
Imperative Polymorphism by
Store-Based Types as Abstract Interpretations

Casper Bach Poulsen Peter D. Mosses Paolo Torrini
Swansea University

{cscbp,p.d.mosses,p.torrini}@swansea.ac.uk

Abstract
Dealing with polymorphism in the presence of imperative features
is a long-standing open problem for Hindley-Milner type systems.
A widely adopted approach is the value restriction, which inhibits
polymorphic generalisation and unfairly rejects various programs
that cannot go wrong. We consider abstract interpretation as a tool
for constructing safe and precise type systems, and investigate how
to derive store-based types by abstract interpretation. We propose
store-based types as a type discipline that holds potential for inter-
esting and flexible alternatives to the value restriction.

Categories and Subject Descriptors D.3.1 [PROGRAMMING
LANGUAGES]: Formal Definitions and Theory—semantics

Keywords type systems; operational semantics; references; poly-
morphism; abstract interpretation; store-based typing

1. Introduction
The Hindley-Milner type discipline is elegant and flexible for func-
tional languages, but extending it to deal soundly with imperative
features can be challenging. In particular, adding ML-style refer-
ence types to this discipline, without introducing appropriate con-
straints on generalisation, is well-known to break type safety [21].
Consider the program:

let c = ref (λx.x)
in c := (λx.1 + x);

(!c) true

Assuming generalisation is unconstrained, line 1 sets c equal to a
reference of type ∀α. (α → α) ref. Line 2 makes an assignment
which appears to be valid, since the type int → int of the
expression is an instance of ∀α. (α → α). Line 3 leads to a run-
time type error, attempting to evaluate 1 + true. However, the
static analyser does not detect the update in the store, and gives
this program type bool, since bool → bool is an instance of
∀α. α→ α, too.

Several techniques have been proposed to deal with this prob-
lem (see section 4.2), which may result in a serious obstacle to
refactoring, hindering type-directed replacement of functional code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’15, January 13–14, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3297-2/15/01. . . $15.00.
http://dx.doi.org/10.1145/2678015.2682545

by imperative code. The solution that has been widely adopted in
practice, mainly due to its simplicity, is the so-called value restric-
tion proposed by Wright [23]: generalisation of type parameters is
only allowed for let-expressions where the expression being bound
is a value. This turns out to be liberal enough in most cases, since
unevaluated expressions can be lifted to values by η-expansion.
However, this can be problematic when we are interested in pro-
gram behaviour rather than merely the input-output relation, since
η-lifting may force radical changes in the order of evaluation.

In this paper, we propose a novel approach to relaxing the
value restriction, that we call store-based typing, and that we have
developed using a transformational technique. The contributions
we are making fall into two categories:

• Technical: we use a novel combination of techniques, including
a variant of coinductive big-step semantics [11] and abstract
interpretation [6] to guide the transformation of a dynamic
operational semantics into a type semantics that is safe by
construction.

• Practical: a novel approach to type inference with promising
potential for more flexible typing disciplines for imperative
polymorphism.

The rest of this paper is structured as follows: we first introduce
a coinductive big-step semantics for the call-by-value λ-calculus
without references in Sect. 2. The big-step semantics forms the ba-
sis for deriving safe base, mono- and polytype systems in Sect. 3,
which is largely based on Cousot’s work on types as abstract inter-
pretations [5], but using an operational, rather than denotational,
approach. Extending our language with references in Sect. 4,
we propose a store-based polytype semantics for imperative let-
polymorphism. Section 5 recalls related work and outlines future
directions.

2. A Novel Style of Coinductive Semantics
Consider the following grammar for the λ-calculus with integer
constants i ∈ Z and variables x ∈ Var .

Expr 3 e ::= λx.e | e e | x | i

Using ordinary big-step semantics, also known as natural seman-
tics [10], the inductive interpretation of the following rules defines
the judgment ρ ` e ⇒ v to hold just when left to right, eager
evaluation of e in environment ρ terminates with value v.

ρ ` λx.e⇒ 〈x, e, ρ〉
ρ(x) = v

ρ ` x⇒ v ρ ` i⇒ i

ρ ` e1 ⇒ 〈x, e, ρ′〉 ρ ` e2 ⇒ v2 ρ′[x 7→ v2] ` e⇒ v

ρ ` e1 e2 ⇒ v

3

Here, environments ρ ∈ Env , Var
fin−→ Val , and values v ∈ Val

include integers i and closures 〈x, e, ρ〉.
The above semantics does not distinguish between expressions

whose evaluation diverges (e.g., ω , (λx.x x)(λx.x x)) and those
whose evaluation gets stuck (e.g., 0 0). Leroy and Grall [11] show
that the coinductive interpretation of such big-step rules lets some
diverging expressions have values, but not all. For example, ρ `
ω ⇒ v for all ρ, v, but not ρ ` ω (0 0) ⇒ v, since the premises of
the application rule require a value for the stuck term

To detect divergence one can follow Cousot [7] as well as Leroy
and Grall, and define a divergence predicate⇒∞ coinductively:

ρ ` e1 ⇒∞

ρ ` e1 e2 ⇒∞
ρ ` e1 ⇒ 〈x, e, ρ′〉 ρ ` e2 ⇒∞

ρ ` e1 e2 ⇒∞

ρ ` e1 ⇒ 〈x, e, ρ′〉 ρ ` e2 ⇒ v2 ρ′[x 7→ v2] ` e⇒∞

ρ ` e1 e2 ⇒∞

This gives ρ ` ω (0 0) ⇒∞. There are two pragmatic problems:
(i) the need for extra rules and premises, known as the duplication
problem [3, 4]; (ii) to prove a property of our semantics may involve
both⇒ and⇒∞. The alternative of merely adding a ⊥ element to
the semantics still involves a significant number of extra rules and
premises that also clutter the reasoning steps involved in proofs.

Here, we propose a new way of encoding divergence that sub-
sumes both the ordinary ρ ` e ⇒ v relation and the ρ ` e ⇒∞
predicate. We introduce a ‘divergence flag’:

Div 3 δ ::= � | �
A change from � to � corresponds to divergence arising. Augment-
ing our relation with this flag, the judgment becomes ρ ` e/δ ⇒
v/δ′ , saying that evaluating e in divergence state δ gives the out-
come v in divergence state δ′. Figure 1 gives the rules for our aug-
mented relation. The crucial rule that allows us to propagate diver-
gence between premises is the divergence rule DIV. The intuition
is that, if we are diverging, no value is produced, so we may choose
any value v. The other rules are obtained from the original big-step
rules systematically, reflecting the intended order of evaluation.

ρ ` i/� ⇒ i/�
(INT)

ρ ` e/� ⇒ v/�
(DIV)

ρ(x) = v

ρ ` x/� ⇒ v/�
(VAR)

ρ ` λx.e/� ⇒ 〈x, e, ρ〉/�
(ABS)

ρ ` e1/� ⇒ 〈x, e, ρ′〉/δ ρ ` e2/δ ⇒ v2/δ′

ρ′[x 7→ v2] ` e/δ′ ⇒ v/δ′′

ρ ` e1 e2/� ⇒ v/δ′′
(APP)

Figure 1. Coinductive evaluation rules using a divergence flag

It is worth spelling out the relationship between the rules with
the divergence flag and Leroy and Grall’s big-step semantics. The
rules corresponding to the⇒∞ relation can be obtained by unfold-
ing the premises of the big-step rules relative to the DIV rule. The
judgment ρ ` e/� ⇒ v/� is not derivable under an inductive inter-
pretation of our rules (ensured by insisting that the conclusion and
first premise start in a converging state for all rules, except DIV).
Therefore, if we can derive it using coinduction, it must be a diverg-
ing computation. It is, however, possible to prove ρ ` e/� ⇒ v/�
for some diverging computations (e.g., ρ ` ω/� ⇒ v/� for any v).

In summary, a proof that something coevaluates to � does not
imply that it is in the inductive relation. In contrast, a proof that
something coevaluates to � implies that it is a diverging computa-
tion, and thus not in the inductive relation. The lack of distinction
between some converging and diverging computations in the coin-
ductive relation is not important for the purpose of this paper. The

important point is that we have obtained a concisely defined rela-
tion containing all converging and diverging computations.

3. Deriving Church/Curry Polytypes
The abstract interpretation framework [6] provides a systematic
method for constructing safe approximations of the semantics of
programs. We follow [5] in abstracting type systems from the
so-called collecting semantics, but start from coinductive big-step
operational semantics instead of denotational semantics.

We first define an abstraction to base types (obtained by replac-
ing types for ground values in expressions) as in [13, 14]. Subse-
quently, we introduce an abstraction of base types (after extend-
ing the language with a let construct) to Hindley-Milner polytypes.
Polytypes can be further abstracted to monotypes, following [5].

3.1 Collecting Semantics
Let S , Env → ℘(Val ×Div). With reference to the coinductive
interpretation of the rules in Fig. 1, let S[[•]] ∈ Expr → S be
defined by S[[e]] , Λρ. {〈v, δ〉 | ρ ` e/� ⇒ v/δ}, where Λ is
meta-level function abstraction (following [5]).

A property of an expression is a subset of S, i.e., an element of
C , ℘(S). We are interested in the programs that do not get stuck.
However, this property is undecidable. It can be approximated by
introducing a notion of type. The collecting semantics C[[•]] ∈
Expr → C, defined by C[[e]] , {S[[e]]}, is the property that gives
the most precise information on a program. Abstract interpretation
gives us a method for constructing approximations of well-behaved
programs as type systems, starting from the collecting semantics,
by using abstractions that ensure type soundness by definition. The
notion of type soundness we are interested in here is the usual one,
adapted to our big-step semantics:

Γ ` e : t =⇒ ` ρ : Γ =⇒ ∃v, δ. ` v : t ∧ ρ ` e/� ⇒ v/δ

where Γ is a typing environment and t a type.
Given two partially ordered sets 〈P,vP〉, 〈Q,vQ〉, a Galois

connection 〈P vP〉 −−→←−−α
γ
〈Q,vQ〉 arises for total functions α ∈

P → Q (abstraction) and γ ∈ Q → P (concretisation) whenever
α(p) vQ q ⇐⇒ p vP γ(q) for all p ∈ P and q ∈ Q. The
progression we establish can be depicted:1

〈C,⊆C〉 −−−→←−−−
αb

γb

〈B,⊇B〉 −−−→←−−−
αp

γp

〈P,⊇P〉 −−−−→−→←−−−−−
αm

γm

〈M,⊇M〉

where C is the domain for the collecting semantics, B for the
base type semantics, P for the polytype semantics, and M for the
monotype semantics. At each step, abstraction is defined so as to
induce a typing relation as an abstract derivation that is sound
with respect to the concrete one. The Galois connections arising by
composition, from αp ◦ αb and αm ◦ αp ◦ αb respectively, ensure
that type soundness holds for polytypes and monotypes.

3.2 Base Type Abstraction
The idea is to replace the set of integers by an int type and preserve
the structure of all other constructs. We proceed in three steps:
defining the domain, describing the Galois connection, and using
this to infer the structure of the type semantics.

Domain definitions. We are interested in the type of values that a
program returns when it terminates. For this reason, we do not need
the Div flag in the definition of the base type domain:

BType 3 b ::= int | 〈x, e, ρb〉
ρb ∈ BEnv , Var

fin−→ BType B , ℘(BEnv × BType)

1 The double headed arrow represents Galois insertions, meaning that the
mapping is surjective.

4

Galois connection. We define the abstraction αb of the collecting
semantics in terms of an abstraction αbs of the denotations, which in
turn is defined in terms of αbv which abstracts values, and αbρ which
abstracts environments by pointwise application of αbv .

αb ∈ C→ B αbs ∈ S→ B
αbv ∈ Val → BType αbρ ∈ Env → BEnv

αbv(i) , int αbv(〈x, e, ρ〉) , 〈x, e, αbρ(ρ)〉
αbs(S) , {〈ρb, b〉 | ∀ρ. ρb = αbρ(ρ) =⇒

∃v. b = αbv(v) ∧ 〈v, �〉 ∈ S(ρ)}

αbρ(ρ) , Λx. αbv(ρ(x)) αb(C) ,
B⋂

S∈C

αbs(S)

The definition of αbs is designed to match our soundness schema.
However, here it is convenient to strengthen it by restricting ty-
peability to terminating programs, in order to derive the typing re-
lation as an inductive one. Notice that from this particular definition
of αbs, it follows that diverging and stuck programs have no type.

For all ∆ ⊆ C, the following property holds:

αb(

C⋃
∆) =

B⋂
C∈∆

αb(C)

since:

αb(

C⋃
∆) =

B⋂
S∈

⋃
∆

αbs(S) =

B⋂
C∈∆,S∈C

αbs(S) =

B⋂
C∈∆

αb(C)

which suffices to establish the Galois connection:

〈C,⊆C〉 −−−→←−−−
αb

γb

〈B,⊇B〉

Type semantics. Given the abstract specification of the desired
typing semantics B[[•]] ∈ Expr → B:

B[[e]] , {〈ρb, b〉 | ρb ` e⇒b b}
the Galois connection provides a guideline for inferring its struc-
tural definition. The guiding constraint is the following:

αb(C[[e]]) ⊇B B[[e]]

and therefore:
αbs(S[[e]]) ⊇B B[[e]]

Unfolding the definitions of B[[•]], S[[•]], and αbs, we obtain:

ρb ` e⇒b b =⇒ ρb = αbρ(ρ) =⇒
∃v. b = αbv(v) ∧ ρ ` e/� ⇒ v/�

Reasoning on the structure of the⇒ relation, a definition of⇒b can
be found, by choosing it so that the proof goes through by induction
on⇒b. The simplest relation that admits such a structural induction
proof is the one given by the following rules:

ρb ` i⇒b int
(B-INT)

ρb(x) = b

ρb ` x⇒b b
(B-VAR)

ρb ` λx.e⇒b 〈x, e, ρb〉
(B-ABS)

ρb ` e1 ⇒b 〈x, e, ρb〉 ρb ` e2 ⇒b b2
ρb[x 7→ b2] ` e⇒b b1

ρb ` e1 e2 ⇒b b1
(B-APP)

3.3 Hindley-Milner Polymorphism
Determining the base type of an expression essentially involves
evaluating the expression, hence base types are rather useless as

a type system. However, they can be useful as an intermediate
abstraction [14]. Notice that base types have an implicitly poly-
morphic character (closure types can be informally understood to
be polymorphic). For this reason, they provide an optimal starting
point to define abstractions to proper polymorphic types.

Here we are interested in Hindley-Milner polymorphism, which
has a well-known syntactic characterisation with good computa-
tional properties [8]. Also known as let-polymorphism, it is syntac-
tically an extension of typed λ-calculus with type variables, allow-
ing for type schemes (i.e., type expressions with variables), and it
does not require any explicit use of quantification. Semantically, we
characterise types as monotypes, and explain type schemes away in
terms of sets of monotypes, that for us are the polytypes.

Hindley-Milner polymorphism is more restrictive than the un-
constrained syntactic polymorphism of system F, but is more liberal
than so-called weak polymorphism [17]. Weak polymorphism does
not allow instantiation of type variables with polytypes (predica-
tive restriction), nor functions to have polytype arguments (prenex
restriction). Hindley-Milner polymorphism is obtained by relaxing
the prenex restriction in let-expressions, whose evaluation is char-
acterised by the following rule:

ρ ` e2/� ⇒ v2/δ ρ[x 7→ v2] ` e1/δ ⇒ v1/δ′

ρ ` (let x = e2 in e1)/� ⇒ v1/δ′
(LET)

Domain definitions. We can abstractly specify the polytype do-
main as follows, on top of a minimal monotype syntax.

MType 3 m ::= int | m→ m

p ∈ PType , ℘(MType)

ρp ∈ PEnv , Var
fin−→ PType P , ℘(PEnv ×MType)

Galois connection. Value and environment abstraction give us
naturally sets (comparable to the general types in [14]). Such sets
may not be computable, but this does not prevent us from specify-
ing type soundness by abstraction.

αp ∈ B→ P αpρ ∈ BEnv → ℘(PEnv)

αpb ∈ BType → PType

αpb(int) , {int}
αpb(〈x, e, ρ

b〉) , {m2 → m1 | ∀b2. m2 ∈ αpb(b2) =⇒
∃b1. m1 ∈ αpb(b1) ∧ ρb[x 7→ b2] ` e⇒b b1}

αpρ(ρ
b) , {ρp | ∀x. ρp(x) ⊆ αpb(ρ

b(x))}
αp(B) , {〈ρp,m〉 | ∀ρb. ρp ∈ αpρ(ρb) =⇒

∃b. m ∈ αpb(b) ∧ 〈ρ
b, b〉 ∈ B}

The following Galois connection holds between base types and
polytypes:

〈B,⊇B〉 −−−→←−−−
αp

γp

〈P,⊇P〉

Type semantics. The specification of the semantics is:

P[[•]] ∈ Expr → P
P[[e]] , {〈ρp,m〉 | ρp ` e⇒p m}

Since Hindley-Milner polymorphism has principal types [8], we
expect principality to be provable along the lines of [5, Sect. 12].

The guiding constraint provided by the Galois connection to
define⇒p is the following:

αp(B[[e]]) ⊇B P[[e]]

5

and therefore:

∀m ∈ p. ρp ` e⇒p m =⇒ ρp ∈ αpρ(ρb) =⇒
∃b. p ⊆ αpb(b) ∧ ρ

b ` e⇒b b

The expected definition of ⇒p can be found by reasoning on the
structure of e in order to make the proof go through by induction
on⇒p. Rules P-INT and P-VAR are similar to B-INT and B-VAR.
The rule for→ introduction:

ρp[x 7→ {m2}] ` e⇒p m1

ρp ` λx.e⇒p m2 → m1
(P-ABS)

is basically built into the definition of αpb . Notice that x has to be
typed by m2 in this rule as b2 can vary arbitrarily in that definition.
The restriction of the polytype of x to a singleton here corresponds
to the fact that the prenex restriction applies to non-let-expressions.
The rule for→ elimination:

ρp ` e1 ⇒p m2 → m1 ρp ` e2 ⇒p m2

ρp ` e1 e2 ⇒p m1
(P-APP)

can be inferred from the case of e = e1 e2 of the proof. In fact, it
is the simplest rule such that the premises of the B-APP instance
needed to get the statement conclusion can be obtained via the
induction hypothesis: given ρp ∈ αpρ(ρb), from ρp ` e2 ⇒p m2

it follows m2 ∈ αpb(b
′) ∧ ρb ` e2 ⇒b b′ for some b′; from ρp `

e1 ⇒p m2 → m1 it follows (m2 → m1) ∈ αpb(〈x, e
′, ρb〉)∧ρb `

e1 ⇒b 〈x, e′, ρb〉 for some e′, and thus, by definition of αpb , also
m1 ∈ αpb(b) ∧ ρ

b[x 7→ b′] ` e′ ⇒b b for some b. The rule for let:

p 6= ∅ ∀m2 ∈ p. ρp ` e2 ⇒p m2

ρp[x 7→ p] ` e1 ⇒p m1

ρp ` let x = e2 in e1 ⇒p m1
(P-LET)

can be inferred from the case e = let x = e2 in e1. First we
need to extend the base type abstraction to LET. This gives us:

ρb ` e2 ⇒b b2 ρb[x 7→ b2] ` e1 ⇒b b1

ρb ` let x = e2 in e1 ⇒b b1
(B-LET)

Rule P-LET can then be justified as the rule needed for the B-LET
case: from the first premise of P-LET it follows there is a b2 such
that p ⊆ αpb(b2) ∧ ρb ` e2 ⇒b b2; from ρp[x 7→ p] ` e1 ⇒p m1

it follows m1 ∈ αpb(b1) ∧ ρb[x 7→ b2] ` e′ ⇒b b1.

3.4 Church/Curry Monotype Abstraction
Following Cousot [5], we can specify the monotype domain:

ρm ∈ MEnv , Var
fin−→ MType M , ℘(MEnv ×MType)

and define a Galois insertion between polytypes and monotypes:

〈P,⊇P〉 −−−−→−→←−−−−−
αm

γm

〈M,⊇M〉

αm(P) , {(ρm,m) | (Λx.{ρm(x)},m) ∈ P}
γm(M) , {(Λx.{ρm(x)},m) | (ρm,m) ∈M}

The surjectivity of αm ensures γm is injective, but αm involves a
loss of information [5, Sect. 7]. The monotype semantics is:

M[[•]] ∈ Expr → M
M[[e]] , {〈ρm,m〉 | ρm ` e⇒m m}

By following the constraint:

αm(P[[e]]) ⊇B M[[e]]

it is not difficult to see that the definition of ⇒m simply involves
replacing polytype environments with monotype ones in the ⇒p

rules, leaving the rest unchanged. Notice that let x = e2 in e1

and (λx.e1) e2 here become equivalent.

4. Store-Based Types
In this section we propose a novel approach to imperative poly-
morphism. It is straightforward to extend the language considered
in the previous section with ML-style references, and to add loca-
tions and stores to its coinductive big-step evaluation rules. When
using abstract interpretation to define type systems for the extended
language, however, we need to choose how to approximate the lo-
cations and stores.

Here, we give a polymorphic type system that results from
retaining exact information about allocation and updates, while
approximating all values other than locations by types (as in the
previous section). This system allows so-called strong updates [2]
where assignment can change the type of value stored at a location.
We give examples of programs that have types in our system, but
not with previous approaches. Further exploration of our approach
is needed to establish its potential usefulness and safety.

4.1 Store-Based Types
Adding stores to the call-by-value λ-calculus, the grammar from
Sect. 2 is extended as follows:

Expr 3 e ::= ... | ref e | !e | e := e

Values v ∈ Val now include locations l ∈ Loc. The rules in Fig. 2
give the dynamic semantics of our extended language, which de-
fines the judgment ρ ` e/σ|δ ⇒ v/σ′|δ′ to hold when left to right
evaluation of expression e in environment ρ, store σ, and diver-
gence state δ, gives the outcome consisting of value v, result store
σ′, and divergence state δ′. Here, stores σ ∈ Loc → Val denote
possibly-infinite maps. In addition to the rules R-REF, R-DREF,
and R-ASGN, we have added the rule R-STO-WK. The latter rule
is used to allow coinductive reasoning about diverging computa-
tions that produce infinite stores [16] (for example, it provides a
means of proving that (λx.x x)(λx.let r = ref 1 in xx) di-
verges; without it, a coinductive hypothesis will not match).

A store-based type is a pair consisting of a type and a type store.
The syntax of types is:

MTypeς 3M ::= int | l | 〈M, ς〉 → 〈M, ς〉

Here, ς ∈ Loc
fin−→ MTypeς is a type store.2 Store-based types

depart from the usual approach to store typing [17]: we introduce
the notion of type store as the type level abstraction of a store,
in which locations are treated as types themselves. Store-based
function types 〈M, ς〉 → 〈M ′, ς ′〉 record an argument type store ς
and a return type store ς ′. The rules in Fig. 3 define the judgment
ΓP ` e/ς ⇒S M/ς′ to hold when expression e in the polytype

environment ΓP ∈ Var
fin−→ ℘(MTypeς) and type store ς has

type M in type store ς ′.
We highlight rules that differ from traditional ML typing rules:

S-ABS. The function type records the inferred argument type M2,
argument type store ς0 under which the function body evaluates,
the result typeM1, and the updated type store ς∆ resulting from
function body evaluation.

S-APP. Applying a store-based abstraction involves checking that
the current store ς is compatible with the function argument
type store ς0, using the �ς relation. When both type store and
argument type are compatible with the function type, the type
store ς ′′ is updated relative to the function return type store
ς∆, using the � operation, which shadows mappings in ς ′′ by
ς∆, and creates fresh locations for newly allocated references
between ς ′′ and ς∆.

2 Whereas dynamic stores are potentially infinite, type stores are finite.
Typing restricts stores to those that are finitely typeable.

6

ρ ` i/σ|� ⇒ i/σ|�
(R-INT)

ρ ` e/σ|� ⇒ v/σ′|�
(R-DIV)

ρ(x) = v

ρ ` x/σ|� ⇒ v/σ|�
(R-VAR)

ρ ` e/σ|δ ⇒ v/σ′|δ′

l 6∈ (dom(σ) ∪ dom(σ′))

ρ ` e/σ[l7→v′]|δ ⇒ v/σ′[l7→v′]|δ′
(R-STO-WK)

ρ ` λx.e/σ|� ⇒ 〈x, e, ρ〉/σ|�
(R-ABS)

ρ ` e1/σ|� ⇒ 〈x, e, ρ′〉/σ′|δ
ρ ` e2/σ′|δ ⇒ v2/σ′′|δ′

ρ′[x 7→ v2] ` e/σ′′|δ′ ⇒ v/σ′′′|δ′′

ρ ` e1 e2/σ|� ⇒ v/σ′′′|δ′′
(R-APP)

ρ ` e2/�|σ ⇒ v2/δ|σ′

ρ[x 7→ v2] ` e/δ|σ′ ⇒ v/δ′|σ′′

ρ ` let x = e2 in e1/�|σ ⇒ v/δ′|σ′′
(R-LET)

ρ ` e/σ|� ⇒ v/σ′|δ l 6∈ dom(σ′)

ρ ` ref e/σ|� ⇒ l/σ′[l7→v]|δ
(R-REF)

ρ ` e/σ|� ⇒ l/σ′|δ

ρ ` !e/σ|� ⇒ σ′(l)/σ′|δ
(R-DREF)

ρ ` e1/σ|� ⇒ l/σ′|δ l ∈ dom(σ′)
ρ ` e2/σ′|δ ⇒ v2/σ′′|δ′

ρ ` e1 := e2/σ|� ⇒ v2/σ′′[l7→v2]|δ′
(R-ASGN)

Figure 2. Coinductive big-step rules for call-by-value λ-calculus
with references

S-REF and S-DREF. Locations are reflected at the type-level.
Dereferencing a location via S-DREF produces the type stored
at the corresponding location in a type store ς .

S-ASGN. Assignment supports strong updates: the type being as-
signed to a location is not checked against the type assigned to
the location in the type store before the update.

4.2 Store-Based Types for Imperative Polymorphic Type
Inference

We consider examples of how store-based types allow for Hindley-
Milner polymorphism. Using the rules in Fig. 3, λx.ref x can
be assigned a type in the set {〈M, ·〉 → 〈l, (l 7→ M)〉 | M ∈
MTypeς ∧ l ∈ Loc}, where · is an empty map. Extending our
language with sequencing and booleans it follows that:

mkref , let m = (λx.ref x) in m 1; m true

· ` mkref /· ⇒
S l/(l7→bool)

The following expression which adds an application of the identity
function inside the bound let-expression produces the same type
and type store as mkref :

mkref ′ , let m = (λy.y) (λx.ref x) in m 1; m true

Consider the following somewhat contrived expression from [22]:

effect , λz.let id = (λx.if true then z
else (λy.ref x; y); x)

in id 1; id true

If we further extend our language with conditionals, the judgment
· ` effect/· ⇒S bool/· holds. Since our type system supports

ΓP ` i/ς ⇒S int/ς
(S-INT)

ΓP (x) = P M ∈ P
ΓP ` x/ς ⇒S M/ς

(S-VAR)

ΓP [x 7→ {M2}] ` e/ς0 ⇒
S M1/ς∆

ΓP ` λx.e/ς ⇒S 〈M2, ς0〉 → 〈M1, ς∆〉/ς
(S-ABS)

ΓP ` e1/ς ⇒S 〈M2, ς0〉 → 〈M1, ς∆〉/ς′
ΓP ` e2/ς′ ⇒S M2/ς′′ ς0 � ς ′′

ΓP ` e1 e2/ς ⇒S M1/ς′′�ς∆

(S-APP)

P 6= ∅ ∀M2 ∈ P. ΓP ` e2/ς ⇒S M2/ς′

ΓP [x 7→ P] ` e1/ς′ ⇒S M1/ς′′

ΓP ` let x = e2 in e1/ς ⇒S M1/ς′′
(S-LET)

ΓP ` e/ς ⇒S M/ς′ l 6∈ dom(ς ′)

ΓP ` ref e/ς ⇒S l/ς′[l 7→M]

(S-REF)

ΓP ` e/ς ⇒S l/ς′

ΓP ` !e/ς ⇒S ς ′(l)/ς′
(S-DREF)

ΓP ` e1/ς ⇒S l/ς′ l ∈ dom(ς ′)

ΓP ` e2/ς′ ⇒S M2/ς′′

ΓP ` e1 := e2/ς ⇒S M2/ς′′[l7→M2]

(S-ASGN)

ς1 � ς2 , {(l 7→ ς1(l)) | l 6∈ dom(ς2)}
∪ {(l 7→ ς2(l)) | l ∈ (dom(ς1) ∩ dom(ς2))}
∪ {(lfresh 7→ ς2(l)) | ∃l. l 6∈ dom(ς1) ∧ l ∈ dom(ς2) ∧

lfresh 6∈ (dom(ς1) ∪ dom(ς2))}

∀l ∈ dom(ς1). ς1(l) �M ς2(l)

ς1 �ς ς2 M �M M

M1 �M M2 M ′1 �M M ′2 ς1 �ς ς2 ς ′1 �ς ς ′2
〈M1, ς1〉 → 〈M ′1, ς ′1〉 �M 〈M2, ς2〉 → 〈M ′2, ς ′2〉

Figure 3. Inductive rules for store-based typing with strong up-
dates

T [21] L&W [12] W [23] T&J [20] G [9] SB
mkref X X X X X X

mkref ′ − X X X − X
effect X − − − X X

strong − − − − − X

Table 1. Comparing existing approaches and store-based typing

strong updates, · ` strong/· ⇒S bool/(l7→bool) holds, where:

strong , let x = ref 1 in x := true

Table 1 summarises which expressions we are able to type check
using store-based typing (SB) compared to existing approaches to
imperative polymorphism in the literature.

5. Concluding Remarks
Using a novel approach to coinduction in big-step operational se-
mantics, we have presented a method to deriving type systems that
are safe by construction from big-step operational semantics, by

7

treating types as abstract interpretations. We propose store-based
typing as an interesting avenue for further research.

5.1 Related Work
Our suggestion for dealing with divergence in Sect. 2 is closely
related to the traditional approach using an ⇒∞ predicate, which
typically requires classical reasoning in proofs. Nakata and Uustalu
[16] provide a constructive alternative using coinductive trace-
based big-step semantics. In their approach, finite and infinite traces
are distinguishable in the coinductive trace-based big-step relation.
Abel and Chapman [1] encode divergence using the delay monad
by wrapping computations in a coinductive type which produces a
potentially infinitely-delayed value. Our encoding of divergence in
a stateful way suggests that it could lend itself to implementation
as a monad too.

Wright [23] provides an overview of previous approaches to
Hindley-Milner polymorphism in ML-like languages. Not covered
by Wright is Garrigue’s more recent work [9], which uses a sub-
typing based approach to relax the value restriction by generalising
type variables that occur only at covariant positions.

Separation logic [18] is concerned with reasoning about im-
perative programs and mutable data structures. Our proposed type
stores reflects the runtime store. Ideas from separation logic may
conceivably carry over to allow for more sophisticated store-based
type analysis. Our reflection of the runtime store is also analogous
to Morrisett’s typed assembly language [15] which tracks the state
of registers. In our system with strong updates, we expect safety
to hold by the compatibility check of type stores in applications.
Smith et al.’s alias types [19] instead uses linear types to track alias-
ing to allow for strong updates.

Ahmed [2] describes a logical relations approach to deriving
type systems that are safe by construction. Like our work, she starts
from an object language and derives type systems. She proves that
the semantic model she uses for her derivation, based on logical
relations, implies type safety. Using abstract interpretation, the
appropriate definition of a Galois connection can give us a safety
principle for free – an aspect explicitly mentioned by Cousot [5]
in connection with the relationship between abstract interpretation
and logical relations.

5.2 Future Directions
Store-based types were conceived by thinking of types as abstract
interpretations, but the safety of the rules in Fig. 3 remains to
be rigorously checked using the approach described in Sect. 3.
From initial experiments with a Prolog prototype implementation
of store-based types, we conjecture that the rules in Fig. 3 are safe.3

It is straightforward to restrict store-based typing to invariant
updates such that locations in stores never change type. This would
allow function types to be simplified to only contain locations that
are subterms of the argument type. This may be a first step towards
constructing a mapping from function monotypes with ML-style
reference types into corresponding store-based type counterparts.

Abstract interpretation provides a guiding principle for con-
structing safe type systems. As Sect. 3 shows, it is also useful for
relating type systems. An interesting line of research is to compare
the expressiveness of different approaches to imperative polymor-
phism in the literature to our proposal.

Acknowledgments
Thanks to the referees and Neil Sculthorpe for exceptionally help-
ful suggestions for improving the paper. This work was supported

3 The Prolog prototype is available at: http://www.plancomps.org/
pepm2015.

by an EPSRC grant (EP/I032495/1) to Swansea University in con-
nection with the PLanCompS project (www.plancomps.org).

References
[1] A. Abel and J. Chapman. Normalization by evaluation in the delay

monad: A case study for coinduction via copatterns and sized types.
In MSFP’14, volume 153 of EPTCS, pages 51–67, 2014.

[2] A. J. Ahmed. Semantics of Types for Mutable State. PhD thesis,
Princeton University, 2004.

[3] C. Bach Poulsen and P. D. Mosses. Deriving pretty-big-step semantics
from small-step semantics. In ESOP’14, volume 8410 of LNCS, pages
270–289. Springer, 2014.

[4] A. Charguéraud. Pretty-big-step semantics. In ESOP’13, volume 7792
of LNCS, pages 41–60. Springer, 2013.

[5] P. Cousot. Types as abstract interpretations. In POPL’97, pages 316–
331. ACM, 1997.

[6] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In POPL’79, pages 269–282. ACM, 1979.

[7] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract
interpretations. In POPL’92, pages 83–94. ACM, 1992.

[8] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In R. A. DeMillo, editor, POPL’82, pages 207–212. ACM,
1982.

[9] J. Garrigue. Relaxing the value restriction. In FLOPS’04, volume
2998 of LNCS, pages 196–213. Springer, 2004.

[10] G. Kahn. Natural semantics. In STACS’87, volume 247 of LNCS,
pages 22–39. Springer, 1987.

[11] X. Leroy and H. Grall. Coinductive big-step operational semantics.
Inf. Comput., 207:284–304, 2009.

[12] X. Leroy and P. Weis. Polymorphic type inference and assignment. In
POPL’91, pages 291–302. ACM, 1991.

[13] B. Monsuez. Polymorphic typing by abstract interpretation. In
FSTTCS’92, volume 652 of LNCS, pages 217–228. Springer, 1992.

[14] B. Monsuez. System F and abstract interpretation. In SAS’95, volume
983 of LNCS, pages 279–295. Springer, 1995.

[15] G. Morrisett. Typed assembly language. In B. C. Pierce, editor,
Advanced Topics in Types and Programming Languages. The MIT
Press, 2004.

[16] K. Nakata and T. Uustalu. Trace-based coinductive operational seman-
tics for while. In TPHOLs’09, volume 5674 of LNCS, pages 375–390.
Springer, 2009.

[17] B. C. Pierce. Types and programming languages. MIT Press, 2002.
[18] J. C. Reynolds. Separation logic: A logic for shared mutable data

structures. In LICS’02, pages 55–74. IEEE, 2002.
[19] F. Smith, D. Walker, and G. Morrisett. Alias types. In ESOP’00,

volume 1782 of LNCS, pages 366–381. Springer, 2000.
[20] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Inf.

Comput., 111(2):245–296, 1994.
[21] M. Tofte. Type inference for polymorphic references. Inf. Comput.,

89(1):1–34, Sept. 1990.
[22] A. K. Wright. Typing references by effect inference. In ESOP’92,

volume 582 of LNCS, pages 473–491. Springer, 1992.
[23] A. K. Wright. Simple imperative polymorphism. Lisp Symb. Comput.,

8(4):343–355, Dec. 1995.

8

http://www. plancomps.org/pepm2015
http://www. plancomps.org/pepm2015
http://www.plancomps.org

	Introduction
	A Novel Style of Coinductive Semantics
	Deriving Church/Curry Polytypes
	Collecting Semantics
	Base Type Abstraction
	Hindley-Milner Polymorphism
	Church/Curry Monotype Abstraction

	Store-Based Types
	Store-Based Types
	Store-Based Types for Imperative Polymorphic Type Inference

	Concluding Remarks
	Related Work
	Future Directions

