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Abstract

In this paper we show how access control policies can be specified
using a general metamodel whose operational semantics is based
on term rewriting systems. The choice of the specification language
aims at easing the verification task, since essential properties of ac-
cess control (e.g. every request by an individual of accessing a re-
source always receives an answer, and this answer is unique) can
be formalized and proved using rewriting techniques. We show that
automated analysis of rewrite-based security policies can be done
using the CiME rewriting tool which is able to produce mechan-
ically checkable traces of security policy properties, for instance
through the Coq proof assistant.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.4.6 [Operating Systems]:
Security and Protection - access controls; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs - mechanical verification; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages - program
analysis

General Terms Verification, Theory, Security.

Keywords Security policies, access control, formal analysis, term
rewriting.

1. Introduction

A security policy is a statement of what is, and what is not, al-
lowed. When dealing with access control, a (formal) policy specifi-
cation language will help to unambiguously define the rules that
will govern the actions principals are allowed to execute over a
set of resources. Nowadays, the generalized use of access control
in distributed computing environments has increased the need for
high-level declarative languages for the specification of complex
policies. Security administrators need to specify a wide range of
policies, to prove properties of these policies and to evaluate access
requests efficiently. Among the different existing approaches, e.g.
first-order theorem provers, purpose-built logics, or flow-analysis
(see for instance [12, 15, 22, 26, 30]), rule-based policy speci-
fications have the advantage to be concise and easy to maintain
for security administrators. Those advantages are in great part due
to the high level of abstraction of the languages used. Rewrite-
based languages ensure clean and unambiguous semantics; more-
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over, the declarative nature of this kind of policy specification
enhances modularity, which is a crucial aspect when considering
distributed security policies developed independently by different
departments, organisations or institutions. Using the rewriting ap-
proach, policies are represented as sets of rewrite rules, whose eval-
uation produces authorization decisions, while requests are repre-
sented as algebraic terms. Thus, access request evaluation is ef-
fected by reducing terms to a normal form.

Another important reason to specify access control policies us-
ing rewrite-based frameworks is that rewriting tools and languages
(such as MAUDE [27] and TOM [6] and CiME [28]), can be used
to test, compare and experiment with evaluation strategies, to auto-
mate equational reasoning, and for the rapid prototyping of access
control policies.

The main goals of the work presented in this paper are to
design and characterize trusted policies, and to facilitate policy
enforcement. The high level of abstraction of the specification
language ensures that policy specification and enforcement can be
separated from other functionalities of the system, thus avoiding
bugs and increasing maintainability. We see access control as one
aspect of the application, that can be specified, implemented and
maintained independently. Once the rule-based policies are defined,
they can be integrated into an implementation, using for instance
the weaving techniques described in [31], or they can be used to
guide the implementation of an access control system (in the same
way as software specifications are used).

Moreover, specifying access control policies via term rewrit-
ing systems, which have a formal semantics, gives the possibility
of proving properties of policies, and this is essential for policy
acceptability [48]. For example, the absence of conflicts is an im-
portant property when both positive and negative authorizations are
possible. It assures that for a certain access request no grant and de-
nial are assigned at the same time. Rewriting properties like conflu-
ence (which implies the unicity of normal forms) and termination
(which implies the existence of normal forms for all terms) may be
used to demonstrate satisfaction of essential properties of policies,
such as consistency.

We propose to security administrators a way to design expres-
sive access control policies and verify desirable security properties
by using automated security analysis techniques. It is important to
remark that the security administrator does not need to learn a new
specification language: the rewrite-based syntax is hidden behind a
user-friendly interface and the rules for policy requirement speci-
fication are automatically generated by the application. Moreover,
our approach facilitates the analysis of policies, since we integrate
in the application the automated verification of access control prop-
erties via the rewrite tool CiME3. CiME3 performs checking of
rewrite properties by discovering and moreover certifying, with full
automation, termination and confluence proofs for term rewriting
systems.

We develop a use case, an RBAC policy with dynamic roles [46]
for a banking system, both in a centralized and in a distributed set-
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ting (i.e. the considered bank organization is first composed by a
unique central branch and later extended with several branches lo-
cated in different sites). These policies are defined as particular in-
stances of a common category-based metamodel [8], which relies
on the notion of category, seen as a primitive concept. Different
access control models are definable in the metamodel by interpret-
ing classic types of grouping, like a role, a security clearance, a
discrete measure of trust, etc., as particular instances of the more
general notion of category. A rewrite-based operational semantics
for this metamodel has been given in [17], where the expressive
power of the metamodel is also demonstrated. We show here how
automated analysis techniques can be applied to this kind of rule-
based policies in order to increase the trust of the policy author on
the correct behavior of the policy.

To the best of our knowledge, no automated verification results
have been developed for rewrite-based access control policies as
we do here. We believe this kind of analysis is essential in assisting
designers to detect inconsistencies in their policy definition.

The rest of this paper is organized as follows. In Section 2,
we give some details on term rewriting, the category-based access
control metamodel, and a brief introduction to the tool CiME3.
In Section 3 we develop a use case, an RBAC policy for a bank
scenario. In Section 4 we show how we can use the rewrite tool
CiME3 for automated verification of the policy and rapid testing.
In Section 5 we extend the use case to a distributed scenario and
we show how policy analysis can be performed in this setting. We
conclude the paper in Section 7.

2. Preliminaries

In order to make this paper reasonably self-contained, we recall
some basic notions and notations for first-order term rewriting,
the category-based authorization meta-model and the rewrite tool
CiME3 that will be used in the rest of the paper. We refer the reader
to [4] and [8] for additional information.

2.1 Term Rewriting

A signature F is a finite set of function symbols, each with a fixed
arity. X denotes a denumerable set of variables X1, X2, . . .. The
set T (F ,X ) of terms built up from F and X can be identified with
the set of finite trees where each node is labelled by a symbol in
F ∪ X such that a node labelled by f ∈ F must have a number
of subtrees equal to the arity of f , and variables are only at the
leaves. Positions are strings of positive integers denoting a path
from the root to a node in the tree. The subterm of t at position
p is denoted by t|p and the result of replacing t|p with u at position
p in t is denoted by t[u]p. This notation is also used to indicate
that u is a subterm of t. V(t) denotes the set of variables occurring
in t. A term is linear if variables in V(t) occur at most once in
t. A term is ground if V(t) = ∅. Substitutions are written as in
{X1 7→ t1, . . . , Xn 7→ tn} where ti is assumed to be different
from the variable Xi. We use Greek letters for substitutions and
postfix notation for their application.

DEFINITION 1 (Rewrite step). Given a signature F , a term rewrit-
ing system on F is a set of rewrite rules R = {li → ri}i∈I , where
li, ri ∈ T (F ,X ), li 6∈ X , and V(ri) ⊆ V(li). A term t rewrites to
a term u at position p with the rule l → r and the substitution σ,

written t →l→r
p u, or simply t →R u, if t|p = lσ and u = t[rσ]p.

Such a term t is called reducible. Irreducible terms are said to be
in normal form.

We denote by →+

R (resp. →∗

R) the transitive (resp. transitive and
reflexive) closure of the rewrite relation →R. The subindex R will
be omitted when it is clear from the context.

EXAMPLE 1. Consider a signature for lists of natural numbers,
with function symbols z (with arity 0) and s (with arity 1) to build
numbers; nil (with arity 0) to denote an empty list, cons (with arity
2) and append (with arity 2) to construct and concatenate lists,

respectively, ∈ (with arity 2) to test the membership of a natural
number in a list. The list containing the numbers 0 and 1 is written
then as cons(z, cons(s(z), nil)), or simply [z, s(z)] for short. We
can specify list concatenation with the following rewrite rules:

append(nil, X) → X

append(cons(Y,X), Z) → cons(Y, append(X,Z))

Then we have a reduction sequence:

append(cons(z, nil), cons(s(z), nil)) →∗

cons(z, cons(s(z), nil))

Boolean operators, such as disjunction, conjunction, and a
conditional, can be specified using a signature that includes
the constants True and False. For example, conjunction is de-
fined by the rules and(True, X) → X , and and(False, X) →
False. The notation t1 and . . . and tn is syntactic sugar for
and(. . . and(and(t1, t2), t3) . . .), and if b then s else t is syntac-
tic sugar for the term if-then-else(b, s, t), with the rewrite rules:
if-then-else(True, X, Y ) → X and if-then-else(False, X, Y ) →
Y .

For example, we can define the membership operator ”∈” as
follows: ∈ (X, nil) → False, ∈ (X, cons(H,L)) → if X =
H then True else ∈ (X,L), where we assume ”=” is a syntactic
equality test defined by standard rewrite rules. We will often write
∈ as an infix operator.

Among the most important properties in term rewriting we have
confluence and termination. A term rewriting system R is confluent
if for all terms t, u, v: t →∗ u and t →∗ v implies u →∗ s and
v →∗ s, for some s; it is terminating if all reduction sequences
are finite. Confluence and termination of rewriting are undecidable
properties in general, but there are several results available in the
literature that provide sufficient conditions for these properties to
hold. For example, if all left-hand sides of rules in R are linear and
there are no critical pairs (i.e., there are no superpositions of left-
hand sides in the rules) then R is orthogonal. Orthogonality is a
sufficient condition for confluence [43].

For the approach to distributed access control that we propose
later, we use distributed term rewriting systems (DTRSs); DTRSs
are term rewriting systems where rules are partitioned into mod-
ules, each associated with an identifier, and function symbols are
annotated with such identifiers. We assume that each module has a
unique identifier that is associated to the source of the definition of
a function f (this can be a person, a site, . . . ). We say that a rule
f(t1, . . . , tn) → r defines f . There may be several rules defin-
ing f : for example, we may write fν to indicate that the definition
of the function symbol f is stored in the site ν, where ν is a site
identifier. If a symbol is used in a rule without a site annotation,
we assume the function is defined locally. For more details on Dis-
tributed Term Rewriting Systems, we refer the reader to [16].

2.2 The Category-Based Access Control Meta-Model

We briefly describe below the key concepts underlying the category-
based metamodel of access control, henceforth denoted by M. We
refer the reader to [8] for a detailed description. We do not deal
with authentication in this paper; we assume that principals that
request access to resources are pre-authenticated.

Informally, a category is any of several distinct classes or groups
to which entities may be assigned. Entities are denoted uniquely by
constants in a many sorted domain of discourse, including:
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• A countable set C of categories, denoted c0, c1, . . .

• A countable set P of principals, denoted p0, p1, . . .

• A countable set A of named actions, denoted a0, a1, . . .

• A countable set R of resource identifiers, denoted r0, . . .

• A finite set Auth of possible answers to access requests.

• A countable set S of situational identifiers, denoted s0, s1, . . .

Situational identifiers are used to denote contextual or environ-
mental information e.g., locations, times, system states, etc. The
precise set S of situational identifiers that is admitted is application
specific.

An important element in access control models is the request-
response component. In the metamodel, the answer to a request
may be one of a series of constants. For instance, the set Auth
might include {grant, deny, undetermined}.

In addition to the entities mentioned above, the metamodel
includes the following relations that are of primary importance for
the specification of access control policies:

• Principal-category assignment: PCA ⊆ P × C, such that
(p, c) ∈ PCA iff a principal p ∈ P is assigned to the cate-
gory c ∈ C.

• Permissions: ARCA ⊆ A × R × C, such that (a, r, c) ∈
ARCA iff the action a ∈ A on resource r ∈ R can be
performed by principals assigned to the category c ∈ C.

• Authorizations: PAR ⊆ P × A × R, such that (p, a, r) ∈
PAR iff a principal p ∈ P can perform the action a ∈ A on
the resource r ∈ R.

Thus, PAR defines the set of authorizations that hold according to
an access control policy that specifies PCA and ARCA. In addi-
tion, for enhancing expressivity (e.g. for the modeling of 3-valued
policies) we define a notion of forbidden operation on resources,
modeled by the relation BARCA, and a notion of non-authorized
access, modeled by the relation BAR:

• Banned actions on resources: BARCA⊆ A×R×C, such that
(a, r, c) ∈ BARCA iff the action a ∈ A on resource r ∈ R is
forbidden for principals assigned to the category c ∈ C.

• Banned access: BAR⊆ P×A×R, such that (p, a, r) ∈ BAR
iff performing the action a ∈ A on the resource r ∈ R is
forbidden for the principal p ∈ P .

Additionally, a relation UNDET could be defined if PAR and
BAR are not complete, i.e., if there are access requests that are
neither authorized nor denied (thus producing an undeterminate
answer).

The relations satisfy the following core axioms, ∀p ∈ P , ∀a ∈
A, ∀r ∈ R, ∀c ∈ C:

• (p, c) ∈ PCA ∧ (a, r, c) ∈ ARCA ⇔ (p, a, r) ∈ PAR

• (p, c) ∈ PCA ∧ (a, r, c) ∈ BARCA ⇔ (p, a, r) ∈ BAR

• (p, c) ∈ PCA ∧ (a, r, c) 6∈ ARCA ∧(a, r, c) 6∈ BARCA ⇔
(p, a, r) ∈ UNDET

• PAR∩ BAR = ∅

An inclusion relationship between categories (in the style of the
RBAC role hierarchy), can be included in a generalized version of
the axioms, as detailed in [17].

A range of access control models can be represented as special-
ized instances of this metamodel: see [17] for the specifications of
traditional access control models, such as RBAC, DAC and MAC
(including the well-known Bell-LaPadula model), as well as the
Chinese Wall policy and the event-based model DEBAC [16].

2.3 A short introduction to CiME

CiME [50], developed within the A3PAT project, is an open source
toolbox dedicated to the handling and analysis of rewriting pro-
grams. It allows one to define term algebras and rewriting sys-
tems, and to perform a range of treatments over them: computation,
normalisation, matching and unification, completion and proofs of
equality. An important part of CiME is dedicated to proofs of ter-
mination, local confluence and convergence. The last version of
CiME, called CiME3, provides a certification mechanism which is-
sues proof traces in XML format and certificates, e.g in the form of
a Coq [3] script. The techniques for the generation of Coq scripts
for certification relies on the Coccinelle library, which allows for
deep and shallow embeddings of the theory of rewriting. For effi-
ciency reasons, the termination engine may use an external SAT-
solver to find termination orderings. For experimental results the
reader can refer to [28].

3. CASE STUDY: a banking scenario using an

RBAC policy with attributes

We have developed a case study for an access control policy in
a banking scenario. We consider a three-valued role-based access
control policy extended with attributes [46], that is a policy with the
usual RBAC structure (permissions are granted to roles which are
assigned to users) but with additional flexibility: user-roles assign-
ments are based on a set of attributes related to the user (such as age,
nationality, work experience, etc.). We are not interested here in es-
tablishing attribute certificates, we simply assume attribute values
come from a trustable source. We specify this access control model
by using an appropriate instantiation of the metamodel M.

3.1 Use case description

The bank policy includes some roles, such as manager, banker,
clerk and client and a set of permissions and prohibitions associated
to each category:

• Manager: he/she can consult the account of any client; he/she
can consult the loan list and the loan demand list.

• Banker: same as the manager, plus the rights or accepting or
refusing a loan demand.

• Clerk: he/she can consult the account of any client and modify
user data.

• Client: he/she can consult his/her account;

• Gold-client: same as client, plus the right of asking for a loan.

We have a similar description for prohibitions, for example a client
cannot consult or modify the loan list and the loan demand list.
The usefulness of explicit prohibitions will be clearer in Section
5, where we consider the combination of several access control
policies in a distributed domain.

We have a set of registered users to which categories are as-
signed according to some attributes, such as age, diploma, work
experience, qualifications, etc. For instance we may have

• Manager: a user is assigned to the category manager if he/she
has a master’s degree and a work experience of more than five
years.

• Gold-Client: a user is assigned to the category gold-client if
he/she is an adult (more than 20 years old) and he/she is not in
the blacklist (due to a negative account balance for instance).

Given an access request from a registered user to perform an
action a on a resource r, the bank policy will grant (resp. deny) the
access if and only if the right of doing a on r belongs to the list of
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permissions (resp. prohibitions) of a role which is assigned to the
user.

3.2 Use case specification

We show how the bank policy access control requirements can be
simply represented in terms of M.

• We consider the categories manager, banker, clerk, gold-client
and client.

• We have a list of principals such as Hertzo Dupont, Thomas
Durant, Gringo Joe, etc.

• Among the possible actions we have consult, modify, demand,
accept or refuse.

• The set of resources contains accounts, loans, loan demand list
and user data.

• The possible authorization decisions are grant, deny or undeter-
minate.

The category-based metamodel of access control is based on the
core axioms given in Section 2. Operationally, these axioms can
be realized through a set of function definitions, as shown in [17].
Recall that authorizations and prohibitions, defined by the relation
PAR and BAR, are derived from the relations PCA, ARCA and
BARCA. The information contained in such relations will be mod-
eled by the functions pca, arca and barca, respectively. The func-
tion arca returns a list of permissions assigned to a category, e.g.
arca(manager) → [(consult, account), (consult,loanList),
(consult,loanDemands)]. Similarly, the function barca returns a list
of prohibitions assigned to a category, e.g. barca(manager) →
[(accept, loan), (refuse,loan)]. The function pca returns the cate-
gory assigned to a principal by exploiting the information associ-
ated to the principal’s attributes, e.g.

pca(p) → if age(p) > 20 and notBlacklisted(p)
then [GoldClient] else [Client]

The rewrite-based specification of the axioms in Section 2 is given
by the rewrite rule:

par(p, a, r) → if (a, r) ∈ arca(pca(p)) then grant
else if (a, r) ∈ barca(pca(p)) then deny

else undeterminate

where the function ∈ is a membership operator on lists (see Sec-
tion 2). For optimization purposes, one can compose the standard
list concatenation operator append with a function removing the
duplicate elements in the list.

If for a given category c, a pair (a, r) is neither in arca(c) nor
in barca(c), then such access privilege is undefined. This permits
a finer-grained evaluation of access requests: the constant undeter-
minate is a possible answer, at the same level as grant and deny.
This is particularly important in open distributed policies, as we
will see in Section 5.

It can be shown (cf. [17]) that the rewrite-based definition of par
is a correct realization of the axioms defining M.

An access request by a principal p to perform the action a on
the resource r can then be evaluated simply by rewriting the term
par(p, a, r) to normal form. For instance, assuming the principal
Gringo Joe is associated to the manager category, we have:

par(GringoJoe, consult, loanList)
→ if (consult,loanList) ∈ arca(pca(GringoJoe))
then grant
else if (consult,loanList) ∈ barca(pca(GringoJoe))

then deny else undeterminate

→∗ if (consult,loanList) ∈ arca(manager)
then grant else . . .

→∗ if (consult,loanList) ∈ [. . . , (consult,loanList),. . . ]
then grant else . . .

→∗ grant

3.3 Use case implementation

The rewrite rules provide an executable specification of the pol-
icy (the rewrite rules can be seen both as a specification and an
implementation of the access control functions in a declarative lan-
guage). However, in order to help security administrators to define
such a kind of access control policies, we have implemented a user-
friendly Java interface where categories, permissions and prohibi-
tions can be specified, together with the principal category assign-
ments and the category permissions and prohibitions assignments.
The set of principals and their attributes are stored in a relational
database accessible via the JDBC API from the application. Us-
ing our prototype, a security administrator can create a policy and
make queries on it by filling blanks e.g. in permission/prohibition
tables or in if-then-else English sentences. Suggestions for possi-
ble fillings appear automatically in drop-down lists exploiting the
database information: for instance the policy writer may choose a
(set of) user(s) and the list of available RBAC attributes for such
user(s) will be automatically displayed. We do not give here a com-
plete description of the interface, which is under continual refine-
ment. The reader can find some screen shots at [20]. Once the pol-
icy has been specified via the interface, a translation from the fields
entered by the user to the corresponding rewrite rules set is auto-
matically generated and stored in a file policy.trs. The file is then
passed to the rewrite-based tool CiME in order to perform pol-
icy analysis (see next section for details on the properties that can
be checked). A prototype of this implementation for the banking
use case is available at [20]. The .trs file containing the bank ac-
cess control policy includes rules for the principal category assign-
ments and for the category permission and prohibition assignments
(specified via the interface), the principals relevant information (re-
trieved from the user database) and additional rules for algebraic
and arithmetic operators as well as functions dealing with manipu-
lations of data structures (included by default in the file).

The application graphic interface has been designed to make
reading and definition of authorizations as clear as possible (by
interacting with a database and using parametric drop-down lists)
making it easier for administrators to specify and update access
control requirements. Moreover, since the policy implementation
follows the metamodel general schema, the prototype provides an
intuitive means of specifying a wide range of policies. Indeed,
different access control models can be understood in category-
based terms (e.g. variants of RBAC, including hierarchical, time
and location aspects, as well as lattice-based models such as the
Bell-Lapadula and the McLean models can be specified).

After having specified the policy, the security administrator can
choose via the interface which security property he wants to test.
The translation of the specification into the rule-based syntax is
executed in a transparent way and the tool CiME3 is launched in
order to perform automated analysis. The results obtained on the
rewrite systems are then translated into natural language using se-
curity policy terms to ease the readability for the policy designer.
For some properties (such as termination), if the tests are success-
ful, CiME3 is able to provide a formal certification by producing a
trace of the proof in the form of a Coq certificate, which guarantees
high-assurance checking.
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4. Automated policy analysis

The rewrite-based specification of access control policies allows
one to use automated analysis techniques in order to prove essential
properties of the policies.

In this section we first define the security properties we consider
and then we exemplify how verification of these properties can be
performed by the CiME3 rewrite tool.

4.1 Properties of policies

An access control policy must satisfy certain criteria to be trustable.
For example, it should not specify that any user is granted and
denied the same access privilege on the same resource (i.e., the
policy should be consistent). More precisely, we are interested in
the following properties:

• Totality: Each access request from a valid user p ∈ P to
perform a valid action a ∈ A on the resource r ∈ R receives
an answer (e.g. grant, deny or undeterminate).

• Consistency: For any p ∈ P , a ∈ A, r ∈ R, it is not possible
to derive more than one result for a request from p to access r
for a.

• Soundness and Completeness: For any p ∈ P , a ∈ A, r ∈ R,
an access request by p to perform the action a on r is granted
(resp. denied) if and only if p belongs to a category that has the
permission (resp. prohibition) (a, r).

A key observation is that, if the rewriting system defining a pol-
icy is terminating and confluent, we can deduce that each access re-
quest has a result which is unique. This is a consequence of the fact
that in a terminating system each term has a normal form (e.g. grant
or deny) and in a confluent system this normal form is unique. Thus,
totality and consistency can be proved, for access control policies
defined as term rewriting systems, by checking that the generated
rewrite relation is confluent and terminating. The soundness and
completeness of a policy can be checked by analyzing the normal
forms of access requests. In addition, sufficient completeness of the
rewrite rules (a property that ensures that each operation is defined
on all valid inputs) may be considered in order to guarantee that the
normal forms are of the right form [23, 38]. This kind of property
can be checked using narrowing-based techniques (also mentioned
in Section 7).

Confluence and termination of rewriting are undecidable prop-
erties in general, but there are several techniques available that
ensures these properties to hold. By exploiting such techniques,
CiME3 is able to check and moreover certify termination and local
confluence on a large set of problems (see results obtained from the
termination problem database on CiME website [50]). For defining
a term rewrite system, one needs to define a term algebra signature
and term rewrite rules on this algebra. Termination proofs for the
rewrite system may then be obtained using various criteria, such as
dependency pairs and graphs refinements, as well as various order-
ings, such as polynomial interpretations and recursive path order-
ing. Local confluence is then proved by showing that in particular
each critical pair is joinable: the rewrite engine tries to normalize
each member of the pair and to show that both reduce to the same
term. Certification of proofs may be obtained, by an application of
Newman’s lemma [47].

4.2 Automated analysis

It is important to note that the proofs of the properties above do
not have to be generated by a security administrator. Automated
policy verification can be launched via the application interface.
The obtained results (e.g. on confluence and termination of the
rewrite system) will then be interpreted in access control terms and
displayed back to the policy designer (resulting in a message like

”the analysis of the policy specification is successful: the policy
is consistent”). It is worth noticing that results on confluence and
termination are based on the structure of the rewrite rules defining
the policy. This means that once the analysis has been done, it can
be considered valid for a certain range of data. For example, if we
consider the pca rule in Section 3.2, it is clear that attribute age of
principal p can vary in the interval [0 − 20] without affecting the
result of the derivation (i.e. the assignment of the category Client
to p). Following this reasoning, by examining the set of rewrite
rules (in particular the right-hand sides of conditional rules) we
may deduce a set of data for which the result of the analysis is
guaranteed. However, this process of parametrization is difficult to
automatize and is not pursued here.

Termination verification is done by executing the following
program:

let R_trs_variable = variables "p,a,r,c,..." ;
let R_trs_signature =
signature "pca : 1; arca : 1; par : 3;
isblacklist : 1; ..." ;

let R_trs_algebra = algebra R_trs_signature ;
let R_trs =
trs R_trs_algebra "

barca(banker) -> cons(modify-data, nil);
arca(banker) -> ...
...rules definition...

" ;

termination R_trs;

R trs contains the definition of the set of variables X , the sig-
nature F , the generated term algebra T (F ,X ) and the rewrite rules
defining the access control policy. This specification is directly gen-
erated by CiME3 from the policy.trs file received from the Java pro-
gram and is ready for execution. The execution gives as a result:

termination R_trs;
...
- : bool = true

informing the user that a termination proof is found. We proceed
similarly for confluence:

local_confluence R_trs;
...
- : bool = true

If both properties are satisfied, as it is the case for our case study,
then the access control policy is proved to be total and consistent.
Otherwise, the cause of the inconsistency can be detected by CiME:

local_confluence R_trs;
...
The rule [39] arca(manager) overlapps the rule
[48] arca(manager) at position (epsilon)
yielding the non-joinable critical pair P=...
- : bool = false

In this example, we can see that two different lists of per-
missions are associated to the same category manager, eventually
yielding to inconsistent access authorizations. The policy designer
can use this information for performing the necessary modifications
to make the policy definition correct.

The evaluation of access authorization (available via the inter-
face, by specifying the principal requesting the access, the action
and the resource) can be performed by CiME3 simply by com-
puting the normal form of an initial term representing the access
request.

let t = term R_trs_algebra
"par(GringoJoe, consult, loanList)";
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normalize R_trs_ t;
...
- : R_trs_signature term = grant

In this case, the request of principal Gringo Joe to consult the
loan list is granted, according to the bank access control policy
specification. Other useful tests can be automatically performed us-
ing the rewrite tool. For example, in the policy specification, lists
of permissions and prohibitions can be specified for all the cate-
gories. In this context, conflicts may arise among rules that assign
to a category a permission and at the same time the negated per-
mission. In order to avoid this kind of problem, automatic tests can
be generated by the application. This is done by checking for every
category that the list of permissions arca and the list of prohibitions
barca are disjoint. If a conflict arises, the pair(s) (action, resource)
generating the conflict is (are) returned. For example:

let t = term R_trs_algebra
"inter(arca(manager),barca(manager))";

normalize R_trs t;
...
- : R_trs_signature term = nil

Here the test computes an empty final term, meaning that no
conflicts arise for the manager category. Instead we may have:

let t = term R_trs_algebra
"inter(arca(banker),barca(banker))";

normalize R_trs t;
...
- : R_trs_signature term = cons(consult-loanList,nil)

Here we can see that the banker category has a conflicting per-
mission concerning the action of consulting the loan list. Therefore,
the output of the analysis tool is rich enough to provide useful di-
agnostic information to a policy writer or system engineer. Tests
for all categories can be automatically generated by the application
and results obtained via CiME3 are not difficult to understand for
a security administrator (results are a list of conflicts of the form
action-resource). Also soundness and completeness can be tested,
by analyzing the normal forms computed by CiME3 on access re-
quest terms of the form par(p, a, r), for any p ∈ P , a ∈ A, r ∈ R.
A possible alternative would be to use narrowing techniques, as
hinted in Section 7.

The designer of the access control policy can thus benefit from
a range of tests performed by the rewrite tool and relying on formal
analysis techniques. A library of tests for the banking use case is
available at [20].

5. Distributed access control

An important aspect when dealing with distributed applications
is the capability of representing systems where resources may be
dispersed across different sites. The information needed to decide
whether a user request is granted or denied may also be distributed.
Moreover, a conflict resolution mechanisms has to be specified
in order to compose locally specified access control policies and
compute a global access authorization decision. As we will see in
this section, these distributed features can be easily accommodated
in the metamodel M.

5.1 Composition of access control policies in M

In order to represent a distributed environment, the set of situational
identifiers of M will now include identifiers for sites (or locations)
which will be associated to resources or policies. Each s ∈ S iden-
tifies one of the components of the distributed system, seen as a fed-
eration [33]. For simplicity, we assume that the sets P , C,A,R are
globally known in the federation (an alternative would be to define

sets Ps, Cs, As, Rs for each site). To take into account the fact that
the system may be composed of several sites, with different poli-
cies in place at each site, we consider families of relations PCAs,
ARCAs, BARCAs, BARs, UNDET s and PARs indexed by
site identifiers. Intuitively, PARs (resp. BARs) denotes the au-
thorizations (resp. prohibitions) that are valid in the site s. These
notions are essential for integrating partially specified policies, i.e.
policies that may be ”not applicable” to requests on resources that
are out of their jurisdiction. The relation PAR defining the global
authorization policy will be obtained by composing the local poli-
cies defined by the relations PARs and BARs. The axioms of the
distributed metamodel can be seen as an extension to multiple sites
of the axioms that define M (see Section 2) where relations BAR,
PAR etc. are replaced by their local versions BARs, PARs, etc.
(the complete list of axioms is given in [18]). We give below the ax-
iom describing the global authorization relation, which is obtained
by combining the local authorizations and prohibitions defined at
each site, by using an operator OP . This operator is applied to the
set of answers returned from the local sites and can be specified
according to a particular application: it can give priority to positive
authorisations, or to negative ones in case of conflict1. We assume
that, at the global level, if the collected information is not suffi-
cient for granting a request, then the access is denied (close policy
approach).

∀p ∈ P , ∀a ∈ A, ∀r ∈ R,
(p, a, r) ∈ OP({PARs,BARs | s ∈ S})
⇔ (p, a, r) ∈ PAR

According to the axiom, the result of an access request may be dif-
ferent depending on the site where the request is evaluated, since
each site has its own authorization policy defined by the local rela-
tions PARs and BARs. The combination operator OP specifies
the way final authorization decisions are computed (e.g. following
the deny-takes-precedence, or the most-specific-takes-precedence
principles). We refer the reader to [18] for the definition of a variety
of operators that can be accommodated in the distributed version of
M. We exemplify next the operational semantics of the distributed
metamodel by applying it to a specific scenario, extending the use
case defined in Section 3.

5.2 Case study extended to a distributed scenario

We consider now a distributed bank organization composed of
several branches, among which a main branch which has the role of
head office. Clients can perform actions on their accounts, requests
of loans, and so on. We suppose that bank loans are not dealt with
in local branches, but are under the domain of the head office. The
bank’s access control general policy gives priority to local branch
policies and transfers evaluation to the main site only if the request
cannot be treated locally.

We have extended the use case scenario of Section 3 by con-
sidering a bank organization with two branches: a local branch l
and a main branch c. The local policy in l is a three-valued RBAC
policy with attributes as defined in Section 3, with the exception
of manager and banker privileges on loans that will be now un-
der the jurisdiction of the head office policy. The policy in place
at site c is a two-valued RBAC policy (we assume that the main
site denies accesses that are not explicitly permitted, i.e. it speci-
fies a closed policy). We may notice that any category-based access
control model can be accommodated in any site in a similar way.

1 Intuitively, we may define an ”intersection” operator corresponding to a
policy which will grant the access only if all local policies grant it, or a
”union” operator which gives as result grant if at least one local policy
grants the access.
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The functions par in the site l is defined as follows:

parl(p, a, r) → if (a, r) ∈ arcal(pcal(p)) then grant
else if (a, r) ∈ barcal(pcal(p)) then deny

else undeterminate

where arcal, pcal and barcal are defined for the categories clerk
and client as the corresponding functions in Section 3.

The functions par in the site c is defined as follows:

parc(p, a, r) → if (a, r) ∈ arcac(pcac(p)) then grant
else deny

where arcac and pcac are defined for the categories banker and
manager as the corresponding functions in Section 3.2

Following this specification, the bank security administrator de-
fines locally the rights for clients and clerks, and specifies the per-
missions concerning loans (associated to bankers and managers) in
the main branch. In this scenario, combinations of access authoriza-
tions can be dealt with using the precedence operator po, as defined
e.g. in [21]: if the information available in a site s is not sufficient
to grant a principal the right to access a certain resource, but does
not ban the access either (i.e., the outcome of the request evaluation
cannot be determined at s), then the access request is processed in
another site of the system.

A new function authorize is needed in order to combine results
obtained in the different sites into a final access authorization deci-
sion. For our specific bank scenario, we choose the following defi-
nition:

authorise(p, a, r) → combinepo(parl(p, a, r), parc(p, a, r))

together with the definition of the combinepo function:

combinepo(deny, x) → deny
combinepo(grant, x) → grant
combinepo(undeterminate, x) → x

In this case priority is given to local evaluation in site l, external
evaluation in site c being executed only when the local policy in l is
not able to give as an answer grant or deny. This corresponds to an
implementation of the axiom in Section 5.1 for a distributed system
composed of two sites l, c ∈ S and the operator OP instantiated
by the precedence operator po. Notice that conflicts that may arise
between the local and the central policy are automatically solved
at run-time according to the operational semantics specified for
the chosen combination operator. A more general definition using
n-ary operators for evaluating combinations of answers from n
different local policies can be specified. We refer the reader to [18]
for additional information.

5.3 Distributed policy analysis

We implemented this distributed scenario and used the rewrite
tool CiME3 for testing the security properties of the system. The
generated input file contains the rules defining the policy in site l
(annotated with l), together with the rules defining the policy in
site c (annotated with c) and the rules defining the global policy
conflict resolution mechanism (i.e. rules authorize and combine).
Moreover, the usual rewrite rules for dealing with arithmetics and
data structures are also included. The policy is proven to be total
and consistent. Access decisions are computed with the CiME
command:

let t = term R_trs_algebra
"authorize(alertoAlice,consult,loanList)";

2 For the sake of clarity, the set of categories defined in l and those defined
in c are disjoint. However, we may have one or more categories defined in
both sites with different privileges. This does not prevent the global policy
from being consistent.

normalize R_trs_ t;
...
- : R_trs_signature term = grant

where authorise(alertoAlice,consult,loanList) is the access re-
quest we want to evaluate (seen as a term) and R trs is the rewrite
system specifying the distributed access control policy. This re-
quest will lead to a positive answer if the principal Alerto Alice
belongs to the category manager or banker in the central site (the
local policy not being able to decide about the access permission
requested).

Incompleteness of the policy can be detected, for example if
the authorize function is not completely defined over the set of
inputs, e.g. a principal has no category assignment in any site. In
this case, the computation will result in a final term which is not
an answer in Auth and an error identifying such a principal will
be given (concretely, the function pcas(p) cannot be evaluated in
any of the sites s ∈ S). Notice that the existence of one or more
sites where pca(p) is not defined is not surprising in a distributed
scenario where information is only partially specified in each site,
i.e. local policies do not hold the complete information, which is
dispersed over the whole system.

6. Related work

A number of works in the literature address the problem of access
control policy representation and analysis. This section does not
pretend to be exhaustive.

In [44, 45] a uniform framework based on graph transformations
is described for the specification of access control policies and their
analysis. Graph transformation rules combine a visual representa-
tion with formal categorical semantics, and thus provide a solid ba-
sis for policy analysis. Our work addresses similar issues to [44, 45]
but provides a different formulation of access control policies that
facilitates the performing of automated analysis by existing rewrite
tools.

Several works exist dealing with rewrite-based policies [9,
34–36], including works by the first author [16–19], where the
category-based metamodel is introduced. The security properties
considered in these works are defined for general abstract policies
and formally proved ”by hand”, without the assistance of any au-
tomated tool. Moreover, their focus is essentially on the issue of
defining an expressive and flexible framework for policy (or pol-
icy combination) modeling and specification, without considering
its practical usability by real policy administrators. More recently,
rewrite-based policy verification is addressed e.g. in [24, 42, 52],
where examples about information flow policies or firewalls are
treated. However, no rewrite tools such as CiME3 have been used
for automated validation and certification of classical security prop-
erties on these policies.

There have been several works which give formal semantics
to policies by using a logic programming approach. For instance,
Abadi et al [1] ABLP logic provides a formal framework for rea-
soning about a wide range of features of access control. The focus
in ABLP logic is on language constructs for formulating access
control policies and axioms and inference rules for defining a sys-
tem for proof, e.g., for proving authorised forms of access. In con-
trast, our approach is based on the rewrite-based specification of the
metamodel, which is proved to be well-adapted for access requests
evaluation, and emphasises the use of term rewriting techniques to
derive properties of the policies.

The work on access control proposed in [10, 11, 39] is also re-
lated to ours. In these approaches policies are modelled using (con-
strained) Horn clauses and evaluation is based on resolution [53].
The term rewriting approach is similarly declarative, and has simi-
lar attractions to the logic programming approaches. However, in
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contrast to these approaches, our proposal does not require the
syntactic restriction to locally stratified access policies [7] to be
adopted.

The distributed model that we have used is more expressive
than any of the Datalog-based languages that have been proposed
for distributed access control (e.g. OASIS [5], SD3 [40], Cassan-
dra [32], Binder [13]), which are based on a monotonic semantics
and thus not especially well suited for representing dynamic dis-
tributed access request policies.

The work reported in [29] is based on the use of logic programs
for specifying and analyzing authorization and obligation policies.
However obligation management is quite different from access
control, where a principal usually has no individual control over the
permissions it has. Therefore, we do not consider obligations in this
paper. Moreover, we focus on a user-friendly approach for policy
designers which may use our prototype to easily specify rules and
queries and to read in natural language the analysis result.

In [25] the authors define an expressive logical framework for
policy representation and reasoning, but their emphasis is mainly
on policy composition. In [14] an access control policy language
is presented with an associated analysis framework based on trans-
action logics, however explicit prohibition is not representable with
this approach. In [37] the authors introduce a logical formalism for
policy representation and analysis. As they work with pure first-
order logics, default decision policies are not expressible, thus com-
plete definitions have to be specified. Moreover, they do not provide
explicit support for groups and roles. Finally, in [2], efficient auto-
mated analysis of access control policies is provided, however only
centralised RBAC policies are concerned by this technique; in [41]
a unified framework covering several models of access control is in-
troduced, but its focus in on policy specification while policy anal-
ysis is not discussed.

7. Conclusions

We have described an application whose aim is to help policy de-
signers to specify expressive access control policies and to (au-
tomatically) verify desirable security properties on those policies.
To illustrate the feasibility of our approach, we have successfully
tested the application on a case study for a simplified banking sce-
nario (both in a centralized and in a distributed setting, following
the general category-based access control metamodel M). Using
this approach, we gain clarity in the representation of policies and
also the ability to smoothly combine different access control mod-
els in order to study the behaviour of collaborating policies on po-
tentially different (sub-)systems.

In future work we want to tackle problems related to the en-
forcement of rule-based policies. The rewrite-based approach we
have chosen provides executable specifications for security poli-
cies, which can be independently designed, verified, and then an-
chored on programs using a modular discipline. We aim at studying
a general methodology, in the style of [31], for weaving rule-based
access control policies descriptions into existing code, such that
the resulting (distributed) system transforms the untrusted code in
a safe program.

Another interesting issue is to explore other verification tech-
niques based on rewriting, such as the narrowing process (also sup-
ported by CiME3). This may be useful for checking properties such
as the sufficient completeness of a rewrite system. An experimen-
tal tool for sufficient completeness checking is available for con-
fluent and terminating Maude specifications [51]. Also, narrowing
provides an abstract mechanism for solving queries from the secu-
rity administrator [49], such as ”what is the result of assigning to a
principal p an additional category c”. We believe that, under some
restrictions on the form of the rewrite rules, this kind of technique
can also help in analysing safety issues (usually undecidable), that

is the problem of deciding whether a principal can ever obtain a
specific permission or not. Some preliminary work in this sense
has been reported in [42] for strategic rewriting. It would be inter-
esting to adapt these techniques in our framework and derive proofs
of security properties for category-based policies.
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