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Abstract

Hoare–like deduction systems for establishing partial correctness of programs

because of (a) incompleteness of the assertion language relative to the underlying

may fail to be complete

interpretation or

(b) inability of the assertion language to express the invariants of loops. S. Cook has shown that if

there is a complete proof system for the assertion language (e.g. all true statements of the assertion

language) and if the assertion language satisfies a certain natural expressibility condition, then sound

and complete axiom systems for a fairly large subset of Algol may be devised. We exhibit programming

language constructs for which it is impossible to obtain sound and complete sets of Hoare–like axioms even

in this special sense of Cook’s. These constructs include (i) recursive procedures with procedure

parameters in a programming language which uses static scope of identifiers and (ii) coroutines in a

language which allows parameterless recursive procedures. Modifications of these constructs for which it

is possible to obtain sound and complete systems of axioms are also discussed.

1.1 Background.

Many different formalisms have been proposed

for proving Algol–like programs correct. Of

these the most widely referenced is the axiomatic

approach of C.A.R. Hoare [H069]. The formulas

in Hoare’s system are triples of the form

{P} S {Q} where S is a statement in the program-

ming language and P and Q are predicates in the

language of the first order predicate calculus

(the assertion language). The partial correct-

ness formula {P] S {Q} is true iff whenever P

holds for the initial values of the program

variables and S is executed, then either S will

fail to terminate or Q will be satisfied by the

final values of the program variables. A

typical rule of inference is

{PKb} s {P}

{P} while b do S {PA-b}—

The axioms and inference rules are designed to

capture the meanings of the individual state-

ment of the programming language. Proofs of

correctness for programs are constructed by

using these axioms together with a proof system

for the assertion language.

What is a “good” Hoare–like axiom system?

One property a good system should have is

soundness ([H074], [D076]). A deduction system

is sound if every theorem is indeed true. Another

property is completeness [c075], which means that

every true statement is provable. From the Godel

incompleteness theorem we see that if the deduc–

tion system fot the assertion language is axiom–

atizable and if a sufficiently rich interpretation

(such as n,lmber theory) is used for the assertion

language, then for any (sound) Hoare–like axiom

system there will be assertions {P! S {Q} which are

true but not provable within the system. The

question is whether this incompleteness reflects

some inherent complexity of the programming language

constructs or whether it is due entirely to the

incompleteness of the assertion language. For

example, when dealing with the integers, for any

consistent axiomatizable proof system there will be

predicates which are true of the integers but not

provable within the system. How can we talk about

the completeness’ of a Hoare–like axiom system inde–

pendently of its assertion language?

One way of answering this question was proposed

by S. Cook [C075]. He gives a Hoare–like axiom

system for a subset of Algol including the while

statement and non–recursive procedures. He then

proves that if the~e is a complete proof system for

the assertion language (e.g. all true statements of

the assertion language) and if the assertion lan–

guage satisfies a certain natural expressibility

condition, then every true partial correctness

assertion will be provable. Gorelick [G075] extends

Cook’s work to recursive procedures. Similar cOm–

pleteness results are given by deBakker and Meertens

[DE73] and by Manna [MA70].

1.2 New Results of This Paper.

Modern programming languages use constructs

which are considerably more complicated than the

while statement, and one might wonder how well

Hoare’s axiomatic approach can be extended to handle

more complicated statements. In this paper we will

be interested in the question of whether there are

tA large portion of this research was completed while the author was a graduate student at Cornell

University with the support of an IB14 Research Fellowship.
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programming languages for which it is impossible

to obtain a good (i.e. sound and complete) Hoare–

like axiom system. This question is of obvious

importance in the design of programming languages

whose programs can be naturally proved correct.

We first consider the problem of obtaining a

sound and complete system of axioms for an Algol-

like programming language which allows procedures

as parameters in procedure calls. We prove that

in general it is impossible to obtain such a

system of axioms even if we disallow calls of the

form “Call P(. ..,P, ...)”. (Calls of this form are

necessary if one wants to directly simulate the

lambda calculus by parameter passing.) We then

consider restrictions to the programming language

which allow one to obtain a good axiom system.

The incompleteness result is obtained for a

block-structured programming language with the fol-

lowing features:

(i) procedures as parameters of procedure

calls

(ii) recursion

(iii) static scope

(iv) global variables

(v) internal procedures

All these features are found in Algol 60 [NA63]

and, in fact, in Pascal [W173]. We also show that

a sound and complete axiom system can be obtained

by modifying any one of the above features. Thu S
if we change from static scope to dynamic scope, a

complete set of axioms may be obtained for (i)

procedures with procedure parameters, (ii) recur–

sion, (iv) global variables, and (v) internal

procedures as parameters; or if we disallow in–

ternal procedures as parameters, a complete system

may be obtained for (i) procedures with procedure

parameters, (ii) recursion, (iii) static scope,

and (iv) global variables. As far as we know, this

is the first axiomatic treatment of procedure

parameters.

An independent source of incompleteness is the

coroutine construct. If procedures are not recur-

sive, there is a simple method for proving correct–

ness of coroutines based on the addition of aux-

iliary variables [ow76]. .If, however, procedures

are recursive, we show that no such simple method

can give completeness. These observations gen–

eralize to languages with parallelism and recur–

sion.

Additional programming language constructs

for which it is impossible to obtain good axioms

are discussed in Section 8.

1.3 Outline of Paper.

The development of these results is divided

into two parts––the first dealing with procedures

as parameters and the second with the coroutine

construct. In Section 2 a formal description is

given for a programming language with static scope,

global variables, and procedures with procedure

parameters. This is followed by a discussion of

Cook’s expressibility condition. Modifications

necessary to handle dynamic scope are also discuss–

ed. In Section 3 we prove that it is impossible to

obtain a sound and complete axiom system for this

language. In Sections L, 5, and 6 we discuss re-

strictions sufficient to insure that good Hoare-
like axioms can be found. Sections 8 and 9 are

devoted to completeness and incompleteness results

for the coroutine construct and follow the same

outline as was used in the first part of the paper.

The paper concludes with a discussion of the

results and remaining open problems.

2. A Simple Programming Language and its Semantics.

As in [C075] we distinguish two logical sys-

tems involved in discussions of program correct–

ness––the assertion language L in which predicates

describing a program’s behavio~ are described and

the expression language L

“2

in which the terms

forming the right hand S1 es of assignment state–

ments and (quantifier–free) boolean expressions of

conditionals and while statements are specified.

Both L and LE are first order languages with

“+equall y is an extension of L . In general

the variabfl~ fi~ LB are called progra~ identifiers

PROG_ID and are or ered by the positive integers.

The variables of LA are called variable idenfifers

VAR ID .

‘An interpretation I for LA consists of a set

D (the domain of the interpretation) and an assign-

ment of functions on D to the function symbols of

‘A “
We will use the notation III for the cardinal–

ity of the domain of I. Once an interpretation I

has been specified, meanings may be assigned to the

variable free terms and closed formulas of L

Let I be an interpretation with domain
~. ‘LE) “

A program state is an ordered list of pairs of the

form:

(vl.dl) (v2.d2) . . . (vn.dn)

where each v. is a variable identifier and each d.

is an element of D. Thus a program state is
1

similar to the association list used in the defini-

tion of Lisp. If s is a program state and v is a

variable identifer than s(v) is the value associ-

ated with the first occurrence of v in s. Similar–

ly, ADD(sYd)is the program state obtained by

adding the pair (v.d) to the head of list s, and

DROP(S,V) is the program state obtained from s by

deleting the first pair which contains v. VAR(S)

is the set of all variable identifiers appearing in

s.

If t is a term of LA with variables x
1’ ‘2’

. . ..x and s is a program state, then we w1ll use

the n~tation t(s) to mean

t
S(xl), . ..s(xn)

‘I’” ””xn

Likewise we may define P(s) where P is a formula

ofL. It is frequently convenient to identify a

form~la P with the set of all program states which

make P true, ie. ~th the set {slIIP(s)]=true}.
If this identification is madq then false will

correspond to the empty state set and true will

correspond to the set of all program states.

We consider a simple programming language

which allows assignment, procedure call, while,

compound and block statements. Procedure declara-

tions have the form “q:proc(=:~); K end” where q is

the name of the procedure, = is the list of formal

variable parameters, ~ is the list of formal

procedure parameters, and K is the body of the

procedure. A procedure call has the form “call

q(a:~)” where ~ is the list of actual variable

parameters and ~ is the list of actual procedure

parameters. To simplify the treatment of parame-
ters we restrict the entries in Z to be simple

program identifiers. We further require that

procedure names be declared before they appear in
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procedure calls.

An environment e is a finite set of procedure

declarations which does not contain two different

declarations with the same name. If m is a proce–

dure declaration, then ADD[e,n] is the environment

obtained from e by first deleting all procedure

declarations which have the same name as IT, and

then adding ~. If S is a statement and e is an

environment, then GLOBAL(S,e) is the set of

variables which are global to S or to some proce–

dure in e.

Meanings of statements are specified by a

meaning function M=M
I

whaich associates with a

statement S, state s, and environment e a new state

s’. Intuitively s’ is the state resulting if S is

executed with initial state s and initial environ-

ment e. The definition of M is given operationally

in a rather non-standard manner which makes exten–

sive use of renaming. This type of definition

allows static scope of identifiers without the

introduction of closures to handle procedures.
The definition of M[S](e,s) is by cases on ~:—

(1) S is “begin new x; B end’’--+—

DROP(M[begin B xl end] (e,s’), X1)

x

where i is the index of the first program identi.–

fier not appearing in S, e, or VAR(S) and s’=

ADD(s,xl,ao) . (a. is a special domain element

which is used as the initial value of program

identifiers. )

(2) S is “begin q:proc(=:~); K end; B end’’--+—

M[begin B ql end] (e’.s)

7
where i is the index of the first procedure

identifier not occuring in B or e and

e,=ADD(e,,,qi:prOC (~:~) ; K ~ end”).

q
(3) S is “begin Bl; B2 end’’--+—

M[begin B2 end] (e,MIB1]

(4) S is “begin end’’--+s—

(5) S is ,Vx:=t!v--+sv
—

wheze s’=ADD(DROP(S,X), x, I[t(s)

(6) S is “b~B1,B2’’--+—

{

MIB1](e,s) if scb

M[B21(e,s) otherwise

(7) S is “b*B’’--+—

e,s))

)

{

M[b*B](e,M[B] (e,s)) if scb

s otherwise

(8) S is “call q(=:~)’’--+

(

M[K ~ P](e,s)
. .
XP

If “q:proc(=:~); K end’’~e,

[

length (~)=length(=), and

length (~)=limgth @)

undefined otherwise

Sometimes it will be easier to

computation sequences than with the

M directly. A computation sequence

work with

definition of

C of the form

C=(So,e,o,so). . .(Si,ei,si) . . .

gives the st~~ement, environment and program state

during the i step in the computation of

M[501feo,SO). Since the rules for generating com–

putatlon sequences may be obtained in a straight

forward manner from the definition of M, they will

not be included here.

The meaning function M may be easily modified

to give dynamic scope of identifiers. With dynamic

scope when an identifi~ is referenced, the most

recently declared active copy of the identifier is

used. This will occur with our model if we omit

the renaming of variables which is used in clauses

(1) and (2) in the definition of M. Thus, for

example,

M[begin new x; B end] (e~s)=M[begin B endl(e,s’)

where s’=ADD(s,x,ao).

Unless explicitly stated we will always assume

static scope of identifiers in this paper.

Partial correctness assertions will have the

form {P} S {Q}/e where S is a program statemen~ P

and Q are formulas of LA, and e is an environment.

2.1 Definition: {P} S {Q}/e is true with respect

to I (1= }S {01/e iff— ., .
V s,s’[s~P~LOBAL(S,e)~VAR(s)AMIS] (e,s)=s’--cQ]Q].

If ~ is a set of partial correctness assertions

and every assertion in r is true with respect to I,

then we writel=lr.

To discuss the completeness of an axiom system

independently of its assertion language we introduce

Cook’s notion of expressibility.

2.2 Definition: L is expressive with respect to

L= and I iff for al! S, Q, e there is a formula of

L: which expresses the weakest precondition

wp(s,e,Q)={s lMISl(e,s) is undefined or M[S](e,s)cQ}

Note that we could have alternatively used the

strongest post condition SP(S,e,P)={MISl (e,s)ls~p}.)

If LA is expressive with respect to LE and I,

then invariants of while loops and recursive proce–

dures will be expressible by formulas of LA.. ~,t

every choice of L , L , and I gives expresslblllty

Cook demonstratesAthi~ in the case where the

assertion and expression languages are both the

language of Presburger Arithmetic. Wand [WA76]

gives another example of the same phenomenon.

More realistic choices of L , L , and I do give

expressibility. IfL, and~na~e both the full

language of number th~ory and I is an interpretation

in which the symbols of number theory rece+tie their

usual meanings, then L is expressive with respect

to LE and I. Also , ifAthe domain of I is finite,

expressibility is assured:

2.3 Lemma: If L A, LE are first order languages

with equality and the domain of I is finite, then

LA is expressive with respect to LE and I.

If H is a Hoare–like axiom system and T is a

proof system for the assertion language LA

(relative to I), then a proof in the system (H,T)

will consist of a sequence of partial correctness

assertions {P] S {Q}/e and fOrmulas Of LA each Of

which is either an axiom (of H or T) or follows

from previous formulas by a rule of inference

(of H or T). If {P} A {Q}/e occurs as a line in

such a proof, then we write F *T{P} S {Q}/e.

In a similar manner, we may define r ~TA where r
x

and A are sets of partial correctness assertions.
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2.4 Definition: A Hoare-like axiom system H for

a programming language PL is sound and complete
(in the sense of Cook) iff for all LA, LE, and I,

s~h that (a) ~ is expressive with repect to L
E

and I and (b) T is a complete proof system for L
A

with respect to I,

F1{P} S {Q}/e<=>EH, T{P] S {Q}/e.

3. Recursive Procedures with Procedure Parameters.

In this section we prove:

3.1 Theorem: It is impossible to obtain a

system of Hoare-like axioms H which is sound and

complete in the sense of Cook for a programming

language which allows:

(i) procedures as parameters of procedure

calls

(ii) recursion

(iii) static scope

(iv) global variables

(v) internal procedures

Remark: In section 4 we show that “it is possible

to obtain a sound, complete system of Hoare–like

axioms by modifying any one of the above features.

To obtain the incompleteness result, only proce–

dure identifiers are needed as parameters of

procedure calls. The incompleteness proof allows,

in addition, variable parameters which are passed

by direct syntactic sufistitution.

In order to prove the theorem we need the

following lemma.

3.2 Lemma: The Halting Problem is undecidable

for programs in a programming language with

features (i) - (v) above for all finite inter-

pretations I with 11122.

The proof of the lemma uses a modification of

a result of Jones and Muchnick [J075]. Note that

the lemma is not true for flowchart schemes or

while schemes. In each of these cases if III<CO

the program may be viewed as a finite state

machine and we may test for termination (at least

theoretically) by watching the execution sequence

of the program to see if any program state is

repeated. In the case of recursion one might

expect that the program could be viewed as a type

of pushdown automaton (for which the Halting

Problem is decidable). This is not the case if we

allow procedures as parameters. The static scope

rule, which says that procedure calls are elabo–

rated in the environment of the procedure call,

allows the program to access values normally

buried in the runtime stack without first

“popping the top” of the stack.

Formally, we show that it is possible to

simulate a queue machine which has three types of

instructions, A) Enqueue x––add the value of x to

the rear of the queue, B) Dequeue x–-remove the

front entry from the queue and place in x, and

C) If x=y then go to L--conditional branch. Since
the Halting Problem for queue machines is

undecidable, the desired result follows.

The queue is represented by the successive

activations of a recursive procedure “sire” with

the queue entries being maintained as values of

the variable “top” which is local to “sire”. Thus

an addition to the rear of the queue may be
accomplished by having “sire” call itself recur–

sively. Deletions from the front of the queue are

more complicated. “Sire” also contains a local

procedure “up” which is passed as a parameter

during the recursive call which takes place when an

entry is added to the rear of the queue. In delet-

ing an entry from the front of the queue, this

parameter is used to return control to previous

activations of “sire” and inspect the values of “top”

local to those activations. The first entry in the

queue will be indicated by marking (e.g. negating)

the appropriate copy of “top”. Suppose that the

queue machine program to be simulated is given by

Q=l:INST1; . ..K.INSTk

then the simulation program (in the language of

Section 2) has the form

sim:proc(:back);

begin new top, dummy, progress;

<declaration of local procedure up>

progress:=l;

while progress=l do

begin

if prog counter=l then

if p~og–counter=2 then

if prog counter=K then

end;

end;

end sire;

prog counter:=l;

call–sim(:loop) ;

The variable “prog counter” serves

“INST1” else

“INST2” else

“INSTk” else null

as an instruction

counter for the p~~gram being simulated; initially

it is 1. The variable “progress” is used to

indicate when control should be returned to the

previous activation of the procedure “sire”. The

procedure “loop” diverges for all values of its

parameters; it will be called when an attempt is

made to remove an entry from the empty queue.

Declarations for “prog counter”, “loop”, and the

program variables for ~he queue machine are omitted

from the outline of the simulation program.

The appropriate encoding for queue machine

instructions is given by cases:

(A) If INSTj is “j: enqueue A“ then replace by:

begin

If prog counter=l then top:=–A else top:=A;

prog co;nter:=prog counter+l;

call-sim(:up); –

prOgress:=O;

end

Note that we are assuming that the first instruction

in any queue program will be an “enqueue” instruc–

tion. Also, statements of the form “prog counter:=

prog counter+l” may be eliminated by intr~ducing a

fixed number of new variables to hold the binary

representation of “prog counter”.

(B) If INSTj is “?:deq~eue x“ then replace by:

begin

call back (x:dummy);
*:=–X;

prog counter :=prog counter+l;

end –

If the queue is not empty, “b=ck” will correspond

to the local procedure “up” declared in the previous

activation of “sire”. On r~turn from the call on

“back” the first parameter x will contain the value

of “top” in the first activation of ‘Tsim”. The

second parameter of “back” (“up”) is only used when

“back” ia called from within up (see Clescriprion of

“up” below).

(C) If INSTj is “If Xp=x then go to n“ replace by:
m
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begin

If X ‘X

thenppr~g counter:=n;

else prog–counter:=prog counter+l;

end

Finally, we must describe the procedure “up” which

is used by sim in determining the value of the

first element in the queue and deleting that

element:

up:Proc (front_of_queue, first:)
If top < 0

then be~in.

front of queue:=top;

first~=l~

end;

else begin

call back (end of queue, first);

If first=l th=n ~egin top:=-top;

first:=O;

end;

end;

end up;

After a call on “ UP”, the parameter “front of
queue” will contain the value of “top” in ~he–first

activation of “sire”. The parameter “first” is

used in marking the queue element which will hence–

forth be first in the queue.

This completes the description of the simula–

tion program. We now return to the proof of the

theorem. Suppose that there were a sound, complete

Hoare-like axiom system H for programs of the type

described at the beginning of this section. Thus

for all LA, LE, and I, if (a) T is a complete

proof system for LA and I, and (b) LA is expres–

sive relative to L and I, then

~l{P} s {Q}/E ~=> ~H,T{p} s {Q}/E.

This leads to a contradiction. Choose I to be a

finite interpretation with III> 2. Observe that I

may be chosen in a particularly simple manner; in

fact, there is a decision procedure for the truth

of formulas in L * relative to I. Note also that

LA is expressive relative to LE and I; this was

shown by the Iemrna in Section 2 since I is finite.

Thus both hypothesis (a) and (b) are satisfied.

From the definition of partial correctness, we

see that {true} S {false]/$ holds iff S diverges

for the initial values of its global variables.

By the lemma above, we conclude that the set of

programs S such that ~l{true} S {false}/@ holds

is not recursively enumerable. On the ocher hand

since

}I{truel S {falsel/O~> ~H,T{true} S {false} /o,

we can enumerate those programs S such that

~l{true} S{ false} /@hOlds (simply enumerate

all possible proofs and use the decision proce-

dure for T to check applications of the rule of
consequence) . This, however, is a contradiction.

The reader should note that the incompleteness

result above holds even if procedure calls of the

form “call P(. ..)”..)” are disallowed. If such

calls are allowed, then the incompleteness result

may be obtained without the use of explicit

recursion i.e. for a language with features (i),

(iii), (iv), and (v) only.

4.1 Completeness Results.

In order to obtain a sound and complete proof

system we must first restrict the programming lan-

guage of Section 2 so that sharing is not allowed;

we require that whenever a procedure call of the

form “call q(=:~)” is executed in environment e,

all of the variables in = are distinct and no para–

meter in = is global to the declaration of q or to

any procedure in e which may be activated indirectly

by the call on q. A formal definition of sharing

is given in [D075].

Once sharing has been disallowed a “good”

axiom system may be obtained modifying any one of

the five features of Theorem 3.1. These results

are summarized in Figure 1 at the end of the paper,

Note that in the description of language 3, we must

also disallow self application in procedure calls

(e.g. calls of the form “call P(. ..)”).)”). This

restriction may be enforced by requiring that

actual procedure parameters be either formal proce-

dure parameters or names of procedures with no pro–

cedure formal parameters. Such a restriction is

unnecessary for languages 4, 5, or 6.

In order to establish the completeness results

of Figure 1, sound and complete axiom systems must

be given for languages (2)-(6). Due to space limi-

tations, we will only consider language 5 in this

paper. However, similar axiom systems may be given

for languages 2, 3, 4, and 6.

4.2 The Range of a Statement.

Consider the following program segment:

F:proc(y:p);

If y>l

then begin y:=y–2; call p(y:F); end; else y:=O

end F;

G:proc(w:q); z:=z+w; call q(w:G); end G;

Call F(x:G);

Observe that the only procedure calls which can

occur during the execution of the program segment

are “call F(x:G)” and “call G(x:F)”. In general,

let So be a statement and e. an environment; the

range of% with respect to e
—4

is the set of pairs

<call qi(=:~), e,> for which there is a valid
1

computation sequence of the form:

(So,eo,so), ..., (call qi(=:~),ei,si), . . .

If static scope of identifiers is used, the range

of a statement S
o

with respect to environment e
o

may be infinite. This is because of the renaming

at block entry which occurs in clauses (1) and (2)

in the definition of M. If, however, dynamic scope

is used, then the range of a statement (with respect

to a particular environment) must be finite; in

fact, there is a simple algorithm for computing the

range of a statement. The range of S with respect

to environment e is given by RANGE(S,e,$) where the

definition of RANGE(S,e,~) is given by cases on S:

(1) S?’’bcgin new x; A cnd’’---r

RANGE(begin A end,e,m)

(2) S~’’begin q:proc(j:~); L end; A end’’--+

RANGE(begin A end,e’,n)

where e’=add(e, q:proc(j:;); L end)

(3) S~’’begin Al; A2 end’’--+

RANGE(begin A2 end, e, RANGE(A1,e,n))

(4) S=’’begin end’’--+m

(5) S=’’z:=e’’--Hr
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(6) S= ’’b--+Al, A%ANGE(A2,e, RAN GE(A1,e, n)), n))

(7) S=’’b*A’’--WANGE(A,e,n)

(8) S=’’call q(a:P)’’--+

[

T, if <call q(~:~),e>en

RANGE(K ~ ~,e,n’) where--

n’=nu{<c~l! q(=:~),e>}

and “q:proc(=:~); K end’’ce, otherwise.

This same property of dynamic scope provides a

simple algorithm for determining if the execution

of a statement S in environment e will result in

sharing.

4.3 Cood Axioms for Dynamic Scope.

The axioms and rules of inference in the proof

system DS for language 5 (dynamic socpe of identi-

fiers) may be grouped into three classes: axioms

for block structure B1-B3, axioms for recursive

procedures with procedure parameters R1-R6, and

standard axhoms for assignment, conditional, while,

and consequence H1-H4.

Axioms for Block Structure:

(El) {U& Ax=aO} begin A end {V<}/e

x

{U} begin new x; A end {~}/e

where i is the index of the first program identi-

fier not appearing in A, E, U, or V.

(B2a) {U} begin A end {V}/eu{q:proc(~;~); K end}

{U} begin q:proc(x:p); K end; A end {v}/e

(B2b) {U} A {V}/el

{U} A {V}/e2

provided that e1~e2 and e2 does not contain the

declarations of two different procedures with the

same name.

(B3a) {U] A {V}/e

{U} begin A end {V}/e

(B3b) {U} Al {V}/e, {V} begin A2 end {W}/e

{U} begin Al; A2 end {W}/e

Axioms for Recursive Procedures with Procedure

Parameters:

The first axiom R1 is an induction axiom which

allows proofs to be constructed using induction on

depth of recursion.

(R] )

respect to the particular call). Similarly a term

of the assertion language is inactive if it

contains only inactive variables. A substitution

u is inactive with respect to “call q(a:P)”

provided that it is a substitution of inactive

terms for inactive variables.

(R2) {U} call q(i:~) {V}/e

{Uu} call q(~:P) {Vu} /e

provided a is inactive with respect to “call q(~:~)”

and e.

(R3) {U(rO)} call q(;:~) {V(ZO)} /e

{IrO U(rO)} call q(=:~) {~~ V (rO)}/e
0

provided that rO is inactive with respect to

“call q(~:~)” and e.

(R4) {U} call q(~:~) {Vi/e

{UAT} call q(=:~) {VAT}/e
provided that no variable which occurs free in T is

active in “call q(ii:~)”.

(R5) {U} call q(=:~) {V}/e

{U~} call q(a:P) {Vj}/e

G x

provided that no variable free in U or V occurs in

~ but not in the corresponding position of ~.

(~ is the list of formal parameters of q. This

axiom will not be sound if sharing is allowed.)

(R6) {true} call q(=:~) {false}/{q:prOc(~:~);K snd}

provided_that length (=)#length (=) or length (~)#

length (P).

Standard Axioms for Assignment, Conditional, While,

and Consequence. These axioms (H1–H4) are widely

discussed in the literature and will not be stated

here.

We illustrate the use of the above axioms by

two examples. The first example illustrates

dynamic scope of identifiers. The second example

shows how procedure parameters may be handled.

Example 1: We prove

{true]

begin new x;

g:proc; z:=x; end;

X:=l;

begin new x; x:=2; call g; end;

end;

{z=2}/o

Let

(1)

{Uo}call FO(~O:?O){VO}/eO, ,.. ,{Un]call Fn(~n:Pn){Vn}/en (2)

~ {UO}KO(~O) {VO}/e ~,...,{Un}Kn(~n){Vne/e
n

(3)

{UO]call FO(zO:PO){VO}/eO,...,{Un}call Fn(~:?n]{Vn}/en (4)

Axioms R2–R6 enable an induction hypothesis to be

adapted to a specific procedure call. Before

stating these axioms we define what it means for a

variable to be inactive with respect to a procedure

call.

4.3.1 Definition: Let procedure q have declara-

tion “q:proc(x:p); K end”. A variable y is active

with respect to “call q(~:~)” in environment e, if

y is either global to K ~ ~ or is active with

~;
izespect to a call on a procedure in e from within

K~~. If y is not active with respect to=.
XP

“call q(=:~)” then y is said to be inactive (with

(5)

(6)
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e be the environment {q:proc; Z:=x; end}.

{x=2AY=1} Z:=X {Z=2}/@ H1

{X=2AY=1} call q {z=2]/e R1

{y=l} begin x:=2; call q; end {z=2]/e Hl, B3

{x=1} begin new x; x:=2; call q; end {z=2}/e
B1

{true}

begin x:=1;
begin new x; x:=2; call q; end;

end

{z=2}/e I

{true}

begin new x;

q:proc; z:=x; end;

X:=l;

bQgin new x; x:=2; call q; end;
end

{z=2}/@ 1

Hl, B3

B1,B2



Note that if static scope were used instead of

dynamic scope the correct post condition would be

{ Z=l} .

Example 2: We prove

{X=2XO+1A Z=()}

F:proc(y:p);

If y>l

then begin y:=y-2; call p(y:F); end; else y:=O;

end F;

G:proc(w:q); ~:=z+w; call’ q(w:G); end G;

call F(x:G):

{.?=xo2}/@

Let e be the environment containing the declara–

tions of F and G. Let Kl(p) and K2(q) be the

bodies of procedures F and G respectively. Si&ce

the range of “call F(x:G)” with respect to e

consists of <call G(x:F), e> and <call F(x:G), e>

it is sufficient to determine the effects of

“call G(x:F)” and “call F(x:G)” when executed in

environment e.

We assume:

(1)

{y=2yo+l A Z=zo} call F(y:G) {Z=Zo+yo 2} /e

and

(2)

{w=2wo+l A Z=zo} call G(w:F) {z=zo+(wo+l)2}/e.

Using these assumptions it is straightforward to

prove:

-(3)

{y=2yo+1 A Z=zo} K1(G) {z=zo+yo2}/e

and

(4)

{W=2WO+1 A Z=zo} K2(F) {z=zo+(wo+l)2]/e

By axiom Rl, we obtain

(5)

l{y=2yO+l A Z=zo} call F(Y:G) {z=zo+yo2 ]/e

and

(6)

t{w=2wo+l A Z=zo} call G(w:F) {z=zo+(wo+l)2 }/e.

By axiom R5 and line 5

(7)
L {X=2wo+1 A .=ZO } call F(x:G) {Z=Z +W 20 0 }/e

By axiom R2 with the inactive substitution of O

for Z. and X. for Wo, we get

(8) .
}{x=2xo+l A z=O] call F(x:G) {z=xO’ }/e

Line 8 together with two applications of B2 gives
the desired result.

5. Soundness.

In this section we outline a proof that the

axiom system DS for programs with dynamic scope of

variables is eound. We show that if T is a

sound proof system for the true formulas of the

assertion language LA then

>D~,T{P} A {Qiie implies ~l{P} A {Q}/e.

The argument uses ‘induction ‘on the structure of

proofs; we show that each instance of an axiom is

true and that if all of the hypothesis of a rule

of inference are true, the conclusion will be true

also.

The only difficult case is rule of inference

RI for procedure calls. We assume that the

hypothesis

[Uo}call,Fo(~o:~o){Vo}/e ,.. ,{Un}call Fn(=n:~n}{Vn}/en
o

\{Uo} K(Po){Vo}/eo,..., {Un} Kn(Fn){Vn}/en

of R1 is true and prove that

~l{Ui] call F(=i:Pi){Vi}/ei

must hold for lsi<n. Without loss of generality we

also assume that the proof used to obtain

{Uo} K(Po){Vo}/eo ,.. .,{Unl K(Pn){Vn}/e
from

n

{Uo}call Fo(20:Po){Vo}/eo,..,@n}call Fn(~n:Pn)

does not involve any additional applications of

axiom for procedure calls.

‘To simplify the proof we introduce a modif:

meaning function M.. Mj[S](e,s) is defined in
J

Vn}/e
n

the

ed

exactly the same manner as M[S](e,s) if S is not a

procedure call. For procedure calls we have

Mj[call F(=:~)](e,s)=M j_l[K~~](e,s) if j>O,
. . :

“F:proc(=:~); K end’’~e, leng~hp(=)=length (~), and

length (~)=length (~). Mj[call F(~:~)](e,s) is

undefined otherwise. Thus Mj agrees with M on

statements for which the maximum depth of procedure

call does not exceed j-1.

We also extend the definition of partial

correctness given in Section 2. We write

~j{P] S {Q}/e iff

Vs,s’[scPAGLOBAL(S,e~VAR(s) AMj[S](e,s)=s’+s’ cQ]

In the following lemma we state without proof some

of the properties of M..
J

5.1 Lemma: Properties of M.:

(a) ~O{U} call F(~:~){V}/~ for all U, F, V, e.

(b) Suppose that ~ ~ A where ~ and A are sets of

partial correctness of the form {P} A {Q}/e and the

formulas of A are obtained from those in r without

use of axiom R1. Then~j r implies ~j A.

(c) If ~j{U} K~~ {V}/e holds and the first

XP
procedure in e with name F has declaration

“F:proc(~:~); K end”, then

~ j+’{~}call F(~:~){V}/e must hold also.

(d) If M[S](e,s)=s’ then there is a k>O such that

j~k implies M:[S](e,s)=s’.
1

The proofs of-(a), (c), and (d) follow directly

from the definitions of M.. The proof of (b) is
3

straightforward, since use of axiom R1 for proce-

dure calls has been disallowed.

We return to the soundness proof for RI. By

part (a) of the lemma

\O{Ui} call Fi(=i:~i){Vi}/ei, Isi<n

By the hypothesis of R1 and part (b) of the lemma,

we see that

~j{Ui} call Fi(~ i:Fi){Vi}/ei, l<i<n

implies

~J{Ui] Ki(Pi){Vi}/ei, l<i<n.

By part (c) of the lemma,

}j{ui}call Fi(Zi:~i){Vi}/ei, l<i<n

implies

~j+l{Ui}call Fi(=i:~i){Vi]/ei, l<i<n.
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Hence, by induction we have for all j20

\3{Ui} call Fi(<i:~i){Vi}/ei, lsisn.

Let scUi and suppose that s’=M[call Fi(=i:~i)](e,s)

then there is a k>O such that j>k implies

M<[call F~(=X:~, )](e, s)=s’. Since

$j{Ui] till’Fit=i :Fi){Vi}/e, we conclude that

Thus ~l{Ui} call Fi(=i:~i){Vi}/ei holds

for l<isn and the proof of soundness is complete

for RI. We leave the proof of soundness for the

other,axioms and rules of inference to the

interested reader.

6. Completeness.

In this section we outline a proof that the

axiom system DS is complete in the sense of Cook.

Let T be a complete proof system for the true

formulas of the assertion language LA. Assame

also that the assertion language LA is expressive

with respect to the expression language L
E

and

interpretation 1. We prove that

F1{U} S {V}/e implies~5 ~{Ul S {v}/e.

The proof uses induction on ~he structure of the

statement S and is a generalization of the

completeness proof for recursive procedures with–

out procedure parameters given in [G075]. Due

to the length of the proof we will only consider

the case where S is a procedure call; other

cases will be left to the reader.

Assume that {Uo} call Fo(=o:~o){Vo}/eO is

true. We show that {Uo} call F(~O:~o){Vo}/eo

is provable. Let “call F1(=l:~l)’’, .,.,

“call Fn(~n:~n)” be the procedure calls in the

range of “call Fo(~o:~O)” and let e be the
i

environment corresponding to “call Fi(~i:Pi)”.

We assume that Fi has declaration

“F:proc,(=i:Fi); Ki end ‘g that ii is the list of

variables which are active in “call Fi(~ i:Pi)”,

and that ~, ‘ is the list of variables which are
L

active in “call Fi(~i:~i)”. Finally, we choose

:. to be a list of new variables which are
1

inactive in “call Fi(=i:~i)”.

We will show that
--

{ri=ci}call Fi(~i:Pi){Sp(call Fi(~i:~i),ei,{~i=~i})~/ei
-.
/.1

is provable for all i, IsiSn. From this result it

follows that {Uo}call FO(~o:~o){Vo}/eo is also

provable. To see that this part of the argument

is correct. observe that

by axiom R5 and properties of 5P.

(b)

\{F~=FoAu&}call Fo(ao:~o){Sp(call Fo(~o:Fo), eo,
‘o

{;~.~o})AU&}/eo by axiom R4.

(c)
‘6

}{E~o[~~=~(U~l} call Fo(30:P~{I ~o[SP(call

(~o:Fo),eo, {E~=;o})AU&l] }/e.

r’
by axiom R3.

(d)

}I=OISP(call Fo(~O:~o),eo,{=~=~~ )AujQl --+
r;

SP(call FO(~o:~o),eo,Uo)

‘o

by properties of SP since the variables of ~. are

are inactive in “call Fo(~o:~o)” and

(e)

t{LJo} call Fo(=o:Po){SP(call Fo(~o:Po), eo, Uo)]/eO

by rule of consequence.

(f)

tSP(call F (~o o:PO),eo,UO)--+V o
since

~{Uo] call Fo(30:Po){Vo}/eo and

SP(call Fo(~o:~o),eo,Uo) is the strongest post

condition corresponding to U
o

and “call Fo(~o:~o)’~
,.
(g)
\{LJo} call Fo(=o:~o){Vo}/eo

by (e), (f), and the rule of consequence.

It is still necessary to prove 7.1. To

shorten notation, let Ti={ii=~i} and

Wi={Sp(call Fi(=i:~i),ei, {~i=~i})}. We shOw that

{To]call Fo(Zo:~o){Wo}/eo, ..,{Tn}call Fn(=n:~n){Wn}/e
1

\{ To}Ko(Po){Wo}/eo,..., {Tn}Kn(Pn){Wnenen 7.2

The proof of 7.1 will then follow by the axiom RI

for procedure calls.

Proof of 7.2 is by induction on the structure

of Ki using an induction hypothesis which is some–

what more general than what we need to prove.

7.3 Lemma: Let K be a statement and let T and W

be predicates such that ~ {T} K {W}/e and such

that the rangeof K with respect to e is included in

<call Fo(=o:~o),eo>, . . ..<call Fn(=n:~n),en>, then

{To}call Fo(~o:~o){Wo]/eo,..,{Tn}call Fn(=n:~n){Wn}/er

l- {T} K {W}/e

Proof: Proof is by induction on the structure of K.

We will only consider the case where K is a proce–

dure declaration i.e. K~’’begin q:proc(=:~);L end;

S end”. If ~ {T} K {W}/e then we must alsO have

~{T} K’ {W}/e’ where K’=’’begin S end” and e’=
add(e,’’q:proc (=:~);L end”). Note that the range of

K’ with respect to e’ is included within the ‘ange

of K with respect to e. By the induction hypothesis

we have that

{To}call Fo(~o:~o){Wo]/eo, ..,{Tn]call Fn’(=n:~n){Wn]/e
n

l-{T}K’ {W}/e’.
By axiom B2, we see that {To}call Fo(~o:Po){Wo}/eo,

. . ..{Tn}call Fn(=n:~n){Wn}/en t{T} K {W}/e’.
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Other cases in the proof of lemma 7.3 are left

to the interested reader. Note that once lemma

7.3 has been established, 7.2 follows from the

observation that ~ {Ti} Ki(~i){Wi}/e. l<i<n.
1’

7. Coroutines.

A coroutine has the form

“coroutine: Ql, Q2 end”.

~1 is the main–routine; execution begins in Q1

and also terminates in Q1 (this requirement

satisfies the axiom for coroutines). Otherwise

Q1 and Q2 behave in identical manners. If an exit

statement is encountered in Q1, the next statement

to be executed will be the statement following the

last resume statement executed in Q2. Similarly,

execution of a resume statement in Q
2

causes

execution to be restarted following the last exit

statement executed in Q
1“

If the exit (resume)

statement occurs within a call on a recursive

procedure, then execution must be restarted in the

correct activation of the procedure. A formal

operational specification of the semantics for

coroutines is given in [cK76].

If recursive procedures are disallowed, a

sound and complete axiom system may be obtained

for the programming language of Section 2 with the

addition of the coroutine construct. Such a

system, based on the addition of auxiliary vari–

ables, is described in [CK76a]. The axiom for

bhe coroutine statement is similar to the one

used by Clint [CL73]. However, the strategy

used to obtain completeness is different from

that advocated by Clint; auxiliary variables

represent program counters (and therefore have

bounded magnitude) rather than arliitrary stacks.

7.1 Theorem: There is a Hoare–like axiom system

H for the programming language described above,

including the coroutine construct but requiring

that procedures be non–recursive, which is both

sound and complete in the sense of Cook.

8. Coroutines and Recursion.

We show that it is impossible to obtain a

sound–complete system of Hoare–like axioms for a

programming language allowing both coroutines

and recursion provided that we do not assume a

stronger type of expressibility than that

defined in Section 2. (We will argue in Section

9 that the notion of expressibility introduced

in Section 2 is the natural one. We will also

examine the consequences of adopting a stronger

notion of expressibility.) Let L be the
c,r

programming language with the features described

in Sections 2 and 7 including both parameterless

recursive procedures and the coroutine statement.

8.1 Lemma: The Halting problem for programs in

the language L is undecidable for all finite
c,r

interpretations I with 11122.

Proof : We will show how to simulate a two stack

machine by means of.a program in the language L
c,r.

Since the Halting problem is undecidable for two

stack machines, the desired result will follow.

The simulation program will be a coroutine with one

of its component routines controlling each of the

two stacks. Each stack is represented by the

successive activations of a recursive procedure

local to one of the routines. Thus , stack entries

are maintained by a variable “top” local to the

recursive procedure, deletio,n from a stack is

equivalent to a procedure return, and additions to

a stack are accomplished by recursive calls of the

procedure. The simulation routine is given in

outline form below:

Prog counter:=l;

Coro;tine

begin

stack l:proc;

new top, progress;

progress:=l;

while progress=l do;

if prog counte”r=l

if prOg–counter=2
.—

if piog counter=K

end; –

end stack 1;

call stack_l~

end ,

begin

stack 2:proc;

new top, progress;

progress:=l;

while progress=l do

if prog counter=l

if prog counter=2
.—

if piog counter=K

end –
end stack 2;

call stack_2~

end;

end;

then “INST1” else

then “INST2” else

then “INSTK” else NULL;

then “INST~” else

then “INST~” else

then “INST~” else null;

where “INST “,. , .“INST “,’’INST*vl
1 K 1 ‘...

“INST~” are

encodikgs of the program for the two stack machine

being simulated. Thus, for example, in the

procedure STACK 1 we have the following cases:

(1) if INSTj i= PUSH X ON STACK_l, “INSTj” will be

begin

top=x;

prog counter :=prog–counter+l;

call–stack_l;

end;

(2) If INSTj is POP X FROM STACK 1, “INSTj” will be

begin

prog counter:=prog counter+l;

X:=top;

progress:=O;

end;

(3) If INST. is PUSH X ON STACK_2 or POP X FROM
STACK 2: “INSTj” will simply be

begin–

exit;

end;

A similar encoding INST*
1’..

.INST~ for the copy of

the program within procedure stack 2 may be given.

8.2 Theorem: It is impossible to obtain a system

of Hoare–like axioms H for the programming language

L which is sound and complete in the sense of
c,r
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.-,. -.,- .-. . . . .-Cook. The proof is similar to the proof of Theorem

3.1 and will be omitted.

9. Dicussion of Results and Open Problems.

A number of open problems are suggested by

the above results. An obvious question is whether

there are other ways of restricting the program–

ming language of Section 2 so that a sound and

complete set of axioms can be obtained. For

example, from Section 4 we know that such an

axiom system could be obtained simply by disallow–

ing global variables. Suppose that global vari-

ables were restricted to be read only instead of

entirely disallowed, would it then be possible to

obtain a sound and complete axiom system? Automata
theoretic considerations merely show that the type

of incompleteness argument used in this paper is

not applicable.

In the case of coroutines and recursion the

most important question seems to be whether a

stronger form of expressibility might give

completeness. The result of Section 7 seems to

require that any such notion of expressibility be

powerful enough to allow assertions about the

status of the runtime stack(s”). Clint [CL73]

suggests the use of stack-valued auxiliary vari–

ables to prove properties of coroutines which

involve recursion. It seems likely that a nbtion

of expressibility which allowed such variables

would give completeness. However, the use of such

auxiliary variables appears counter to the spirit

of high level programming languages. If a proof

of a recursive program can involve the use of

‘stack–valued variables, why not simply replace

the recursive procedures themselves by stack

operations? The purpose of recursion in program-

ming languages is to free the programmer from

the details of implementing recursive constructs.

Finally we note that the technique of Sections

6 and 8 may be applied to a number of other

programming language features including (a) call

by name with functions and global variables, (b)

unrestricted pointer variables with retention,

(c) unrestricted pointer variables with recursion,

and (d) label variables with retention. Al 1

these features present difficulties with respect

to program proofs, and (one might argue) should

be avoided in the design of programming

languages suitable for program verification.
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Language Language Language Language Language Language

1 2 3 4 5 6

(1)

(2)

procedures with inc. no proce–

procedure parameters dure pa–

rameters

recursion

(3) global variables

(4)

(5)

inc.

inc.

inc.

inc.

static scope inc. @c.

internal procedures inc. inc.

inc. inc.

no recur-

sion, no

self ap–

plication

inc.

inc. global

variables

disallowed

inc. inc.

inc. inc.

inc. inc.

inc.

..
inc.

inc.

inc.

dynamic inc.

scope

inc. internal

procedures

not allowed

Sound and Complete no yes yes yes yes yes

Hoare–like axiom

system?
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