
A Record Calculus

Based on Symmetric Concatenation

Robert Harper Benjamin Pierce

Carnegie Mellon University

Abstract

Type systems for operations on extensible records form

a foundation for statically typed languages address-

ing some aspects of object oriented programming and

database applications. A number of primitive oper-

ations have been proposed: extending a record with

a new field, overwriting an existing field, removing a

field, and various kinds of concatenation, We show here

that a record calculus based on a symmetric concatena-

tion operator, where two records may be concatenated

only if they have no overlapping fields, also captures the

types of many other useful primitive record operations.

“Mergeability constraints” are expressed directly using

explicit annotations on type variables and constrained

second-order type quantification instead of a rule of sub-

sumpt ion; we argue that the resulting system is more

straightforward than subsumption-based alternatives.

1 Introduction

Cardelli [2, 3] observed that certain aspects of inher-

itance in object-oriented languages can be understood

in terms of inclusion relations among record types in a

typed A-calculus. These inclusions are defined formally

as a subtype relation: a type t is a subtype of t’, writ-

ten t < t’, if any member of t may safely be used in

a context where a member of t’ is expected. The fact

that the type of an expression may always be promoted

to a supertype is captured by the rule of subsumption:

G1-eet

Gtt <t’

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To COPYother-
wise, or to republish, requires a fee and/or specific permission.

Cardelli and Wegner [6] extended this idea to a pow-

erful second-order type system combining Cardelli’s or-

dering on record types with type quantification [9, 22]

using techniques developed by Mitchell [16]. Wand [24,

25] analyzed the concept of record polymorphism in

the context of ML type inference and introduced the

notion of “row variables,” which allow types to be

given to terms involving a natural record extension op-

erator. This work was refined by Jategaonkar and

Mitchell [13, 14] and Stansifer [23].

R4my [19] introduced the notion of positive and neg-

ative information about record fields and the intuition

that increasing either positive or negative information

— specifying that fields are either definitely present or

definitely absent — gives more refined types. This in-

tuition, formalized as an appropriate extension to the

kind system, plus the restriction that the set of field la-

bels is finite, enabled him to use ordinary unification as

in ML [8] to do type inference for programs involving

extensible records. Both Wand [27] and R4my [20, 21]

later extended this system to infinite label sets.

More recently, Cardelli and Mitchell [4, 5] discovered

an elegant calculus of primitive record operations com-

bining bounded quantification with positive and neg~

tive information about fields and generalizing Cardelli’s

original subtype ordering on fixed-length records. In

this system, the preorder on types is used to encode

both positive and negative information. For example,

record extensions like e Il=e’ (“e extended with value

e’ at label 1“) are only well formed when the field be-

ing added is not already present; to prevent run time

type errors, the typing rule for extension must ensure

that this is the case. Cardelli and Mitchell express this

constraint in terms of the preorder by requiring that “e

has some type r that is a subtype of a type lacking l.”

The restriction operator \ is used to increase negative

information; for example, if r is the record type {11 :t 1},

then r\12 is a subtype of r.

In an earlier report [11], we set out to represent posi-

tive and negative information as directly as possible, us-

@ 1990 ACM 089791-419-8/90/0012/0131 $1.50 131

ing explicit constraints on record type variables rather

than encoding constraints in a preorder structure on

types. For example, this system expresses the well-

typedness constraint on e ll=e’ as “e has type r and

r lacks 1,” where the judgement form “r lacks 1“ is ax-

iomatized explicitly. The result is a somewhat simpler

but more verbose system with no rule of subsumption,

where genericity over record types arises solely from

constrained quantification of type variables: a quanti-

fied type “Va lacks L- has L+ :T+. t“ can be instanti-

ated with any record type r such that r’s set of fields

is disjoint from L– and includes each 1~ :ti in L+ :T+.

This line of development essentially amounts to reverse-

engineering Cardelli and Mitchell’s system back toward

R6my’s. in fact, during the early stages of their work

Cardelli and Mitchell independently developed a similar

system by extending the kind system of the polymorphic

A-calculus along the lines suggested by R4my.

Other useful ways of manipulating records are pro-

vided by the merge or concatenate operator 11, which

combines the fields of two existing records. There are

several forms of the merge operator, distinguished by

what happens when the records el and e2 k a merge

expression el j \ez have one or more fields in common.

The asymmetric merge operator gives preference to the

values from ez. The symmetric merge operator disal-

lows merge expressions where the fields of el and e2 are

not guaranteed to be disjoint. The recursive merge com-

putes the values of common fields by recursively merging

their values in el and e2. Of these, the symmetric vari-

ant seems to us to be the most useful, since it makes

the finest distinct ions. This is the version we assume in

the present paper, except where explicitly indicated.

A restricted form of merging can be defined directly.

For example, {ll:tl, 12:t2} II {13:t3, 14:t4} can be

rewritten simply as {ll:tl, 12:t2, 13:t3, 14:t4}. But in

general — when the types of el and e2 may involve

variables — typechecking with II requires a substantial

increase in the complexity of the type system. To en-

sure that ~x:a. ~y:b. (xl Iy) k well typed, we need to

guarantee that the type variables a and b are never in-

st ant i at ed to types with overlapping fields. This con-

dition cannot be stated in terms of the previous forms

of positive and negative information (“has” and “lacks”

constraints), but must be provided explicitly by anno-

tating type variables and quantifiers with compatibikty

constraints. Once this information is provided for type

variables, we can define what it means for two arbitrary

types rl and rz to be compatible, written T1 # rz. The

merge expression el I le2 is then well typed when el G rl,

e2 E r2, and rl # r2. The type of this expression is the

merge type r~llrz.

Wand [27] studied type inference for an extension of

ML with an asymmetric merge operator and showed

how to encode class definitions similar to those found

in object-oriented programming languages in this cal-

culus. The asymmetric merge operation has the advan-

tage that compatibility constraints are not necessary:

any two records may be merged, with the rightmost

one overriding. On the other hand, the use of symmet-

ric merge allows the type checker to detect inadvertent

clashes of labels, which can be useful in practice. Both

systems have the property that the type checker must

keep track of which component of a merge has a given

field, leading to problems in type reconstruction.

Ohori and Buneman studied type inference for object-

oriented programming [17] and for database program-

ming languages [18] — another promising application

area for record type systems. In their work on database

programming languages they consider a type system in-

cluding records and sets, with operations such as “re-

lational join” chosen to support database applications.

To perform ML-like type inference for this language,

they introduce the notion of a conditional type scheme,

in which a type variable may be constrained to range

over records possessing certain components. These con-

straints are similar to the “has” constraints discussed

above. (They also used another form of constraint per-

tinant to the relational join and projection operations.)

In their work on object-oriented programming, they

consider a form of record update operation in which

a value of a given field may be overridden. Once again,

their notion of conditional type scheme plays a central

role. They also consider extensions to support object-

oriented programming constructs similar to those sug-

gested by Wand. In order to support inheritance, they

introduce an ad hoc form of subsumption in connection

with ‘(self” and an additional form of condition on con-

ditional type schemes.

Cardelli and Mitchell sketched several increasingly

ambitious formulations of recursive record concatena-

tion as extensions to their calculus of operations on

records [5]. The most powerful of these requires the no-

tion of “constrained, multiply-bounded quantification,”

where a finite set of type variables is bound simultane-

ously, with each constrained to be a subtype of some

given type and certain subsets constrained to be com-

patible. For example, a function that takes two compat-

ible records xl and X2, where xl has at least a field 11 of

type Int and X2 has at least a field 12 of type Int, and

returns the result of merging xl and x2, can be written

A(al ~ {11 : Int}, a2 < {12 : Int}, a1#a2),

~xl:a~. Axz:az. xl I 1x2

(altering their concrete syntax slightly).

In the present paper, we study a record calculus All

based on a more straightforward formulation of con-

strained quantification. In All, each record type variable

132

in a context G has a list of compatibility assumptions R,

where the elements of R are record types and a#R as-

serts that a#ri for each ri c R. The constrained type

abstraction operator Aa#R. e adds the assumption a#R

to the context used to typecheck e, A type application

e [r] must check that r satisfies all of the constraints

on the quantifier. For example, the function mentioned

above can be defined in Al I as follows:

Aal#ll:Int, 12:Int. Aaz#al, ll:Int, 12:Int.

~xl:alllll:Int. ~x2:a21112:Int. xl II X2.

Similarly, a function that accepts any record not al-

ready possessing an I. field and adds the field 1=5 can

be written:

Aa#l. ~x:a. x [[1=5 e Va#l. a + (a II l: Int).

A function that accepts any record with an 1 field and

overrides it with the field 1=5 can also be expressed:

Ab. Aa#l. ~x:(alll:b). (x\l) It 1=5

e Vb. b’a#l. (alll:b) + (a II l:Int)

(Unlike the calculi of R6my, Wand, and Cardelli and

Mitchell, Al I is unable to express the function that takes

any record and gives it an 1 field with value 5.)

These examples underscore an important point: the

form of constraint used in All can only be used to express

negative information about record type variables. The

function above takes two type variables, each of which

lacks the appropriate field. To form the types expected

for the records xl and x2 on the two J-abstractions,

the missing fields are merged back into al and a2. This

kind of transformation from mixed positive and negative

constraints on quantifiers to pure negative constraints

can be carried out mechanically.

The use of constrained type variables here has a very

similar flavor to Wand’s treatment of merging with row

variables [27]. In fact, we adopt the same point of view

as Wand with regard to subsumption: rather than intro-

duce a preorder on types that includes record extension

as a special case, we prefer to use a form of quantifica-

tion to capture the possible extensions of a record type

and use type application to choose the appropriate ex-

tension for a given context. However, in contrast to

Wand, we are dealing with an explicitly-typed, second-

order calculus with a symmetric, rather than asymmet-

ric, merge operator, This leads to a somewhat different

overall flavor, as we shall illustrate below.

Our central claim is that the straightforward formulw

tion of constrained quantification embodied in All may

be viewed as primary, in the sense that most of the

examples motivating row variables, bounded quantifi-

cation, and Cardelli and Mitchell’s bounded quantifica-

tion with positive and negative information can be ex-

pressed in a calculus based on this form of constrained

quantifier, with no need for additional mechanisms like

subsumption.

In Section 2, we define the syntax and typing rules of

All and briefly sketch a proof of the decidability of type-

checking. Section 3 illustrates the expressiveness of the

system by translating an object-oriented programming

example from Wand and showing how to encode one of

the motivating examples for F-bounded quantification

in AI I. Section 4 offers concluding remarks. A complete

listing of the typing rules for All appears in Appendix A.

The full version of the paper [10] includes more detailed

proofs, several additional examples, and a discussion of

avenues for future research.

2 Definition and Properties of All

2.1 Syntax

This section introduces some notational conventions and

defines the concrete syntax of All.

The metavariable t and u range over types; r, and s

range over record types; p ranges over primitive types;

a and b range over record type variables; R and S range

over finite sequences of record types; e and f range over

terms; x ranges over variables; 1 ranges over field labels.

Types:

t ..—..—

I :I+tz

I k’a#R. t

Ir

Record types:

r ..—..—

I ;mpty

I l:t

I r\l

I r~ llrz

primitive

function space

constrained quantification

record type

record type variable

empty record

single-field record

restriction

merge

The record types are those built up from record type

variables, tipt y, and single-field records by applications

of merge and restriction. Ordinary type quantification

is omitted from this presentation, but could be added

by considering general type variables and an associated

quantifier.

Terms:
e ..—..— variable

I ;x:t. e abstraction

I e~ez application

I empty empty record

I l=e single-field record

I e\l restriction

I el II ez merge

I e.1 selection

I Aa#R. e constrained type abstraction

I e[r] constrained type application

Free and bound variables are defined in the usual way;

in the case of type quantification and abstraction, the

133

Tl, a#R, T2 ok

T; G1-eetTI, a#R, T2 F a record

T F t type

T F l:t record

T i- r record r.1~

T E r\l record

T ok

T F Empty record

Tl_rl#r2

T 1- rl II r2 record

Figure 1: Selected formation rules for record types

variable a is not considered bound in the constraint list

R. Terms and types are identified up to renaming of

bound variables. The notation [t/a]t’ denotes capture-

avoiding substitution oft for free occurrences of a in t’;

similarly, [e/x] e’ denotes capture-avoiding substitution

of e for free occurrences of x in e’.

The metavariable T ranges over type contexts — finite

sequences of declarations of the form a#R with no type

variable declared twice. The met avariable G ranges over

term contexts — finite sequences of declarations of the

form x :t with no variable mentioned twice.

If 1 is a label and r is a well-formed record type, then

r. 1 is defined to be the type associated with label 1 in

r, if any. We write r. 1 T for “r. 1 is undefined” and

r.1 ~ for “r.1 is defined.”

2.2 Typing Rules

The ~ II calculus is defined by a collection of inference

rules for deriving typing and formation judgments,

compatibility judgments, and equivalence judgments.

A representative selection of the rules of All appears in

Figures 1–5; the complete set appears in Appendix A.

For the most part the formulation of All proceeds along

standard lines; we discuss here only those aspects that

are particular to handling extensible records.

The formation rules for record types are summarized

in Figure 1. The two most interesting cases are the

rules for restriction and merge. The restriction r\l is

well formed in T if r is well formed in T and r -1 is

defined. In particular, no expression of the form a\l,

where a is a variable, is ever well formed, since a -1 is

never defined. This reflects the fact that compatibility

constraints on a variable a are negative in character and

cannot be used to postulate that all instances of a have

any particular fields, only that they lack certain fields,

T; GFl=eel:t

T; G1-ecr r-1.j

T; Gke\lcr\l

Tt-Gok

T ; G F empty e Empty

T; G1-elerl

T; Gbe2er2

TFr1#r2

T; G1-e.ler_l

T,a#R; G1- e et

T ; G k Aa#R. e E Va#R. t

T; GFee Va#R. t Tkr#R

T ; G F e[r] e [r/a]t

Figure 2: Selected typing rules

It also implies that if r\l is a well-formed record ex-

pression, then the restriction may be eliminated (see the

discussion of type equivalence below). A merge rl I Irz is

well-formed in T if rl and rz are well-formed in T, and,

morover, rl and r2 are compatible in T (see below).

A selection of the typing rules for terms appears in

Figure 2. The empty record is always well-formed. A

single-field record l=e has type l:t in T if e has type

t in T. The restriction e\l has type r\l in T provided

that e has type r in T and r _ 1 J: we may restrict only

on a field that e actually possesses. The merge el I le2

has type rl I Irz in T provided that el has type rl in T

and e2 has type r2 in T and rl and r2 are compatible

in T. In other words, we may not merge two records

unless they are non-overlapping; to achieve the effect of

overriding, it is necessary to restrict on the fields to be

overridden before forming the merge. The selection e.1

has type r-lin Tif e has type rin T andr.1~, By

the definition of r _l, the type of e.1 is unique (up to

equivalence) if it well-formed.

The abstraction Aa#R. e has type ‘da#R. t provided

that e has type t in T, a#R, which also entails that R

is a well-formed constraint set in T. It is important to

realize that the constraint list R cannot be replaced by

a single record type r, for two related reasons. First, it

is necessary to postulate that a variable be compatible

with a number of different record types. For example,

134

Tbr#s r-r’ s-s’

Tkr’ #s’

T1-r#s

Tks#r

Tkr#l:t T k t’ type

T1-r#l:tt

T1, a#R, Tz ok r~e R

T1, a#R, T2 E a#r~

T 1- r#(slllsz)

Tkr#si

Ttsl#sz TFr#sl T1-r#sz

T 1- r# (sIIIsz)

T F r record

T F r # Empty

Figure 3: Selected compatibility rules

if we are to merge a variable a with the base records

I. :t and l’:t’, then a must be constrained to be compat-

ible with both of these records, which is to say that all

inst antes of a must not contain 1 or 11 fields, Second,

the constraint list R cannot be collapsed into a single

record type consisting of the merge of the component

record types ri of R because the records in R need not

themselves be mutually compatible.

The type application e[r] is well formed in T if e has

type Va#R. t in T, r is a record in T, and r is com-

patible with each element of R (relative to T). In other

words, r must satisfy the constraints associated with the

quantifier in order for the type application to be sensi-

ble. When this is the case, the type of e[r] is [r/a]t,

as usual. It will turn out that the formulation of the

system ensures that if r satisfies the constraints in R

relative to T, then r is a record type in T. To support

general parametric polymorphism, we would have to ex-

tend the system with a separate form of quantifier that

quantifies over all types. We omit this extension for the

sake of simplicity.

The compatibility relation (see Figure 3) plays a cen-

tral role in Al 1. Informally, T 1- r # s holds iff r and s

are mergeable, that is, iff r lacks every field possessed by

rl@pty N r

rl II (rz\lrs) N (rlllrz) II rs

rl llr2. ~rz Ilrl

r\l\l’ - r\l’\l

(l:t)\l N Empty

rl .11

Va#R. t “w Va#R’. t!

Figure 4: Selected type equivalence rules

r, (r’, R) - r’, (r, R)

Empty, R N R

(r11]r2), R~rl, (rz, R)

r, (r, R) N r, R

l:t, R N l:t’, R

Figure 5: Selected constraint list equivalence rules

s and s lacks every field possessed by r. The definition

is made relative to a context T since the compatibility

for a type variable a is determined by the constraint set

associated with a in T. It follows from this informal de-

scription that compatibility is symmetric, respects type

equivalence, and is insensitive to the types ascribed to

fields of a record. In particular, l:t is compatible with

l’:t’ iff 1 is different from 1’.

Equivalence of types (Figure 4) is defined as an equiv-

alence relation compatible with all type-forming con-

structors, such that the merge operation is commutative

and associative and has EIIIpt y as unit. Field restriction

operations eliminate fields in the expected way. Con-

straint list equivalence (Figure 5) is important due to

the presence of constraint lists on quantified types. Be-

sides the equivalences induced by equivalence of types,

we identify constraint lists that differ only in the order

135

and multiplicity of constraints and allow for the break-

down of merge types and the elimination of Empty.

2.3 Properties

In this section we sketch a proof of the decidability of

type checking for }11. Due to space limitations, we give

only a brief overview of the development. A more de-

tailed account appears in the full paper.

The proof proceeds largely along standard lines: type

checking is reduced to checking equivalence and com-

patibility of types by way of a syntax-directed set of

type synthesis rules. Equivalence of well-formed types

is established using Huet’s method of confluence mod-

U1O an equivalence relation [12]. The main idea is to

handle the associative and commutative rules for merge

types and the permutation and idempotency equations

for constraints lists by segregating the “proper reduc-

tions” from the “pure equations,” so that the equiva-

lence problem is reduced to checking a simple form of

equivalence of normal forms. Compatiblit y checking is

based on a simple characterization of normal forms of

record types and constraint lists, with the main com-

plications stemming from the need to take account of

all of the consequences of assuming that a variable is

compatible with a complex record type.

2.3.1 Type and Constraint List Equivalence

As a technical convenience in the presentation of the

type checking algorithm, we extend constraint lists to

admit “bare labels.” The metavariable @ is used to

range over type variables and bare labels; the metavari-

ables p and u are used to range over types and bare

labels. We extend the relation T t- r # R to constraint

lists by defining T E r # 1, R to mean T 1- r # R and

T F r # l:t for any well-formed type t.

Let + denote the least reflexive, transitive relation

containing the relation given in Figure 6 (compatibly

extended to all type constructors); let w denote the least

congruence containing the relation given in Figure 7.

Theorem 2.3.1,1: The restriction of+ to well-typed

terms is confluent modulo w.

Corollary 2.3.1.2:

1. If r and s are well-formed records, then r ~ s iff

there exist r’ and s’ in normal form such that r +

r’ and s ++ s’ and rt z S1.

Emptyllr + r

r 11Empty + r

l:t\l + Empty

(rll s)\l + (r\l) II s ifr-1~

(r II s)\l + rll (s\l) if s-1~

PI!o>R + P)u, R

Empty, R + R

l:t, R + l,R

Figure 6: Proper reduction rules

r\l\l’ w r\l’\l

rlls%sllr

rll(sllt)w(rlls)llt

~,~,R w ~,R

P,o, R w a,p, R

Figure 7: Pure equivalences

2. If t and u are well-formed types, then t s u iff

there exist t’ and u’ such that t + t’ and u + u’

and t’ G u’.

136

3. If R and S are well-formed constraint lists, then

R x S iff there exist R’ and S’ such that R + R’

and S + S’ and R’ % st.

Corollary 2.3.1.3: The relation N is decidable for

well-formed expressions.

If r is a well-formed record, let r* denote one of its

normal forms computed by applying the + rules in some

canonical order; similarly for types and constraint lists.

Theorem 2.3.1.4:

1. Let r be a well-formed record type. Then r* has

the form

al lla2 II . . . lla~ [Ill:tl [1 ... Illk:tk

up to associativit y and commutativity of I], where

the ai’s are distinct variables, the lj’s are distinct

labels, the tj’s are in normal form, and n and k are

greater than or equal to O (when both are O, the

normal form is Empty),

2. Let R be a well-formed constraint list. Then R* has

the form

al, ..., an, 11, .,. ,l~

where the ai’s are all distinct, the lj’s are all dis-

tinct, and n and k are greater than or equal to O.

(That is, R* is a list of variables and labels in some

order.)

Note that as a consequence, a well-formed nor-

mal form is restriction-free, This implies that every
well-formed record expression reduces to a well-formed

restriction-free record expression.

2.3.2 Compatibility Checking

The compatibility checking algorithm is presented aa a

collection of inference rules for deriving judgments of

the form T F r #= s where r and s are restriction-free,

well-formed record types. The rules appear in Figure 8.

To prove that these rules define an algorithm for com-

patibility checking, we show that they are sound and

complete with respect to the declarative formulation,

and that we may effectively decide whether or not a

derivation exists in accordance with these rules.

The soundness and completeness of the algorithm are

stated by the following theorem:

T \ r #- Empty

T k Empty #= r

Tksl #*r Tbs2 #-r

T l-- (sl II S2) #=’r

T1-r#-sl T1-r#=s2

T h r#= (sl IIs2)

acS*

Tl, a#R, T2, b#S, T3 F a #* b

acS*

Tl, a#R, T2, b#S, T3 h b #= a

lGR*

T1, a#R, Tz F a #= l:t

lcR*

Tl, a#R, T2 k l:t #> a

Figure 8: Algorithmic compatibility rules

Theorem 2.3.2.1:

1. If T 1- r record and T 1- r’ record and T h r #=

r’, then T !-- r # r’. Conversely, if T t- r # s,

then T 1- r* #+ s*.

2.1f T h rrecordand T 1- Rokand T H r#=R,

then T k r # R. Conversely, if T 1- r # R, then

T h r* #*R*,

The decidability of the algorithmic formulation fol-

lows from the fact that it is “almost syntax-directed”:

although some rules overlap, either choice leads to the

same conclusion.

2.3.3 Type Synthesis

The type checking algorithm for Jll is given in terms of

a type synthesis procedure that constructs a “canoni-

cal” type for a given expression in a given context. This

procedure is described by a formal system for deriving

judgments of the form T ; G 1- e + t, together with

a number of auxiliary judgments of a similar form. As

with the compatibility checker, we show that this for-

mal system defines a type checking algorithm by proving

that it is sound and complete with respect to the defi-

nition of Al I and that we may effectively decide whether

137

Tl, a#R, T2 b a a record

T 1- rl ~ record

T F rz & record

Tkr1#*r2

T F rl llr2 a record

T; Ghe111e2=+r1\lr2

T; Gke~Va#R. t

T 1- r a record

TFr”#=R”

T ; G h e[r] a [r/a]t

Figure 9: Selected type synthesis rules

or not a derivation exists, A representative set of rules

from the definition of the type synthesis algorithm is

given in Figure 9.

The soundness and completeness of the algorithm are

stated by the following theorem:

Theorem 2.3.3.1: (Soundness) If 1- T ok and

T t- r a record, then T h r record. If; Tok

and T E t ~ type, then T F t type. If t- Tok

and TER~ok, then T l- Rok. If Tt-G ok and

T; GEe+-t, then T; GEee t.

(Completeness) If T 1- r record, then T f r ~

record. If T F t type, then T t- t ~ type. If

TFRok, then T!-- R~ok. If Tt-eet, then

T h e * tt for some t{ such that t’ - t.

For decidability, we have only to note that the rele-

vant inst antes of compatibility and conversion checking

are decidable, and that the rules are syntax-directed.

3 Examples

One motivation for studying record calculi is the poten-

tial application to typed object-oriented programming,

as suggested by Cardelli [2] and Wand [27] and further

developed by a number of authors [1, 7, 17]. In par-

ticular, Wand has demonstrated that a simple form of

object-oriented programming may be expressed in a lan-

guage with record concatenation and recursive types,

and the members of the ABEL group at HP Labs have

intro duced an extension oft he not ion of bounded quan-

tification, known as F-bounded quantification, in order

to capture certain object-oriented idioms. We consider

here two examples, one taken from Wand, the other

from Canning, et al. (Further examples are presented

in the full version [10].)

We need to work in an extension of Al 1, called Al 1~,

that includes full polymorphism (quantification over all

types, not just record types), a fixed point operator at

all functional types, and recursive types. Of these, only

recursive types present any difficulties. Recursive types

are written K a. t(a), where t(a) is an arbitrary type ex-

pression possibly involving the variable a. Type equiv-

alence for Al 1~ is defined by considering a recursive type

pa. t(a) as denoting the (possibly infinite) regular tree

obtained by “unrolling” the recursion and applying the

equivalences on type expressions given in Appendix A,

Although this description of type equivalence is suffi-

cient for the examples to follow, it should be empha-

sized that we have not studied the decidability of type

equivalence; the decidabilit y of type checking for AI IM

remains open.

Here is a simple example from Wand [26], illustrat-

ing the use of record extension to model inherit ante.

Define the “class” A to be

Jx:int.

Aa#sum, n.

Aself :(allsnm:int Iln:int).

sum=(x + self .n)

with type

int * Va#sum, n.

(allsum:int I [n:int) A (sum: int).

Here x is a parameter of the “class instantiation” oper-

ation: when A is instantiated, the value supplied for x

becomes a hidden component of the new object. The

row variable a is a placeholder for any fields that maybe

added by subclasses of A. The parameter self provides

a name within the new instance of A for the instance

itself, which is supplied at instantiation time using the

fixed point operator.

As it stands, the class A cannot actually be instanti-

ated since it lacks a method for n. Define the class B to

be a subclass of A with a method for n:

Ay:int.

Aa#sum, n.

Aself :(allsum:int Iln:int).

A(5)[a](self) II n=y

with type

int -+ Va#sum, n.

(a[lsum:int I In:int) a (sum:int Iln:int).

We may now instantiate B by writing, for example,

B(3) [Empty] e sum:int I In:int ~ smn:int \ In:int, so

that (fix(B(3)[Empty])).sum = 8.

We may also define a class C that

method for n and a method for m

extends A with a

138

Ay:int.

Aa#sum, n, m

Aself :(allsum:intlln:int Ilm:int).

A(5)[al Im:int](self) II n=y II m=10.

The instantiation expression f ix(C(3) [Empt y]) results in

an object with sum and n fields agreeing with B and with

an additional m field whose value is 10.

Our second example illustrates the flexibility of con-

strained quantification by showing that the motivating

examples of F-bounded quantification may readily be

expressed in the pure Al 1~ calculus.

Members of the ABEL group have argued persua-

sively that “bounded quantification does not provide

the same degree of flexibility in the presence of recur-

sive types as it does for non-recursive types” [1, 7]. They

consider two classes of situations in which problems

arise, one when the recursion variable occurs negatively,

the other when it occurs positively. To deal with these

problems, they propose an extended notion, called F-

bounded quantification, where the pure bounded quan-

tifier of the form Va < r. t is generalized to the form

Va < F(a). t, where F is a function from types to types.

For example, in the class of situations where the re-

cursion variable appears in negative positions, Canning

et al. show that the pure type system of Cardelli and

Wegner [6] does not allow functions to be applied to a

variety of values for which they make semantic sense.

Consider the type

PartialOrder = ppo. {leq : po+Bool}

and assume we are given a function for comput-

ing the minimum of two values of any “subclass” of

PartialOrder:

min e Va < PartialOrder. a+-a+a.

One of the types that we would like to be able to pass

to min is

Number = p num. {leq : num~Bool, other: t}.

But by the usual rule for subtyping on recursive types,

it is not the case that Number < Parti.alOrder.

F-bounded quantification can be used to redefine min

so that it can be applied to elements of Number as well

as PartialOrder. Define a type function

FPartialOrder(t) = {leq : t~Bool}

and check that Number < FPart ialOrder(Number).

Now write

min = Aa < FPartialOrder(a).

Ax:a. Jy:a.

if x.leq(y) then x else y

e ‘da < FPartialOrder(a). a+a+a.

The same intention — to express nin so that it can be

applied generically to members of any claes possessing at

least an leq operation mapping another member of the

same class to a truth value — can be realized directly

in A1lU. We write:

min G Va#leq. pb. (a II leq:b~Bool)

a pb. (a I I leq:b~Bool)

~ pb. (a I I leq:b~Bool)

Number = p num. (leq:num-Bool II other:t)

five c Number.

To type the application

min five five

we need to restrict away the leq field from Number:

min [Number\leql fi,ve five.

The type application is well formed because Number\leq

lacks an leq field, To apply this term to five, we need

to know that

Number w p b. (Number\leq) II leq:b+Bool.

Unrolling the definition of Number and applying the rule

for elimination of restriction operations, this reduces to

showing

Number w p b. (other: [Number/num]t)

II leq:b+Bool.

But these type expressions have the same infinite un-

rolling and hence are equal under our interpretation of

recursive types. This argument may be made precise

by considering a definition of type equivalence similar

to the definition of bisimulation equivalence in CCS [15].

To establish the above equivalence, it suffices to show

that it is consistent to assume that it holds, where the

consistency constraints ensure, for example, that two

records are equal only if they have the same fields and

corresponding fields are equal.

4 Conclusions

The decision to annotate quantifiers with purely positive

information, with purely negative information, or with

a mixture of positive and negative information is an im-

portant point of variation among calculi of record oper-

ations. Ordinary bounded quantification [6], F-bounded

quantification [1], and the systems of Ohori and Bune-

man [17, 18] are positive-information systems. Cardelli

and Mit chell’s calculus [4, 5] and our earlier “symmetric

system” [11] are mixed posit ive and negative. Wand 2S

system of row variables [27] and Al I are pure negative-

i_nformation systems.

The differences among these classes of systems are

particularly clear in the presence of recursive types. In

positive-information systems, something like F-bounded

quantification seems to be required. In the negative set-

ting we do not need an analogue of F-bounded quantifi-

cation, since we can explicitly quantify over the “rest” of

the fields in a record type. This leads to the observation

139

that, in mixed systems like Cardelli and Mitchell’s, the

negative-information fragment can be used to directly

express the examples motivating F-bounded quantifica-

tion. Indeed, the construction given in Section 3 can be

carried out almost verbatim in Cardelli and Mitchell’s

calculus.

A.5 Well-formed types

T ok

T 1- p type

T 1- tl type T t- tz type

T 1- tl+tz type

T, a#R P t type

5 Acknowledgements

We are grateful for productive discussions with Val

Breazu-Tannen, Peter Buneman, Luca Cardelli, Carl

Gunter, Frank Pfenning, Didier R6my, and John

Reynolds.

T F Va#R. t type

T 1- r record

T 1- r type

A.6 Well-formed record types

T1, a#R, Tz ok

This research was sponsored in part by the Office of

Naval Research and in part by the Defense Advanced

Research Projects Agency (DARPA), monitored by the

Office of Naval Research under Contract NOOO14-84-K-

0415, ARPA Order No. 5404.

A Complete Typing Rules

A.1 Judgement Forms

Well-formed type context:

Well-formed term context:

Well-formed type:

Well-formed record type:

Well-formed constraint list:

Constraint list satisfaction:

Compatible types:

Equivalent types:

Ecluivalent constraint sets:

Well-formed term:

T ok

T1-Gok

T k t type

T F r record

TERok

T1--r#R

TErl#rz

tl ~ tz

RI - Rz

T; GFeet

A.2 Well-formed type contexts

O ok

TERok

T, a#R ok

A.3 Well-formed constraint lists

T ok

Tt-ook

T E r record TFRok

T t- r,Rok

Tl, a#R, Tz E a record

T b t type

T 1- l:t record

T E r record r.1~

T E r\l record

T ok

T E Empty record

Tt-r1#r2

T b rl II rz record

A.7 Constraint list satisfaction

T t- r record

T1-r#o

TEr#ri Tkr#R

Ti-r#r~, R

A.8 Compatibility

T1-r#s r-r’ s~s’

TErl #s’

Tkr#s

Tks#r

TEr#l:t T 1- t’ type

T1-r#l:t’

T1, a#R, T2 ok r~~R

T t- r# (s11]s2)

‘I’l-r #s:

TFsl#sz Tkr#sl T1-r#sz

A.4 Well-formed term contexts

T ok

T 1- r# (SIIISZ)

1 #1’ T 1- l:t record T 1- l’:t’ record

T1-ook T E l:t# l’:t’

Tt-Gok T b t type

T 1- G, x:t ok

T 1- r record

T k r # Empty

140

A.9 Constraint list equivalence

RNR

R-R’

R’.w R

RNR’ R’ z R“

RNR’~ -

R-R’ r~r’

r, R w r~, R’

r, (r’, R) N r’, (r, R)

Empty, R N R

(rlllr~),R~r~,(rZ,R)

r, (r, R) w r, R

l:t, R - l:t’, R

A.10 Type equivalence

rllEmpty w r

rl II (rzllrs) ~ (rlllrz) 11rs

rl 1{rz ~ rz 11rl

r\l\l’ N r\l’\l

(l:t)\l * Empty

rl .11

(rlllrz)\l ~ (r~\lllr~~

A. 11 Type equivalence (congruence)

t~t

t’-t

l:t- l:t’

r-r

r\l N rl\l

rl N rj rz - r~

rl [lr2 ~r~ Ilri

A.12 Well-typed terms

T; G1-eet T E t’ type t-t’

T; Gke~t’

T 1- Gl, x:t, Gz ok

T; Gl, x:t, G2 ~ X 6 ‘t

T; G,x:t Feet’

T ; G 1- ~x:t. e E t+t’

T; Gi-el ● t+t’ T;Gbez~t

T; G1-ele2 et’

T; G~eet

T; G1-l=eel:t

T; G1-eer r.l J,

T; G1-e\ler\l

T1-Gok

T ; G k empty e Empty

T; G1-elerl T;G1-ezerz T1-rl#rQ

T;G 1- elllez G rlllrz

T; GEeer r-l J.

T; G1--e.ler.l

T,a#R; GF e ● t

T ; G 1- Aa#R.e e Va#R. t

T; G1-e~Va#R. t TEr#R

T ; G E e[r] ● [r/a]t

References

[1]

[2]

[3]

Peter Canning, William Cook, Walter Hill, Walter

Olthoff, and John Mitchell. F-bounded quantifica-

tion for object-oriented programming. In Fourth Inter-

national Conference on Functional Programming Lan-

guages and Computer Architecture, pages 273-280,

September 1989.

Luca Cardelli. A semantics of multiple inheritance. In

G. Kakn, D. MacQueen, and G. Plotkin, editors, Se-

mantics of Data Types, volume 173 of Lecture Notes in

Computer Science, pages 51–67. Springer-Verlag, 1984.

Luca Cardelli, A semantics of multiple inheritance. in-

formation and Computation, 76:138-164, 1988.

141

[4] Luca Cardelli and John Mitchell. Operations on records

(summary). In M. Main, A. Melton, M. Mislove, and

D. Schmidt, editors, Proceedings of Fifth International

Conference on Mathematical Foundations of Programm-

ing Language Semantics, volume 442 of Lecture Notes

in COmputer Science, pages 22–52, Tulane University,

New Orleans, March 1989. Springer Verlag. To appear

in Mathematical Structures in Computer Science.

[5] Luca Cardelli md John C. Mitchell. Operations on

records. Research Report 48, Digit al Equipment Cor-

poration, Systems Research Center, August 1989.

[6] Luca Cardelli and Peter Wegner. On understanding

types, data abstraction, and polymorphism. Computing

Surveys, 17(4), December 1985.

[7] William R. Cook, Walter L. HiU, and Peter S. Can-

ning. Inheritance is not subtyping. In Seventeenth An-

nual ACM Symposium on Principles of Programming

Languages, pages 125–135, San Francisco, CA, January

1990.

[8] Luis Damas and Robin Milner. Principal type schemes

for functional programs. In Proceedings of the 9th A CM

Symposium on Principles of Programming Languages,

pages 207–212, 1982.

[9] Jean-Yves Girard. Interpretation fonctioneiie et

elimination des coupures de l’arithm6tique d’ordre

.wpe%’ieur. PhD thesis, Universitr5 Paris VII, 1972.

[10] Robert Harper and Benjamin Pierce. A record calculus

based on symmetric concatenation. Technical Report

CMU-CS-90-157, Carnegie Mellon University, August

1990.

[Ii] Robert W. Harper and Benjamin C. Pierce. Exten-

sible records without subsumption. TechnicaJ Report

CMU-CS-9O-1O2, School of Computer Science, Carnegie

Melon University, Feburary 1990.

[12] G6rard Huet. Confluent reductions: Abstract prop-

erties and applications to term rewriting systems.

Journal of the Association for Computing Machinery,

27(4):797-821, October 1980.

[13] Lalita A. Jategaonkar. ML with extended pattern

matching and subtypes. Master’s thesis, MIT, August

1989.

[14] Lalita A. Jategaonkar and John C. Mitchell. ML with

extended pattern matching and subtypes (preliminary

version). In Proceedings of the ACM Conference on Lisp

and Functional Programming, pages 198-211, Snow-

bird, Utah, July 1988.

[15] Robin Milner. A CaJculus of Communicating Sy~tems.

Springer-Verlag, LNCS 92, 1980.

[16] John C. Mitchell. Coercion and type inference (sum-

mary). In Proc. Ilth ACM Symp. on Principles of Pro.

gramming Languages, pages 175–185, January 1984,

[17] Atsushi Ohori and Peter Buneman. Static type infer-

ence for parametric classes. In OOPSLA ’89: Object-

Oriented Programming Systems, Languages, and Appli-

cationns, Conference Proceedings, pages 445–456, Otto-

ber 1989.

[18] Atsushi Ohori and Peter Buneman. Type inference in a

database programming language. In 1988A CM Confer-

ence on Lisp and Functional Programming, pages 174–

183, Snowbird, Utah, July 1989. Revised manuscript,

September, 1988.

[19] Didier R6my. Typechecking records and variants in a

natural extension of ML. In Proceedings of the Sixteenth

Annual ACM Symposium on Principles of Program-

ming Languages, Austin, pages 242–249. ACM, January

1989.

[20] Didier R6my. Aig&bres Touffues. Application au Typage

Polymorphe des Objets Enregistrements clans les Lan-

gages Fonctionnek. PhD thesis, Universit6 Paris VII,

1990.

[21] Didier R6my. Typechecking records in a natural exten-

sion of ML. Submitted to TOPLAS, June 1990.

[22] John Reynolds. Towards a theory oft ype structure, In

Proc. co~loque sur la Programmation, pages 408-425,

New York, 1974. Springer-Verlag LNCS 19.

[23] Ryan Stansifer. Type inference with subtypes. In Pro-

ceedings of the Fifteenth ACM Symposium on Principles

of Programming Languages, pages 88–97, San Diego,

CA, January 1988.

[24] Mitchell Wand. Complete type inference for simple ob-

jects. In Proceedings of the IEEE Symposium on Logic

in Computer Science, Ithaca, NY, June 1987.

[25] Mitchell Wand. Corrigendum: Complete type inference

for simple objects. In Proceedings of the IEEE Sympo-

sium on Logic in Computer Science, 1988.

[26] Mitchell Wand. Type inference for objects with instance

variables and inherit ante. Technical Report NU-CCS-

89-2, College of Computer Science, Northeastern Uni-

versity, November 1988.

[27] Mitchell Wand. Type inference for record concatena-

tion and multiple inheritance. In Fourth Annual IEEE

symposium on Logic in Computer Science, pages 92-97,

Pacific Grove, CA, June 1989.

142

