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Abstract
Many languages are beginning to integrate dynamic and static
typing. Siek and Taha offered gradual typing as an approach to
this integration that provides a coherent and full-span migration
between the two disciplines. However, the literature lacks a general
methodology for designing gradually typed languages. Our first
contribution is to provide a methodology for deriving the gradual
type system and the compilation to the cast calculus.

Based on this methodology, we present the Gradualizer, an al-
gorithm that generates a gradual type system from a well-formed
type system and also generates a compiler to the cast calculus. Our
algorithm handles a large class of type systems and generates sys-
tems that are correct with respect to the formal criteria of gradual
typing. We also report on an implementation of the Gradualizer
that takes a type system expressed in lambda-prolog and outputs
its gradually typed version and a compiler to the cast calculus in
lambda-prolog.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Procedures, functions, and subroutines

General Terms Languages, Theory

Keywords gradual typing, type systems, semantics, methodology

1. Introduction
Many languages such as C# [5], Dart [32], Pyret, Racket [30, 31,
34, 35], TypeScript [6, 12] and VB [17] are beginning to integrate
static and dynamic typing. Siek and Taha [22] created an approach,
called gradual typing, that puts the programmer in control of which
typing discipline is used for each region of code, provides seamless
interoperability, and enables the convenient evolution of code from
dynamic to static.

However, designing gradually typed languages has proven to be
difficult [28]. Once we have a static type system in hand, there are
two main questions: how do I convert my statically typed language
to gradual typing? and how do I know that I have designed a good
gradually typed language? To help language designers, our ongo-
ing research program aims to provide formal correctness criteria,
methodologies, and tools for supporting the shift to gradual typing.

This paper provides a general methodology and algorithm for
deriving gradual type systems and deriving a compiler to the cast
calculus. These together form the static aspects of a gradually
typed language. We will report on a methodology for designing
the runtime aspects of gradual typing in a future paper.

The literature lacks a general methodology for deriving a grad-
ually typed calculus from a static one; the main resources avail-
able are the examples of typed calculi that are gradualized by ex-
perts [2, 4, 8, 14, 15, 22, 23, 27, 33, 34, 36, 38]. These papers serve
as a reference but language designers are ultimately left without a
disciplined approach on how to gradualize a new typed calculus.

Let us consider the simply typed λ-calculus (STLC) and its
gradually typed version (GTLC). The GTLC adapts the STLC
typing rule for function application in the following way.

Γ ` e1 : T11→T12

Γ ` e2 : T11

Γ ` e1 e2 : T12

=⇒

Γ `G e1 : ?
Γ `G e2 : T11

Γ `G e1 e2 : ?

Γ `G e1 : T11→T12

Γ `G e2 : T2 T11 ∼ T2

Γ `G e1 e2 : T12

This example reveals some useful patterns. For instance, the first
application rule of the GTLC replaces the function type with the
unknown type ? (aka. the dynamic type). In general, gradual type
systems should allow any subexpression to have type ?, but ?
would fail a syntactic pattern-match with the form T11→T12 of
the original rule. So we see that occurrences of constructed types,
that is, types that are applications of some type constructor, may
need such special treatment. However, not every occurrence of a
constructed type requires this treatment. Consider the STLC typing
rule for abstraction and the corresponding rule in the GTLC.

Γ, x : T1 ` e : T2

Γ ` (λx:T1. e) : T1→T2

=⇒ Γ, x : T1 `G e : T2

Γ `G (λx:T1. e) : T1→T2

The rule remains unchanged in its gradual counterpart, so we are
left wondering why the constructed type T1 → T2 in the conclusion
of the rule does not need special treatment.

Returning to the second application rule of GTLC, we see the
tagline of gradual typing: replace type equality with consistency
(∼) [23]. However, consider the typing rule for sum types and a
hypothetical rule for sums in a gradual type system.

Γ ` e1 : T11 + T12

Γ, x : T11 ` e2 : T Γ, y : T12 ` e3 : T

Γ ` (case e1 of inlx⇒ e2 | inr y ⇒ e3) : T

⇓
Γ ` e1 : T11 + T12

Γ, x : T11 ` e2 : T ′ Γ, y : T12 ` e3 : T ′′ T = T ′ t T ′′

Γ ` (case e1 of inlx⇒ e2 | inr y ⇒ e3) : T
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Type equality is used multiple times in the original rule: we have
two occurrences of T11, two of T12, and three of T . However, only
the two highlighted occurrences of T need special treatment in the
gradually typed version. Further, instead of using consistency, the
gradually typed version takes the join of the types of e2 and e3 to
be the type of the entire case expression.

The designer of a gradual type system implicitly uses knowl-
edge about the operational semantics of the language regarding the
flow of values to make choices such as how to treat the variable T
above. For the case expression, the value of e2 or of e3 may be-
come the result of the whole expression, so the type of the whole
expression needs to be consistent with both branches. Hence the
use of the join operation.

The designer of a gradual type system also uses knowledge
about the input/output modes (in the sense of logic programming)
of the typing judgment to make decisions. For a simple typing
judgment of the form Γ ` e : T , the environment Γ and expression
e are typically inputs and the type T is an output. For the case
expression, we do not need to relate the two occurrences of variable
T1 with consistency (or join) because one occurrence is an output
and the other is an input. It is only when two or more occurrences
of a variable are outputs that the gradual version of the typing rule
needs to use consistency or join.

The dynamic semantics of a gradually typed language is given
by a type-directed translation to a cast calculus. This translation
should be type preserving, so the designer must keep in mind
the type system of the cast calculus. Here we make the (typical)
assumption that the cast calculus has the same fully static type
system as the input language except that it adds an expression for
explicit casts. The translation to the cast calculus is type directed
and therefore tightly connected to the gradual type system, so
this all has bearing on the design of the gradual type system.
Consider the typing rule for cons from Types and Programming
Languages [19]:

Γ ` e1 : T Γ ` e2 : listT

Γ ` cons[T ] e1 e2 : listT

In the gradually typed version, we would have e1 at type T ′ and
e2 at type listT ′′, but how should T ′ and T ′′ be related and
what should the type of the whole cons expression be? The cast
calculus uses the above rule for cons, and the type T appears as
an annotation on cons. Type annotations should not be changed by
the translation, as that could distort the programmer’s intent, so the
type of the whole expression must be listT and the types of the
two arguments must be T and listT . So we need to cast T ′ to T
and listT ′′ to listT . Thus, one of the gradually typed versions
of this rule must be as follows. (The other rule has e2 at type ?.)

Γ ` e1 : T ′ T ′ ∼ T Γ ` e2 : listT ′′ T ′′ ∼ T
Γ ` cons[T ] e1 e2 : listT

In this paper, we develop a unified methodology for generating
gradual type systems based on the above observations. We walk
the reader through the steps of turning a static type system into a
gradual type system and also of deriving the compilation to the cast
calculus. This part of the paper will be tutorial in style, as we hope
it will serve as a useful reference for language designers.

The Gradualizer In the latter part of the paper we make our
methodology precise and automatic in the form of the Gradual-
izer, a procedure that takes a type system as input, represented
as a logic program in λ-prolog, and produces the gradually typed
version of it and the compilation procedure to the cast calculus.
The Gradualizer automatically applies our methodology by trans-
forming logic programs. We have implemented the Gradualizer in
Haskell. Figure 1 shows an example input and the output of the
Gradualizer. The typeof predicate expresses the type system of

Syntax
Types T ::= T → T | Bool
Terms e ::= x | λx:T. e | e e

Γ ` e : T

x : T ∈ Γ
Γ ` x : T

Γ, x : T1 ` e : T2

Γ ` (λx:T1. e) : T1 → T2

Γ ` e1 : T11 → T12 Γ ` e2 : T11

Γ ` e1 e2 : T12

Figure 2. The Simply Typed Lambda Calculus (STLC).

the STLC and is an example input. The predicates typeofG and
typeofCC are generated by the Gradualizer. The former is the type
system for the GTLC and the latter is the type system for the cast
calculus. The procedure also produces the compiler to the cast cal-
culus compToCC.

The Gradualizer procedure that we define is formal enough to
be the subject of proofs. Indeed, our methodology and the systems
generated by the Gradualizer are useful only so long as they are cor-
rect. Siek et al. [21] recently expanded and refined the correctness
criteria for a gradual type system, so we have precise standards to
meet. We prove that the Gradualizer always generates typed calculi
that satisfy the criteria that apply to the static aspects of gradual typ-
ing. This validates our methodology and provides high confidence
in using the Gradualizer and its implementation.

In summary, this paper makes the following contributions.

1. A methodology for generating the static semantics of gradually-
typed languages. For the first time, we give an explicit walk-
through of the process with a degree of generality that includes
a large class of type systems (Section 3).

2. We show the applicability of our methodology by gradualizing
a number of type systems, mostly from Pierce [19]: STLC, unit
type, pairs, tuples, let binding, let rec binding, general recursion
(fix), sum types, exceptions, references, lists, if-then-else, and
STLC with integers and addition (Section 4).

3. The Gradualizer: an algorithm for generating a gradual type
system and a compiler from a static type system (Section 6).
We provide an implementation of the Gradualizer in Haskell,
which produces type checkers and compilers in λ-prolog.

4. We validate our methodology by proving that the systems gen-
erated by the Gradualizer always satisfy the formal correctness
criteria for gradual typing (Section 7).

The implementation of the Gradualizer can be found at the
following github repository:

https://github.com/mcimini/Gradualizer.

2. Overview of Gradual Typing
A gradually typed language involves three languages: the gradually
typed language itself, a statically typed language that it is gradual
with respect to, and a cast calculus that specifies the runtime seman-
tics of casts. In this section we review the prototypical example:
the Gradually Typed Lambda Calculus (GTLC), the Simply Typed
Lambda Calculus (STLC), and the Cast Calculus (CC)1.

Simply Typed Lambda Calculus (STLC) For ease of reference,
we reproduce the standard syntax and type system for the STLC in
Figure 2. (The type Bool here simply serves as a base case.)

1 This cast calculus is closely related to the Blame Calculus [37].
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typeof (abs T1 R) (arrow T1 T2) :- (pi x\ (typeof x T1 => typeof (R x) T2)).
typeof (app E1 E2) T2 :- typeof E1 (arrow T1 T2), typeof E2 T1.

typeofG (abs T1 E) (arrow T1 T2) :- (pi x\ (typeofG x T1 => typeofG (E x) T2)).
typeofG (app E1 E2) T2 :- typeofG E1 PM1 , matchArrow PM1 T1 T2,

typeofG E2 New1 , consistency New1 T1.

typeofCC (abs T1 E) (arrow T1 T2) :- (pi x\ (typeofCC x T1 => typeofCC (E x) T2)).
typeofCC (app E1 E2) T2 :- typeofCC E1 (arrow T1 T2), typeofCC E2 T1.
typeofCC (cast E T1 L T2) T2 :- typeofCC E T1.

compToCC (abs T1 E) (abs T1 (x\ (E’ x))) (arrow T1 T2) :-
(pi x\ (compToCC x x T1 => compToCC (E x) (E’ x) T2)).

compToCC (app E1 E2) (app (cast E1 ’ PM1 L (arrow T1 T2)) (cast E2’ New1 L T1)) T2 :-
compToCC E1 E1’ PM1 , matchArrow PM1 T1 T2 ,
compToCC E2 E2’ New1 , consistency New1 T1.

Figure 1. Example input (typeof) and outputs (typeofG, typeofCC, compToCC) of the Gradualizer.

Syntax
Types T ::= T → T | Bool | ?
Terms e ::= x | λx:T. e | e e

Γ `G e : T

x : T ∈ Γ
Γ `G x : T

Γ, x : T1 `G e : T2

Γ `G (λx:T1. e) : T1→T2

Γ `G e1 : T1 T1 . (T11 → T12)
Γ `G e2 : T2 T2 ∼ T11

Γ `G e1 e2 : T12

T ∼ T Consistency

T ∼ ? ? ∼ T T1 ∼ T3 T2 ∼ T4

T1 → T2 ∼ T3 → T4

T . T Matching

(T1 → T2) . T1 → T2 ? . ?→ ?

Figure 3. The Gradually Typed Lambda Calculus (GTLC).

Gradually Typed Lambda Calculus (GTLC) The GTLC has the
same terms as the STLC but extends the types with the unknown
type ? and adjusts the typing rules with a proper treatment of ?.
For example, a function that accepts an argument of type ? should
accepts integer arguments, as in (λx: ? . x) 4. On the other hand, a
gradual type system should still reject programs with obvious static
type errors, such as (λx : Bool. x) 4. Gradual typing achieves both
of these aims with the help of the consistency relation on types,
written T1 ∼ T2. Figure 3 shows the syntax and typing rules for
the GTLC and defines the consistency relation.

The formulation of Figure 3 differs from the original presen-
tation of the GTLC [22]. Indeed, it reflects the style adopted in
recent work in gradual typing [10, 21, 27]. This formulation avoids
the duplication of the typing rule for function application through
the use of a pattern-matching relation on types, also defined in Fig-
ure 3. In particular, we pattern match the type T1 with a function
type T11→T12. Referring to the definition of matching (.), we see
that if T1 is a function type, then T11 and T12 are its domain and
codomain. On the other hand, if T1 is ?, then the second clause
of the definition of . realizes the well-known behavior for gradual
typing: the occurrence of ? in lieu of a function type must be treated
as ? → ?. If T1 is any other type, then T1 . (T11→T12) is false
and the typing rule for application is not applicable.

Syntax
Types T ::= . . . | ?
Terms e ::= . . . | e : T⇒`T

Γ `CC e : T

· · · Γ `CC e : T1

Γ `CC (e : T1⇒`T2) : T2

Figure 4. The Cast Calculus (CC) extends the STLC.

Γ `CC e e′ : T

x : T ∈ Γ
Γ `CC x x : T

Γ, x : T1 `CC e e′ : T2

Γ `CC (λx:T1. e) (λx:T1. e
′) : T1→T2

Γ `CC e1  e′1 : T1 T1 . T11→T12

Γ `CC e2  e′2 : T2 T2 ∼ T11

Γ `CC e1 e2  (e′1 : T1⇒`1T11→T12)(e′2 : T2⇒`2T11) : T12

Figure 5. Compilation of the GTLC to the CC.

The Cast Calculus (CC) The cast calculus serves to make explicit
the implicit casts that are introduced by consistency and pattern
matching in the GTLC. The operational semantics is then defined
in terms of the explicit casts. Formally, the cast calculus, shown in
Figure 4, extends the STLC with the unknown type ? and with a
cast expression of the form e : T1⇒`T2 [3], where T1 is the static
type of e, T2 is the target type, and ` is a blame label.

Compilation of the GTLC to the CC The compilation to the Cast
Calculus is written Γ `CC e e′ : T , meaning that e is compiled
to e′ and has type T in the type environment Γ.

This compilation, also known as cast insertion, inserts appropri-
ate run-time casts at the points where the gradual type system uses
consistency or pattern matching. Recall that consistency just says
that the value might have the expected type, so a run-time check is
necessary in the form of these casts. The compiler from the GTLC
to the Cast Calculus is shown in Figure 5. The compilation judg-
ment is exactly the same as the GTLC type system if one ignores
the output expression.
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T v T

? v T Bool v Bool

T1 v T3 T2 v T4

T1 → T2 v T3 → T4

e v e

x v x
T1 v T2 e1 v e2
λx:T1. e1 v λx:T2. e2

e1 v e′1 e2 v e′2
(e1 e2) v (e′1 e

′
2)

Figure 6. Type and Term Precision.

Correctness Criteria for Gradual Typing What are the properties
that a gradually typed calculus must have? Recent work addresses
this matter and puts forward a set of correctness criteria for gradual
typing [21]. We review here the criteria that are relevant to this
paper, those related to the static aspects of gradual typing.

Correctness Criteria [21]

Conservative extension:
for all static Γ, e and T , Γ ` e : T iff Γ `G e : T .

Monotonicity w.r.t. precision:
for all Γ, e, e′, T , if Γ `G e : T and e′ v e,

then Γ `G e′ : T ′ and T ′ v T for some T ′.
Type preservation of cast insertion:

for all Γ, e, T , if Γ `G e : T , then Γ ` e e′ : T
and Γ `CC e′ : T for some e′.

Monotonicity of cast insertion:
for all Γ, e1, e2, e′1, T , if Γ `CC e1  e′1 : T

and Γ `CC e2  e′2 : T and e1 v e2 then e′1 v e′2.

The first criterion imposes that typeability of `G and ` coin-
cide over static programs, that is, programs that do not contain any
?. This criteria guarantees that well-typed programs of the original
language remain well-typed in the gradually typed language. Fur-
thermore, it ensures that ill-typed programs of the original language
remain so in the gradually typed language.

The second criterion ensures that adding or removing appropri-
ate type annotations does not cause a gradually typed program to
become ill-typed. This criterion is expressed using the precision re-
lation over types and programs, defined in Figure 6. In this paper
we adopt the direction of the lattice in which T1 v T2 denotes
that T1 is less precise than T2, that is, the inverse of naive subtyp-
ing [37]. The precision relation over types lifts to programs, i.e.
e1 v e2 means that e1 and e2 are the same program except that e1
makes use of less precise type annotations. The join operation, writ-
ten T1 t T2, is the least upper bound with respect to the precision
relationv. The first two criteria are fundamental for gradual typing.
They explain for instance why both the programs (λx : Int) 4 and
(λx : ?. x) 4 must be typeable in GTLC, as the former is typeable
in STLC and the latter is a less-precise version of it.

The compilation to the cast calculus must also conform to some
criteria. In particular, it must be total for typeable programs, it must
be type preserving, and it must be monotonic over the precision
relation v. (For the definition of precision for the Cast Calculus,
see Siek et al. [21].)

In Section 7 we prove that the Gradualizer always generates
gradually typed calculi that satisfy all of these criteria.

3. A Methodology for Gradualizing Languages
The methodology for deriving the gradual type system consists of
the following steps. We summarize the steps here and describe them
in detail in the indicated subsections.

1. Classify input/output modes (Section 3.1).

2. Classify producer/consumer variables (Section 3.2).

3. Replace outputs that are constructed types with new variables
and apply pattern matching (Section 3.3).

4. Replace output variables with fresh variables, mark each pro-
ducer as flowing to consumers through their final type, and re-
place each input by its final type (Section 3.4).

5. Restrict lone input variables to range over static types only
(Section 3.5).

6. Remove flows to join types and replace the remaining flow
premises with consistency checks (Section 3.6).

Generating a compiler to the cast calculus is similar but requires an
additional step between steps 5 and 6.

5.5. Generate casts as directed by the flow premises (Section 3.7).

3.1 Classify Input/Output Modes
Our methodology applies the notion of input/output modes to the
typing relation and auxiliary relations such as subtyping. This no-
tion stems from logic programming where a relation is attributed
input and output parameters [7, 16, 20, 29]. In a correctly moded
logic program, input arguments should be ground (or, instantiated)
at the moment of a use of a predicate while outputs will become
ground because of the use. So the outputs are a function (in the
mathematical sense) of the inputs, i.e., they are determined by the
inputs.

In a typical typing relation Γ ` e : T , the environment
Γ and expression e are inputs and the type T is an output. As
a convention, we color outputs in blue and inputs in red. Our
methodology uses these modes to classify each occurrence of a
variable in typing rules. Consider again the typing rule for case
expressions.

Γ ` e1 : T11 + T12

Γ , x : T11 ` e2 : T Γ , y : T12 ` e3 : T

Γ ` (case e1 of inlx⇒ e2 | inr y ⇒ e3 ) : T

The occurrences of T11 and T12 in the premise Γ ` e1 :
(T11 + T12 ) are classified as outputs, as are the occurrences of T
in the premises for e2 and e3. On the other hand, the occurrences
of T11 in the premise for e2 and T12 in the premise for e3 are
classified as inputs. When classifying variables in the conclusion
of the rule, the modes are flipped because the conclusion represents
the input to the logic predicate (similar to the contravariance of a
function). So the T in the conclusion is classified as an input.

3.2 Classify Producers and Consumers
As we discussed in Section 1, the operational semantics play a pri-
mary role in the design of the gradual typing system. For example,
our treatment of type T in the above typing rule for case expres-
sions depends on the operational semantics of case. Recall the fol-
lowing standard rules for reducing to either the left or right branch
depending on tag on the sum.

(case (inl v) of inlx⇒ e2 | inr y ⇒ e3) −→ [v/x]e2

(case (inr v) of inlx⇒ e2 | inr y ⇒ e3) −→ [v/y]e3

These rules tell us that the value from e2 or from e3 can become
the result for the case expression. Also, the rules tell us that the
value v flows into e2 or e3 via substitution. Understanding the flow
induced by the operational semantics is necessary for the correct
design of a gradual type system. However, such flow information
seems hard to detect in general and hard to recover automatically.

Fortunately, we have identified a simple heuristic that approx-
imates this information. We classify each variable occurrence as
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being in either a producer or consumer position. This notion is sim-
ilar but subtly different from that of the output/input modes we dis-
cussed above, and is based on the notion of positive and negative
positions within a type [19].

The producer/consumer notion is similar to that of the input/out-
put modes in that occurrences in output positions are classified as
producers and occurrences in input positions are classified as con-
sumers. In the below example we mark the variable occurrences
with a ’p’ for producer and ’c’ for consumer.

Γ ` e1 : T11
p + T12

p

Γ, x : T11
c ` e2 : T p Γ, y : T12

c ` e3 : T p

Γ ` (case e1 of inlx⇒ e2 | inr y ⇒ e3) : T c

The producer/consumer notion is different from that of in-
put/output modes once we take into account the polarity of type
constructors. For example, in a function type, the polarity flips in
the domain type (it is contravariant). Consider the rule for func-
tion application. The type of e1 is T11→T12, which is in producer
position, but the occurrence of T11 inside this type is a consumer
because of the flip in polarity for the domain of a function.

Γ ` e1 : T11
c → T12

p Γ ` e2 : T11
p

Γ ` e1 e2 : T12
c

The distinction between producers and consumers determines flow
as we shall see in Section 3.4. The general idea is that producers are
connected to consumers with flow predicates. Thus, for function
application, we have a flow from T11

p to T11
c, which matches the

the expected behavior of the operational semantics of application
(λx. e) v −→ [v/x]e, which entails that v flows into e.

Polarity also plays a role in the case expression above, but in
a way that is hard to see. For sum types, there is no flip in polarity
(they are covariant), so given that T11 +T12 is in producer position,
T11 and T12 are also in producer position.

3.3 Apply Pattern Matching to Constructed Outputs
We recall that constructed types are types that are not simply
variables. When we use a typing judgment Γ ` e : T as a premise
in a typing rule, the type of e is determined and then assigned to the
variable T . However, when a constructed type such as T11→T12 is
in the output position, then we have to apply pattern-matching to
allow the subexpression to have type ?. In this step, we

Replace constructed outputs with fresh variables and pat-
tern match these variables against the constructed outputs.

As an example, we apply this step of the methodology to the
typing rule for application of STLC. We start with the result of
classifying the variables according to input /output and producer/-
consumer as discussed above.

Γ ` e1 : T11
c→T12

p Γ ` e2 : T11
p

Γ ` e1 e2 : T12

The type T11
c→T12

p is an output that is a constructed type. There-
fore, we replace the function type with a fresh variable T1 (called
a pattern matching variable) and pattern match it with the function
type, producing the following rule.

Γ `G e1 : T1 T1 . T11
c→T12

p Γ `G e2 : T11
p

Γ `G e1 e2 : T12
c

Thanks to the pattern-matching premise, the rule above handles
the case where T1 is instantiated with ? (let us recall the definition
clause ? . ? → ?). Were we not to handle this case, the program
λx: ? . (x 42) would not be well-typed even though the more
precise version (λx:Int→Int. x 42) is well-typed. Therefore,
monotonicity of typing w.r.t. the precision relation would fail to
hold and the gradual type system would be incorrect.

We treat type constants such as Int and Bool as type construc-
tors of arity 0. Consider the following example.

Γ ` e1 : Int p

Γ ` e2 : Int p

Γ ` e1 + e2 : Int c =⇒

Γ ` e1 : T1 T1 . Int
p

Γ ` e2 : T2 T2 . Int
p

Γ ` e1 + e2 : Int c

This typing rule is equivalent to the rule for + in the literature [10].
The matching rules for Int are

Int . Int ? . Int

Types that are in the conclusion and in the type environment are
sometimes constructed types. An example is in the object creation
rule of the object calculus [1]. (In the rule, b is an expression, A
and B are types, and E is the type environment.)

E, xi:A
c ` bi : Bi

p ∀i ∈ 1..n

E ` [li=ς(xi:A
p) bi

i∈1..n] : A c
if A ≡ [li:Bi

i∈1..n]

Even though A is a constructed type (because A ≡ [li:Bi
i∈1..n]),

the red occurrences of A are inputs and therefore they do not re-
quire pattern matching. The typing rule for object creation remains
unchanged in the gradual type system [23].

3.4 Flow and Final Type Discovery
As mentioned in Section 1, the design of a gradual type system
must take into account that it guides the compilation to the Cast
Calculus and that the compilation must be type preserving. Con-
sider again the typing rule for cons.

Γ ` e1 : T Γ ` e2 : listT

Γ ` cons[T ] e1 e2 : listT

The rule serves both as the input to the Gradualizer and also as
the typing rule in the cast calculus. The following shows the re-
sult of applying the first three steps to this rule (classify input/out-
put modes, classify producers and consumers, and pattern match
constructed outputs). (These lists are immutable so the list type
constructor is covariant.)

Γ ` e1 : T p Γ ` e2 : T2 T2 . listT
p

Γ ` cons[T ] e1 e2 : listT c

Now we are ready to describe the current step of the methodol-
ogy. We start by replacing variables in output positions by distinct
variables, which we refer to as different versions of the same type.
We replace the three output occurrences of T by T , T ′, and T ′′.

Γ ` e1 : T ′ p Γ ` e2 : T2 T2 . listT
′′ p

Γ ` cons[T ] e1 e2 : listT c

Next we need to consider how the compilation to the cast calculus
will preserve types. For the translation to be well typed, the first and
second arguments to cons need to use the same type T , which also
matches the type annotation T and the element type of the result
listT . So we need to choose which version of the type should
instantiate this type T . We refer to this type as the final type and
use the following rules, in order, to choose it.

1. If the variable appears in an annotation, then it is the final type.

2. If the variable is an output consumer, then it is the final type.

3. Otherwise, the final type is the join of all the producers.

In the cons example, rule 1 applies, so we choose T (the occur-
rence in the annotation) as the final type for T and all its versions.
We then connect the producers to the consumers by way of the fi-
nal type. We do so using a flow relation written T1  T2 and
read T1 flows to T2. The meaning of a flow T1  T2 is that T1 is
consistent with T2. Moreover, the direction of the flow drives our
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methodology in inserting the correct casts in the cast insertion pro-
cedure (Section 3.7). The following are the steps for inserting flow
information.

1. Producers flow to their final type and final types flow to
the consumers.

2. Variable occurrences in input positions are changed to
their final type.

The result for the cons example is shown below.

Γ ` e1 : T ′ Γ ` e2 : T2 T2 . listT
′′

T ′  T T ′′  T

Γ ` cons[T ] e1 e2 : list T

There are no consumers in the rule above and so there are no flows
starting from T .

Consider the STLC application rule after we apply the treatment
of this section.

Γ `G e1 : T1 T1 . T11→T12

Γ `G e2 : T ′11 T ′11  T11

Γ `G e1 e2 : T12

The final type for the producer T11
p (with new variable T ′11) is the

consumer T11
c (T11), hence the flow premise T ′11  T11. Because

T12
p is the only producer for T12, its final type is the join of just

T12, that is itself. So the second step leaves the rule unchanged.
In the situation where a typing rule contains multiple output

consumers for the same variable, there is no known way to create
a gradually typed version of the rule that satisfies our criteria.
Consider the following imaginary application operator dapp that
takes two functions and one argument, then applies both functions
to the argument and returns the pair of results.

Γ ` e1 : T1
c → T2

p Γ ` e2 : T1
c → T3

p

Γ ` e3 : T1
p

Γ ` (dapp e1 e2 e3) : T2
c × T3

c

After we make the two output consumers T1
c distinct, changing the

second to T ′1, where should T1
p flow to? We could have it flow into

both. However, this solution causes a problem in cast insertion, as
e3 can have only one cast wrapped around it. Picking either one
of them, say T1, would lead to a cast insertion that is not type
preserving. Indeed, the type system of the cast calculus makes use
of the rule above and would be used with e1 of type T1 → T2, e2
of type T ′1 → T3, and e3 cast to T1, and therefore would not match
T ′1. Alternatively, one could require the two output consumers to
be equal i.e. T1 = T ′1. However, this does not satisfy the criteria of
monotonicity with respect to precision. For example, the program
(dapp (λx: ? . x) (λx:Int. x) 42) would not be well-typed but its
more precise version (dapp (λx:Int. x) 42) (λx:Int. x) 42) is
well-typed. Our methodology disallows multiple output consumers
for the same variable which ensures the uniqueness of the final type.

The next example handles the situation where the final type is a
join type. Consider the case operator as transformed by this step.

Γ ` e1 : T11
p + T12

p

Γ, x : T11
c ` e2 : T p Γ, y : T12

c ` e3 : T p

Γ ` (case e1 of inlx⇒ e2 | inr y ⇒ e3) : T c

⇓
Γ `G e1 : T1 T1 . T11 + T12

Γ, x : T11 `G e2 : T Γ, x : T12 `G e3 : T ′

T J = T t T ′ T  T J T ′  T J

Γ `G (case e1 of inlx⇒ e2 | inr y ⇒ e3) : T J

In this example, the final type is the join of T and T ′, i.e., T J =
T t T ′. Recall that the join computes the least upper bound w.r.t.
the precision relation, e.g., (Int→?) t (?→Int) = Int→Int.
Also, we replace the input T c with T J. Therefore the type of the
whole case statement is T J.

An interesting example is when a rule contains both a type
annotation and an output consumer for the same variable, such as
in the rule for an annotated fix operator.

Γ ` e : T c→T p

Γ ` (fix[T ] e) : T c =⇒

Γ ` e : T1

T1 . (T ′→T ′′)
T ′′  T T  T ′

Γ ` (fix[T ] e) : T

Since the type annotation T is present, it is chosen as the final type.
We then connect the producer T ′′ to the final type with the flow
T ′′  T . Next, we connect the final type T to the consumer T ′,
yielding the flow T  T ′. The reason why the type annotation
flows into the consumer might seem arbitrary, however the reader
should notice how the flows T  T ′ and T ′′  T naturally
induce the higher order flow T ′→T ′′  T→T because of the
contravariance of the arrow type.

The flow information that we inserted in this step is used to
guide the use of consistency in Section 3.6 and the insertion of
casts in Section 3.7.

3.5 Restrict Lone Inputs to Be Static
A type system can have variables that appear in input position
only, so they do not receive a value from an output. We call these
variables lone inputs. The correct treatment for lone inputs stems
from the recent work of Garcia and Cimini [10]. The idea is to make
sure that these variables range over static types only. We define the
predicate static(T ) to hold when ? does not occur in T .

Require lone input variables to satisfy the static predicate.

An example of this situation is the typing rule for abstraction in the
implicitly typed λ-calculus.

Γ, x : T1
c ` e : T2

p

Γ ` λx.e : T1
c → T2

c =⇒

Γ, x : T1 `G e : T2

static(T1)

Γ `G λx. e : T1 → T2

If we omitted the static requirement, T1 could range over gradual
types including ? and the program (λx. x x) would be well-typed.
However, this program is not well-typed in the original language,
so the conservativity criteria would not be satisfied [24].

3.6 Replace Flow With Consistency
The previous steps produce gradual type systems and cast insertion
procedures that make use of internal information such as flow
premises. These premises are precious for driving the methodology
towards the correct systems but they can be dismissed/replaced for
the final result of the methodology. We apply the following step.

Remove flows to join types and replace the remaining flow
premises with consistency premises.

Let us consider the following example.

Γ ` e : T1 T1 . listT
′ T ′  T

Γ ` head[T ] e : T

⇓

Γ ` e : T1 T1 . listT
′ T ′ ∼ T

Γ ` head[T ] e : T

Because and∼ denote the same relation, the rules are equivalent.
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The next example applies the flow removal step to the result of
the cast insertion procedure for the if-then-else operator. Here we
remove the highlighted flows to the join type.

Γ ` e1  e′1 : T1 T1 . Bool
Γ ` e2  e′2 : T Γ ` e3  e′3 : T ′

T t T ′ = T J T  T J T ′  T J

Γ ` if e1 then e2 else e3  (
if (e1 : T1⇒l1Bool) then (e2 : T⇒l2T J)
else (e3 : T ′⇒l3T J)

)
: T J

Because T tT ′ = T J implies T ′ ∼ T J and T ′′ ∼ T J, the resulting
rule is equivalent.

3.7 Compilation to the Cast Calculus
Deriving the cast insertion procedure begins with the result from
step 5 of the methodology (Section 3.5), so the flow premises are
still present in the rules. In this step we create casts based on
both the flow premises and pattern matching premises. While the
former leads to the obvious cast, the treatment for the latter is more
involved. Consider for instance the two pattern matching premises
T . (T1 → T2) and T2 . (T21×T22). In this case, a subexpression
of type T should be cast to T1→(T21 × T22). Moreover, if we
additionally had a flow premise T21  T ′21 then the cast should
be to T1 → (T ′21 × T22) (as × is covariant in its arguments). If
we had instead a flow premise T ′1  T1 then the cast should be to
T ′1 → (T21 × T22) because of the contravariance of the function
type. The cast induced by a pattern-matching variable is therefore
obtained by expanding the nested pattern matching variables and by
replacing variables according to the flow premises and according
to the covariance/contravariance of type constructors. We call this
resulting type the cast destination for a pattern matching variable2.
We apply the following step.

For each translated subexpression e′ : T ,

1. If there is a flow T  T ′, then wrap e′ in the cast
e′ : T ⇒ T ′.

2. If there is a pattern matching premise T . T ′, then
wrap e′ in the cast e′ : T ⇒ T ′′ where T ′′ is the cast
destination of T .

As an example, consider cast insertion for the cons operator.

Γ ` e1 : T ′ Γ ` e2 : T2 T2 . listT
′′

T ′  T T ′′  T
Γ ` cons[T ] e1 e2 : listT

⇓
Γ ` e1  e′1 : T ′ Γ ` e2  e′2 : T2 T2 . listT

′′

T ′  T T ′′  T
Γ ` cons[T ] e1 e2

 cons[T ] e′1 : T ′⇒`
1T e′2 : T2⇒`

2listT

: listT ′

Because of the flow T ′  T , we generate the cast e′1 : T ′⇒`1T .
For e′2, we have matching T2 . listT ′′ and a flow T ′′  T ,
so we generate the cast e′2 : T2⇒`2listT . Notice that the entire
generated expression is well-typed by the original rule for cons,
and therefore well-typed by the type system of the cast calculus.

Next, consider again the fix example. It differs from the above
cons example in that it involves a function type which is contravari-
ant in its first argument. The following is the derived cast insertion

2 In Section 6.6 we give a unified definition of cast destination for both flow
and pattern matching premises (Definition 14).

rule for (type annotated) fix.

Γ ` e e′ : T1 T1 . (T ′ → T ′′)
T ′′  T T  T ′

Γ ` fix[T ]e fix[T ] e′ : T1⇒l
1T→T : T

Since we have the subexpression e′ at type T1, pattern matching
T1 . (T ′→T ′′) and flows T ′′  T and T  T ′, we cast
the translated subexpression e′ from T1 to T→T (thanks to the
contravariance of the function type). Note that the generated fix
expression is well typed.

4. Gradualizing Type Systems
We have applied our methodology to a variety of type systems.
Namely, we have apply the methodology to the STLC, unit types,
pairs, tuples, let binding, let rec binding, general recursion (fix),
sum types, exceptions, references, lists, if-then-else, and STLC
with integers and addition. Figure 7 shows a handful of the gen-
erated typing rules. The first column shows the input, the second
column shows the gradual type system generated by our method-
ology, and the third column shows the translated term of the cast
insertion (the premises and the output type are the same as for the
gradual type system in the second column). The gradual systems
for exceptions, lists, and sum types of Figure 7 are novel.

5. Type Systems as Logic Programs
We now proceed to develop an automatic procedure for manipulat-
ing type systems according to our methodology. Here we model
type systems as logic programs in the intuitionistic theory of
higher-order hereditary Harrop formulas [18]. Our implementa-
tion (Section 8) works on type systems expressed in λ-prolog, a
concrete implementation of this logic. We make use of several fea-
tures of the logic that suits our needs: types, higher order abstract
syntax, and hypothetical reasoning.

Typed Logic Programming Logic programs are equipped with
a signature, ranged over by the symbol Σ. The signature defines
the entities that are involved in the program. The following is the
signature for the STLC.

term : kind
type : kind
arrow : type → type → type
typeof : term → type → o
abs : type → (term → term)→ term
app : term → term → term

The kind for propositions is written o. Thanks to these declarations,
expressions such as typeof T T , for a logical variable T , and
(app arrow arrow) are not well-typed.

After the signature, a logic program contains a set of rules.
To simplify the Gradualizer, we shall restrict the form of rules as
defined below. (t ranges over logic terms, which we define next.)

Definition 1 (Formulae, premises and rules over a signature Σ).
formula ::= pred t . . . t
premise ::= formula | (∀x.formula ⇒ formula)

A rule is of the form
premise1 . . . premisen

formula

where pred is a predicate name from the signature Σ.

The terms of higher-order logic programs consist of λ-terms,
logic variables (X), and applications of constructors (f ) from the
signature.
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Lists
Γ ` e : listT p

Γ ` head[T ] : T c

Γ ` e : T1 T1 . listT
′ T ′ ∼ T

Γ ` head[T ] e : T
 head[T ] (e′ : T1⇒l1listT )

Γ ` e1 : T p

Γ ` e2 : listT p

Γ ` cons[T ] e1 e2 : listT c

Γ ` e1 : T ′

Γ ` e2 : T1 T1 . listT
′′

T ′ ∼ T T ′′ ∼ T
Γ ` cons[T ] e1 e2 : list T

 cons[T ] (e′1 : T ′⇒l1T )
(e′2 : T1⇒l2listT )

Exceptions

Γ ` e1 : T p

Γ ` e2 : ExcType → T p

Γ ` try e1 with e2 : T c

Γ ` e1 : T Γ ` e2 : T1

T1 . T2 → T ′ T2 . ExcType
T t T ′ = T J

Γ ` try e1 with e2 : T J

 try (e′1 : T⇒l1T J) with
(e′2 : T1⇒l2ExcType→ T J)

References

Γ ` e : Ref T pc

Γ ` !e : T c

Γ ` e : T1 T1 . RefT

Γ ` !e : T
 !(e′ : T1⇒l1RefT )

Γ ` e1 : Ref T pc

` e2 : T p

Γ ` e1 := e2 : unit c

Γ ` e1 : T1 T1 . RefT
` e2 : T ′ T ′ ∼ T

Γ ` e1 := e2 : unit
 (e′1 : T1⇒l1Ref T ) := (e′2 : T ′⇒l2T )

General recursion
Γ ` e : (T c → T p)

Γ ` (fix e) : T c

Γ ` e : T1 T1 . T → T ′ T ′ ∼ T
Γ ` (fix e) : T

 fix (e′ : T1⇒l1T → T )

Let rec (with type annotation)
Γ, x : T1

c ` e1 : T1
p

Γ, x : T1
c ` e2 : T2

p

Γ ` (letrecx : T1 = e1 in e2) : T2
c

Γ, x : T1 ` e1 : T ′1
Γ, x : T1 ` e2 : T2 T ′1 ∼ T1

Γ ` (letrecx : T1 = e1 in e2) : T2

 letrecx : T ′1 = (e′1 : T ′1⇒l1T1)
in e′2

If-then-else

Γ ` e1 : Bool p

Γ ` e2 : T p Γ ` e3 : T p

Γ ` (if e1 then e2 else e3) : T c

Γ ` e1 : T1 T1 . Bool
Γ ` e2 : T Γ ` e3 : T ′

T t T ′ = T J

Γ ` (if e1 then e2 else e3) : T J

 if (e′1 : T1⇒l1Bool)
then (e′2 : T⇒l2T J)
else (e′3 : T ′⇒l3T J)

Figure 7. Example applications of the methodology. The left-hand column contains the static typing rules (the input), the middle column
gives the gradual typing rules (output), and the right-hand column excerpts just the conclusion of the cast insertion rules (output). The primed
version of each expression is the result of recursively applying cast insertion, i.e., e′ is the cast inserted version of e.

Definition 2 (Logic Terms).
term t ::= x | λx.t | (t t) | X | (f t . . . t)

For the sake of clarity, we sometimes use E, T , and R instead
of X , for denoting variables of kind term (E), kind type (T )
and abstractions (R). Given a rule r, premises(r) denotes its set
of premises, conclusion(r) denotes the formula in its conclusion
and vars(r) denotes the set of logic variables that occur in r and
similarly for vars(t).

Higher Order Abstract Syntax Our type systems expressed as
logic programs make use of higher order abstract syntax (HOAS).
As such, we can use the λ abstraction in the logic to represent
variable binding in the object language. For example, in the above
signature for the STLC, we declared the constructor for STLC
abstraction (abs) as taking just two parameters: the type annotation
and a logic abstraction from terms to terms. For example, the
following term of the STLC

(λf :Bool→Bool. λx:Bool. f x)

is encoded as follows

(abs (arrow Bool Bool) (λf. (abs Bool (λx. (app f x)))))

Hypothetical Reasoning To appreciate the role of hypothetical
reasoning, let us consider how we can define the typing rule for
abstraction of STLC in this setting.

(∀x.typeof xT1 ⇒ typeof (R x)T2)

typeof (abs T1 R) (arrow T1 T2)

An environment Γ is not necessary because we instead use a com-
bination of universal quantification and implication provided by the
logic. Operationally speaking, encountering the subgoal

(∀x.typeof xT1 ⇒ typeof (R x)T2)

creates a fresh constant for x and temporarily augment the logic
program with the fact typeof xT1 while trying to prove the goal
typeof (R x)T2.

We now have all the ingredients for defining type systems as
logic programs. Type systems are simply logic programs whose
signature contains the kinds term and type and also a distinguished
typeability predicate.

Definition 3 (Type System). A type system is a triple (Σ, D, p)
where Σ is a signature, D is a set of rules over Σ, and p is a
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distinguished declaration in Σ for typeability. Also term : kind ∈
Σ, type : kind ∈ Σ, and p : term → type → o ∈ Σ.

6. The Gradualizer
In this section, we present an algorithm for turning type systems
into their gradually typed version and for producing the compila-
tion to the cast calculus.

The gradualization of a type system is the composition of steps
that we define in this section:

(T toGr
=⇒ TC) = T toPM

=⇒ Tp toFlow
=⇒ Tf toSt

=⇒ TG toCnst
=⇒ TC

The generation of the compiler to the cast calculus shares many of
the same steps, but also include the cast insertion step toCI

=⇒.

(T toComp
=⇒ TCC ) = T toPM

=⇒ Tp toFlow
=⇒ Tf toSt

=⇒ TG toCI
=⇒ Tc toCnst

=⇒ TCC

These steps make use of several auxiliary functions. The func-
tion sig(pred, k) returns the kind of the k-th argument of pred, for
example sig(typeof , 1) = term and sig(typeof , 2) = type . The
function lone(X, r) is true whenever the variable X only appears
in r in input positions.

6.1 Step 1 and 2: Input/Output and Producer/Consumer
The user of the Gradualizer provides a function mode(pred, k) =
m, where m ∈ {in, out}, that says whether the k-th argument
of the relation pred is an input or an output. As an example,
mode(typeof , 1) = in and mode(typeof , 2) = out . In our notion
of type systems, we have a convenient way for detecting whether
a particular variable is in input or output position. For example,
type environments are inputs and in our setting their information
is encoded as a hypothetical appeal to the same predicate typeof .
Thanks to this, we can use mode applied to typeof with swapped
information (inputs become outputs and vice versa) when we in-
spect the left side of an implication w.r.t. the premises of a rule.
Similarly, the conclusion of a rule experiences the same swap. This
time, the conclusion is on the right side of an implication (the left
side contains the set of premises). To summarize, we have a uni-
form way to detect our input/output information simply by consid-
ering the swapped information from mode any time we cross an
implication (either to the left or to the right). To account for this,
we use the notation f−1 to refer to an altered version of the func-
tion f where all occurrences of in and out in the definition of f
have been flipped.

The user also provides a function that specifies the polarity
of type constructors. The function contra(f, k) should be true
if the k-th argument of the type constructor f is contravariant
or simultaneously covariant and contravariant. As an example,
contra(arrow, 1) = true. Because contravariance and covariance
swap when traversing a contravariance argument, we shall use this
function negated and write ¬contra(f, k).

The usertype(X, r), consumer(X, r) and producer(X, r)
functions are true whenever X appears in the rule r as a type
annotation, consumer, or producer, respectively as described in
Section 3.2.

6.2 Restrictions of the Gradualizer
The definition of type systems above is very liberal and includes a
broad class of logic programs. However, many logic programs do
not make sense as type systems. Moreover, as we are set to provide
an algorithm and reason about it, we would like the input language
to be simple. This avoids introducing machinery for corner cases or
capturing unnecessary generality.

We should however restrict to a meaningful fragment of type
systems that is still expressive enough for all our envisioned use
cases. To this aim, we define a notion of well-formed type system.

Definition 4 (Well-formed type system). Given a type system T =
(Σ, D, typeof ) we say that T is well-formed whenever

1. Every rule of T is well-moded, i.e. the input/output dependency
relation of variables is acyclic.

2. The conclusion of every rule is of the form
typeof (f X1 . . . Xk) t, (t might be a constructed type) where
X1 . . . Xk are distinct variables.

3. The form of premises is typeof E t or
(∀x.typeof xX ⇒ typeof (R x) t), where variables E and R
are used only once in premises and they appear in the conclu-
sion.

4. Restrictions to HOAS: Abstractions have kind (term → term)
only and the only usage of HOAS in the syntax is with (R x) of
Restriction 3.

5. Uniqueness of final type: a variable does not appear more than
once in output consumer position.

6. Restriction to simple types: Declarations for the kind type are
of the form: f : type → . . .→ type︸ ︷︷ ︸

n times

→ type in Σ, with n ≥ 0.

Restriction 1 is a common restriction for many reasonable
logic programs. In our setting this restriction is crucial for proofs:
premises can be ordered and when inspecting them in the context
of a proof we can always assume its variables have been previ-
ously instantiated (preserving inductive properties) or are lone.
Restriction 2 and Restriction 3 prescribe a shape of conclusions
and premises that facilitates detecting which variables need to be
cast. Restriction 2 imposes the use of distinct variables to ensure
the monotonicity criteria. Restriction 3 disallows a variable to be
typed more than once because that would introduce difficulties in
determining which cast to apply. Restriction 4 is a conservative
choice to make the procedure simpler. In principle, more compli-
cated abstractions and nested implications could be captured. As
discussed in Section 3.4, Restriction 5 is necessary for avoiding
ambiguity in the flow for types. Restriction 6 confines the scope of
the Gradualizer to the family of simply typed systems. Addressing
more sophisticated types is future work.

Examples of Well-Formed Type Systems Restrictions of Defini-
tion 4 are liberal enough for admitting interesting type systems. The
type systems of Figure 7 and those mentioned in Section 4 are all
well-formed. As a concrete example of a typing rule as a logic rule,
we show the typing rule for case on disjoint sums:

(case)

typeof E (T1 + T2)
(∀x.typeof x T1 ⇒ typeof (R1 x) T )
(∀y.typeof y T2 ⇒ typeof (R2 y) T )

typeof (case E R1 R2) T

We have proved that for well-formed systems, the Gradualizer
produces a correct gradual type system and a correct compilation
to the cast calculus (Section 7).

Predicates for Gradual Typing The Gradualizer introduces new
predicates into the type systems in input. In particular, we use the
predicates flow (for flow premises), join (for the join operator)
and static (for static premises). As the signature and defining
rules for these operators are standard or trivial we do not show
their automatic generation. Of course, the implementation of the
Gradualizer generates them. Another predicate is pmatchf , which
corresponds to the pattern matching relation . discussed earlier, but
indexed by the type constructor to be matched.

The following subsections describe the Gradualizer through the
steps of our methodology.
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6.3 Step 3: Pattern Matching of Constructed Outputs
We first generate the pattern matching predicates by inspecting the
declarations in the signature. Next, we introduce the step toPM

=⇒ for
pattern matching constructed outputs.

Definition 5 (Type Systems with Pattern Matching). A type system
T′ = (Σ′, D′, typeof ) extends a type system T = (Σ, D, typeof )
with pattern matching whenever Σ ⊆ Σ′ and for all declarations
f : type → . . .→ type︸ ︷︷ ︸

n times

→ type in Σ, with n ≥ 0, it holds that

• Σ′ contains: pmatchf : type → type → . . .→ type︸ ︷︷ ︸
n times

→ o.

• D′ contains the rules
pmatchf (f X1 . . . Xn) X1 . . . Xn.
pmatchf ? ? . . . ?︸ ︷︷ ︸

(n + 1) times

.

where Xi are distinct logic variables for 1 ≤ i ≤ n.

Given a premise pmatchf XX1 . . . Xn in a rule r, we say that X
is pattern-matched in r.

Definition 6 (T toPM
=⇒ Tp). Given type systems T = (Σ, D, typeof )

and Tp = (Σ′, D′, typeof ) we write T toPM
=⇒ Tp whenever Tp

extends T with pattern matching, Σ′ contains the declaration ? :
type and D′ is the least set such that for all rules r in D, D′

contains a rule r′ such that

• conclusion(r′) = conclusion(r), and
• premises(r′) is the least set such that for all premises Φ of r,

premises(r′) contains the premise pm(Φ)

where pm is defined as follows:

pm((∀x.Φ1 ⇒ Φ2)) = (∀x.Φ1 ⇒ pm(Φ2))
pm(pred t1 . . . tn) = pred t∗1 . . . t

∗
n

where t∗k =


pm(tk) if mode(pred, k) = out

and sig(pred, k) = type.

tk otherwise.
pm(f t1 . . . tn) = X,with X fresh in r′, and

premises(r′) contains pmatchfX pm(t1) . . . pm(tn).
pm(t) = t, otherwise.

6.4 Step 4: Flow Discovery
In this step we formalize how we mark each producers as flowing
to its consumers through their final type. To formalize the notion of
final type, we use functions XJ

r , XC
r and XU

r that return a variable
fresh in rule r. They are injective and have disjoint codomains.
These functions return a dedicated fresh variable for join results,
output consumers and type annotations, respectively.

Definition 7 (Final type of variables). Given a variable X and a
rule r, the final type of X in r, written XFin

r is defined as follows,
(the clauses below apply in order).

XFin
r = XU

r , if usertype(X, r).
XFin

r = XC
r , if consumer(X, r).

XFin
r = XJ

r , if producer(X, r).
XFin

r = X , otherwise.

We also lift •
Fin

to logic terms in the obvious way.

The step for flow discovery, toFlow
=⇒ , is divided into two smaller

steps, toFlow
=⇒

′
and toJoin

=⇒ . The first step toFlow
=⇒

′
generates flow

premises and the second step toJoin
=⇒ inserts premises for computing

the join of the producers.

We first describe toFlow
=⇒

′
(Definition 8 below). This step accom-

plishes four tasks. The first task is to assign new variables to outputs
and have output producers flow into their final type. This is han-
dled by the last clause of the auxiliary function FL, which is only
invoked in output producer contexts (either an output of a predicate
or in a covariant position of a pattern match on a producer).

The second task is to replace consumers by their final type.
Consumers in input positions are straightforward to find and deal
with, as in the clause of FL for predicates (pred ). Dealing with
consumers in output position is more complex. Such variables can
occur within a pattern match (pmatch). A variableXk on the right-
hand side of a pattern match on variable X is a consumer if either
(a) k is a contravariant parameter of the type constructor f and if
X is a producer (pattern matched variables occur only once in a
rule) or (b) k is in covariant parameter and X is a consumer. In
these cases Xk is replaced with XC

r,k. If the converse of the above
is true, then variable Xk is an output producer and handled by the
last clause of FL.

The third task is to replace type annotations by the final type.
This is handled in the fourth clause of FL, for an application of a
constructor f . If parameter k of f is of kind type , thenXk is a type
annotation and is replaced by XU

r,k.
The fourth and final task is to mark the final type as flowing to

any consumers that are present. This is accomplished by the last
two lines in the definition for toFlow

=⇒
′
. If the final type is a variable

that appears in an annotation, then we generate a flow from that
variable to the consumer. If the final type is the consumer, then
there is no need to generate a flow because it would just be to itself.

Definition 8 ( T toFlow
=⇒

′
T′ ). Given two type systems T =

(Σ, D, typeof ) and T′ = (Σ′, D′, typeof ) we write T toFlow
=⇒

′
T′

whenever Σ ⊆ Σ′, T′ defines the predicate flow , and for all rules
r in D, D′ contains a rule r′ such that

• conclusion(r′) = FL−1conclusion(r), and
• premises(r′) is the least set such that for all premises Φ of r,

premises(r′) contains the premise FL(Φ)

where FL is defined as follows:

FL((∀x.Φ1 ⇒ Φ2)) = (∀x.FL−1(Φ1)⇒ FL(Φ2))
FL(pmatchf XX1 . . . Xn) = pmatchf X

Fin
r X∗1 . . . X

∗
n

where X∗k =


Xk if Xk is pattern-matched in r,
XC

r,k if contra(f, k) and producer(X, r),
XC

r,k if ¬contra(f, k) and consumer(X, r),
FL(Xk) otherwise.

FL(pred t1 . . . tn) = pred t∗1 . . . t
∗
n

where t∗k =

{
FL(tk) if mode(pred, k) = out ,
tFin
r,k if mode(pred, k) = in .

FL(f X1 . . . Xn) = (f X∗1 . . . X∗n)

where X∗k =

{
XU

r,k if sig(f, k) = type ,
Xk otherwise.

FL(X) = X ′, for some variable X ′ fresh in r′,
Also, premises(r′) contains flow X ′XFin

r .

Moreover, for all variable X ∈ r, if consumer(X, r) and also
usertype(X, r) then premises(r′) contains XU

r  XC
r .

Next we describe the toJoin
=⇒ step. This step collects all the flow

premises whose targets are the join type XJ
r for a variable X

and then inserts a premise to compute the join of the producers
(sources) of the flows. To specify the collection of flow premises,
we define maximal set of flows.
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Definition 9 (Maximal set of flows). Given a type system T and a
rule r of T, we say P is a maximal set of flows forX in r whenever

P = {flow X1X, flow X2X, . . . ,flow XkX}

for some k ≥ 1, variables X , X1, X2, . . ., Xk, and premises Φ in
premises(r), either Φ ∈ P or Φ 6= flow X ′X , for any X ′.

For a maximal set of flows P , let source(P ) = {X1, . . . , Xk}.

Definition 10 (T toJoin
=⇒ Tf ). Given two type systems T =

(Σ, D, typeof ) and Tf = (Σ′, D′, typeof ), we say T toJoin
=⇒ Tf

whenever Tf defines the join operator, and for all rules r inD,D′

contains a rule r′ such that

• conclusion(r′) = conclusion(r), and
• for all variables X , let P be the maximal set of flows for XJ

r .
Then, join source(P ) = XJ

r ∈ premises(r′).

Flow discovery is the composition of the above two steps:

(T toFlow
=⇒ Tf ) = T toFlow

=⇒
′
T′ toJoin=⇒ Tf

6.5 Step 5: Staticity for Lone Inputs
Ensuring staticity for lone inputs amounts in spotting lone variables
and generating a static premise for them. In this step we also turn
typeof into typeofG .

Definition 11 (T toSt
=⇒ TG). Given type systems T = (Σ, D, typeof )

and TG = (Σ′, D′, typeofG) we write T toSt
=⇒ TG whenever

Σ[typeof /typeofG ] ⊆ Σ′, TG defines the predicate static, and
D′ is the least set such that for all rules r in D, D′ contains a rule
r′ such that

• conclusion(r′) = conclusion(r), and
• premises(r′) is the least set s.t. premises(r) ⊆ premises(r′)

and for all X ∈ vars(r), if lone(X, r) then premises(r′)
contains staticX .

Moreover, the predicate typeof is consistently replaced by typeofG .

6.6 Step 5.5: Compilation to the Cast Calculus
We now tackle the generation of the cast insertion procedure. The
first task is to define the type system of the cast calculus. This is a
simple extension of the original type system.

Definition 12 (Cast Calculus). A type system T = (Σ, D, typeof )
is a cast calculus whenever Σ contains the declarations

label : kind
? : type
compToCC : term → term → type → o
cast : term → type → label → type → term

and D contains the rule
typeofCC E X1

typeofCC (cast EX1 LX2) X2

Definition 13 (Cast Calculus of a Type System). Given type
systems T = (Σ, D, typeof ) and TCC = (Σ′, D′, typeofCC ),
we write T toCC

=⇒ TCC whenever Σ[typeof /typeofCC ] ⊆ Σ′,
D[typeof /typeofCC ] ⊆ D′, and TCC is a cast calculus.

Before diving into the compilation, we formally define the no-
tion of cast destination we discussed in Section 3.7. To this aim, it is
convenient to uniformly treat flow and pattern matching premises.

Definition 14 (Cast destination). Given a variable X and a rule r,
the cast destination of X in r, written XDest

r is defined as follows.

(the clauses below apply in order).

XDest
r,1 = X2,

if X2  X1 ∈ premises(r) and consumer(X1, r).
XDest

r,1 = X2, if X1  X2 ∈ premises(r).
XDest

r = (f XDest
r,1 . . . XDest

r,n )
if premises(r) contains pmatchf XX1 . . . Xn.

XDest
r = X, otherwise.

The next step is to dive straight into the compilation. Thanks to
Restriction 2 and 3, identifying the terms of the conclusion that are
subject to cast is not problematic.

We assume that the function encr , that stands for encoding, is
injective and that its codomain is disjoint from those of •Jr , •Cr and
•Ur . encr is a function from variables of kind term to variables that
are fresh in the rule r and is the identity on all other variables.
Intuitively, encr has the role of turning the name e into e′ for cast
insertion. We also lift encr to terms in the obvious way.

As we make use of HOAS, the Gradualizer can encounter log-
ical variables R that represent abstractions (but not explicit λs,
thanks to Restriction 3). In that case a cast R : T1 ⇒l T2 is
not well-typed, therefore our procedure generates a wrapped term
λx.((R x) : T1 ⇒l T2).

Definition 15 (Cast Calculus with Compilation). Given type sys-
tems T = (Σ, D, typeofG) and Tc = (Σ′, D′, typeofG), we write
T toCI

=⇒ Tc whenever Tc is a cast calculus and for all rules r in D
that define typeofG , D′ contains a rule r′ such that

• conclusion(r′) = cast−1(conclusion(r)), and
• premises(r′) is the least set such that for all premises Φ of r,

premises(r′) contains the premise cast(Φ).

where cast is defined as follows:

cast((∀x.Φ1 ⇒ Φ2)) = (∀x.cast(Φ1))⇒ cast(Φ2)
cast(typeofG e t) = (compToCC e e∗ t)

where e∗ =

{
cast(e) if mode(typeofG , 1) = out .

encr(e) otherwise.
cast(Φ) = Φ, otherwise.
cast(e) = eσ,

where σ is defined as: for all variables E (or R) ∈ vars(e),

• if typeofG E X ∈ r then σ(E) = cast (encr(E))X LXDest
r .

• if Φ⇒ typeofG (R x) X ∈ r, then σ(R) =
λx. cast (encr(R x))X LXDest

r .

The substitution σ is simply encr everywhere else. In each case, L
is a fresh variable in r. To avoid unnecessary casts, casts X ⇒L

XDest
r are omitted when X = XDest

r .

6.7 Step 6: Replace Flow with Consistency

This step, written toCnst
=⇒ , is straightforward so we omit the formal

definition. This step merely removes flows to join types, such
as flow XXJ

r , and replaces the remaining flows in a rule with
consistency checks, that is, each premise of the form flow T T ′ is
replaced with consistent T T ′. See Section 3.6 for examples.

7. Correctness of the Gradualizer
We have proved that given a type system T, if T is well-formed,
T toGr

=⇒ TG and T toComp
=⇒ TCC then the resulting type system and

compiler satisfy the correctness criteria described in Section 2. We
summarize the proofs below.

Conservative Extension The idea of the proof is that, over static
programs and types, the pattern matching premises collapse to per-
form the ordinary pattern-matching (the clause for ? is never used),
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flow premises collapse to equality checking and join computations
holds only for equal types, i.e. T = T1 t T2 iff T1 = T2 = T .

Monotonicity w.r.t. Precision The proof mainly relies on the fact
that pattern-matching and join premises give less precise outputs at
less precise inputs. For instance, Int → Int . Int → Int and
Int → ? . Int → ? with indeed Int v Int and ? v Int. Also,
flow premises (consistency) continue to hold on less precise inputs.

Type Preservation of Cast Insertion The first insight is that since
typeofG and compToCC contains the same premises, these are
satisfied for typeofG as much as they are for compToCC (and
with same instantiations). What connects the dots is however the
following. typeofCC makes use of the original rule in typeof and
therefore more program variables might be typed at a same type T .
In compToCC those programs are typed at different types but the
encoding is instrumented so to have them cast to a same type TFin

(the final type for them). Therefore, with in mind the typing rule for
the cast operator, typeofCC can type the corresponding expression
at a type that makes use of TFin in place of T (if it appears in the
assigned type). This however syncs with the same type assigned
by both typeofG and compToCC (remember, they coincide w.r.t.
this matter). Indeed, the occurrences of T in the original typing rule
typeof (and so in typeofCC ) are inputs that in typeofG have been
replaced by TFin .

Monotonicity of Cast Insertion This proof relies on insights that
are similar to those of the proof of the monotonicity of typeofG
w.r.t. the precision relation.

8. The Implementation of the Gradualizer
We have implemented the Gradualizer in Haskell. This tool takes
in input the implementation of a type system in λ-prolog and pro-
duces the type checker and the compilation procedure to the cast
calculus in λ-prolog. Currently, language designers can specify the
covariance/contravariance of type constructors with a special com-
mented tag in the logic program in input (details can be found in
the link below). We have applied our tool to the type systems men-
tioned in Section 4 and the generated type checkers and compilers
are part of the tool. The Gradualizer can be found at the following
github repository:

https://github.com/mcimini/Gradualizer.

9. Future Work
We discuss several directions for future work on the Gradualizer.

Extension to Richer Type Systems The Gradualizer handles a
simple typing judgment of the form Γ ` e : T . In principle, the
work in this paper can be adapted to other typing judgments. For
example, extending the methodology to handle bidirectional type
checking does not seem problematic.

The Gradualizer currently captures a number of type systems
that are confined within the family of simply typed systems. It
remains to be explored whether we can extend the methodology to
more sophisticated type systems such as recursive types, universal
types [3], or even dependent types.

Auxiliary Predicates, e.g., Subtyping We have explored extend-
ing the Gradualizer to subtyping and it does not seem difficult. Go-
ing further, we shall investigate a methodology for any auxiliary
predicate that the language designer might use. The recent work of
Garcia et al. [11] provide guidance for how to port arbitrary rela-
tions to the gradual typing world, which we plan to use.

Dynamic Semantics In this paper, we have shown how to derive
the static aspects of gradual typing. Deriving the dynamic aspects

is an important area of future work. Our goal will be to provide
a methodology for deriving the operational semantics of the cast
calculus from rules that define the operational semantics of the
original language. Of particular importance, we are planning to
study space efficient casts [9, 13, 14, 25] and the derivation of
correct blame tracking reductions [26, 37].

10. Conclusions
In this paper, we have described a methodology for gradual typ-
ing and validated it through formal results on transformations of
type systems. This paper is meant to serve as a reference for lan-
guage designers who want to augment their languages with gradual
typing. In this regard, we believe that our methodology, algorithm,
and implementation will be essential tools for supporting this en-
deavor. Regarding evaluation, we have shown that our methodology
is general enough to handle a broad range of type systems, precise
enough to be implemented in Haskell, and we have proved that it
produces correct type systems with respect to the gradual typing
criteria.
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