
Programming language methods in computer security

J o h n C. Mi tche l l

D e p a r t m e n t of C o m p u t e r Sc ience

S t a n f o r d U n i v e r s i t y
http://www.sta nford.edu/'jcm

Abstract

This invited talk will give a personal view of the field of
computer security and summarize some ways that methods
from the study of programming language principles can be
applied to problems in computer security. Some background
information is provided here in this short document.

Security and correctness

Computer security is concerned with detection and preven-
tion of unauthorized use of computational resources. Com-
puter security problems range from detecting potentially
malicious network traffic to password systems and other ac-
cess control mechanisms to mechanisms designed to prevent
installed code from corrupting a computing environment.

There is some overlap between computer security and
methods for ensuring software correctness. For example,
web browser code that contains a Trojan (functionality to
allow unauthorized access) is simply an incorrect browser
implementation: the specification of a web browser does not
include functionality for providing remote access to the com-
puter on which the browser is installed. Therefore, an inse-
cure browser could be considered an incorrect browser. For
this reason, many basic security concerns can be addressed
using methods designed for software assurance. At the same
time, however, security properties tend to have a different
flavor from other correctness properties.

One qualitative difference between security properties
and other correctness properties lies in way that system in-
put is considered. Although the following characterizations
are approximate and must be taken with a grain of salt, the
difference may be illustrated as follows:

• Correc tness : A software system is correct if correct
system input results in correct system output. To
give a simple example, the specification for a function
f : A ~ B generally says that for all inputs x E A, the
output f(x) E B has a certain property.

Permission to make digital or hard copies of all or pert of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies beer this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
POPL '01 1/01 London, UK
© 2001 A C M ISBN 1-58113-336-710110001 .,. $5 .00

• Secur i t y : A software system is secure if arbitrary input
does not have undesired consequences, such as release
of private information or corruption of the state of the
system. To continue the function example above, the
implementation of a function .f : A ~ B is insecure
if the computation of f (y) , for some y ~ A, causes
overflow of some buffer allocated on the run-time stack
and therefore results in some system call not related to
the correct calculation of function f .

In general terms, computer security is concerned with
behavior in arbitrary environments while correctness is often
stated using some restrictions on the environment.

Security analysis

In general, it is only possible to prove that a system or mech-
anism is secure in a relative sense. More specifically, a proof
of security involves some model of the behavior of the system
in question and, at least as importantly, some model of the
set of actions available to an attacker. This reliance on mod-
els leads to one fundamental connection between program-
ming language methods and computer security: the kinds of
programming language and system models often studied at
POPL can be used to characterize the behavior of a system
for the purpose of security analysis. A promising direction
for POPL-style research is to characterize the actions avail-
able to an attacker within these models, and devise methods
for reasoning about the possible effects of an attacker on a
system.

One computer security topic that has received consider-
able attention in recent years is security analysis of net-
work protocols. A number of methods have been de-
veloped, ranging from BAN logic and related approaches
[BAN89, GNY90] to finite-state analysis [Ros95, MMS97]
and proof methods based on higher-order logic [Pau97].
Most approaches in current use are based on enumeration or
reasoning about a set of protocol traces, each trace obtained
by combining protocol actions with actions of a malicious in-
truder.

There are several reasons why protocol analysis has at-
tracted so much attention. One is the importance of the
problem. To give one example, the Secure Sockets Layer
(SSL) protocol (analyzed in [MSS9S]) is used in a huge num-
ber of Internet purchases every minute. The purpose of the
protocol is to establish a secret key, shared between client
and server, that can be used to send a credit card number
or other data under encryption. If this protocol were sus-
ceptible to practical attack, millions of Internet customers

could have their credit card numbers stolen. Another rea-
son tha t protocol analysis has been popular in recent years
is the relative t ractabi l i ty of the problem. Security protocols
are typically simple distr ibuted programs that run for three
to seven communication steps and halt. Relative to other
software systems, they are therefore very simple programs.
Moreover, there is a s tandard idealized intruder model, com-
monly referred to as the "Dolev-Yao model," which appear
to have developed from positions taken by Needham and
Schroeder [NS78] and a model presented by Dolev and Yao
[DY83]. In this model, the attacker can intercept messages
sent on the network but cannot interfere with local proto-
col calculations carried out by parties to the protocol. The
attacker may block network messages, decompose them into
parts, remember all of the parts, decrypt parts if the key is
known, and send messages composed from previous message
parts to protocol part icipants.

More generally, there are many ways that methods from
programming language analysis have been used in security
protocol analysis:

• Use of process calculi and related formalisms to repre-
sent protocols in a form amenable to analysis.

• Model checking techniques to find flaws in protocols.

• Theorem proving methods to prove correctness of pro-
tocols.

• Use of concepts from logics of programs to develop spe-
cialized logics for proving protocol correctness.

In addit ion to protocol analysis, here are some other com-
puter security topics can be addressed using techniques de-
veloped or used in POPL-style research:

• Information flow and noninterference: the s tudy of
how information may be transferred from one user (or
process) to another in a multi-user system and how
such transfer of information can be prevented.

• System security flaws. An astonishing number of com-
puter security advisories stem from buffer-overflow er-
rors in system programs. Such flaws are amenable
to source-code stat ic analysis methods and dynamic
program-monitoring methods.

• Mobile code security: When code is transferred and ex-
ecuted dynamically, program analysis methods (such
as Java bytecode verification) can be used to examine
code before it is installed. Proof-carrying code [NL96]
is a popular approach tha t has received significant at-
tention at POPL and related conferences.

There are many addit ional topics represented in current se-
curity conferences such the IEEE Symposium on Security
and Privacy and the IEEE Computer Security Foundations
Workshop, both listed at http://www.ieee-security.org/, the
ACM Conference on Computer and Communications Secu-
rity, listed at http://www.acrn.org/sigsac/, and the Crypto
and Eurocrypt conferences organized by the International
Association for Cryptologic Research, www.iacr.org.

Compositionality and observational congruence

One part icular folk belief tha t may interest the POPL au-
dience is the belief in the security community that security

properties do not compose. A general problem with com-
position is tha t when two mechanisms are combined, one
may inadvertently reveal information related to the security
of the other. Here is a simplified example to illustrate the
point.

• Specification: Any par ty Alice must be able to send
any message m to any other par ty Bob in such a way
tha t no passive eavesdropper listening on the network
can determine the identi ty of message m.

• Implementation: We assume a public key infrastruc-
ture so tha t Alice knows the public encryption key K B
of Bob, Bob knows Alice's public key K A , and the cor-
responding decryption keys K B -1 and K A -1 are ini-
tially known only to Bob and Alice, respectively.

To send message m, Alice computes the encryption
~ m ~ g S of message m with Bob's public key and sends
two values to Bob: the encrypted message ~m~KS and
Alice's private decryption key K A -1.

Assuming tha t a good encryption function is used, the
implementation above meets its specification. A passive
eavesdropper will obtain two values from the network: the
encryption of m and a private decryption key not related
to the encryption of m. Since the private decryption key is
not related to the encryption of m, the eavesdropper cannot
learn the message m.

Consider what happens if we compose the secure proto-
col above with the same protocol used in reverse to send a
message from Bob to Alice. Using the notat ion commonly
found in the literature, here is the resulting protocol:

Alice ~ Bob : ~ m ~ K B , K A -1
Bob ---. Alice : ~ m ' ~ K A , K B -1

The symbols mean tha t Alice sends the first pair of values
to Bob and Bob sends the second pair of values to Alice.
This protocol clearly does not satisfy the composition of
the two specifications: after seeing both messages, a passive
eavesdropper can learn both messages, m and m I, since each
transmission contains the decryption key needed to decrypt
the message contained in the other transmission.

A promising approach for developing compositional se-
curity properties is to use observational equivalence, a stan-
dard and well-studied relation in programming language and
concurrency theory. For those not familiar with the con-
cept, two programs or systems, P and Q, are observationally
equivalent if they give rise to the same observable behavior
in all contexts. In symbols,

P '~ Q iff for all contexts C[] we have C[P] = C[Q]

where C[P] is the result of placing P in context C[] and = is
some basic equality defined using some primitive form of ob-
servations, such as printing a number or sending a boolean
value on some predetermined channel. The important fact
about observational equivalence is tha t it is provably a con-
gruence relation. Therefore, if we specify security proper-
ties as equivalences between systems and their specifications,
compositionality will follow.

To the best of my knowledge, the potential for using
observational equivalence in security specifications was first
realized by Abadi and Gordon and described in their paper
on the Spi-calculus lAG99]. The idea is very general and
seems promising for a variety of formalisms, including some
simpler tha t Spi-calculus and some tha t are more complex
(e.g., [LMMS98] and related papers).

References and further information

Copies of the slides for this talk and additional references
will be available at the web site listed below the author's
address above.

References

[AG99] M. Abadi and A. Gordon. A calculus for crypto-
graphic protocols: the spi calculus. Information and
Computation, 148(1):1-70, 1999.

[BAN89] M. Burrows, M. Abadi, and It. Needham. A logic
of authentication. Proceedings of the Royal Society,
Series A, 426(1871):233-271, 1989. Also appeared as
SRC Research Report 39 and, in a shortened form, in
ACM Transactions on Computer Systems 8, 1 (Febru-
ary 1990), 18-36.

[DY83] D. Dolev and A. Yao. On the security of public-key
protocols. IEEE Transactions on Information The-
ory, 2(29), 1983.

[GNY90] L. Gong, R. Needham, and R. Yahalom. Reasoning
About Belief in Cryptographic Protocols. In Deborah
Cooper and Teresa Lunt, editors, Proceedings 1990
IEEE Symposium on Research in Security and Pri-
vacy, pages 234-248. IEEE Computer Society, 1990.

[LMMS98] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Sce-
drov. A probabilistic poly-time framework for. proto-
col analysis. In ACM Conf. Computer and Commu-
nication Security, 1998.

[MMS97] J.C. Mitchell, M. Mitchell, and U. Stern. Automated
analysis of cryptographic protocols using Murk. In
Proc. IEEE Syrup. Security and Privacy, pages 141-
151, 1997.

[MSS98] John C. Mitchell, VitMy Shmatikov, and Ulrich Stern.
Finite-state analysis of SSL 3.0. In Proceedings of
the 7th USENIX Security Symposium, pages 201-216,
San Antonio, TX, 1998.

[NL96] G. Necula and P. Lee. Safe kernel extensions without
run-time checking. In Second Symposium on Operat-
ing Systems Design and Implementation, 1996.

[NS78] R.M. Needham and M.D. Schroeder. Using encryp-
tion for authentication in large networks of comput-
ers. Communications of the ACM, 21(12):993-999,
1978.

[Pau97] L.C. Paulson. Proving properties of security proto-
cols by induction. In lOth IEEE Computer Security
Foundations Workshop, pages 70-83, 1997.

[Ros95] A.W. Roscoe. Modelling and verifying key-exchange
protocols using CSP and FDR. In 8th IEEE Com-
puter Security Foundations Workshop, pages 98-107.
IEEE Computer Soc Press, 1995.

