. Let at ' ,y, . . , and sometimes a , b , . . , range over a
countable set of names (also called channels). The set of
un typed terms, which we often call processes, is given by
the t'ollowing grammar.

P : := at'(//)../:' input I P I Q parallel
I ~<~>P output I (u x) P hiding
I x[&~ (/g/)..Pi] branching I 0 inact ion
I ~ini (2)) P selection I !P replication

In !P we require P to be an input or a branching. The
bound/ f ree names are defined as usual. Here and hence-
t'orth we assume names in a vector /7 are pairwise distinct.
Up to the s t ructural equality, whose definition is given in
[6, 40], the ou tpu t x(ff)(2 acts as (~'Y)(~(uglC2) in the stan-
dard syntax. Bound name passing has essentially equivalent
expressive power as free name passing [a2], and is conve-
nient t'or obta in ing precise correspondence with functional
type s tructures [6, 40]. }¥~ assume the branching allows
t'or any countable indexing set with cardinal i ty more t han
one. Branching is used t'or representing base values as well
as condit ionals [6, 40], and plays an essential r61e in the
ini 'ormation flow analysis later.

The reduct ion relation is generated by the tbllowing rules,
closing under parallel composit ion, restriction and output ,
taking processes modulo ~.

!x(g).~l~(g) Q --~

and, i'or branching,

!x[&~(gd.~] I ~ (~) Q

!x(~).P I (~) (P I Q),

(~' ~)(P5 I Q)
~ at[~(~).P~] I (~ ~)(P~ IO)

d e f
The mult i -s tep reduct ion - ~ is given as: - ~ = z U ----~.

d e f 1 ~ x - . As a simple example of processes, [n ~ =.mc).c:tm~ is a
natural number agent, which acts as a server tha t necessarily
re turns a fixed answer, n.

2.2 Action modes and channel types
The type s t ructure we shall use combines atfine types [6]
and linear types [40], and is enhanced by secrecy. First
we introduce action modes [6, 15, 18, 40], which prescribe
dift~rent modes of interact ion at each channel.

$~ Linear input % Linear ou tpu t
Sx Atfine input Sx Atfine ou tpu t
!~ Linear server ?~ Client request to k
!x Atfine server ?x Client request to !x

}V~ also use the mode * to indicate uncomposabil i ty, p , p , . . .
range over action modes. The modes in the left co lumn are
input modes while those in the right are output modes. The
pair of modes in each row are dual to each other, writ ing
for the dual ofp. ~V~ set M 4. = {$~,$x}, similarly for M : ,
.Mr etc. The L-modes correspond to linear modes in [40]
while the A-modes to affine modes in [6]. The dift~rence
between linearity and affinity in non-repl icated channels is
that , in a linear channel, an interact ion takes place precisely
once, while it does so at most once in an atfine channel.

Fix a complete lattice (12, E, 7-, _L) of secrecy levels (higher
means more secure), whose elements are wri t ten s , J ,
Then char~nd types are given by the following grammar. Be-
low p~ (resp. po) denotes input (resp. output) modes.

\ ~ /JO

(#)s is called input/output unary type, [&i~/] p and [@i~/] p
brur~chir~g/selection type. ~V~ write see(r) for the outermost
secrecy level of r ; see(*) = 7-. Y is the dual of r by dualising
all action modes and exchanging & and @. The mode of r ,
denoted rod(r), is * if r = *, else its outermost mode.

On types we define @ as the least commuta t ive part ial
operat ion s.t. (1) T @ Y = * (md(r) ¢ ,A4,) , (2) r @ ~ = r
(rod(r) ¢ M ,) and (3) r ~ r = r (rod(r) ¢ M r) . Intuit ively,
(1) savs once we compose inpu t -ou tpu t l inear/atf ine chan-
nels, the channel becomes uncomposable; while (2) and (3)
together s~v that a server should be unique, to which an ar-
b i t ra ry number of clients can request interactions. Note the
composit ion between atfine and linear types is prohibited;
• "or example, ()~L ¢ () ~ is undefined, while ()~L @ ()~L = , .
V~ also assume the sequential constraint on channel types
as given in [6, 40], which we list in Appendix A.

2.3 Action types
Following [6, 40], we use an action type which is essentially
an assignment of channel types to tYee names in a process to-
gether with causality int 'ormation. Formally an action type
is a finite directed acyclic graph such that:

(G1) Each node has t'orm x : r . No two nodes in the graph
have identical subjects.

(G2) Each edge has t'orm ;c : r --~ ; c ' : r ' with either rod(r) =
$~ and md(r ') = $~, or rod(r) = !~ and md(r ') = 7~.

Note, in (G2) we do not record dependency t'or atfine chan-
nels. This is because we permit circularity, hence divergence,
tbr atfine channels. A, B , . . . range over action types. A node
(or its name) is active in A if it has no incoming edges.

The part ial operator A @ B is defined iff channel types in
common names compose by @ given above, and, moreover,
the adjoined graph do not have a cycle. If so, the result is a
graph in which, in the adjoined graph, each maximal causal
chain is collapsed into an edge connect ing its two ends (see
[40] t'or a t'ormal definition). To avoid divergence at linear
channels, this operator ensures tha t processes never exhibit
circular dependency in actions. For example, at' : rz -~ y : r2
and y : ~ - - ~ x : ~ are not composable. ~¥~ write IAI, rod(A),
fn(A) and active(A) t'or the sets of nodes, modes, names and

83

(Par) (Res) (Weak)
(Zero) PI~ > Ai (i=1,2) P P > A(x:r) P P > A -~
- A~ × A2 rod(r) ~ 2¢l~,: rod(r) ~ 2¢l~,?

H 0 > _ HPzIIa2 > A~@A2 (u x)P > A / x b P > A ® x : r

(Out) (p ¢ ~ r , r)
e P > c(ff:¢>

c / ~ = A × x : (e)g

(In*L) (In4~) s ~ tamp(B) (In'L) (InL~)
PP>~:~®$~A-~®$:flB-~®?C-~ PP>~:~®$,~?B -~ pI~>~:~®'%A-~®?,JB -~ pp>~:~®?~?,~A -~

~L

Figure 2: Linear /Att ine Secrecy Typing Rules

active names in A, respectively. Fur ther notat ions:

A(~:<} y~:r~ occurs in A.
A/a7 the result of taking off at'~ : r i in A

/TA A such tha t md(A) = {/7.}
?A A such tha t rod(A) C 34r

A -~ A such tha t at' g~ fn(A)
A ® B a disjoint un ion of A and B s.t. fn(A) ~ fn(B) = (~.

Final ly x : r - -~ A adds edges from x : r to A's active nodes.

2.4 Tamper level
A tamper level indicates a lower b o u n d of eft~cts the process
would have on its environment . It is first defined on types,
and is lifted to action types. In its definition, modes of ac-
t ions play an impor tan t role. Below we say r is irr~rr~ediategy
tampering if either r = [~3~/]% or md(r) = $,~.

D~F~N~T~ON 2.1. tamp(w) is induct ively given by:

tamp(w) = sec(r) if r is immediate ly tampering.

tamp(w) = T if rod(r) ¢ {?~,?x,*}.

tamp((g)~) = Vl{tamp(Ti)} with p ¢ A4,,$,%.

tamp([&~gd~) = H{tamp(raj)} with p ¢ 34,,$.

~¥~ set tamp(A) dzf H{tamp(r) I x : r C A } .

As an i l lustration, let N~ d-~f([@ie~]~c)!c and consider [2~ d.~f
!x(c).Y&n2, which emits "2" after gett ing invoked and which
has type N~ at at' (in the typing system we introduce be-
low). This process does contain information, bu t it only
comes after a replicated input , which itself does not emit
information. Thus its observable informat ion is located at
the linear selection. Similarly, with at' typed as r = (0~'~) :-a,
!x(c).~ has in tbrmat ion at c since ou tpu t at c may not come
out (in fact, ~ in Example 2.2 (4) later has the same type).
?~/?x actions do not t amper since they only touch stateless
replication. For a %rther account, see [41].

2.5 Typing
The sequent has the form P P > A, which we read: P is
tgpabge by A. The typing rules are given in Figure 2, where
in (In *~) we st ipulate IA @ BI is at most a singleton (this
condit ion corresponds to the condit ion for sequential isat ion
used in [40], and is current ly used in the proof of noninter-
t>rence). (Par) uses x and ~ for controlling composition.
(Res) allows hiding of a name only when its action mode
is * or ! (which intui t ively says channels of modes $, $ or
? are always compensated by their duals before restricted).
For prefix, Figure 2 lists the una ry rules (for the branching
rules see Appendix A). Among them, only (In *~) uses a

secrecy level non-trivially. Intui t ively it says tha t if a pro-
cess receives non-tr ivial informat ion at .s, then it should not
t ransmi t this eft~ct to the levels lower t han .s. Other unary
prefixes do not directly receive information, hence are not
constrained by secrecy levels. }¥~ also observe tha t input
never suppresses input , !~ and !,~ never suppress $~ or $.a,
$.~ never suppresses $~, and that $~ may suppress j'~ and $,~
(the last two points are crucial for integrat ing affinity into
l ineari ty consistently). Also note the outermost secrecy lev-
els of !~, !~ and una ry $~-types, as well as their duals, are
irrelevant in typing, which we shall often omit from now on.

The result ing typed calculus, which we hereafter call LA 71-e e c ,

satisfies subject reduction, and inheri ts behavioural proper-
ties from the systems in [6] and [40], including liveness at
linear channels. Some examples of typed terms follow.

EXAMPLE 2.2. 1. F [n]~ > ;c:N~.

2. For arbi t rary s and s', P a:.~ > a:: ()~ ~ --~y: ()~Y is well-

typed, bu t P a:.~ > a:: () ~ ®y: 0) is not well-typed.
Also ~ ~[a:~=~,~.x(u)li]~] > u:[a:~,2]tT ~ x : , ~,~,

well-typed iff s = T (note tamp((N~)~,) = s). %

3. (copy-cat) Let [a: -+ a:'] ~ be given by: [a: -+ a:'] [~ d ~ d~f
~[a~(g~).~wi~(y~)n~[y~ -~ y~] ~--7] (v ¢ M+) and
[;t' ~ a.'t] [&i7 i]~ d e f , . ~ 717/- J t - - = .<~(ud.x i~(u ~)n~{u~ -~ u~]~J]
(p ¢ 34!), similarly for the una ry cases. This is the
copy-cat agent , l inking two locations, at' and at".

4. (omega) ~ de f (uy) ([u -4- y]Tl[y --~ u] T) immediate ly
def]~k) Lk

diverges after the initial input . If r = ([@~e~,
then ~ is typable bu t if r = 5r~, it is untypable .

In LA too,o, we can na tura l ly define a contextual congruence
relativised by secrecy levels. }¥¥ite p x g~ when P ----~ P '

8 and either F ~ F ' g: ini(g)Ftt s.t. sec(A(x)) g " ' XY(g)P" or ~_
(that is, P has an action observable at level s). }¥~ then say
a typed congruence ~ is s-sound when (1) it is reduction-
closed [19], i.e. F _/~ ~ ~e > A and _/~ ~ P~ implies ~e
P~, with P P~ ~ P~, > A, and (2) it respects g~, i.e. if P P,
P~ > x : r s.t. rod(r) = $~, then F~ :T g~ implies ./2S :T g~.
The m ax im um s-sound congruence is denoted =~.~; Using
~ r c =~, we can state a basic proper ty of rco~.o~A, underp inn ing its
theory and applications. The proof uses a secrecy-sensitive
bisimulat ion, see [41].

PROPOSYi'ION 2.a. (non-interference) I f p .1~,2 > A s.t.
tamp(A) = s and s [~ s', then P .t~ ~ B P2 > A.

84

[w~

[Lain]

[U,~i~M]

[Lift]

I ' , x : T ~ x : T

I ' , x : T ~ M : T'

I ' ~ M :T~
I" ~ in l (M) : T1 + ~/)

I ' b M : T
I" ~ M : (7%

I ' ~ M : T
I" ~ Zif~(M) : d/5

I ' , x : T ~ M : T .7' pointed I" P t,tco:T.M : T

[Unit]

[App]

[c'~se]

[BindM]

I" k M : T ~ T ' I ' k N : T
I ' k M N : T '

I" ~ M : T1 + T'2 I',x:~/~ ~ Mi : T
r ~ ¢~=, M o~ inz(x)M, or inr(x)Mz : T

I" k N : (T)a I ' , x : T k M : T '
I" ~ bind X" : N in M ; ~/,t s ~ protect(T')

I ' k N : d 5 I ' , x ' : T k M : T ' T'
I" ~ seq x = N in M : T' pointed

F i g u r e 3: D e p e n d e n c y C o r e C a l c u l u s

3. S E C R E C Y I N P U R E F U N C T I O N S

3 .1 D e p e n d e n c y c o r e c a l c u l u s
The dependency core calculus [2] (DCC) is interest ing in
the present context at least in two ways. First it is one
of the effective examples of a functional meta- language for
type-based in tbrmat ion flow analysis. Second it crucially
relies on pointed types to combine total funct ion types and
part ial ones [21, 27]. After out l ining DCC in this subsection,
we show a faithful embedding of DCC in rc})~, leading to a
new proof of its non-intert~rence.

}¥~ use a slightly dift>rent, bu t equivalent, presentat ion
of DCC. This is to allow a simpler presentat ion of the em-
bedding. In part icular the lifting associated with secrecy is
used implicitly. }¥~ omit products tbr brevi ty (their incorpo-
rat ion poses no technical difficulty). The set of DCC-types
are given by the tbllowing grammar. }¥~ use the same lattice
12 of secrecy levels.

}¥~ omit .s if .s = _L. Unit , sums and funct ion types should
be familiar. The lifted type t..T_~ is a so-called pointed type,
which denotes potent ial divergence. The level .s in (T)~ in-
dicates a secrecy level which protects a da tum. }¥~ consider
types modulo the tbllowing equat ions (which come Dora iso-
morphisms in the denota t ional universe in [2]).

(= i ~) ~ , = (= i ~ ,) , (T~ +~ ~)~, = T~ + ~ , ~ ,
(T~ ~ T 2) ~ = T~ ~ (T2)~, (t..T_~)~, = t..T.~u~, and

By reading the above equat ions fl'om left to right, we can
rewrite types to simpler tbrms. In fact each type has a
unique normal tbrm, which has shape T, ~ (Te ~ (. . . (T,~_,
7) . . .) with n _> 1, where ? is given by the g rammar (with
T, T,,2 being normal forms again):

We write [T, Te...T,~-,7] tbr T, ~ (Te ~ (. . . (T,~_, ~ ?) . . .) .
Two key ideas in the DCC-types:

* The protection level o f T , denoted protect(T), is given by:
protect(uai%) = protect(T~ +~ T2) = protect(LT_~) = .s
and protect([T~...T,&]) = protect(?).

. T is pointed if T = [T~....T,~LT%] (n > 0).

}¥~ can check tha t T is protected at .s in the sense of [2] iff

.s E protect(T). Similarly the not ion of pointedness coincides
with [2].

Figure 3 presents the typing rules of DCC. The sequent
has form F b M : T where M is a A-preterm with units ,
sums and recursion. ~V~ can check the typabi l i ty coincides
with the system in [2] up to the erasure of type annotat ions .
The H-reduction is defined in the s tandard way (with s e q x =
l i f t (N) in M ---~13 M { N / x }) , for which we can easily veri[v
the subject reduct ion property. 1

~V~ conclude the presentat ion by s t ipulat ing a Morris-like
contextual congruence on DCC-terms, relativised by secrecy
levels. It suffices to use the simplest possible pointed observ-

able. Let O3 d~f t_u.D.it.Js and g denote t e rmina t ion by the
s tandard H-reduction. Then E P M ~ c c N : T when, for
any context C[.]T: O3 such tha t C[i///] and C[N] are closed,
we have C[M] .¢ iX" Cb:] .¢.

3 .2 E m b e d d i n g

The embedding of DCC in rc})~ is done by mapping non-
pointed types to linear types and pointed ones to airline ones.
The lifting t_.T_J is replaced by a t ransformat ion from linearity
to affinity. Apar t Dora this, the overall scheme comes Dora
[25, 2a, 6]. First, the t rans la t ion of types is performed on
their normal forms:

(type) . . def ()~ = ~o1% 11~it~ = L (Ti -t-~ri)" def [T~ @~21~

t_ri~ def= (TO)~k

[T*...T,~-*q ° d2 j (T,...T~_,V)'~ V pointed
--o --o • ! L

[(T l . . . T ~ - 1 7) " else

(base) Oo de.~' 0 (E . ;t ' :T) ° %f E ° . at':~7

/ (~ : T ° - + A) ® B T non-pointed,

(action) ~tT\/~,lc def_ E ° = ?~A ® ?~B

[u : T ® E else

The above t rans la t ion elucidates the operat ional content of
DCC-types: the type [T1...T,~-lT] is now interpreted as in-
teract ion which may receive da ta at each Ta (at dift~rent

1~¥~ observe the original DCC does not satist~ the subject
reduct ion because of the coercion f i lM. As an example, take
at' : ur~it k at' : ur~it and x : ur~it k rlTx : (ur~it)T. Then
rig at" ~ at', bu t at' : ur~it ~/ at' : (ar~it)T. In our presenta-
t ion this issue does not arise due to implicit t r ea tmen t of
coercion.

85

(T o t a l) [Vat]

[Lain]

(P a r t i a l) [LamP]

[z{~o]

(C o m m o n) [/f]

E , x : T ~ x : T [co,m] E ~ ~:N~ [s~4

E , , c ; S ~ M ; T
E ~ Ax;S ,M ; S ~ T [App]

E,,c;U' k M ; U
E ~ Ax;U'.M ; U'~U [AppP]

E ~ M ;b' E, x: U ~ M : U U pointed [Lift] [Seq]
E k t~x : U.M : U E k M : ~bh

E ~ M ; N s E ~ N i : T
E ~ if M t&en Ni e l s e N2 : 7 ' s ~ protect(T) [UnitM]

I" k N : (T)s I ' , x : T k M : T '
I" ~ b i n d vC : N i n M : T ' s ~ protect(T')

E k e : N a
E e succ(e) : 1%

E k M : S ~ T E k N : S
E k M N : T

E k M : U i ' ~ s U 2 E k N : Ui protect(U~) M s
E ~ M N : U2 ~ protect(U2)

E k N : ~ b 3 E , x : S k M : U
E k s e q x - - N in M :U

I ' k M : T
I" ~ M : (T)s

F i g u r e 4: T y p i n g R u l e s o f C a l l - b y - V a l u e D C C

secrecy levels) and re turns a result at 7 (again at a specific
secrecy level). This sheds a new light on DCC in a way
quite different fl'om the original denotat ional in terpre ta t ion
[2]. Also we observe protect(T) = t amp(T °) except when T
has shape [T,..T,~_,urLi%] (note s in urLi% is insignificant
in its denota t ion since urLi¢ is a singleton).

The t rans la t ion of DCC-terms, wri t ten [M : T ~ , closely
follows that of types, see Figure 8 in Appendix. Basic prop-
erties of the embedding follow. Below in (2), ~ appears in
Example 2.2 (4).

P R o e o s m o a 3.1.

1. (typabili ty) E ~ M : T irr~plies ~ [a ~ > (T}~,E.

2. (adequacy) Let k- M : 03. Then M g i f f [21II~ ~ ~ .

3. (soundness) [2/ll]~ ~ [2iII2]~ implies 2ill :~vcc 312.

~¥~ are now ready to establish the non-interi~rence of DCC-
terms. The result also follows from the soundness of the
denotat ional in terpre ta t ion in [2]. The present proof method
has interest in tha t it smoothly extends to other sett ings
such as stateful computat ion, cf. § 5, ~Vk'ite E k- ~, ~ ~2
if, for well-typed subs t i tu t ions ~*,2, we have ~, (x) = ~2(x)
whenever protect(E(x)) ~ s. The theorem follows. The
corresponding results hold for other non-tr ivial types.

TIiEOREM 3.2. (non-interference) Let E ~ M : O ~ . Then
Jbr ~uy closiug ~*,2 s.t. E ~ ~, ~ ~ ~2, M ~ , g i f f M(r2 g.

PROOF: Let k- 2Va : T (i = 1, 2) with protect(T) ~ s. Since
p r o t e c t (T) ~ t amp(T °) we can apply Prop. 2.3 to obta in
[N ~ ~ [N2~ . Now assume x : T ~ M:O~ (the reasoning
trivially extends to mult iple variables). ~V~ now reason as
follows. The second implicat ion is by the replication theo-
rem [6, 40], while the thi rd is by Proposi t ion a.1 (a).

D~Uv,/xHu ~; D~Uv~/xHu
MUv,/x} eff~ Murk/x}
MUrk~x} .¢ i~ MUrk~x} .¢, •

rc}~ may also be used for just i (ying a call-by-value DCC
given in [2]. Interestingly, rc}~ motivates a more direct for-
mula t ion of a call-by-value version of DCC, which is useful

when we consider combinat ion with imperat ive t~atures, in-
cluding concurrency. }V~ use PCF-l ike types and syntax,
which is more convenient tbr our discussion in Section 5.

(type) T : := 5' I U I <T)s

Here S is a total type, while U is a part ial one (among
part ial types those of form U1 ~ ~2 are pointed). ~V~ use
a non-s tandard lifting for brevi ty of encoding, pro tec t (T)
is defined as before for total types and fbr others by the
outermost secrecy level. The typing rules are given in Figure
4. The non-interi~rence is proved in the same way, using an
embedding into rCo~.oLA. The encoding of types is given by:

(type) ,5" de.~' (,5,o)% U" de.~' (UO)~A (s e e (U) : 8)

= (U i . ~ . U2)O def

Here sec(T) is T ' s outermost secrecy level. Base is mapped

as beibre, using ()o. Then (T}u~,E def T" E °, = u : ® The
encoding of terms is given in Figure 9 in Appendix.

4. INTEGRATING STATE

4.1 Mutable interaction
In this section we present a fl 'amework for a consistent inte-
grat ion of stateful, or mutable , computa t ion into linear/affiue
type disciplines. ~V~ only discuss the incorporat ion of linear
mutab le replication, which is all we use in the application in
the next section. ~V~ first extend the set of processes.

P :: I r e f (x q } T

Here ref(xy} T is a constant with tile following dynamics,

where ~<//}T d--~fx(z)[Z - + y]T (n o t e this agent has an ou tpu t
at y). ~V~ use this constant together with replication in-
stead of recursion, because the class of realizable (typed) be-
haviour is identical, cf. [4]. For information, we also present
the recursive definition of ref(xy}.

ref(xy}T def r r = a:[(c).(ref(xy} IT(y})&(wc).(ref(xw}~lF)]

86

For types, we write !~¢ and 7~¢ for the mutab le versions
of l~ and ?~, which are mutua l ly dual. }V~ add 1~¢/?~¢ to
5 4 ! / f l 4 r . The channel types are extended as ibllows.

[sc~u> p~ ~ {k, k~J
r ,, ~I{P;}

V~ let each branch of a branching/selection type take an
action mode, The channel types of t im above shape are
called mutable. Let p~ ¢ {l~,l~,}. }V~ set Vl{p~}~ej = l~ if
pi = k for each i ~ 1 else ~{pi}ieJ = l~,. Then we define
md([&i~/]~ m}) = m{p d . Dual ly for selection. ~V~ also add:

~siv-ij~ = L~SiTd~ (pi Pi = pi)

~iv-d~ D [@iTs]/ ' = L~iv-d~ n '

~k~ again assume the same sequential i ty constraint as in Ap-
pendix A (with I~, and ? ~ acting as I~ and ?~, respectively).

Action types now use the extended set of channel types,
where we addit ionally consider x :v . --~ y:v . ' with md(v.) =
! ~ , v.' mutab le and md(v.') ¢ {7~, 7 ~ } when 7- and v.' have
the same height (the heiyh~ of a channel type is given in
Appendix B). The use of height of types is to avoid an
analogue of well-known discrepancy between strong normal-
isability and state in A-calculi. ~V~ note there are several
ways to ma in ta in l ineari ty in the presence of mutab le inter-
action, which will be discussed elsewhere.

4.2 Structural security
A new element in secrecy typing is a welM'ormedness con-
dit ion for channel types. It reflects a dift~rent way in which
in%rmat ion leaks in stateful computing. }V~ first s tate the
condit ion, then i l lustrate the idea. Below tamp(v.) is given
by the same clauses as Definition 2.1, set t ing 7- such that
md(v.) = ?~, to be immediate ly aft~cting.

D E F I N I T I O N 4.1. 7- is structural ly secure i ffbr each occur-
rence 7-' in 7- (1) SeC(___T') G tamp(v-') when md(v.') = l~,, and
(2) sec(v.') g tamp(v.') when md(v.') : 7~,.

The definition says a mutab le type should have higher tam-
pering levels in carried types. This is to prevent leakage
of in ibrmat ion, as the %llowing example shows. Below N::
s tands ibr ([@ie~]~) t~ ; H and L for T and _k; ref(xl} ibr
(v'v)(ref(xv} I [1],); and igir~2(2c)P ibr 5Yir~2(wc)([2],o I P) .

- - !L !L EXAMPLE 4.2. Let 7-¢~f [(N~)%&N;~0%]J ' ", which is
not s t ructura l ly secure. Now consider:

where P1 = u.ian and/az = tl~. By the racing condit ion at
at', this agent may or may not emit at u, i.e. we have either:

P > + ref(x2} I gim~ or P ---~+ ref(x2} I tl~.

Hence writ ing at the high-level channel at' aft~cts an action
at a low-level channel u.

The anomaly takes place because stateful agents can trans-
mi t i n tb rmadon using dme-dift~rence, storing what has hap-
pened in its state to t r ansmi t it later [25]. St ructural ly se-
cure types prevent this leakage by requiring tha t a stateful
replication to t ransmi t i n tb rmadon at the same, or higher,
level t han it receives. H e r v @ e r we assume all channel types
arv s tructural ly secure.

4.3 Secrecy typing
~V~ have dm ibllowing addit ional typing rule ibr constant .

(Ref)

ifmd(v.) =!~/~ t h e n p = ! ~ / ~ e l s e p = ! ~
p l

C F ref(as'y}Tt> at': [(v.)%&~0%]~ ''~" ® y : T

The r ight-branch of a ret~rence receives the "write" action,
so it is always mutable; while the left-branch receives the
"read" action, whose mode depends on that y (at which it
has an output , cf.§ 4.1). ~¥~ also need the typing rules for
mutab le prefixes, which we list in Appendix B. The result ing
typed calculus, which we hereat~er LA, call rc satisfies subject
reduct ion as well as the following non-inter%rence property.
Below =~; is defined precisely as betbre.

PROPOSYrlON 4.3. (non-interference) Let F P1,2 > A such
that tamp(A) = .s. Then .s ~ d irr~plies k P1 ~ 5 izz ~ A.

5. CONCURRENCY, REFERENCE AND PRO-
CEDURE

5.1 A Volpano-Smith language
V~ briefly overview the syntax and operat ional semantics of
an imperat ive language we consider. Below x , y , . . , range
over a countable set of names, used both for (function) vari-
ables and labels for rei~rence. A-abstraction ment ions type
T, which will be in t roduced later.

(expression) e : := 1,2,. . . I x I sa te (e)

(value) v : : = 1 , 2 , . . . I x I A x : T . e

(command) ¢ : := s k i p I x : = ~ I < ;¢~

[if v then ci else c2

[while !y do c

[let x = e in c

[let x = ! y in c

[~ew x ~ v i~ c

(threads) o : := 1-Iici

The syntax of commands is fl'om [35], extended with general
re%rences, local variable declaration and higher-order proce-
dures. ~V~ use two let commands for simpler presentat ion of
typing rules, though we shall be sometimes informal about
them, writ ing e.g. x := !y instead of l e t z = !y ir~ x := z.
For brevi ty of presentat ion we do not include l e t s and r~ew
in expressions.

The reduct ion rules of commands are given in Figure 5.
The reduct ion takes form (c,G) > (c ' ,G') where G ,G ' , . . .
denote envirvnmer4s , i.e. finite maps fl'om names to values.
~V~ use a special command 0 for which we set: (c,g) >~
(0,¢') when (~,¢) - -+~ ¢ ' . W~ wri te (o ,¢) .~ ¢ ' when
(oo, g) ---+~ (IL0, g ') . For expressions we assume the stan-
dard call-by-value (single-step) reduction.

5.2 Secrecy with reference and procedure
~V~ first i l lustrate the subt le ty in secrecy with local ret~r-
ences and procedure by examples. For bTsvity we assume
u, v, w aTv low- levd variables while x, y, z aTv high-level vari-
ables in the fo l lowiny eaamples.

87

(skip, if) ~

(c l , ~) ~ (c i , ~ ')

(~l;~,~) ---~(~i;~,~')

(w~iZ~ !y ao c,~) ---~(c;w~iZ~ !y ao c,~)

(whiZ, !v ao ~,~) ---~(skip,~)

(~ : -v ,~) - - + ~ [~ v]
(~l,~) - - + ¢
(~l;~,~) - -+(~,~ ')

(~(v) - o)

(~(v) # o)

(~(v) - o)

(~(v) #o)

((~,~)---~(¢,~'))

(~,~ ~ = v i~ ~,~) - - ~ (4 v / ~ } , ~)

(~,~ ~ = !v i~ ~,~) - -~(¢{v/v} , ~)

(~, ~ u E ~ v]) - - + (~ ' , C u E ~ v '])

(~(v) = v)

(new X ~ V ill (C, ff) --'--~ (new X ~ V t ill (Ct,ff t)

(~'~, ~) ---+ (~.~, ~')

(IL ~'~,~) --+ (IL ~'~,~')

We omit reduction rules for expressions.

F i g u r e 5: R e d u c t i o n o f V S - C a l c u l u s w i t h R e f e r e n c e
a n d P r o c e d u r e

L o c a l r e f e r e n c e s . Local rei~rences give abstract ion, while
aliasing may break this abstract ion. As all example, let u
be a low-level re%rence to a natura l number and consider
the ibllowing command.

def
c~ = new u ~ 0 in u : = ! v ; x : = ! u ;

Here the locali ty raises abstract ion, hiding the low-level writ-
ing at u: only the wri t ing at x is visible. Thus ill efi~ct cl
only writes at the high-level. Now consider the following:

def
c2 = n e w x ~ v i n (x ; = u ; l e t z = ! x i n z ; = 3).

The command writes at x and z, which are bo th local; how-
ever ill fact it is writ ing at u, which is Dee. Thus c2 t ampers
at the low-level.

I i n p e r a t i v e p r o c e d u r e s . DCC and its CBV version ill § 3
capture non-tr ivial %atures of secrecy ill pure higher-order
functions. Wi th impera t ive i~atures, procedures add dift~r-
ent kinds of subtlety.

def def
• (Divergence) Let el = ky.(!x)y, e2 ~-~f k y . y and ca =

u := 1; (if z then at' := el e l s e at' := e2); ff : = (!x)0; u := 0.
Then ca reveals z at u by diverging when z = t r u e .

def)tX (Side efi~cts) Take ea = ~'. u := x r e t u r n 0. Then

def
c4 = if z then let y = (<3)0 in skip.

leaks infbrmation at u, though ea is secure as a function.

def AU !!U i retl~rn 0, • (Aliasing) Given e~ = . :=

c5 ~ f if z then new v ~ w in let at' = (e s) v in skip

is not secure since w call be aliased. However if we further
hide w, the command becomes secure.

The aim of the proposed typing system is to detect ally pos-
sible danger involving aliasing and side-eft~cts, while type-
checking pure functions as generously as, say, DCC.

5.3 T y p e s
The syntax of types ibr commands and expressions ibllows.
V ~ only t rea t to ta l types ill the sense of call-by-value DCC
(see § 3.2). The incorporat ion of part ial types easily ibllows,
which is briefly ment ioned ill § 5.5. For command types we
use a c t i o n se t s , denoted X ,Y, All action set contains
elements of form wx and rat', which respect ively indicate a
possible wri te and a possible read at at'. Ill E . at' T below,
we assume at' does not occur ill E .

(value) T : :=N~ I r e f ~ (T) I T l ~ T 2 T l ~ T 2

(base) E : := 0 I E . x : T

(commaild) e ::=cmdT~X (T¢ D,~})

Ill value types, ~ indicates a pure (total) funct ion space,

while ~ indicates a (total) %nct ion type with side eft~cts.

ment ions a secrecy level, jus t as re%rence types. ~¥~ say

T is m u t a b l e if it is of tbrm either r e l y (T) or T l ~ T 2 . }¥~
write E F X when: (1) r n x ¢ X implies at' ¢ ¢Iom(E) (dom(E)
is the domain of E) , and (2) wx ¢ X implies E (x) is mutable .

Ill c m d r ~ X , r = g (resp. r =~ ') indicates convergence
(resp. potent ia l divergence); a is a lower bound at which the
te rmina t ion may be observed (or, as Smi th [84] puts it, at
which variables a t e rmina t ion depends upon), wx (resp. rat')
indicate at' may be wri t ten to (resp. read from).

}¥~ use the subtyping on value and command types, which
largely come from [85, 18, 84]. For value types, we have:

8 E 8 t 8t E 8

• ~f 8 f • "f • ' f <~l'1 T2 < 2 2 K s

Note T does not vary ill r e l y (T) , see i l lustrat ion ill § 5.4.
The subtyping on command types uses E F X defined above.

X C Y I2b Y X C Y I2b Y
cmd $~X _<E cmd $~, Y cmd $~X _<E cmd)~ Y

s f K s X C Y E b Y
cmd)a X <E cmd)a, Y

Note secrecy levels are irrelevant ill converging commands .

5 .4 I n f o r m a t i o n l e v e l a n d s a f e t y
As ill DCC, we use the protect ion level of value types. As
before, sec(T) gives the outermost secrecy level of T.

• protect(N~) = a, protect(T1 ~ T2) = protect(T2).

• p ro tec t (re ly (T)) = protect(T) n sec(T) if T is mutable .
protect(ref~ (T)) = protect(T) if else.

• p r o t e c t (T l ~ T 2) = sec(T1) M protect(T2) if T1 is mutable .

p r o t e c t (T l ~ T 2) = protect(TD if else.

The definition takes into account the level of types which
occur contravar iant ly (cf. Def.2.1). The condit ion on mu-
tabi l i ty will be i l lustrated later via its t ransla t ion into the

LAp 7ro~,o -types. ~¥~ call IiOW introduce a basic Collditioll Oil value
types, which plays a key r61e for harnessing aliases.

DEFINVnON 5.1. (sat~ty) T is s @ when: (a) T = N~,
(b) T = T l ~ T 2 andT1,2 a r e sa%, (c) T = r e f ~ (T ') , T '

is sat~ and .s E protect(T), and (d) T = T l ~ T 2 , T1,2 are
sat~ and .s E protect(T).

88

[ship]

[se4

[Let]

[Ne~

Eb skip:cmd $~ X

Ebci : cmd%~Xi (i - - 1,2)
E k c l ; c 2 : c m d % 2 X l toX2

E k v : N a , O E k ci: cmd%, X
E ~ if v ~hen cl else c2 : cmd %, X

E b e : T , X E . a c ' : T b c : c m d % , Y
Eb let x-- e in c : c m d % , X t o Y/x

E ~ v ' : T , X
E . x : r e f a (T) b c : c m d % 0 Y

E ~ X [As 4

if r =) then [Sub]
s, g_ sz n tamp~c(Xz)

s _ tam PE (X) [While]
if r =) t h e n s ___ s'

[~)e,'e]]

E ~ co" :-- v : cmd$a X tO {wx}

E~c:p
Ebc:p'

E b 5 l ; r e f j (~) , @ E b c ; c m d "~o X
E ~ while !y ~hen c : cmd)~o X

Eb z:ref~(T)~Y
E , x : T ~ c : c m d % o Y

Eblet x - - !z in c : c m d % 0X/,c

E b c t : c m d % X

E~newx~+v in c : cmd rao X to Y / x E ~ IIi ci : cmd ra X

F i g u r e 6: T y p i n g S y s t e I n for V S - C a l c u l u s w i t h R e f e r e n c e a n d P r o c e d u r e (c o i n i n a n d)

P<E pt

8 ~ 8 0
s ~ tampE(X)

if T mutable
then wz C X

The condit ion is directly suggested by rc~)~ (cf. Def. 4.1). In
essence, it says that , as a command unfolds a sequence of
ret~rences, the secrecy level either remains the same or gets
higher. As an example, take the tbllowing program:

let z =!x in let tc =!z in if tc then u:= 0 else u:= i

The condit ion statically ensures tha t w is higher t han x and
z. From the viewpoint tha t a program should be prohib-
ited fi'om writ ing at a low-level as the result of gett ing a
high-level information, as well as observing we may sat>ly
raise the secrecy level of a local resource, we claim that the
constraint is reasonable in practice, at least for basic pro-
gramming. Her~@er we assume we ordy use s @ tgpes.

5.5 Typing
The typing rules are given in Figure 6 (tbr commands) and
7 (tbr expressions), using judgements E k- e : T , X (tbr ex-
pressions), E k- c : cmdr~ X (for commands) , and E k- o :
cmdr~ X (tbr threads). In the rules, rod(X) denotes the set
of w and r in X. X / x is the result of taking off rat' and war' (if
any) from X. The height of T, ht(T), is given as: ht(N~) = 1,

h t (re f~(T)) = ht(T) + 2, and ht(T1 ~ T z) = h t (T l ~ T z) =
h t (T j + ht(T2) + 2 (this is in accordance with the encoding
of types in § 5.6 later), t ampx (E) (cf. Def.2.1) is defined as:

t ampE(X) de=./ H{protect(E(x))] war' C X}

The system is a conservative extension of [34] (neglecting
protect [8, 18]). Below we i l lustrate the typing rules, concen-
t ra t ing on those points which are new in the present system.

• General The typing system uses an action set for cap-
tur ing the level of writ ing and for ensuring convergence
for total types. Its manipu la t ion is crucial for captur ing
aliasing eft~ct s.

• Assiynment. The rule crucial relies on the sat>ty condi-
t ion (Definition &l) . For example, u :=!x with u and x
typed as r e f L (N r) and r e f n (N L) (which is unsaid), re-
spectively, becomes typable without sat>ty. As expected,
the rule adds war' as a write variable.

• Seq, I]; While. [Seqfs side condit ion is equivalent to [34],
which enhances [18, 35]. If the preceding command may
not terminate , the t e rmina t ion (at s l) should not flow
down to cz's t e rmina t ion (sz) and tamper ing (tampE (X)).
[I]7 and [While] are s tandard , requiring the condit ional
variable cannot influence later behaviour at lower levels.

• De,vii Note war' is added if x is mutable , even though x is
read. To see its necessity, consider:

let z =!x in z := 3.

looks local, bu t may be aliased to a ti'ee name. By
keeping x (which is lower t han z by sat~ty) in the action
set, we eft~ctively record the writ ing at z.

• Id. Similar to [Der'e]], we record war' when it is a ret~rence.
To under s t and its necessity, consider:

new x ~-+/jAn z = ! x An z : = 3.

Note / / (like z) should have a ret~rence type. Hence when
x ~-+ // is interred, w// is recorded, which subsumes the
writ ing at z since z is higher t h a n / / b y sat>ty.

• Lain, Lain-*. [Lain] prohibits access to ti'ee names of mu-
table types inside a pure procedure. In [Lam-*], this con-
s traint does not exist. In [Lam-*] we require constraint
on the height of types, to avoid divergence on total types
(which are dropped if we treat a part ial type).

• App, App-,. These rules do not ment ion secrecy levels
since they assume the a rguments always terminate . If
we assume possibly n o n t e r m i n a d n g arguments , applica-
t ions become secrecy-sensitive tbr bo th t e rmina t ion and
tamper ing as in [Seq], cf. [AppP] in Figure 4.

Typing examples follow (commands/express ions are from
§ 5.2; x,//, z are high while u, v, te are low in E).

(i) E / u b cl : cmd g~ war',rv tbr arbi t rary .s (we omit
such s from now on). Hence its t amper level is high.

(ii) E / x z k- cz : cmd g wu (with bound x and z typed
low). Hence its t amper level is low.

(iii) el, hence ca, is un typable by the condit ion on heights
in [Lain-*].

(iv) E / x k- ea : Ni~ ~LNi~, wu while c4 is i l l- typed under E,
not because of ~z , bu t by wu.

(v) cs is i l l- typed by recording ww in the action set.

The typing system satisfies s tandard properties such as sub-
ject reduction. For the nonintert~rence property, we again
use the embedding into secure processes.

89

[Id] E , x : T ~ x : T , X (E ~ X)

E , x : T ~ e : T ' , X
[Lain] E b Ax:T.e : T ~ T' ,X/ac

[Lain-*] E , x : T N e : T ' , X
E ~ A:c :T.e : T ~ T ' , X / c c "

E~cre't:ura e:T, XtJY

(*) ht(T~T')_~ ht(E(y)) for each y ~ f n (X / x) s.t. E(y) mutable.

if 7' mutable then
wx ~ X else rx ~ X [Co,~st] E ~ ~ : N~,X (E ~ X)

If x ~ fn(X) then E ~ e : T ~ T ' , X E ~ e ' : T , Y
E(x) not mutable. [App] E ~ ee ' : T ' ,X tJ Y

s K t a m p E (X / x) , (,) lApp-*] E b e : T = ~ a T ' , X E k e ' :T ,Y
E bee ' : T ' , X 0 Y

[Sub] E~e:T~X TILT'
E ~ e : T ' , X

Figure 7: Typing Syste in for VS-Calculus wi th Reference and Procedure (express ions)

5.6 E m b e d d i n g and n o n i n t e r f e r e n c e
~,¥~ now embed the typing system in rc~' . First we embed
types. Below in (base), r (r) is the result of replacing all
outermost ?~/* (if any) with ?~ in r .

(value) T" d:2' (To) % ~ = ([~]~)'~

def ~ [(T°)% & T-----70 %]:~" ':~" (T mutable)

=°f~ (T)° - [[(T °)% a T-~0%]'2'<' (else)

f(mi" x:=(T ~) (~x ¢ X)
(base>

(E ' J : T) ~ x = [(E) ~ x x : T --~ (else)

(action) ~yt?j 0% ~yt?j ()~
(cmdr~ X}~,s def o

(T,X}~,E d~f :T" = ~ @ (m l

The subtyping in command types tbr converging commands,
cf. § 5.3, is now given a clear account: the termination chan-
nel has a unary $~-type, so its level is insignificant. Simi-
larly, the invariance in subtyping of rei~rence types is eluci-
dated by observing the content type now occurs both covari-
antly and contravariantly [4, 30] (in fact the subtyping on
value types in § 5.3 precisely corresponds to a natural ly de-
fined secrecy subtyping in 7r~{:~-types). Finally protect(T) =
t amp(T°) (= tamp(T°)), using which we also know T is sat~
iff T ° (hence T °) is s tructural ly secure.

The encoding of commands and expressions is given in
Figure 10 in Appendix. Expressions use call-by-value en-
coding [25, 20]. whi le is t ranslated using tail recursiom }¥~
can easily verily:

PROPOSITION 5.2. E F- e :T, X irr~plies ~- [e]~ > (T, X}~,E,
E ~ c : p irr~plies ~ [c]f > (p}~,E end E ~ o : p irr~plies

Now define E ~ a l ~ a2 precisely as in § 3.2 and let

[O_]E clef Hi ref(xivi} ~i" Then we have E b a l ~ az iff

In, I s ~ [[a2]s ["only if" is from Proposition 4.3, while
for "if" we use contextual reasoning for each i- th compo-
nent]. Using the simulation in reduction in addition and
reasoning just as in Section 3, we conclude:

THEOREM 5.3. (non-inter%rence) Let E ~ o : cmdr~ X
and E ~- cr~ ~ cry. Then (o, cry) --+~ cr i irr~plies (o, cry) >~
a~ such ~ha~ E k- a~ ~ ~ a~.

There are a %w remaining topics. First the semantic coun-
terpart of 7r~{~' is worth studying, which can be used for
refining typing rules and justi[ving sa%ty of untypable pro-
grams. See [41] for a recent work in this direction. Second
we have not touched the possibility of refining 7r~)~ ' to take
information leak by t ime consumption into account [5, 8,
34]. Since the simulation in the given embeddings is close,
we believe this direction is %asible. Finally we have not
considered in this report how other elements such as poly-
morphism and control as well as other security concerns can
be incorporated in the present framework.

6. R E F E R E N C E S

[1] Abadi, M., Secrecy in programming-language
semantics, M F P S XV, ENTCS, 20 (April 1999).

[2] Abadi, M., Banerjee, A., Heintze, N. and Riecke, J., A
core calculus of dependency, POPL'99 , ACM, 1999.

[3] Abramsky, S., Jagadeesan, R. and Malacaria, P., Full
Abstract ion for PCF, 1994. Info. ~ Corr~p. 163 (2000),
409-470.

[4] Abramsky, S., Honda, K. and McCusker, G., Fully
Abstract Game Semantics %r General Re%rences,
LICS'98, 334 344, IEEE, 1998.

[5] Agat, J. Transforming Out Timing Leaks, POPL'O0,
2000, ACM Press.

[6] Berger, M., Honda, K. and Yoshida, N., Sequentiality
and tile 7r-Calculus, TLCA01, LNCS 2044, 29 45,
Springer, 2001.

[7] Boudol, G., Asynchrony and the pi-calculus, INRIA
Research Report 1702, 1992.

[8] Boudol, G. and Castellani, I., Noninteri~rence for
Concurrent Programs, ICALPO1, LNCS 2076,
382 395, Springer, 2001.

[9] Denning, D. and Denning, P., Certification of
programs %r secure information flow. Corr~munication
of ACM, ACM, 20:504 513, 1997.

[10] Focardi, R., Gorrieri, R. and Martinelli, F.,
Non-inter%rence for the analysis of cryptographic
protocols. ICALPO0, LNCS 1853, Springer, 2000.

[11] Girard, J.-Y., Linear Logic, TCS, Vol. 50, 1 102, 1987.
[12] Heintze, N. and Riecke, J., The SLam calculus:

programming with secrecy and integrity, POPL'98 ,
365 377, ACM, 1998.

[13] Hennessy, M. and Riely, J., Intbrmation flow vs
resource access in the asynchronous pi-calculus,
ICALPO0, LNCS 1853, 415-427, Springer, 2000.

90

[14] Honda, K., Types %r Dyadic Interaction.
CONCUR'93, LNCS 715, 509-523, 1993.

[15] Honda, K., Composing Processes, POPL'96, 344-357,
ACM, 1996.

[16] Honda, K., Kubo, M. and Vasconcelos, V., Language
Primitives and Type Discipline for Structured
Communication-Based Programming. ESOP'98,
LNCS 1381, 122 138. Springer-Verlag, 1998.

[17] Honda, K. and Tokoro, M. An object calculus %r
asynchronous communication. ECOOP'91, LNCS 512,
133 147, 1991.

[18] Honda, K., Vasconcelos, V. and Yoshida, N., Secure
Information Flow as Typed Process Behaviour,
ESOP'O0, LNCS 1782, 180 199, 2000.

[19] Honda, K. and Yoshida, N. On Reduction-Based
Process Semantics. TCS. 151,437-486, 1995.

[20] Honda, K. and Yoshida, N. Game-theoretic analysis of
call-by-value computation. TCS, 221 (1999), 393 456.

[21] Howard, B. T., Inductive, coinductive, and pointed
types, ICFP'96, 102 109, ACM, 1996.

[22] The Haskell home page, http://haskell.org.
[23] Hyland, M. and Ong, L., "On Full Abstraction for

PCF": I, II and III. Info. ~ Cornp. 163 (2000),
285-408.

[24] Kobayashi, N., Pierce, B., and Turner, D., Linear
types and re-calculus, POPL'96, 358 371, 1996.

[25] Milner, R., Functions as Processes, MSCS.
2(2):119 141, 1992,

[26] Milner, R., Parrow, J. and V~lker, D., A Calculus of
Mobile Processes, Info. f3 Cornp. 100(1):1 77, 1992.

[27] Mitchell, J., Foundations for Prvgr~mmin 9 Languages
MIT Press, 1996.

[28] Palsberg, J. and 2~rbaek , J., Trust in the A-Calculus.
JFP, 7(6):557 591, 1997.

[29] Potter, F. and Conchon, S, Information flow inference
for free, ICFPO0, 46 57, ACM, 2000.

[30] Pierce, B and Sangiorgi.D, Typing and subtyping for
mobile processes, MSCS 6(5):409 453, 1996.

[31] Ryan, P. and Schneider, S. Process Algebra and
Non-interf>rence. CSFW'99, IEEE, 1999.

[32] Sangiorgi, D. re-calculus, internal mobility, and
agent-passing calculi. TCS, 167(2):235 271, 1996.

[33] Sabelfield, A. and Sand, D. A per model of secure
inibrmation flow in sequential programs. ESOP'99,
LNCS 1576, Springer, 1999.

[34] Smith, G., A New Type System for Secure
Information Flow, CSFW'01, IEEE, 2001.

[35] Smith, G. and Volpano, D., Secure information flow in
a multi-threaded imperative language, 355 364,
POPL'98, ACM, 1998.

[36] ToKe, M., Type in%rence tbr polymorphic re%rences,
Info. f3 Conp., 89:1 34, 1990.

[37] Vasconcelos, V., Typed concurrent objects.
ECOOP'9d, LNCS 821, 100 117. Springer, 1994.

[38] Volpano, D., Smith, G. and Irvine, C., A Sound type
system Jbr" secure, flow analysis, a. Computer Security,
4(2,3):167 187, 1996.

[39] Yoshida, N. Graph Types for Mobile Processes.
FST/TCS'16, LNCS 1180, 371 386, Springer, 1996.

[40] Yoshida, N., Berger, M. and Honda, K., Strong
Normalisation in the re-Calculus, LICS'01, 311 322,

IEEE, 2001.
[41] Yoshida, N., Honda, K. and Berger, M., Linearity and

Bisimulation, To appear as MCS technical report,
Leicester, 2001.

[42] Zdancewic, S. and Myers, A., Secure In%rmation Flow
and CPS, ESOP01, LNCS 2028, 46-62, Springer, 2001.

A P P E N D I X

A. A D D I T I O N A L D E F I N I T I O N S F O R r ~ :

The fbllowing gives the sequentiality constraint fbr unary
types: %r branching/selection, we require the same con-
straint for each summand. Let ~ = rl..r,~ below.

(C1) In (g)v with p C ,t4#, rod@a) C ,t4r for each 1 < i < n.
Dually when p C .M/t.

(C2) In (g):~ md(r~) C ,t4r for each 1 < i < n except at
most one j for which md(u) C ,t4 t. Dually for (g)r~.

(C3) In (~):'~, md(ra) ¢ .Air fbr each 1 < i < n except at
most one j for which md(u) = Sx. Dually for (g)rx.

The key constraint for integration is that $~ can only be
carried by a linear replication !~. If this is violated, then
linearity can no longer be maintained. This IO-alternation
and a unique answer at $ at each server type come from
game semantics [3, 20, 23] (see [6]). The typing rules for
selection and branching are defined as follows.

(Se,) (p ~ ~r,r)
[e~ ~]~ F ±, ~ c(J:~a> C / j = A x = : ~-,~-~"

(Bra $~) s K tamp(A)
F]~ > ~:¢~ ® t t ~ -~ ® t 2 : ~ B -~

F x [~ d k) .] q > (x : [~q]}~-+A) @ B

Note that we need to check tampering level in (Bra *~) in
contrast to (In*~). (BraaX), (Bra :~) and (Bra :x) are defined
just as (InaX), (In :~) and (In:X), respectively.

B. A D D I T I O N A L D E F I N I T I O N S F O R ~ '

The height of types, ht(.), is given as:

ht((f)~) = (E i ht(r~)) + 1
ht([&~]} m}) : ht([Qigd~ m}) : max({ht((g~)~')})

Then ht(A) = max({ht(A(x0) I xi C active(A)}). In typing,
?[/,A indicates all types in A have ?l-modes but they can be
mutable, while ?~A indicates rod(A) = ?~ as well as no types
in A are mutable. With this convention, the typing rules are
those in Figure 2 and the rule for reference in § 43, together
with the following rules for mutable replicated input /output .

(In'l,,) s Ktamp(A@B)
!L !L ht(('~), ") _~ ht(B) ht(('~js ") = ht(A(xj) (Vx C fn(Aj)

F P > y . r @ ~" ~ '7'.Lff.Lff d ' ? r -a @ ?Ll,?[i,]_~-a @ "?L'? k C - a . . :

~ ! x (g) . r ~ (x:(¢) '2" ~ A) O B O C

(O°t:~,,) active(m - {j}
?L ht(('~)s ")) _~ ht(E)

e I ' > B(ff:~} -~ ® C B / f f -- ":~/ : [~E ® "%':,~F

The rules for mutable branching/selection are similar.

91

Below we set T -- [-~k..~/~-*7] and 2 -- x , . . . x n - , .

Ix: ~']~ ~ f b -+ x] ~'°

[kxo :: /b.M : :/b ~ : / '] ~ ~ f ! u(xo2z).(~, u ') ([M : T]~, I Arg(u'~Tz) ~')

~MN: :/']~ ~ f ! u(~z) . (~ mxo)(~M : % ~ : / '] ~ I~N: %]~0 I Arg(mxo2z} TaT)

[i n l (M) : Tz + 2:e]~ ~ f ! u(c)2 in , (m)[M : Tz].~

[case L of i n l (x ,) M , or inr (x2)M2 : T]~

(~f! u(K).(~, l)([L : Tz ÷ T2]~ I S°m(g~, (xOMd r)

[se~ x - iv: T' ~n ~ : ~']~ ~ f (-x~O([~ : ~']~ lilY: T % I uft(x~) r ')

ig(~} ~ ~ f ig(f)Ili[zi -+ W] ~- (md(~i) ~ ..t4? U ..t47)

Arg(x~z}[T~..T,,v] ~ f .ffy(ffz,}7.'~'..T,~v"
S.m(~, (~.~)M~) ~'

Lift(x~O r ~b/ !x(e,o,).~(~.)4~O.A~g(~S,o,) r

[x -e x '] [<~*k ~ ~Ef x [e ~ (f f d . T i n d ~ d u u [v~ -e vu]~-]

b" ~ x,]I<~,] '~ ~Ef !x [e~(~d.T in~(gduu [v~ ~ vu]~-]

The copy-cats of unary types are defined by reducing the indexing sets to singletons. Similarly for the copy cats of afline types.

F i g u r e 8: E n c o d i n g o f D e p e n d e n c y C o r e C a l c u l u s

(x : T}u~ (~f g@c} 2'-~- (sec .c -- N in M : T}~ d-~f (. r~)((N : Tt}n I r@c).(M : T}u~)

(~: r~>~ dkf~.(~.)Dd~ (~,x: U.M : U>~ d2f ~C[~.(~')(,,x)(±~ Ib" -e ~']v°)]~ (x ~ re(C))
(Xx: S.M: S~'>~ d:f ~.(~)! 4x~0.(M>,~ [(- ~ 0 (~ ")'~ I~(~F") (x ~ f.(C))

= def , • (M~V: ~'>~ d~f (-~0((M : s~'>,~ I ~4~).(-~0(Uv : sb~ I~ (~? -w~'') ((M : u>~ = c[~#.)±&)

<if M then N1 e l s e N2 : T}~ ~ f (~.rn)((M : Na)n~ Im(c').~(e)e[&i<Ni : T}~]) (Nj = N2 if'/, > 2)

(Ax : ~/k.M : Ui~U2}~ and (bind Jr = /V in M}~ are the same as (Ax : S.M : S ~ T } ~ and (seq x = N in M}~, respectively.

F i g u r e 9: E n c o d i n g o f C a l l - b y - V a l u e D C C

(E x p r e s s i o n)

(A.c.e}~ def g,(c')k'(xr@@}#~. (succ(y)}~ def , = = g.(c).c(e).gial(c)c[&ieiai+l]
. - - _ _ ~ , t o T o

(C o m m a n d)

[skip]f d~f K,

Ix := v']~ d_~f (u m)((v}~ I m(w).xia2(wu} ~ -0 .~) (E ~ v : T)

~C'l;C'2]f clef (v e)(~c'l]~ I e.~c'2]f)

else 0 2 V,t'e" ~,' ,t" z z ,,~.5~ C~ ./n e" U "'E = (")((>~ I=() [~"] (]1 7) (~.~=~.2ifi _> 2) ~±f v then Cl Edef E

[while ! x do ~']~
tee (,.~)(e(k)k.~, I [f -+ ~]

1 1 /n I .~(k)z nl(~.)4v).;,7(~)4(, 0 (B]f I a.j(k').k'.k)ek])

F i g u r e 10: E n c o d i n g o f V S - C a l c u l u s w i t h R e f e r e n c e a n d P r o c e d u r e

[l e t x : e i n c']~ d~f (~,c)((e}c E i u (x) , [c]~)

[new x ~-+ y in c ']~¢~f (l / x) (re f (xy} T° I [c']~)

[l e t x : ZV i n ~']~ d : f ; ,T in l (~>(x) ,B ']~

(s t y : T)

92

