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Abstract
Nowadays, the evolution of multi-core architectures goes towards
increasing the number of cores and levels of cache. Meanwhile,
current typical parallel programming models are unable to exploit
the potential of these processors efficiently. In order to achieve de-
sired performance on these hardwares we need to understand ar-
chitectural parameters appropriately and also apply them in algo-
rithm design. Computational models such as Multi-BSP, illustrate
these parameters and explain adequate methods for designing al-
gorithms on multi-cores. One of the most applicable categories of
problems is Divide-and-Conquer (DaC) that needs to be adapted by
such model for implementing on these systems.

In this paper, we have attempted to make a mapping between
DaC tree and the Memory Hierarchy (MH) of multi-core proces-
sor. Multi-BSP model inspired us to introduce Multi-DaC program-
ming model. Analogous to Multi-BSP analysis, lower bounds for
communication and synchronization costs have been presented in
the paper respecting DaC algorithms. This work is a step towards
making multi-core programming easy and tries to obtain correct
analysis of DaC algorithm behavior on multi-core architectures.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming; D.3.2 [Language Classifica-
tions]: Concurrent, Distributed and Parallel Languages; D.4.8
[Performance]: Modeling and prediction

General Terms Multi-BSP, parallel, algorithms, Divide-and-
Conquer, multi-core architectures, Skeletal Programming, cache,
Memory Hierarchy

Keywords Multi-BSP, parallel, Divide-and-Conquer, multi-core
architectures, cache, Memory Hierarchy

1. Introduction
The multi-core architectures were introduced as a remedy to avoid
the limitations which were made during development of parallel
architectures such as high energy consumption, heat dissipation,
and the memory-wall problem. Traditional programming models
don’t consider existence of shared memory hierarchy on a proces-
sor therefore using these models will produce undesired results. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DAMP’12, January 28, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1117-5/12/01. . . $10.00

void of proper multi-core software development models, designing
efficient programs have become awkward, so there is a demand for
revising current models or introducing new ones.

On the other hand, it is predicted that in the forthcoming years
the number of cores on a chip will increase in large numbers and
MH will get larger in more levels respectively. Hence, if these
architectures want to stabilize their place among parallel systems
have to be accompanied by appropriate programming tools and
models because the complexity of efficient algorithm design for
them will get higher soon.

In order to simplify programming, it seems we should distin-
guish efficient system parameters to be able to add a layer over
architecture to hide its complexity from programmers. Program-
ming models can well show efficient performance parameters and
are able to lessen the difficulty of algorithm design by explaining
the style of programming. So, designing a robust flexible model
that can fit to all needs and future architectures is a high goal.

In this paper, we attempted to step forward towards achieving
the mentioned goal by presenting a programming model for Divide-
and-Conquer (DaC) algorithms which are widely applied species
of algorithms. The proposed model is based on adapting DaC to a
computational model for multi-cores called Multi-BSP. The benefit
of our model is that it can anticipate the cost of algorithm execution
on hardwares which have a hierarchical shared memory.

In the following section the related works are presented. In
the Section 3 we introduce the basic description of our model.
In Section 4 we describe mapping algorithm and in Section 5
scheduling algorithm used in the model is presented. Lower bounds
for estimating the costs are demonstrated in Section 6. Two case
studies, merge sort and convex hull, are evaluated in Section 7. The
conclusions and future works appear in the last section.

2. Related Works
With the advent of multi-cores, the need to exploit their potential
was appeared. One of the efforts undertaken for fulfilling the above
need is modeling the hierarchical memory parallel architectures
to make the ability of their performance analysis. Computational
models for parallel and distributed systems such as PRAM[8],
LogP[6], QSM[13], and BSP[17] can be the apt candidate for the
purpose, but as they have not included the hierarchical memory
on the scale of a single chip, they do not have the required effi-
cacy for these architectures. Recent works have been done on hi-
erarchical single-core processors. For example, PEM is a two level
multi-processor model in which, the first level is related to private
cache while the second level is an external shared memory among
processors. The model is based on two previous models of Ideal
Cache Model[1] and Two Level I/O Model[9]. Multi-core Cache
Model[5] is more extended than PEM. In stride of evolution of
multi-core architectures, it is determined that with the increase in
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core numbers and growth in memory bus contention and existence
of memory latency, the levels of cache must be increased to com-
pensate these problems. Therefore, some architectures came out
with more cache levels, and new computational models appeared
respectively[4][3]. In the past, UMH[2] and MHG[15] were con-
sidered as multi-level cache models, but they are not suitable for
multi-cores. Recently, a model that is called Universal multi-core
Model[16] has extended MHG and uses it in multi-cores. In this re-
gard, in[5], HM model has enhanced Multicore Cache model. The
most distinguished model for multi-cores is discussed by Valiant
which is called Multi-BSP[18]. In this model, the architecture is
described by a set of parameters corresponding to size, latency, and
levels of memory and it attempts to map supersteps in architecture
in order to make a bridge between multi-core architecture and BSP
programming.

According to Valiant’s opinion[18], Multi-BSP is a proper
choice for recursive algorithms, and since DaC has a recursive
structure, it is a good match for Multi-BSP adaptation. Although
Multi-BSP conforms to recursive algorithms, just specific recursive
ones can be implemented by this model, therefore, this fact can re-
strict the application of this model in parallel computing. Our work
removes this restriction from DaC algorithms.

3. Multi-DaC Programming Model
First, following three definitions are presented:

Definition 3.1. Task Dependency Tree (TT), is a result of DaC al-
gorithm execution so that leaf nodes execute sequntial algorithm on
input data, and non-leaf nodes merge the output of their children.
In this tree the branching factor is K that is an integer number.

Definition 3.2. Memory Hierarchy Tree (MT), represents the hier-
archical structure of multi-core architecture. In this tree, leaf nodes
(lowest level) and non-leaf nodes are mapped on the processor
cores and cache/memory components respectively.

Definition 3.3. The required memory for executing a sequential
algorithm with input size of t is ms(t); this memory includes input,
output, and temporary space needed during the execution. Also,
mm(t) is the required memory for a merge algorithm execution.

Presumptions in Multi-DaC model are as follows:

1. Architectural detail description used in this model are based on
definitions of Multi-BSP model[18]. ”An instance of a Multi-
BSP is a tree structure of nested components where the low-
est level or leaf components are processors and every other
level contains storage capacity”[18]. A level i component
of MT, i = 1..d and d is depth of MT levels, is shown by
(pi, gi, Li,mi) where pi is the number of level i− 1 com-
ponents inside a level i component. gi is the communication
bandwidth parameter, which is the ratio of the number of op-
erations that a core processor can perform in a second to the
number of words that can be transmitted in a second between
the memories of a component at level i and its parent com-
ponent at level i+ 1. And, Li is the cost charged for barrier
synchronization of a level i superstep. Also, mi is the num-
ber of words of memory inside a level i component that is not
inside any level i− 1 component. Moreover, the last level of
memory(root) is assumed to be unlimited, and in the lowest
level, g0 = 1 and L1 = 0.

2. The DaC is considered to be regular. The task dependency
tree(TT) of a regular DaC is a complete K-tree and its depth
depends on the size of input. For example merge sort, matrix
multiplication and FFT all are regular but quick sort is not.

3. Cache memory hierarchy runs in inclusive mode where any
word at one level has a distinct copy at every higher level.

Figure 1. An example for Mapping TT to MT

4. Mapping To Memory Hierarchy
Multi-DaC model proposes a mapping from TT to MT in a way
that each node of TT is logically placed on a level of MT that
has equal or larger memory size than needed memory for the node
execution. (See Fig. 1.) The required steps for mapping from TT to
MT includes:

1. Level Mapping: Maps one level of TT to one level of MT.

2. Component Mapping: Maps TT nodes which are mapped to
one level of MT, to components of that level.

3. Core Mapping: Maps nodes which are mapped to a compo-
nent, to cores of that component.

4.1 Level Mapping

In the usual cases, the input size of problem (n) is huge, so the
number of TT levels (h) would be higher than MT levels. Accord-
ing to pigeonhole principle, some MT levels receive

⌈
h
d

⌉
or more

of TT levels. Logically, each level of TT must be mapped to a level
of MT that has memory size equal or greater to the needed memory
by the TT level nodes.

Lemma 4.1. Suppose n is the input size, K is the branching factor,
and h is the depth of TT. Then size of needed memory for a level i
node of TT is:

Vi =

(
h−1∑
j=i

Kj−i mm(
n

Kj
)

)
+Kh−i ms(

n

Kh
) (1)

Proof. Since in a DaC tree, sequential and merge algorithm are
carried out in leaf and non-leaf nodes respectively, the following
recursive formula can compute the needed memory size that a level
i node in TT requires.

Vi =

⎧⎨
⎩

ms(
n

Kh ) i = h

K Vi+1 +mm( n
Ki ) 0 ≤ i < h

(2)

Each TT node is either leaf or root subtree. In Formula 2. the first
part corresponds to required space for sequential execution of a
leaf. The second part is the needed space for receiving K children’s
output and merging them in the node( children’s parent). Regarding
to the inclusive behavior of memory levels, Formula 2 shows the
overall required memory for a level i node of TT. Then the iteration
form of Vi will be:

Vi = mm( n
Ki ) +Kmm( n

Ki+1 ) +K2mm( n
Ki+2 ) + · · ·+

+Kh−i−1mm( n
Kh−1 ) +Kh−ims(

n
Kh )
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Therefore, the Formula 1 will be trivial.

Definition 4.2. (Level Mapping) The mapping of a level i node of
TT to a level of MT is as follows:

r(i) = {min(j)|mj ≥ Vi}
where i is the level number of the node in TT and j is the number
level in MT. And also Vi is the sum of needed memory for its input,
output, and children.

Definition 4.3. The level ith of MT receives levels of TT that are
between fst(i) and lst(i) where :

fst(i) = {min(j)|r(j) = i}

lst(i) = {max(j)|r(j) = i}.

4.2 Component Mapping

Each node of TT that is mapped to a level of MT must lie on a
component in that level. In this mapping, for each component, a
queue will be formed. Then, the levels of TT that is mapped to the
component will be assigned to the queue in bottom-up manner i.e.
lower level nodes of TT receive higher ranks in the queue.

Lemma 4.4. The length of queue for mapped nodes of ith level of
TT on a component of MT, where K is the branching factor of TT,
is as follows:

Si =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 i = 0⌈
Si−1K

pr(i)

⌉
i = fst(r(i))

Si−1K

(3)

Proof. In the first level of TT , we have just one node therefore the
queue length for that level would be one.

The times of mapping nodes of ith level of TT to a component
of MT is multiplier of their parent’s queue length where r(i) is cor-
responding level of MT and pr(i) is the number of subcomponents

so we have
⌈

Si−1K

pr(i)

⌉
.

In the case that nodes are mapped into the component of their
parent i.e. i �= fst(r(i)) must be executed by the component and
the queue length for them would be Si−1K.

In a level superstep[18], all computations for the ingress node
must be finished in order to complete the superstep. Hence, the
number of superstep for a level i component is Sfst(i).

4.3 Core Mapping

According to Multi-BSP[18], the number of cores for a level j
component of MT is equal to:

Pj = p1p2...pj .

In this step, the dequeued node must be affined to a core. This
affinity can be expressed by:

C = f + i

where f is the first core number in parent’s component, and i is
the corresponding core number that is determined by round-robin
algorithm when 0 ≤ i < Pj . Finally, C is the assigned core
number.

5. Relationship with Multi-BSP
In this section the scheduling of Multi-BSP model is reviewed and
the mapping required for conforming to Multi-DaC, that is a variant
of Multi-BSP model, is presented.

In Multi-BSP, program execution commences in a component of
highest memory level and continues to the last level. In each com-
ponent input data must be divided into equal parts that are less or
equal than subcomponents’ memory size. Because the number of
these parts is likely to be more than the number of destination sub-
components, sending them must be done in phases. Each phase is a
level i superstep that is a construct within a level i component that
allows each of its pi level i−1 components to execute independently
until they reach a barrier. When all pi of these level i - 1 compo-
nents have reached the barrier,they can all exchange information
with the mi memory of the level i component with communication
cost as determined by gi−1[18]. Designed algorithms for Multi-
BSP must have desired variant branching factor corresponding to
each memory level. Finding such algorithms seems laborious.

To alleviate the complexity of designing Multi-BSP algorithms,
Multi-DaC model tries to present a mapping between divide-and-
conquer algorithms and Multi-BSP without need to large changes
in conventional DaC algorithms. In this model in contrast to Multi-
BSP, divisions are based on a constant factor, task dependency
branching factor. To reach the desired part size, TT must be ex-
panded within the component until the expanded levels can be sent
to subcomponents.

Multi-DaC superstep contains the execution of component’s
ingress node of TT and all its subtree. Superstep starts with sending
a node to a component, continues with creating the node subtree,
and ends with merging the levels of the subtree. Analogous with
Multi-BSP, a superstep in Multi-DaC, includes the supersteps of
its component’s subcomponents that are synchronized by barrier
mechanism and share their results on the parent component.

To avoid loss of productivity in performing merge operations,
Multi-DaC model benefits from running multiple merge operations
concurrently on the subset of cores that are correspond to the
component.

6. Lower Bounds
According to the proposed mapping and the scheduling algorithm,
conforming to the lower bounds presented in [18], the total com-
munication and synchronization cost of an algorithm on Multi-DaC
model can be computed as follows:

Theorem 6.1. The cost of communication caused by a divide-and-
conquer algorithm with branching factor of K and input size of n
on a multi-core architecture defined by Multi-BSP model with depth
of d is at least:

comm(n, d) ≥
d−1∑
i=1

SjVjgi

when j is fst(i).

Proof. The overall communication caused by a level i superstep,
according to descriptions presented in Section 5 is equal to the
memory consumption by the first level node of TT mapped to the
ith level of MT. So, the total communication size for the ith level
superstep using Lemma 4.1 and Defintion 4.3 is Vfst(i). Also, the
number of supersteps for the level ith component using Lemma
4.4 is Sfst(i). Therefore, total communication cost for level ith
component is SjVjgi. Consequently, the overall communication
cost caused by the algorithm can be computed by summarizing cost
of all memory levels.
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Theorem 6.2. The cost of synchronization caused by a divide-and-
conquer algorithm with input size of n on a multi-core architecture
defined by Multi-BSP model with depth of d is:

synch(n, d) ≥
d∑

i=1

lst(i)∑
j=fst(i)

Sj Li

Proof. Using Definition 4.3, Lemma 4.4 and descriptions presented
in Section 5, each mapped TT level where j is the level number TT
must be synchronized Sj times in order to get processed. Therefore,
the total cost for a level i is:

lst(i)∑
j=fst(i)

Sj Li

and for all of levels of MT results the theorem.

7. Case Studies
In this section, two parallel algorithms, Merge Sort and Convex
Hull, are analyzed and simulated based on Multi-DaC model.

7.1 Merge Sort Algorithm

Here, we used the algorithm presented by[11]. Regarding to the
model and the fact that MergeSort halves data into two equal
sections, the value of K will be 2. Also, the memory complexity
for sequential portion and merge stage are as following:

ms(n) = O(nlog2n)

mm(n) = O(n)

7.2 Convex Hull Algorithm

There are some Convex Hull algorithms such as quickHull[7],
Graham scan[10] and divide-and-conquer[12]. The algorithm that
is used here is the divide-and-conquer algorithm presented for two
dimensional points. Similar to MergeSort, the algorithm[12] tries
to partition points into two equal sections, so the value of K will
be 2.

The memory complexity for sequential and merge stages are as
follows:

ms(n) = O(nlog2n)

mm(n) = O(n)

7.3 Simulation

The simulations presented in the paper, are performed by Su-
perESCalar Simulator(SESC) that is introduced in[14]. SESC is
a cycle-accurate architecture simulator which allows defining a
desired multi-core with complex memory hierarchy. In order to
evaluate the model, two experiments have been designed based on
increasing the number of cores. For the experiments, Table I shows
the configurations used in the experiments.

The overall execution time of an algorithm in this model is
calculated by:

Exec(n, d) + Comm(n, d) + Synch(n, d)

• Merge Sort: As time complexity for merge stage is O(n) and
for sequential execution is O(nlogn), then parallel time is

Exec(n, d) =
h−1∑
i=0

2(
n

Ki
)Si + (

n

Kh
log

n

Kh
)Sh

Figure 2 shows a comparison between simulation results and
outcome of the analytical model for estimated execution time.

Table 1. Used MT-configurations in the experiments
Cores Configurations( (pi, gi,Li,mi) , i=1..4)

4 (1,1,0,32KB) (2,3,L2,128KB) (2,38,L3,512KB) (1,∞,L4,∞)
8 (1,1,0,32KB) (4,3,L2,256KB) (2,38,L3,1MB) (1,∞,L4,∞)
16 (1,1,0,32KB) (4,3,L2,256KB) (4,38,L3,2MB) (1,∞,L4,∞)
32 (1,1,0,32KB) (4,3,L2,256KB) (8,38,L3,4MB) (1,∞,L4,∞)
64 (1,1,0,32KB) (8,3,L2,512KB) (8,38,L3,8MB) (1,∞,L4,∞)

Figure 2. Merge Sort:simulation and analytical results for input
size of 36 million integer numbers.

• Convex Hull: In the divide-and-conquer algorithm, merge
stages and sequential execution have similar time complexity,
so the parallel time is as follows:

Exec(n, d) =

h∑
i=0

(
n

Ki
log

n

Ki
)Si

Finally, according to these results, it can be implied that our model
and the simulation have the same behavior and also the model is
able to approximate the behavior of the algorithm.

8. Conclusion and Future works
In this paper we have proposed a model for multi-core comput-
ing which is an extension of Multi-BSP model. Our model is
called Multi-DaC because it maps divide-and-conquer algorithms
on cache hierarchy of multicores. Lower bounds for communica-
tion and synchronization costs are provided by the model. In ex-
periments we have studied merge sort and convex hull problems
and evaluated them by simulated hardware. The results proved the
correctness of our computational model.

Multi-DaC model is an effort to ease the programming on the
new emerging multicore architectures. It facilitates implementation
of one of the most broad applicable of algorithms i.e. divide-and-
conquer. In this regards, we will implement divide-and-conquer
skeleton to provide higher-level programming to hide complexity
of efficient low-level programming and enhance portability of the
code. We are going to develop the model by considering to issues
such as load-balancing, false-sharing, thread’s overhead and using
techniques in implementation like work-stealing, prefetching and
lightweight tasking.
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Figure 3. Convex Hull:simulation and analytical results for input
size of 1.5 million points.
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