
Message of Thanks
On the receipt of the 2011 ACM SIGPLAN Distinguished Achievement Award

Tony Hoare
Principal Researcher, Microsoft Research Ltd.,

Hon. Mem. Cambridge University Computer Laboratory.

Categories and Subject Descriptors D.2.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.2.4 [Software En-
gineering]: Software/Program Verification; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages

General Terms Verification, Reliability, Languages, Theory, Se-
curity

Even to one who has lived long enough to receive many awards,
the recognition of distinguished achievement from the scientific
community in one’s own research field is surprisingly welcome.
I particularly treasure the SIGPLAN citation for my award, which
singles out exactly the modest achievements of which I am most
proud. I have known nearly all the previous winners of this award,
and they number among my professional colleagues, rivals, and
friends. I have derived inspiration from them all, and I am pleased
to be regarded in their company.

The award prompts me to reflect again on the origins and
progress of my professional career: how did I select the topics
for my research? What methods did I consider appropriate for an
academic researcher to pursue such research? What is the current
level of maturity of research on these topics? What does the fu-
ture hold for it? Why do I regard my renewed interest in unifying
theories as a contribution to that future?

Computer programs
I have always regarded the computer program as a worthy topic
for scientific study. Indeed, programs must surely be a central topic
in computer science, both pure and applied. Having chosen this
topic, I addressed myself to the fundamental questions that excite
the curiosity of all scientists, no matter what their chosen topic of
research.

What does it do? To answer this question, we need a conceptual
framework and language for describing the externally observable
properties and behaviour the program. Equally important is a de-
scription of the environment in which the program is executed, in-

Copyright is held by the author/owner(s).
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
ACM 978-1-4503-1083-3/12/01.

cluding its users. In many branches of science, separate branches
of mathematics have been developed to provide effective descrip-
tive frameworks for the topics relevant to that branch. Fortunately,
logicians from around the beginning of the last century have shown
that all branches of mathematics rest on a common foundation. To
preserve the greatest generality in describing the behaviour of a
general-purpose computer, we should exploit this common foun-
dation. From it we get Boolean algebra, predicate calculus, and
the theory of sets. When required, it is easy to define from these
foundations the structures manipulated by our programs, for ex-
ample functions, sums, products, types, relations, sequences, bags,
etc. Experiments in application have shown that these concepts give
concise and intuitive descriptions of computer systems, while pre-
serving a level of abstraction that is appropriate for humanly com-
prehensible specifications.

How does it work? For this we need to look inside the program,
to identify its internal components and the ways that they are con-
nected. Again, the foundations of mathematics provide a language
for defining the behaviour of each component, and the interfaces
between them. In an idealised vision of rational software engineer-
ing, these interface specifications will be written in advance of the
design. They will serve as a contract between the implementers of
the various program components. This is an ideal that has inspired
much excellent pure research in the field, aimed at the design of the-
ories that exploit modularity (compositionality) of designs, even if
it has to be sacrificed later to efficiency of the eventually executed
program.

Why does it work? The answer to this deeper question must
appeal to general principles, which apply not just to a particular
program, but to a general range of similar programs, actual or
hypothetical. The principles should support a proof that the joint
working of all the components of a program will necessarily lead
to the correct operation of the whole program, as described by its
specification. Then we will really know both why and how the
program works.

The principles of programming are often codified as a set of
rules defining the semantics of the programming language in which
the program is (or can be) expressed. Several forms of semantics
have been developed to serve different purposes. An operational
semantics provides a guide for an implementation of the program-
ming language, and serves the programmer as a basis for diagnos-
ing errors discovered in test. A deductive semantics gives the pat-
tern for proving correctness of programs, which is a more difficult
but more certain way of ensuring that no errors will detected in ser-
vice. A denotational semantics constructs a mathematical model of
the programming language, so that standard mathematical reason-
ing can be applied directly to it. Each of these styles of semantics

3



has a clearly defined role. The last section of this message expresses
the hope that a full theory of programming will eventually unify
semantics expressed in all the styles, and so ensure their mutual
consistency.

How do we know the theory applies to the real world? This is
the question of greatest concern to the scientist. It is answered
by conducting a series of varied experiments, with collection and
interpretation of their observed results. Every claim of discovery of
a new theory, and every extension/correction to an old theory, must
be supported by appeal to experiment – even a thought experiment
will do. Further and larger experiments are needed to explore the
limits of applicability even of already well-supported theories. For
objectivity, these experiments should be conducted by scientists
independent of the proposers of the theory. Often the theory needs
modification or extension to extend the range of its application. A
unifying theory is one whose range of application is the widest of
all.

How are the results of the research transferred to engineering
practice? Modern engineering depends utterly on automation of
the design process. It is the computer that works out in detail
the implications of every engineering design decision, and checks
the serviceability and safety of a product before it comes into
service. An established design automation toolset provides a rapid
means of world-wide transfer of new scientific results into every-
day engineering practice. When scientists agree about the strength
of the evidence of a new theory, or an amendment or extension of an
old theory, the implementers and suppliers of the tools will compete
to incorporate any consequential improvements in the next release
of the toolset for which they have developed a market share.

Current state of the art
In mature branches of science, it is the natural world that sup-
plies the experimental observations that support, refute, or refine
the theories of pure scientists. Astronomers and physicists (and
most recently geneticists) have collaborated on long-term interna-
tional projects to build the telescopes and reactors to conduct ex-
periments, whose results populate the enormous data bases of the
world’s computers. For an engineering science, the experiments are
performed on the products made by man. In computer science, the
programs developed by the open source movement already give
cheap and public access to experimental material, on a scale that
is fortunately more than adequate for our current research needs.

The main task for modern data-based science is to interpret the
enormous volumes of experimental material, by relating it to the
natural laws which are believed to explain them. Scientists write
computer significant computer programs to analyse the mass of
data automatically in the light of current theories. This is now the
only way to extract scientifically illuminating information from the
data, and so to refine, extend, and even unify existing theories.
Analogous tools for scientific analysis of programs are used by
the software industry to help in the engineering of critical parts
of widely used software. They are often used to support the exper-
imental side of research into the principles of programming.

The last decade has seen an enormous increase in the power
of these programming tools. Moore’s law predicts every decade a
roughly a thousand fold increase in the space-time performance of
commodity computer chips, often accompanied by a reduction in
price. This rate of progress has been compounded by a compara-
ble increase in the algorithmic efficiency of SAT and SMT solvers
and model checkers. The advance in software tools has been driven
by regular scientific competitions. These are regularly organised
and refereed by independent scientists, and the whole experimen-
tal community collaborates in the assembly of realistic challenge
material for conduct of the competitions.

A second fillip for program analysis has been the totally un-
expected phenomenon of the computer virus. Viruses or other mal-
ware exploit a programming error to damage or even take control of
(perhaps millions of) computers which run the erroneous program.
That is why leading software manufacturers are continuing to in-
vest heavily in the development of program analysis tools. These
are based on the best available current theories of programming,
and the best available SMT solvers and model checkers. The tools
are now applied routinely to many millions of lines of commercial
software before release.

The future?
I therefore predict an exciting future for further academic research
on the principles of programming, and for further exploitation of
its research results. The research will take advantage of the most
advanced available industrial program analysis tools to perform
experiments, at ever increasing scales, on real and realistic soft-
ware. The tools themselves will evolve by exploiting experience
of their use, both by scientists and by software developers. Con-
tinuous interaction of theorists, tool-builders and experimental-
ists will lead to an exponential increase in the rate of scientific
progress; perhaps computer science will match the recent spurt
in the progress of physics, astronomy, and more recently biology,
which has been achieved by integrating computerised tools into the
scientific method and culture.

Much of this progress will be made by collaboration between
academic researchers and industrial software developers, who al-
ready welcome the opportunity of using program analysis tools to
reduce the costs and the risks of programming error. At the same
time, industry will continue to pour their resources into more imme-
diately applicable tools, which concentrate on test case generation
of early detection of programming errors.

Academic research should not be confined to competing with
the better funded research of industrial users. It should also con-
tinue to pursue higher and longer term ideals, because this is the
only way of ensuring a continued stream of new ideas and even
breakthroughs to advance the state of the art. Ideals such as accu-
racy of measurement or purity of materials are the driving force of
science. Even if the theory itself says that they can only be approxi-
mated, the approximations can be indefinitely refined. In computer
science, the relevant scientific ideal is total correctness of computer
programs, guaranteed by proofs conducted with the assistance of
computers during their design and implementation. It is for the en-
gineer to decide later in each case how far the ideals must be com-
promised to meet engineering constraints of cost and timescale.

Unification
My own personal research has recently reverted to pursuit of a sci-
entific ideal, namely the unification of theories of programming.
Since this is mentioned in my citation for the distinguished achieve-
ment award, I will devote this last section of my message of thanks
to explaining why I believe that unification will make a contribution
to the future described in the previous section.

In the natural sciences, the quest for a unifying theory is an
integral part of the scientific culture. The aim is to show that a
single theory applies to a wide range of highly disparate phenom-
ena. For example, the gravitational theory of Isaac Newton applies
very accurately both to apples falling towards the earth and to plan-
ets falling towards the sun. In many cases, a more homogeneous
subset of the phenomena is already covered by a more specialised
scientific theory. In these cases, the specialised theory must be de-
rived mathematically from the claimed unified theory. For example,
Newton’s theory of gravitation unifies the elegant planetary theory

4



of Kepler, as well as the less elegant Ptolemaic theories of astron-
omy.

The scientific benefit of a unified theory is that it is supported
by all the evidence that has already been accumulated for all of
the previous theories separately. Furthermore, each of the previous
theories then inherits the support given by the total sum of evidence
contributed by all the other theories.

The practicing engineer has different concerns from the scien-
tist, including deadlines and budgets for the current project. The
engineer will therefore continue to use familiar more specialised
theories that have been found from experience to be well adapted
to the particular features of the current project, or the needs of the
current client. Indeed, the innovative engineer will often specialise
the theory even further, adapting it so closely to current needs that
there will never be an opportunity for repeated use. That is why
the separate theories that are subsumed by a unifying theory often
retain all their practical value, and they are in no way belittled or
superseded by the unification.

The real practical value of unification lies in its contribution to
the transfer of the results of scientific research into engineering
practice. One of the main factors that inhibit the engineer (and
the sensible manager) from adopting a scientific theory is that the
scientists do not yet agree what that theory should be. Fortunately,
there is an agreed method of resolving a scientific dispute. An
experiment is designed whose result is predicted differently by all
the theories that are party to the dispute. The engineer can then have
increased confidence in the winner.

But sometimes, no such decisive experiment can be discovered.
This may be because, in spite of differences in their presentation,
the theories are in fact entirely consistent. In this case, the only
way of resolving the issue is to find a theory that unifies them all.
Quantum theory provides an example. Three separate mathematical
presentations of quantum theory were put forward by Heisenberg,
Schroedinger and Dirac. Then Dirac showed that they were all
derivable from a single unified theory. This is what enabled the
award of a Nobel prize to all three of them. And quantum theory is
now accepted as the nearest to a theory of everything that physics
has to offer.

A second contribution of a unified theory to the practicing engi-
neer is in the design and use of a suite of software tools that assist
in automation of the design process. Since every major engineering
enterprise today combines a range of technologies, it is important
that all the specialised members of the tool suite should be based
on a common theory, so that they can communicate consistently
among each other on standard interfaces which are based upon
the unification. The standards also facilitate competition among the
tools, and permit independent evolution of separate tools for joint
use in a design automation toolset.

Finally, the education of the general scientist and engineer will
surely be facilitated by reducing the number of independently de-
veloped theories to a single theory, presented in a single coherent
framework and notation. That in itself is sufficient justification for
conduct by academics of research into unification of theories.

5




