
A Generic Account of Continuation-Passing Styles *

John Hat cliff Olivier Danvy

Department of Computing and Information Sciences Department of Computer Science

Kansas State University t Aarhus University $

hat cliff(lcis.ksu.edu danvyOdaimi.aau .dk

Abstract

We unify previous work on the continuation-passing style

(CPS) transformations in a generic framework based on
Moggi’s computational met a-language. This framework is

used to obtain GPS transformations for a variety of evalua-

tion strategies and to characterize the corresponding admini-

strative reductions and inverse transformations. We estab-

lish generic formal connections between operational seman-

tics and equational theories. Formal properties of transfor-

mations for specific evaluation orders follow as corollaries.

Essentially, we factor transformations through Moggi’s

computational meta-language. Mapping A-terms into the

met a-language captures computational properties (e.g., par-
tiality, strictness) and evaluation order explicitly in both the

term and the type structure of the meta-language. The CPS

transformation is then obtained by applying a generic trans-

formation from terms and types in the meta-language to

CPS terms and types, based on a typed term representation

of the continuation monad. We prove an adequacy property

for the generic transformation and establish an equational

correspondence between the meta-language and CPS terms.

These generic results generalize Plotkin’s seminal theo-

rems, subsume more recent results, and enable new uses of

CPS transformations and their inverses. We discuss how to

apply these results to compilation.

1 Introduction

There is a variety of continuation-passing styles — one for

each evaluation order (call-by-name, etc.) and for each se-

quencing order (left-to-right, etc.). In each style, contin-

uations get passed from function to function — resulting

in a strikingly similar structure for all styles. However, in

the literature, the formal properties of each style are es-

tablished independently. For example, in his seminal paper

Catl-by-name, call-by-value, and the A-calculus [32], Plotkin

first presents call-by-value continuation-passing style (CPS)

along with a set of correctness proofs and then he presents

call-by-name CPS along with another set of correctness

proofs. Both styles have similar structure but they are not

identical. Their correctness proofs are also structurally sim-

ilar but they are not identical We propose to exploit these

‘This work was partly supported by NSF under grant CCR-

9102625.
‘Manhattan, Kansas 66506, USA
tN ~ Munkegade, 8000 Aarhus C, Denmark — This work was

initiated at Kansas State University, continued at Carnegie Mellon

University in spring 1993, and completed at Aarhus University,

Pem”ssion to copy without fee all or part of this material is

granted providad that tha copies era not msde or distributed for
direct commercial advantage. the ACM copyright notica and tha

title of the publication and its data appear, and notica is Oiven
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requiras a fea
endor apecifio permission.

POPL 94-1194, Portland Oregon, USA

@ 1994 ACM O-89791 -rHWh94fOOl..$3.5O

similarities to factor the CPS transformations and their cor-

rectness proofs.

It appears that many CPS transformations are built from

common building blocks. We represent these building blocks

abstractly by constructs of Moggi)s computational meta-

language (which we refer to as A~L) [26].1 By formally

connecting the language of abstract building blocks and the

language of CPS terms, we obtain a generic framework for

constructing CPS transformations and for reasoning about

CPS terms — as opposed to dealing with each transforma-

tion individually. To connect the (operational) semantics

of the two languages, we show an adequacy property for a

generic transformation C from A~L to CPS terms. To con-

nect equational theories, we show that the transformation

C (continuation introduction), along with its inverse C-l

(continuation elimination), establishes an equational corre-

spondence between A~L and CPS terms. The diagram of

Figure 1 summarizes the situation.

The result is that, given a correct encoding into AA,

the construction and correctness of the corresponding CPS

transformation follow as corollaries. Establishing a correct

encoding into Aml is much simpler than working directly

with CPS terms.

This approach generalizes Plotkin’s construction and

correctness proofs for his call-by-value and call-by-name

CPS transformations [32]. It also generalizes similar re-

sults for Reynolds’s cal-by-value CPS transformation [34],

and more recently for CPS transformations capturing mixed

evaluation orders based on strictness and totality informa-

tion [3, 8, 9].

Practical use of CPS transformations requires one to

characterize “administrative reductions” [7, 32, 36]. Again,

administrative reductions are usually characterized for each

CPS transformation individually. For example, Plotkin

gives a “colon-translation” that performs administrative re-

ductions for call-by-value CPS and then another colon-

translation that performs administrative reductions for caU-

by-name CPS. In contrast, a certain subset of A~z reduc-

tions generically characterizes the administrative reductions

on CPS terms.

For each CPS transformation, a corresponding direct-

style (DS) transformation exists that maps CPS terms and

types to direct-style terms and types. DS transformations

have stirred interest recently [6, 10, 13, 36]. However, just

like the CPS transformations, they have been studied in-

dividually. In cent rast, the continuation elimination C–l

serves as the core of a generic D S transformation.

Finally, in situations where explicit continuations are not

needed (e. g., for compiling programs without jumps), flA

stands as an alternative language to CPS — very close to

GPS but without continuations.

1 Note that M~ggi>s computational meta-language [26] 1s a different

language than Moggi’s computational J-calculus Xc [23, 24].

458

C13V -
{

CBN * *

Reynolds’s CBV +
c*

~–l

i
CBV + strictness info \

Evaluation Orders CPS

Figure 1: Factoring transformations through the computational meta-language

In Moggi’s work, A*1 (without recursive functions) is

given a categoriczd semantics. The interpretation can be

parameterized with categorical structures called monads

that abstractly capture various notions of computation. In

essence, we point out that by giving a term representation
of the continuation monad, A~~ forms the basis of an el-

egant framework capturing the construction, correct ness,

equational properties, and optimizations of CPS and DS

transformations for a variety of evaluation orders. Because

the meta-language is typed, our development also gives a

generic account of the typing of CPS transformations. Sec-

tion 9 relates the present work to other recent applications

of Moggi’s framework [36, 41, 42].

The rest of the paper is organized as follows. Section 2

addresses the representation of computational properties of

Lterms with A~t terms. We consider in detail the standard

call-by-name and call-by-value reduction strategies. Sec-

tion 3 describes the mappings between Aml terms and CPS

terms. Section 4 illustrates the framework with a variety of

CPS transformations. Section 5 formalizes administrative

reductions. Section 6 addresses DS transformations. Sec-

tion 7 describes how data structures are dealt within the

framework. Section 8 applies the framework to compilation,

Section 9 addresses related work. Section 10 concludes.

2 Representing Computational Properties of A-terms

2.1 The language A of typed A-terms

2.1.1 Syntax and notation

Figure 2 presents the syntax of the language A — simply-

typed A-terms with recursive functions. 2 Throughout the

paper, type annotations are omitted when no ambiguity re-

sults. In such cases, the terms are assumed to be type cor-

rect. The same met a-variables (r for type assumptions, r for

types, e for terms) are used in different languages. Ambigu-

ity is avoided by giving a different subscript for the typing

judgement symbol 1- in each language. We use the meta-

variable $ to distinguish identifiers of recursive functions,

For other identifiers (and where no distinction is necessary)

we use the meta-variable x. To simplify substitution, we

follow Barendregt’s variable convention and consider the

quotient of A under a-equivalence [2]. We write el ~ e2 for

a-equivalent terms el and ez. The notation F V(e) denotes

2 We follow Tennent’s presentation of abstract syntax bssed cm

derivability y of sequents of the form 17 h e : r [40].

3 In terms occurring in definitions and proofs etc., all bound vari-

ables are chosen to be different from free variables [2, page 26].

the set of free variables in e and el [z := ez] denotes the re-

sult of the capture-free substitution of all free occurrences of

x in el by ez. Closed terms of base type are called programs.

2.1.2 Values and computations

Certain terms of A are designated as values. Intuitively,

values correspond to terms that are irreducible according

to the operational semantics for A given below. The sets

Value% [A] and Value% [A] represent the set of values from

the language A under call-by-name and call-by-value reduc-

tion respectively.

Vaiue%[A] ::= c I ~z. e I rec~(z). e I ~

Vaiue%[A] ::= c [)z. e I r-ecf(z). e [z

Note that all identifiers are included in Vaiue% [A] since only

values are substituted for identifiers under call-by-value re-

duction. Only identifiers f for recursive functions are in-

cluded in Value% [A] (based on the reductions for rec in the

following section), since arbitrary terms are substituted for

identifiers in general. We use v to represent values and,

where no ambiguity results, we ignore the distinction be-

tween call-by-name and call-by-value values.

C’omputatioras are non-values — terms requiring addi-

tional computational steps before their meaning can be de-

termined. Not all computations reduce to values due to the

possibility of non-termination introduced by recursive func-

tions.

2.1.3 Operational semantics and equational reasoning

The rules of Figure 3 define single-step reduction functions

over A programs. The meaning functions evak and evak are

defined in terms of the reflexive, transitive closure (denoted

**) of the single-step reduction functions.

ermh(e) = v ifl e M: v

evaL(e) = v ifl e +; v

For reasoning about the meaning of A programs, we consider

calculi generated by the usual reductions @, &, q, [2] as well

as the reductions rec and ret, defined below.

(ret f(z). eo) el ~rec eo[f := reef(z).eo , z := e]]

(r-ec f(z). e) v are.” e[f := reef(z). e, z := ~]

For a notion of reduction r, ---+ also denotes compatible

one-step reduction, ---+, is the reflexive, transitive closure of

459

I’EC:L r~z:r(~)
r,z:~ll-e: 7-2 r, f:71+~2, z:71Ee:72 rt-eo:t-1+~2 rl-el:rl

rl-Ax. e:n+r2 r 1- ~ecf(x). e : T1.+T2 171- eoel:rz

T ..—..— L I 7-1-+?-2

r ::= . I r,3:T

Figure 2: Abstract syntax of A, the language of simply-typed X-terms

Cdl-by-name:
(Ax .eo)el I--+ eo[x := el] (r-cc f(x). eo) e, -n eo[f := reef(x).eo , x := el]

eo +-+n e~
,

eo el +-+ e. el

Cdl-by-value:

(Ax. e)v +-+. e[x := v] (r-cc f(x). e) v +--+V e[f := rec f(x). e, x := v]

e~ b--+ ej

(r-cc f(x). eo) el w, (ret f(x). eo) e{

I Figure 3: Single-step reductions for A programs

+,, and =, is the smallest equivalence relation generated

by -4, [2]. The calculus generated by R. = {~, q., rec}4

(i.e., the relation =&) is sound for reasoning about pro-

grams under call-by-name evaluation.5 The calculus gener-

ated by R, = {8v, %, recv } is sound for reasoning about
programs under call-by-value evaluation. When a property
P holds for both ,8 and /3v, indifferently, we say that p holds
for ,& (similarly for reci, Rz, and eva4).

2.2 The computational meta-language A~i

2.2.1 Syntax and notation

Figure 4 presents the syntax of the language A~t based on

Moggi’s computational rneta-kmguage [26]. The key feature

of the language is that its typing system captures the dis-

tinction between computations and values (or, in Reynolds’s

terminology, serious terms and trivial terms [33]) which has

often been used to justify the structure of CPS programs in-

tuitively [32, 33]. Types of the form L and ~1 ~ 7-z are called

value types. Accordingly, the rules for constants and ab-

stractions are among the introduction rules for value types.

Types of the form ; are called computation types.

The monadic constructs are used to make the compu-

t ational process explicit. Intuitively, [e] simply returns the

value of e while let x + e] in e2 first evaluates el and binds

the result to z, and then evaluates ez.

4The reason for considering only w instead of rI IS explained m
Section 3.

5 Soundness of calculi is formalized via a standard presentation

of operational equ$valerace [32] which we omit here and in similar

situations throughout the paper.

6 For the explicit connection to the structure of a monad see [26,

page 61].

2.2.2 Operational semantics and equational reasoning

Figure 5 presents the set of reductions Rml for the com-

putational meta-language A~~. Note that when a A~i-

abstraction parameter is of value type, ,Bmr corresponds to

/l, — A~l typing ensures that only values will be substituted

for the parameter. When an AA abstraction parameter is

of computation type, both values (coerced to trivial com-

putations by [.]) and computations may be substituted for

the parameter. recmi can be viewed in a similar manner.

qml corresponds to q, reduction since, by the typing rules
of Am~, e in A z , e z must have a value type.

The monadic reductions R~o~ = {let.,8,1et.q, let.assoc}

are used to structure computation. In fact, an important

property of the computational meta-language is that the

reductions R~l can describe the evaluation patterns of both

direct style and continuation-passing style A programs. We

exploit this property when constructing correctness proofs

for transformations factored through the meta-language.

To capture the property formally, Figure 6 gives two

sets of single-step reduction rules which are used to de-

fine operational semantics for Aml programs (closed terms

of type l).’ In both sets of rules, the Rml reductions ~~i,

ret, and let.9 are used to express computation. Adding
the let .assoc reduction gives an evaluation pattern reminis-

cent of continuation-passing style, where the next redex is
lifted out of a context before it is contracted. Omitting
the let .assoc reduction gives the characteristic “direct-style”
evaluation pattern where the evaluator descends into a con-
text to pick the next redex to contract [11].

The following property captures the fact that the “direct-

style” and the “continuation-passing style” evaluation pat-

terns give the same results for Aml programs.

7Moggi ~,ves a categorical semant)cs for the meta-language. HOW-

ever, an operational semantics 1s sufficient here, The rules of Fig-
ure 6 describe two leftmost, outermost reduction strategies over Ant

reductmns.

460

rkmic:~ r I-ml~: r(z)

r,x:~ll-mle:fi r,~:~l-+%,x:~lkmle:fi rkmt eo :71-+Z r t-m{el :71

r+mt Az. e: 71+72 r EmIreef(z). e : 7-I -+rz r I-mIeo e] : r2

(monadic constructs)
I’+mle:r I’l-miel:fi I’, x:rll-mlez:%

r l-m~ [e] : F rt-mtletz+=elinez:rz

T ::= L [~l+fi I ;

r ;:= . I r,z:r

Figure 4: Abstract syntax of A~l, the computational meta-language

(A z . eo) el ~pml eo [x := el]

Az. ez +Vml e z @ FV(e)

(ret f(z). eo) el +recmi eo[f := reef(z). eo , z := el]

let z + [cl] in ez +Ie,,p ez [x := el]

let z -+= e in [z] +Iet.n e

let z2 + (let zl + el in ez) in es --qet,m~oc let 21 -+= e~ in (let z~ + ez in es) xl $? ~V(e3)

Figure 5: The set of reductions Rmr for Aml

“Direct-St yle” Evahmtion Pattern:

(Jz. eO) el I---+mD.D eO[z := el] (recj(z). eO) e, ++mt.D eO[f := reef(z).eO , z := el]

e] ++ml,LI ej
~et~ ~ [cl] in ez #mi.D ez[~ := el]

let X ~ e] in ez #m/,D let X @ e; in e2

“Continuation-Passing Style” Evaluation Patterra:

(Ax. eo)el +mI,C eO[x := e,] (reef(z). eO) e, +d.c eO[f := reef(z).eO , x := e,]

let z ~ [cl] in ez ++ml.c e2[z := el]
el Wmt.C ej

let z -+ el in ez *ml.c let x + e; in ez
where el ~ let y -& ea in eb.

let X2 + (let xl + el in ez) in es Hm~.c iet ZI + e~ in (let X2 -@ ez in es)

Figure 6: Single-step reductions for A~/ programs

&n (.] : A ~ A~L En(”) ‘ Vaiuew [A] ~ A~l

&n{v] = [s.(0)1 ,,, zuhere v ~ Vaiue%[A]. f.(c) = c

~.{eo el] = (et zo * Z.(co} tn(~z.e) = As. &{e}

in zo C.{cl} t$n(rec f(x). e) = reef(t).tn{e}

I?n (s] = z f%(f) = f

t. (r] = f~)

tn(~) = L
tn{r,z:~] = fn{r},~:tn{~]

4%(T1+T2) = 1%{7-1} --? En{rz}
sn{r,$:r) = tn{r],.f:sn(r)

Figure 7: CalI-by-name encoding into A~z

461

I
Figure 8: Call-by-value encoding in A~z

Property 1 For . k~l e :7,

e +-+%.~ [v] zfl e ~~~ c [VI

Proofi One method relies on what can be thought of as a
generalized version of Plot kin’s colon translation [32] which

unrolls reductions in the continuation-passing style pattern

until a reduction corresponding to a direct-style reduction
is exposed. 9

A (partial) meaning function evck for A~/ programs

. l-~1 e : ~ can be defined as follows.

evahl(e) = v i# e +-+>Z.D [vI iff e X:Z ~ [v]

It is straightforward to show that the calculus Rml is sound

for reasoning about A~l programs.

2.3 Encoding evaluation orders of A in A~/

Figures 7 and 8 present the A~t encodings of the st an-

dard call-by-name and call-by-value strategies. In these par-

ticular transformations, the double brackets {.} are used

when building computations and computation types. Single

brackets (.) are used when building values and value types.

Elsewhere, where a distinction between computations and

values is unimportant to the structure of the transforma-

tion, we use {.] by default.

The encodings G and 2, preserve typing, as captured in

the following property.

Property 2
e ~fr 1- e :7 then .fn[r] l-d G{e]: E.(r}.

0 ~jr 1-e : r then &v{r} t-d &v{e] : tv{~}.

The two encodings differ in that call-by-name func-

tions receive computations as arguments (hence the typing

t. {rl} ~ .5. {7z}) while call-by-value functions receive val-

ues as arguments (hence the typing t. (TI) -- t, (m}). The

encodings also capture the distinction between identifiers as

computations for call-by-name and identifiers as values for

call-by-value, as pointed out in Section 2.1.2. Correctness is

captured as follows.

Property 3 For cdl programs ~F e : t,

● eva&(e) = v iff eoahl(~.{e}) = v

c evak(e) = v ifl eval~~(tv {e}) = v

Proofi The proof takes advantage of the fact that XA D

reductions describe direct-style evaluation. For example, for
call-by-name, the proof relies on the fact that e G. e’

implies & {e} ~~~.D ~. {e’}. I

2.4 Conclusion

As advocated by Moggi and as illustrated here with call-by-

name and call-by-value, A~l offers a framework for encoding

the computational properties of A terms. Section 4 presents

other practical evaluation orders. The following section for-

mally connects A~z terms and CPS terms.

3 Computations as Continuation-Passing Terms

3.1 Introducing continuations

Figure 9 presents the translation C from AA to contin-

uation-passing terms of A. C relies on a term representa-

tion of the monad of continuations [26, page 58]. We use

the monad of continuations because it naturally accounts

for passing continuations. We use a term representation

because we are aiming for a program transformation. The

following property captures the fact that C maps weKtyped

A~L terms to well-typed CPS terms.

Property 4 1~ r I-mi e : T, then e{r} E C{e} : C{r}.

The translation on computation types ; shows that compu-

tations correspond to continuation-passing terms. We use

the notation -v- to abbreviate r 4 cms where mu is a dis-

tinguished type of answers. Thus

Cm = 7~C(r} = (C{r}-+ am) ~ am.

The translation on terms shows that the monadic con-

st ruct ors [.1 and let correspond to the basic components of

continuation-passing terms:

● [e] abstracts the application of a continuation to the

result C(e), and

● let x + el in ez abstracts the composition of com-

putations (continuation-passing terms) by forming the

continuation A x . C{ez} k and passing it to C{el].

In the following sections, we consider an optimized trans-

formation C’ producing terms without redexes of the form

(A k . e) k. Section 5 discusses administrative reductions in

general.

A fundamental property of C is that all A-terms in its im-

age are evaluation-order independent. Furthermore, C pre-

serves A~~ equational properties and operational semantics

of A~l.

462

C{eorl-2 el’j = A k-c~’z]). (C(feO}C{fa]) ~

Figure 9: Continuation introduction — translation from AA into CPS

To formalize these properties we establish an equational ● If r l-eZP w : r then C–l (r] t-m, C;;p {w]: c-’ (7-].
correspondence between the Itml calculus of Am[and CPS

terms under the R, calculi. This first requires defining a ● If(r; k:lr)banSa:ans
—.

translation C- 1 from CPS terms to A~J. -

Figure 10 presents the language C{AA} of CPS A-terms

closed under R% reduct ion.8 Note that C{A~J is a sub-

Ianguage of A. The judgement Fuat enforces the property

that terms in the image of C are values (this property is dis-

cussed in detail in Section 3.4). The judgments +an~ and

E.Ont rely on type assumptions that include a distinguished

identifier k @ I’.

Figure 11 presents all possible R. reductions on C{A~t}

terms. It is easy to show that each reduction is also a R, re-

duction. Also, reductions on CPS terms preserve synt attic

categories, e.g., reducing an expression satisfying the judge-

ment 1-~ai yields an expression that still satisfies the judge-

ment l-v=?.

3.2 Eliminating continuations

Figure 12 presents the translation C-l from the language

of CPS terms C{A~l} back to A~[. A key component of

C–l is the transformation of continuations to what we call

reduction conteds.g Reduction contexts r +m~ p : ; [;] of

type ;Z with holes of type ;I are described by the folIowing

syntax rules.

r l-ml[] : 7~ (tr+kdcontexts)

I?, x:rl+mle:fi
r Ed let z + [.] in e : ~2[r1]

(let contexts)

The following property captures the fact that the transfor-

mation preserves well-typed terms.

Property 5

3.3 Relating operational semantics and equational theo-

ries

We can now state an adequacy property for the transla-

tions C and C-l. The following theorem recasts Plotkin’s

Simulation and Indifference theorems for call-by-name and

call-by-value CPS [32, Section 6] in terms of the generic in-

troduction of continuations by C.

Theorem 1 (Simulation and Indifference)

If . l-~t e : ~ then

etmlml(e) = v ifl ew3it(C(e] (A x’ . z)) = w

Proofi The proof takes advantage of the fact that F-+A.C

reductions describe “continuation-passing style” evalua-

tion. Specifically, e +-+m~.c e’ implies C’{e] Q K WJ,V

C’ {e’} ● K for any arbitrary continuation K, where

The corresponding property for C-l follows.

Theorem 2 If . +va/ w : lTL then

ewh(c;,j{w}) = w ifl etd(w (J z’. z)) = v.

Proof: For eua~,

8A formal statement of correctness is omitted for lack of sPace

9 Felieisen and Friedman first pointed out that continuations m
e“”~~(c;:,(w))

CPS correspond to ewahatton contezts in direct-style terms (e. g.,
terms from the language A) [1 1]. When considering Aml terms, corl-
tinuations correspond to r-edwctton contests. Reduction contexts rep

resent an intermediate step between evaluation contexts and contin-

uations where, among oth& things, the term in the ‘(hole” of a non.

trivial evaluation context 1s given a name
Similarly for ew-z~.

.

——

ewL((C o C–l)(W) (AZ’ . z))

. . . Theorem 1
erm~(w (A z’ x))

. . . Theorem 3 @ soundness of R.

m

463

Values

rF ,qlw:r

I’t-ualw:r
where w is a value

Expressions

rF-eqc:L
r,x:rl ~val w: ~Tr2 r, f: T14T7T2, Z:Tl +.al W: 7TTZr +~zpx: r(x) r E.ZpAx. w:rl-+1-v2 r I-.zp rec f(x). w: r] +77T2

r hva~ WO: T] +-qTz r +.~1 wl: 71 (1?; k : -r) i-an, CY: ans

r~ ~zp wo WI : ~~r2 rkezp~k. ff:77T

Continuations

(r; k: ~r) t-cent k: ~T
(r,x:r, ; k : Tro) l-an. a : ans

(r; k:lro)Econt Ax. a:=rl

Answers
r t-.$pw : =-wO (r; k : 71) I-.ont K : =ro

(r; k : T) l-an, WK : am

(r; k : ~ro) E.ont K : =rl r +v~lw : r,

(r; k : -m) kan. ttw : ans

Types and Assumptions

r .._..— t I rl +=vz I =-v

r ,:= . I r,x:r

Figure 10: Abstract syntax of C{A~i), the language of CPS terms

(Ax . Wo) w, -pezp Wo[x := w,]

(ret f(x). wo) W1 ---+~e~ezp Wo[f := recj(x). wo , X := Wl]

(Ax . a) w --+pan$l a[z := w]

(Ak . a) K +Ban, , CY[k := K]

.XX.WX ---+qez.,, e x @ FV(W) where w is a value

~ k . w k +QeZP, W k ~ FV(W) where w is a value

Ax. tGz
-~cont K

x @ FV(K) where K w a value

Figure 11: The set of reductions Rep, for C{A~l}

c;;, (w] = C;;p {w]
C;;p (c] = c

c;;. {w K] = C;;nt (t$][c;;p (w]]
c;;? (x] = x

c;;. {K w) = C:;nt {K][[c;;t(pu}]]
C;;P(A x . w] = A z . C;:,(W]

C&{rec f(z). w} = rec f(~). e~j(w}

Glt{kl = [“1
C;:p(Wo Wl) = C;;l{wo} C;;r{wl]

CJo~t {A z . a} = let z * [.] in C~~, {a]
CZ& {A k . a} = C~& {a}

c-’ {,} = ,

C-1{rl+r2} = c-l{7i}+c-l{T2] c-l{r, z:T} = C-l {r}, z :C-l {r}

C–] {mar} = C-~T}

Figure 12: Continuation elimination — translation from CPS back to A~l

Plotkin’s Translation theorems show how his call-by-

name and call-by-value CPS transformations relate equa-

tional theories over direct-style terms and theories over CPS

terms [32]. We relate the equational theories of the meta-

language and CPS terms by showing an equational corre-

spondence between A~l terms under the Rmi calculus and

C{Aml} terms under the llcps (i.e., R,) calcuIus. In essence,

this means that the equivalence classes of each theory are in

a one-to-one correspondence.

Theorem 3 (Equational Correspondence)

Proofi Follows the outline of [36, Theorem 16]. However,

the proof here is simpler because our framework is typed

and C does not perform administrative reductions “on the

fly”. (see also [2, Theorem 7.3.10] and [17, Theorem 4]). ~

3.4 Assessment

Evaluation-order independence for all terms in the image of

C holds because all C{Aml} function arguments are values.

SpecificaUy,

● if a Aml argument e has a value type, then C{e} is a

value; and,

● if a Amz argument e has a computation type, then c(e)

takes the form ~ k. . . . (i.e., a value).

Obtaining evaluation-order independence requires slightly

more than simply instantiating the monadic constructs [.1
and let with the continuation monad (witness the q-redex

in C{eo el} of Figure 9). Such q-redexes are important

since they suspend call-by-value evaluation when terms cor-

responding to computations occur as function arguments,

e.g., in CPS terms encoding call-by-name. Let C“ be a

translation that only instantiates [.] and let. Following

this strategy gives C“{eo el} = C“{eO} C“{eI]. Now, if

eo z A z. [CO] and el s (r-ec f(y). fy) cl, then

C“{eO el} (kz.z) = ((~z.Ak.k co) ((reef(y).fg) c,)) (kc.z)

which diverges under call-by-value but terminates under

call-by-name, and thus is not evaluation-order independent.

The above example also illustrates why ~ is not sound for

reasoning about C(A~l] terms under call-by-value evalua-

tion. For example, C~eO el] (Az .z) terminates under call-by-

2
value but q-reduces to C“[eo el] (kz. z which has just been

shown to diverge under call-by-value. 1 In reality, problems

are encountered only when one attempts to generalize qcont

redexes to q — all q redexes of the form given by Vezp, I and

qexp.z are also v, redexes.11

10~i~ilar ~Xa~Ple~ of ~ &~g unsound exist for “traditkmal” Un-

typed call-by-name CPS terms under call-by-value evaluation.
11 SabrY and Felleisen shOw that the ~q calcuhIs is sOund fOr ‘e-

soning about a language of terms in the image of a call-by-value CPS

transformation. We conjecture that q is sound there because it is call-

by-name that requires the “suspension” effect given by the n-redex
Furthermore, since continuations are the first arguments to functions

in them C!PS transformation, terms cent aimng the relevant q-redex

Ak. (UJo WI) k would appear in their language as Ak. (wo k) WI — a

non-redex.

3.5 Generalizing the notion of value

Suppose the types of Aml are extended as follows.

This typing generalizes the notion of value to include ap-

plications of functions that always terminate when applied.

Such functions do not need to be passed continuations to

achieve evaluation-order independence [9]. Theorem 1 and

2 hold for a language with this generalized type system. A~I

reductions in the generalized system induce a set of reduc-

tions R& on CPS terms that are sound under call-by-name

and call-by-value evaluation. However, the generalized cal-

culus R~p~ no longer equationally corresponds to R. or R,

due to the generalized notion of value, but it is a conserva-
tive extension of R. and Rv.

Section 4.5 gives an application of this generalized no-

tion of value. The reader is referred to [16] for a detailed

discussion.

4 CPS Transformations from Encodings of Computational
Properties

Previous applications of AA focus exclusively on call-by-

value or call-by-name [26, 42]. 111 cent rast, the present

framework allows the description of many other useful CPS

transformations. Further, the correctness of the correspond-

ing CPS transformation, the characterization of adminis-

trative reductions (see Section 5), and a correct mapping

from CPS back to A~i (see Section 6) follow as corollar-

ies from simply identifying the appropriate computational

properties. We give several examples below.

For each evaluation order, the corresponding CPS trans-

formation is constructed by composing the encoding & (of

the evaluation order into A~~) with the continuation intro-

duction C (or preferably, the slightly optimized introduc-

tion C’ of Section 3 that produces terms without redexes of

the form (A k . e) k). In general, the correctness of the con-

structed CPS transformations follows from the correctness

of an encoding & and the correctness of C (Theorem 1).

4.1 Call-by-name and call-by-value CPS transformations

We describe in detail the construction of correct call-by-

name and call-by-value CPS transformations. As outlined
above, CPS transformations are obtained by composing the

encodings of specific evaluation orders with the generic con-

tinuation introduction C’.

Definition 1 (Construction)

/cn ‘Af c’ o t.

K, ‘Af c’ o t.

The fact that the transformations preserve well-typed

terms follow as corollaries.

Property 6 (Type correctness)

Proofi Follows from the type correctness of the encodings fn,
2, (Property 2) and the type correctness of C (Property 4).

E—
The correctness of the transformations follows as a corol-

lary.

465

Property 7 (Simulation and Indifference)
If.l-e:L then

eva~(e) = v iff ezdt(Kn(e} (Ax’ . z)) = v

evd(e) = v ifl erm L(Kv(e}(Az’ . z)) = v

Proofi Follows from the correctness of the encodings t.,
&, (Property 3) and the generic Simulation and Indifference

theorem for C (Theorem 1). I

The transformations K. and K“ constructed above are

actually Plotkin’s CPS transformations. Let P. and ‘PV re-

spectively denote the typed version of Plotkin’s call-by-name

and call-by-value CPS transformations [8, 15, 22].

Proofi by structural induction over e. B

Thus, the construction and correctness (specifically, the

Simulation and Indifference theorems, and type correctness)

of the typed versions of Plotkin’s CPS transformation fol-

low from the correctness of the encodings. Relationships

between equational theories for direct-style and CPS terms

(similar to those established by Plotkin’s Translation theo-

rems for ‘P. and P.) follow by connecting equational theories

over A with the theory Rml of Aml.

4.2 Reynolds’s call-by-value CPS transformation

We obtain a typed version of Reynolds’s call-by-value CPS

transformation [34] by keeping the same encoding of vari-

ables and applications in Figure 7 (the call-by-name encod-

ing into Aml) but by replacing the encoding of abstractions

with the following definition.

Instead of arguments being evaluated in the application (as

in Figure 8, the call-by-value encoding into Aml), they are

passed as computations (essentially as thudcs[17, 18]), eval-

uated immediately after the function is applied, and the re-

sulting values are wrapped up again as thunks. Thus, tR

captures the computational properties of call-by-value, but

in a different style than &,. This corresponds to the defini-

tion of call-by-value in the Algol 60 report [30].

Turning to the CPS transformation,

n“ ‘=f c’ o &

Griffin, for example [15, Footnote 3], pointed out that the

typing of the function space in ‘RV matches the one of P.

i.e.,

‘R, (T, +,2) = 7ZV(.I}+7?V(T2}

This typing coincidence already holds here, before introduc-

ing continuations:

and thus it is independent of continuations as such. In

any case, this coincidence illustrates that the transforma-

tion over types does not always determine the transforma-

tion over terms.

4.3 Variation on Reynolds’s call-by-value CPS transfor-
mation

One may choose to pass arguments unevaluated and to force

them after the function is applied, but not to wrap them

into computations again. This is achieved by replacing the

encoding of abstractions and applications in Figure 8 (the

call-by-value encoding into AA) with the following defini-

tions.

Thus ~~, captures the computational properties of call-by-

value, but in a different style than & and ER. This corre-

sponds to the style of capturing computational properties of

call-by-value in denot atiorml semantics [38]: (1) either using

a strictness check in the applicative structure (correspond-

ing to E,); (2) or forming strict functions to crest e a strict

function space (corresponding to Reynolds’s transformation

and its variant).

The typing of the function space in CR, still matches the

one of tn (see Figure 7) i.e.,

However, the transformation on type assumptions r is the

same as for &, (Figure 8).

4.4 Mixed evaluation strategies based on strictness infor-

mation

Compile-time analyses of computation properties (such as

strictness analysis) indicate where it is safe to mix eval-

uation strategies [29], Earlier works show how to derive

the corresponding CPS transformation encoding the mixed

evaluation strategy into CPS terms [3, 8, 28, 31]. Such

transformations can be correctly constructed by an encod-

ing that contains both call-by-value-like (capturing strict-

ness) and call-by-name-like (capturing non-strictness) appli-

cations/ functions/identifiers. The types of such an encoding

are structured as follows.

These types illustrate that arguments to non-strict functions

are computations while arguments to strict functions can be

safely reduced to values before application. This encoding

is based on combining the styles of &v and &n. However,

a correct encoding based on strictness information can also

be obtained by combining the styles of 2R and E. or of f~,

and S.. Again, as long as the computational properties are

correctly identified, the correct CPS transformation and ac-

companying tools follow. ,

4.5 Mixed evaluation strategies based on totality infor-

mation

Similarly, totality information determines when computa-

tions are guaranteed to reduce to values. An encoding of

terms with totality information obeys the following type

structure (capturing the possibility of partiality/totality in

the domain and codomain of function spaces).

466

Note that this encoding utilizes the generalized type struc-

ture of Aml discussed in Section 3.5. Such an encoding yields

a CPS transformation where Reynolds’s notion of trivial and

serious expressions is generalized to functions — functions

that always produce values do not need to be passed con-

tinuations to achieve evaluation-order independence [9, 33].

Elsewhere [16], we use Moggi’s existence predicate [26,
Section 2.2] within the met a-language itself to derive such

optimizations.

4.6 Other sequencing orders

Since A~l makes control flow explicit, one can construct
CPS transformations with different sequencing orders for

sub-expression evaluation. For example, replacing the en-
coding of application in Figure 8 with the one below gives

a call-by-value CPS transformation where the argument is

evaluated before the function in an application.

4.7 Conclusion

We have shown that a wide variety of evaluation strategies

can be described by simple encodings in Aml. The corre-

sponding (2PS transformations and correctness proofs fol-

low. The next two sections describe how administrative re-

ductions and the corresponding direct-style transformations

follow as well.

5 A Generic Account of Administrative Reductions

Practical use of CPS transformations requires one to char-

acterize “administrative reductions” i.e., the reduction of

the extraneous abstractions introduced by the transforma-

tion to obtain continuation-passing [7, 32, 36]. In fact, ad-

ministrative reductions are characterized generically by the

monadic reductions Rmon on Aml. In particular, let.~ and

let .assoc correspond to the administrative reductions iden-

tified by Plotkin. It is straightforward to show that the

reductions Rmo ~ are Church- Rosser and strongly normaliz-

ing. Let ~ be a function mapping every Am; term to its

Rmon normal form and let Z“ denote a version of plotkin~s
call-by-value CPS transformation that carries out adminis-

trative reductions on the fly [I, 7, 43].

A similar property also holds for the corresponding one-pass

call-by-name CPS transformation, and for the corresponding

CPS transformations after static analyses [8, 9, 31]. This

staging and the account of administrative reductions prior

to introducing continuations have been recently noted [5, 6,

13, 21, 36]. Typically, CPS transformations are factored into

three distinct steps:

1. naming intermediate values (captured by ~);

2. flattening nested let’s (captured by Af); and

3. introducing continuations (captured by C).

The last step is provably reversible, and Lawall antomated

that proof for another meta-language than Am/ [20].

Recently, Sabry and Felleisen have identified an addi-

tional optimization made possible by administrative reduc-

tions on call-by-value CPS terms [36]. The optimization cor-

responds to relocating evaluation contexts (reduction con-

texts, continuations) inside abstractions in ,&redexes. The

following Rml equivalence characterizes this optimization:12

where p + [.] and z @ FV(p). Let let. ctxt be the reduc-

tion induced by reading this equivalence from left to right .]3

The Church-Rosser and strong normalization property ex-

tends to Rmon U {let .ctxt } reductions, characterizing ad-

ministrative reductions (including the above optimization)

generically.

We have characterized administrative reductions ab-

stractly in terms of normalization of AA terms. In practice,

one would define an optimized translation that performs ad-

ministrative reductions “on the fly” [1, 7, 43]. This can ei-

ther be achieved using brute force [27, 36] or with a two-level

specification [7, 8, 31].

6 DS Transformations from Encodings of Computational
Properties

Direct-style transformations mapping CPS terms back to

direct-style A terms are potentially useful in their own right.

Our transformation C-l forms the core of a generic DS trans-

formation, thus generalizing previous work in the absence

of comput atiomd effects other than non-termination [6, 35].

Direct-style transformations D are obtained by composing

“inverse” encodings &-l (mapping A~l terms to direct-style

A terms) with the transformation C–l.

The transformation t–l may be defined in several ways. A

simple technique is to “unfold” let constructs and remove

[.1 constructs — thus collapsing values and computations,

under some side-conditions ensuring that the resulting terms

remain evaluated in the same order. This is the technique

used by e.g., Lawall and Danvy [6, 10, 19, 21]. Alternatively,

one may adapt the techniques of Sabry and Felleisen [36] and

map reduction contexts to evaluation contexts in A.

In general, transformations t– 1 defined as above are

meaning-preserving only when defined on the language of

A~l terms in the image of a corresponding encoding & (or

snch a language closed under Rml reductions). Considering

a more general domain for .5-1 usually requires additional

constructs in A which explicitly direct computation (e.g.,

strict let’s, thunks) without resorting to full continuation-

passing style.

Formal properties and details of methods to obtain DS

transformations for specific evaluation orders are described

elsewhere [16].

7 Products and Co-products

This section outlines how products and co-products are in-

corporated into the generic framework. A detailed discus-

sion and proofs can be found elsewhere [16]. All of the results

of the previous sections scale up to the extended language.

12 Even ~i~h ~hl~ ~Ptimization, Sabry and Felleisen’s call-by-value

CPS transformation will produce slightly more compact terms. Hav-

ing continuations as first arguments to functions makes it possible

for all continuations to be relocated inside the abstractions of all

P-redexe.. Here, trwial continuatmns (z. e., identifiers k) are notdo-
cated. In any case, this optimization is independent of continuations

in general, and in particular of psssing them first or last to CPS

functions.
13A ~imilar OptimiZatiOn ak exists fOr ‘ec f(c)’

467

T t-ml el : TI r >m~ez : r2 r +m~e : r1+r2 r,zl:rl t-miel :Y I’, z2:r2t-mle2:;

rhml (el, e2): T1xr2 r t-ml ca9ee oj(zl.el) \ (z2.e2) : ;

i- ..—..— ... I r, X72 I T,+rz

Figure 13: Abstract syntax of products and coproducts for the computational meta-language A~t

Figure 13 extends the syntax of A~~ to include products are obtained by composing the encodings f with C. The
14 The set of ~aiue types is extended ‘0

and co-products. correctness hinges on the fact that all CPS terms will have

include types T1 x TZ and rl +~z. The reductions for products

and co-products are as follows. 15

i7i(el, e2) +X.pt e,

case (in, e) of (zl.el) I (zz.ez) -+,pz e,[zt := e]

As with function spaces, the structure of A~l types and

terms provides a description of constructors with differing

computational properties (e.g., eager or lazy). For exam-

ple, eager (i. e ., call-by-value) pairing can be expressed via

products of values.

fv(Tl XT2) =

&v (I(el, e2)] =

~v (~, e} =

only values as constructor arguments (i. e., either terms cor-

responding to met a-language values, or abstractions M....

corresponding to meta-language computations). This gen-

eralizes our earlier work [8], where we presented a CPS trans-

formation after strictness analysis, handling both strict and

non-strict products.

Note that the definition of C in Figure 14 relies on the

monadic constructs to structure continuation-passing proP-

erly. However, the definition below gives an alternate struc-

ture commonly used when transforming conditional expres-

sions.

in let zz @ Zv{ez} The latter definition allows reduction contexts (in the

in [(z1, Z2)] form of continuations) to be relocated inside case constructs

let z * &v {e} in [7r, z]
. which duplicates the contexts. Ie Indeed, this definition

reauires adding the followimz reduction to the set of Aml

Lazy (i. e., call-by-name) injections can be expressed via co- re~uct~ns to o~tain an equat~onal correspondence with CPS

products of computations.

Moreover, the framework naturally describes non-standard

forms of products and co-products (e.g., one lazy compo-

nent, one eager component) such as might occur in a pro-

gram after strictness and/or termination analysis.

Figure 14 extends C to products and co-products. As be-

fore, correct CPS transformations for the extended language

14The ~~esentationof products follows Moggi [26, Sect iOn 3 11.

15A presentation including the usual x .q and + T rules fOr prOducts

and co-products can be found elsewhere [16].

terms:’ r

V[casee of (zl.el) j (z2.e2)]

-+.ctxt case e of (xl.p[el]) I (z2. p[e2])

where q # [.] and Z1, X2 @ FV(p). This reduction is sound

with respect to the operational semantics of Am{ extended

with products and co-products.

8 Compiling with Monadic Normal Forms

In situations where explicit continuations are not needed

(e.g., for compiling programs without jumps), A~l stands

16This duplication can be avoided inserting a @-redex when intro-

ducing continuations [7, 36].
17 Sabry and FeIIe15en [36] give .s similar reduct]on for conditional

expressions,

468

as an alternative language to CPS — very close to CPS

but without continuations. A language with similar prop-

erties (“A-normaJ forms”) has been proposed by Flanagan

et al. [13] and studied for untyped, call-by-value A-terms.

In particular, “A-reductions” provide the following standard

compiler optimizations [13, page 243]:

1. code segments are merged across declarations and con-

ditions;

2. reductions are lifted out of evaluation contexts and

intermediate results are named.

These properties occur naturally in A~l. The Aml reduc-

tions let .assoc and +.ctxt merge code segments across dec-

larations (i. e., let) and conditionals (more generally, case

statements). Encodings t into AA name intermediate re-

sults and the reduction let. assoc lifts reductions out of re-

duction contexts.

Thus, Moggi’s meta-language is not only a flexible for-

mal tool, but also an attractive intermediate language for

compiling. In particular, a sub-language of A~~ that we call

the language of monadic nor-mat forms gives the properties

discussed above for any evaluation order that can be en-

coded into A~l. (The word “monadic” is slightly abused

here since +.ctxt is not a monadic reduction.) The strong

normalization and confluence properties of Rmon reductions

extend to Rmon U {+.ctxt}. Let N’ be a function taking

a A~t term to its I?mon U {+.ctxt} normal form. The

function ~’ o & maps A terms to monadic normal forms for

an arbitrary encoding t, thereby performing administrative

reductions independently of continuations (see Section 5).

Recent trends indicate that types are important for in-

termediate languages. For example, Burn and Le M6tayer

point out that types on CPS transformations give a use-

ful characterization of boxed and unboxed values [3]. This

observation applies here as well — computation types cor-

respond to boxed values, and value types correspond to un-

boxed values.

9 Related Work

The framework presented here relies on a formal connection

between Moggi’s computational meta-language and CPS

terms and types. Moggi proposes the meta-language as

a means of abstractly capturing the basic computational

structure of programs. Semantic definitions of programs

are obtained by a categorical interpretation parameterized

with different monads capturing various notions of compw

tation. Moggi gives a continuation monad in the category

Set as particular example of a notion of computation — es-

tablishing a correspondence between the meta-language and

set-theoretic continuation-passing functions [26, page 58].

Wadler illustrated the usefulness of Moggi’s ideas when

applied to functional programming [42]. In essence, he

showed how programs written in the style of the meta-

Ianguage (i. e., monadic style) could be parameterized with

term representations of monads — thus abstractly captur-

ing various computational effects such as side-effects on a

global state, etc. In particular, he showed how call-by-value

and call-by-name CPS interpreters can be obtained by in-

stantiating call-bv-value and call-bv-name monadic-stvle in-.
terpreters-with a term representation of the CPS monad —

thereby informally relating the encodings t, and t. with

call-by-value and call-by-name CPS terms.

In contrast, we formalize the relationship between the

complete meta-language Aml and CPS terms. Based on this

formulation, we generically capture many different aspects

associated with CPS (construction of CPS transformations,

correctness of transformations with regard to computational

adequacy and preservation of equational theories, adminis-

trative reductions, construction of DS transformations, typ-

ing of transformations, etc.) which were previously handled

individually for each evaluation order. We emphasize that

AA is powerful enough to describe not only the standard

call-by-value and call-by-name strategies but many other

useful strategies appearing in the literature. One only needs

to identify computational properties with Ami and all the

aspects mentioned above follow as corollaries in the frame-

work. To the best of our knowledge, this is the first attempt

of such a global investigation of CPS.

Sabry and Felleisen, in their recent work [36], hint at

the relationship between Moggi’s computational framework

and CPS terms. They derive a calculus for untyped call-

by-value DS terms which equatiomdly corresponds to call-

by-value CPS terms under the /?~ calculus. They note that

the resulting calculus equationally corresponds to an un-

typed variant of Moggi’s computational J-calculus AC [23]
— a calculus for call-by-value terms capturing equivalences

that hold for any notion of computation.

However, this correspondence seems to stem more from

the emphasis on naming intermediate values present in both

calculi rather than from any deliberate structural connection

with e.g., the CPS monad. For example, the terms produced

by Sabry and Felleisen’s CPS transformation (a curried ver-

sion of Fischer’s transformation [12], where continuations

occur first in functions) do not have the fundamental com-

putational structure dictated by Moggi’s framework. This

is most easily seen by observing the mismatch between the

typing of function spaces in Fischer’s transformation and

in the transformations generated by the CPS monad (cur-

ried and with continuations occurring last). In contrast,

our framework is deliberately based on the structural (and

equational) correspondence between AA and generic CPS

terms.

Using techniques analogous to those of Sabry and Fellei-

sen [36], Sabry and Field have investigated “state-passing

style” (uncurried and with state occurring last), deriving

calculi for an untyped language with state. In contrast,

one can take the state monad [26] and translate from the

meta-language A~z to various state-passing styles (curried

and with state occurring last) in the same way as we

have used the continuation monad to generate a variety of

continuation-passing styles: one then obtains a state-passing

transformation for any evaluation order, generic administra-

tive reductions, and the corresponding ‘(direct-style” trans-

formations. As for CPS, these tools are obt ained by showing

an equational correspondence between the meta-language

and a term representation of the state monad.

Thus Moggi’s framework seems to provide a solid basis

for studying both the relation between implicit and explicit

representations of control and the relation between implicit

and explicit representations of state, in a typed setting. In

particular, we are currently investigating how the contin-

uation/st ate monad (obtained e, g., by applying the state-

monad constructor to the continuation monad [25]) offers

a generic relation between implicit and explicit representa-

tions of both control and state. We are also considerirw to.
add computational effects on control (first-class continua.

tions) and on the state (side-effects).

469

10 Conclusion and Issues

We have characterized CPS transformations of typed A-

terms for any evaluation order, their administrative reduc-

tions, and the corresponding DS transformations, in one

generic framework based on Moggi’s computational meta-

language and using a term representation of the CPS monad.

Plotkin’s Indifference, Simulation, and Translation theorems

are generalized for the continuation introduction C. Char-

acterizations of administrative reductions (including Sabry

and Felleisen’s optimization) are scaJed up in a typed frame-

work for any evaluation order. Moggi’s computational met a-

language appears as a generic typed intermediate language

for compiling, alternatively to CPS and with an equivsJent

expressive power, in the absence of first-class continuations.

We are currently considering other monads for applying the

methodology developed here. Preliminary investigation for

the state monad suggests that the same benefits hold: state-

passing style for any evaluation order, uniform administra-

tive reductions, and the corresponding “direct-style” trans-

formations. Ditto for the continuation/state monad.

This investigation should make it possible to come back

to Griffin’s connection between double-negation translation

and CPS transformation [14] and to Murthy’s intrepid dis-

play of continuation-passing styles, from a logical standpoint

[28, Chapters 9 & 10]. Griffin identified Plotkin’s caH-by-

value CPS transformation as a logical embedding. Murthy

identified it as a variant of the Kuroda negative transla-

tion, and Plotkin’s caJ1-by-name CPS transformation as the

Kolmogorov translation. In fact, looking back at Murthy’s

PhD thesis, it is striking that his “slightly modified” Kuroda

translation providing for mixed call-by-vahe and call-by-

name evaluation [28, page 159] corresponds to the mixed

CPS transformation of Section 4.4, and that his “pervasive

Kolmogorov translation” [28, pages 164-167] corresponds to

Reynolds’s CPS transformation in Section 4.2. The equa-

tional correspondence between A~l and CPS strongly sug-

gests that the encoding of any evaluation order into A~l

could be formalized as a logical embedding. We leave this

point for a future work.

Acknowledgements

We are grateful to Andrzej Filinski and Bob Harper for fun-

dament aJ observations and encouragements at an early stage

of this work. Thanks are also due to Mat t hi as Felleisen,

Sergey Kotov, Julia Lawall, Peter Lee, Karoline Malmkjam,

Chet Murthy, Frank Pfenning, Amr Sabry, Dave Schmidt,

and the referees for comments.

References

[1]

[2]

[3]

[4]

Andrew W. Appel. Compiling with Continuations.

Cambridge University Press, 1992.

Henk Barendregt. The Lambda Calculus — Its Syntax

and Semantics. North-Holland, 1984.

Geoffrey Burn and Daniel Le M6tayer. Proving the

correctness of compiler optimisations based on a global

program analysis. TechnicaJ report Doc 92/20, Depart-

ment of Computing, ImperiaJ College of Science, Tech-

nology and Medicine, London, England, 1992.

William Clinger, editor. Proceedings of the 1992 ACM

Conference on Lisp and Functional Prograrnmmgj LISP

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Pointersj Vol. V, No. 1, San Francisco, California, June

1992. ACM Press.

Olivier Danvy. Three steps for the CPS transforma-

tion. TechnicaJ Report CIS-92-2, Kansas State Univer-

sit y, Manhattan, Kansas, December 1991.

Olivier Danvy. Back to direct style. Science of C’orn-
puter Progr-amrnmg, 1993. SpeciaJ issue on ESOP’92,

the Fourth European Symposium on Programming,

Rennes, February 26-28, 1992. To appear.

Olivier Danvy and Andrzej Filinski. Representing con-

trol, a study of the CPS transformation. In Wand [44],

pages 361-391.

Olivier Danvy and John Hatcliff. CPS transformation

after strictness amdysis. ACM Letters on Prograrnrninjj

Languages and Systems, 1(3):195-212, 1993.

Olivier Danvy and John Hatcliff. On the transformation

between direct and continuation semantics. In Stephen

Brookes, Michael Main, Austin Melton, Michael Mis-

love, and David Schmidt, editors, Proceedings of the 9th
Conference on Mathematical Foundations of Program-

ming Semantics, Lecture Notes in Computer Science,

New Orleans, Louisiana, April 1993. To appear.

Olivier Danvy and Julia L. Lawall. Back to direct style

H: First-class continuations. In Clinger [4], pages 299-

310.

Matthias Fe!.leisen and Daniel P. Friedman. Control

operators, the SECD machine, and the A-calculus.

In M. Wirsing, editor, Formal Description of Pro-

gramming Concepts III, pages 193-217. North-Holland,

1986.

Michael J. Fischer. Lambda-calculus schemata. In Tal-

cott [39]. An earlier version appeared in an ACM Con-

ference on Proving Assertions about Programs, SIG-

PLAN Notices, Vol. 7, No. 1, January 1972.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and

Mat thias Felleisen. The essence of compiling with con-

tinuations. In David W. Wall, editor, Proceedings of the

ACM SIGPLAN’93 Conference on Programming Lan-

guages Design and Imgdementation, SIGPLAN Notices,

Vol. 28, No 6, pages 237–247, Albuquerque, New Mex-

ico, June 1993. ACM Press.

Timothy G. Griffin. A formulae-as-types notion of con-

trol. In Paul Hudak, editor, Proceedings of the Seven-

teenth Annual ACM Symposium on Principles of Pro-

gramming Languages, pages 47–58, San Francisco, Cal-

ifornia, January 1990. ACM Press.

Bob Harper and Mark Lillibridge. Polymorphic type

assignment and CPS conversion. In TaJcott [39].

John Hatcliff. PhD thesis, Department of Comput-

ing and Information Sciences, Kansas State University,

Manhattan, Kansas, USA, March 1994. Forthcoming.

John Hatcliff and Olivier Danvy. Thunks and the ~-

calculus. Technical Report CIS-93-15, Kansas State

University, Manhattan, Kansas, September 1993.

470

[18] Peter Z. Ingerman. Thunks, a way of compiling pro-

cedure statements with some comments on procedure

declarations. Communications of the ACM, 4(1):55-58,

1961.

[19] Julia L. Lawall. PhD thesis, Computer Science Depart-

ment, Indiana University, Bloomington, Indiana, USA,

1993. Forthcoming.

[20] Julia L. Lawall. Proofs by structural induction us-

ing partial evacuation. In David A. Schmidt, editor,
Proceedings of the Second ACM SIGPLA N Symposium

on Partial Evaluation and Semantics-Based Program

Manipulation, pages 155–166, Copenhagen, Denmark,
June 1993. ACM Press.

[21] Julia L. Lawall and Olivier Danvy. Separating stages in
the continuation-passing style transformation. In Su-

san L. Graham, editor, Proceedings of the TuJent ieth

Annual ACM Symposium on Principles of Progr-am-

ming Languages, pages 124–136, Charleston, South

Carolina, January 1993. ACM Press.

[22] Albert R. Meyer and Mitchell Wand. Continuation se-
mantics in typed lambda-calculi (summary). In Rohit

Parikh, editor, Logics of Programs - Proceedings, num-
ber 193 in Lecture Notes in Computer Science, pages
219–224, Brooklyn, June 1985.

[23] Eugenio Moggi. Computational lambda-calculus and

monads. Report ECS-LFCS-88-66, University of Edin-
burgh, Edinburgh, Scotland, October 1988.

[24] Eugenio Moggi. Computational lambda-calculus and

monads. In Proceedings of the Fourth Annual IEEE

Symposium on Logic in Computer Science, pages 14-23,
Pacific Grove, California, June 1989. IEEE Computer

Society Press.

[25] Eugenio Moggi. An abstract view of programming

languages. Course notes ECS-LFCS-90-113, Labora-
tory for Foundations of Computer Science, Department

of Computer Science, University of Edinburgh, Edin-
burgh, Scotland, April 1990.

[26] Eugenio Moggi. Notions of computation and monads.
Information and Computation, 93:55-92, 1991.

[27] Luc Moreau and Daniel Ribbens. Sound rules for par-

allel evaluation of a functional language with callcc. In

Arvind, editor, Proceedings of the Sixth ACM Confer-

ence on Functional Programming and Computer Archi-

tecture, pages 125–135, Copenhagen, Denmark, June
1993. ACM Press.

[28] Chetan R. Murthy. Extracting Constructive Content

from Ckmsical Proofs. PhD thesis, Department of Com-

puter Science, Cornell University, 1990.

[29] Alan Mycroft. The theory and practice of transform-

ing call-by-need into call-by-value. In Bernard Robinet,

editor, Proceedings of the Fourth International Sympo-

sium on Programming, number 83 in Lecture Notes in

Computer Science, pages 269–281, Parisj France, April

1980.

[30] Peter Naur (editor). Revised report on the algorith-
mic language Algol 60. Communications of the ACM,

6(1):1-17, 1962.

[31] Chris Okasaki, Peter Lee, and David Tarditi. Call-by-

need and continuation-passing style. In Talcott [39].

[32] Gordon D. Plotkin. Call-by-name, call-by-value and the

A-calculus. Theoretical Computer Science, 1:125-159,

1975.

[33] John C. Reynolds. Definitional interpreters for higher-

order programming languages. In Proceedings of 25th

ACM National Conference, pages 717–740, Boston,

1972.

[34] John C. Reynolds. On the relation between direct

and continuation semantics. In Jacques Loeckx, edi-
tor, .2nd Colloquium on Automata, Languages and Pro-

gramming, number 14 in Lecture Notes in Computer

Science, pages 141–156, Saarbrucken, West Germany,
July 1974.

[35] Amr Sabry and Matthias Felleisen. Reasoning about
programs in continuation-passing style. In Clinger [4],

pages 288-298.

[36] Amr Sabry and Matthias Felleisen, Reasoning about

programs in continuation-passing style. In Talcott [39],

[37] Amr Sabry and John Field. Reasoning about explicit
and implicit representation of state. In Paul Hudak, ed-
itor, Proceedings of the ACM SIGPLA N Workshop on

State in Programming Languages, pages 17--3o, Copen-
hagen, Denmark, June 1993.

[38] David A. Schmidt. Denotational Semantics: A Method-

ology for Language Development. Allyn and Bacon,

Inc., 1986.

[39] Carolyn L. Talcott, editor. Special issue on con-

tinuations, LISP and Symbolic Computationj Vol. 6,

Nos. 3/4. Kluwer Academic Publishers, 1993.

[40] Robert D. Tennent. Semantics of Programming Lan-

guages. Prentice-Hall International, Englewood Cliffs,

New Jersey, 1991.

[41] Philip Wadler. Comprehending monads. In Wand [44],
pages 461-493.

[42] Philip Wadler. The essence of functional programming

(tutorial). In Andrew W. Appel, editor, Proceedings of

the Nineteenth Annual ACM Symposium on Principles

of Programming Languages, pages 1–14, Albuquerque,

New Mexico, January 1992. ACM Press.

[43] Mitchell Wand. Correctness of procedure representa-

tions in higher-order assembly language. In Stephen
Brookes, Michael Main, Austin Melton, Michael Mis-

love, and David Schmidt, editors, Mathematical Foun-

dations of Programming Semantics, volume 598 of Lec-

ture Notes in Computer Science, pages 294–311, Pitts-

burgh, Pennsylvania, March 1991. 7th International

Conference.

[44] Mitchell Wand, editor. Special issue on the 1990

ACM Conference on Lisp and Functional Programming,

Mathematical Structures in Computer Science, Vol. 2,

No. 4. Cambridge University Press, December 1992.

471

