=

SPECIFYING PROGRAMMING LANGUAGE SEMANTICS:

A Tutorial and Critique of a Paper by Hoare and Lauer

by

I. Greif and A. Meyer

Massachusetts Institute of Technology
Cambridge, Massachusetts

1. Introduction

Hoare and Lauer [1974] have advocated using a
variety of styles of programming language definitions to fit the
variety of users from implementers to program verifiers. They
constder the question of whether different definitions and
specifications determine the same language by showing that the
definitions are what they cali "consistent”. Ilowever, their
treatment skirts the question of whether their definitions can

each be taken to specify the language adequately.‘ Although, as
we will show, any one of the kinds of semantics they discuss -
operational, relational, deductive -- can be used to specify
meaning uniquely, Hoare and Lauer do not make the case in
their paper. In fact, both their relational and deductive
definttions are satisfied by several different semantics, only one
of which 1s desired.

Thus, the main point of this paper 1s to clarify the
characteristics of a proper specification of language semantics
and to formulate alternative specifications each of which 1s
equally good as the language definition. We basically agree
with Hoare and Lauer that several specifications can and
should be given, but are disturbed by confusions about such
spectfications, some of which are illustrated in their paper. In
particular we refer to confusions between the mathematical
object which 1s designated to be the meaning of a program and
methods for specifying that object; the similar confusion
between predicate and expression; between consistency and
equivalence of two definitions; between completeness of a
theory and its having a unique model. While these issues are
familiar in mathematical logic, we take this opportunity to
survey them n the context of programming language semantics.

This paper can be read without prior familiarity with
Hoare and Lauer’s paper. The authors plan another paper
extending this work which will include a more comprehensive
bibliography.

2. The Programming Language

Following Hoare and Lauer, we will examine
alternative types of definitions of a trivial language with
primitive statements, while statements, and statement lists. The
syntax, omitting detatls of the form of predicate expressions is as
follows:

180

<program> r= <primitive statement> | <while statement> |

<program>;<program> | NOP
<while statement> = while <predicate expression> do
<program>

As 13 usual with abstract syntax, we will not concern ourselves
with ambiguity in parsing or with detailed syntax of expressions
and prinitive statements.

We assume that programs run on machines with
states. We treat the states simply as abstract elements 1n some
fixed set S, ignoring their internal structure In many fanuhar
examples primitive statements define total functions from states
to states, but we need not make this assumption. Primitive
statements may be. partial, 1.e. for some state s there may be no

related state, and nonfunctzonalz, 1e for some states s there may
be more than one related state. A primitive statement, 4, thus
has an effect on states which can be defined by giving a
refation R 4 ¢ SxS such that (s, 5*) € R 4 iff A4 executed in s can
terminate 1n.state s'. For example, if states associate values
with variables, and primitive statements are assignments "u := ¢”
where u 1s a variable and e 1s an expression which can be
evaluated n any state, then an assignment statement relates
certain states which differ only at the value of the variable u.

A predicate P 15 a mapping from states to truth
values. Predicate expressions p, q,.. appear in programs. We
will use P, Q,., respectively, to denote the predicates
corresponding to these expressions. For simplicity, we assume
that predicate expressions always yield values, so that the
predicate P associated with an expression p 1s true or false at
each state and 15 never undefined.

Hoare and Lauer give two “operational” definitions of
this stmple language The first 1s an abstract machine which
can execute program steps The second 15 a function which
maps programs into their computations, where a computation is
a finite sequence of states, namely the successive states which are
reached during execution of the program. These two
definitions are said to be "consistent” in that for any program a
both define the same relatton R, of imitial to final states. This

relation R, ¢ Sx$ 1s such that (s, s*) R, if and only if, when

started 1n state s, program ¢ halts (it has a finite computation)
and the final state of that computation 1s s°’.

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1979 ACM 0-12345-678-9…$5.00

We use the following notation throughout what

follows:
a,b¢ programs,
A primitive statements,
5, t states (elements of the set S of all states),
P q predicate expressions,
P,Q predicates on states,
L, M, R binary relations on states (subsets of §xS).

Each of these letters may appear with subscripts or multiply
primed, eg., 59, 5, Q, etc.

3. Relational Semantics

A relational semantics assigns to each program a an
"imtial-state, final-state” relation. We can express the proper
relational semantics for our language directly by defining the
relations induced by programs as in [deBakker, 1975; Pratt, 1976;
deBakker and Meertens, 19751 Hoare and Lauer give an axiom
system for triples s(a)s’ such that (5, s’) 1s in the relation
induced by a. We present both a complete axiom system and a
deductive system for these triples.

3.1 The Standard Relational Semantics

A simple definition of the relauon R, to be associated

with any program a can be given by induction on the syntax of
programs, using only familiar mathematical operalions on
relations. In order to do this it 1s convenient to define R for

any predicate expression p to be {(s, s} | P(s)}. For R, Ry ©

S$xS, let R]';' be the reflexive transitive closure of R, and Rl°R2
the composition of Ry and Ry We assume that relations R 4 for

each primitive statement 4 are given. That 15, we assume that
we know what the primitive statements mean. Let [be the
identity relation {(s, 5) | s € S}. Then the relations associated
with programs are defined as follows:

R2. R(Z;b = Ra°Rb.

R3-Rohite p do a = (Rp°Ra);°R -p

These relations describe the standard semantics for our
language To see this, note that NOP does not change the state
and that the program a;b started in state s will end in state s’
Iff there is a state ¢ such that ¢ started in s ends in state £ and b
started m f ends i s'. Similarly, for while loops there must be
a sequence of states between imtial state, s, and final state, s°*,
such that in each state but the Jast P 1s true and each pair of

successive states is related by R . In the final state =P must be

tive. If —P(s) is true for some state s, then while p do a acts like
a NOP, that is, (s, 5) € Roupite pdoa
This relational semantics obviously gives exactly the
same meaning to programs as do the interpretive and
computational semantics of Hoare and Lauer. We shali
henceforth refer to this as the standard relational semantics K.

32 Some Axioms for the Standard Relational Semantics

Hoare and Lauer choose to specify the standard
relational semantics by giving a system of axioms for statements
of the form “started mn s, program @ terminates 1n state s'." We
shall refer to such assertions as “transition assertions”, and
follow Hoare and Lauer in using the notation s{a)s’ to denote
such a statement. Thus s(a)s’ 1s true for M iff (5, s’) € M,.

where M is an arbitrary relational semantics which assigns to
each program a some relation M cSxS.

3

Their axjoms” are as follows:

HLL s(A)s* « (s,5') € R 4,
HL2. s{a;b)s’ o tls{a)r A t{b)s?],
HL3. s(while p do @)s* -+ —P(s"),

HL4. Vs, 5ol(Q€s)) A P(sp) A sa)sg) » Qfso)] -
Q) N stwhile p do a)s') ~Qfs ")),

HL5. s{NOP)s* «+ 5 = 35",

They go on to prove that the standard relational
semantics R 1s a model of HLI-5, that 1s, every instance of HLI-
5 1s true for R, so that any conclusion which logically follows
from these axioms will be true of the standard semantics. Of
course this meets only half the requirements for specifying the
semantics, since one must also show that any transition assertion
which 1s true of the standard semantics follows logically from
the axioms. Unfortunately HLI-5 do not imply all the true
assertions, contrary to the "intuitive confidence in the
completeness of the theory” expressed by Hoare and Lauer (cf.
[Hoare and Lauer] p. 144), as we now illustrate.

We can understand the significance of HLI-5 as
follows. 1f M is a model of HI, we can conclude that MA = RA

for each atomic statement 4. Similarly, from HL5 we conclude
that MNOP =] = RNOP' and from HL2 that Mab o= Ma°Mb.
It follows that M, = R, for every while-free program a
whenever M is a model of HLI, 2, 5.

181

Now consider the particular "divergent loop™ relational
semantics L defined as follows:

La =R, if a is while-free,

L, = ¢ otherwise.

Then L 1s obviously a model of HLI, 2, 5. But s(while p do a)s’
is always false for L, so HL3-4 are true, vacuously, for L.
Hence L is also a model of HLI-5.

The divergent loop semantics corresponds to an
implementation in which the interpreter simply loops
unconditionally whenever 1t starts to execute a while statement.
Since L 1s a model, statements which logically follow from
HLI-5 must always be true of this implementation. In
particular, no transition assertion involving a program
containing a while-loop follows from HLI1-5, and so 1t seems
hard to imagine circumstances in which HLI-5 would serve as
an adequate characterization of the standard semantics.
(However, in section 4.4 we shall indicate a natural sense in
which HLI-5 do in fact specify R)

3.3 A Complete Set of Axioms for the
Standard Relational Semantics

There 1s no inherent obstacle to presenting axioms in
the spirit of HLI-5 which correctly and completely specify the
intended semantics. Indeed, adding two more axioms will
suffice:

HLS6. —P(s) » s(while p do a)s,
HL7. P(s) A s(a)s’ A s'(while p do a)t ~ s(while p do ajt.
It 1s easy to verify that the standard semantics is a
model of HLI-7. In the appendix we prove:

Theorem 1: The standard relational semantics is the only model
of HLI-7.

‘ We remark that HLI-7 can be shown to be
independent, 1.e, Theorem 1 1s not true when any one of HLI-7
s omitted.

3.4 A Deductive System for the Standard Relational Semantics

Another, perhaps more straightforward, way to specify
the standard relational semantics is to give a system of axioms
and inference rules for deducing transition statements. One
such system is:

Axioms-
T1. s(A)s', for all 5, s' € S such that (s, 5') € R 4
T2. (NOP)s,

T3. s(while p do a)s, for all s € S such that —P(s).

Inference Rules:

T4. s(a)t, t{b)s" + s(ab)s’,

T5 s(a), tlwhile p do a)s’ + s(while p do a)s”,
for all 5 € S such that P(s).

Let Th(TI-5) be the set of transition statements
provable from TI-2 using T4-5. A routine proof, the detatls of
which we omit, implies that s{a)s’ € Th(TI-5) tf and only if
(s,5") € Ra' That 1s,

Theorem 2: The set of transition assertions derivable in the
system TI-5 is equal to the set of transition assertions true for
the standard relational semantics.

Thus, the deductive system TI-5 specifies the same
relational semantics as Ri-3, and either can serve as the
definitive specification (We caution the reader not to confuse
this deductive specification of a relational semantics with the
deductive semantics of Hoare and Lauer mentioned in section
4.5 of this paper.)

4 Partial-Correctness Semantics

Assertions of the form "If P holds before executing a,
then 1f and when a haits, Q will hold"” occur frequently when
the behavior of programs 1s being described. Such assertions
are called partial correctness assertions (pca’s) and are
abbreviated P{a}Q.

We define a partial correctness semantics for our
programming language to be an arbitrary set of pca’s. Any
relational semantics M naturally determines a corresponding
partial correctness semantics i) consisting of those pca’s P{a}Q,
which are true when the initial-state, final-state relation of a 1s

that given by M.

The thests that a programming language semantics
could be specified by giving all the "before-after” assertions true
of programs has been espoused by Dijkstra [1975, 1976]. An
effort by Hoare and Wirth [1973] to specify the semantics of a
fragment of PASCAL using pca’s supports the practical
applicability of this thesis. Our desire to investigate this
general thesis motivates our definition and analysss of partial
correctness semantics in this section.

We show how a relational semantics can determine
a partial correctness semantic and vice versa. We give a
complete deductive system for pca’s and an axiom system for
pca’s. The significance of specifications which have many
relational models is considered, and we analyze several such
specifications.

41 The Standard Partial Correctness Semantics

Definition I: Let R be a binary relation on states. P{a}Q is true
Jor the relation R aff (¥s,s") (P(s) A (s, 5') € R » Q(s*)). P{a}Q.
is true for a relational semantics M iff it is true for M,

The partial correctness semantics containing exactly

the pca’s which are true for R is referred to as the standard
partial correctness semantics, IR.

An arbitrary set of partial correctness assertions for a
program a also determines a relation. The relation is the
maximum relation, M, such that ali the pca's in the set are true
for M. (That there always is such a maximum relation is shown
in the appendix, Lemma CL) The rationale for taking this
relation to be the one determined by a partial correctness
semantics is nicely expressed by Schwarz [1974]:

"Asserting a partial correctness statement is essentially
asserting that certain environments are not the results
of executing some command starting in certain other
environments. This is a negative requirement, it does
not force any environment to be the result of any
execution. Since this is the inherent nature of the
formalism it indicates that the proper kind of
definition of the semantics determined by a system
should have the form: ‘largest possible semantics.” "

Definition 2: Let () be an arbitrary set of pca’s and for any
program a, let ma be the set of all pca’s in 1Y of the form

P{a}Q. Then max(ma) 1s the maximum relation M such that

all pea's in ma are true for M.

We prove in the appendix that taking the maximum relations
determined by any partial correctness semantics provides a way
to recover an underlying relational semantics 1f there is one.
Formally we have

Lemma 1: Let (I be the set of pca’s true for a relational
semantics M. Then M, max(ma). In particular, R

max(R a).

a

The significance of Definition 2 and Lemma 1 is that R
and R convey exactly the same information -- either one

uniquely determines the other.? This implies that, If we prefer,
we can choose a partial correctness semantics to specify meaning.
Such a partial correctness semantics sacrifices nothing provided
by a relational semantics, since any desired relational semantics,
M, can always be recovered from an appropriate partial
correctness semantics, namely, the one which consists of the
partial correctness assertions true for M.

4.2 Deducing Partial Correctness

The standard partial correctness semantics can, like
the standard relational semantics, be specified by a simple
system of axsoms and inference rules. The nouon of the weakest
antecedent, [R1Q, of a predicate Q under a relation R is used in
the axioms for primitive instructions. Informally, [R]Q is the

183

predicate on states which is true of a state s providing that: if
and when a program with initial-state, final-state relation R
halts after being started in s, the predicate Q will hold.

Definition 3: Let R be a binary relation on states. For any
predicate Q on states, the weakest antecedent of Q under R is a
predicate, [R]Q on states defined by

(IRIQ)(s) iff (¥s*)(s, s') € R » Q(s")].

It follows immediately from Definitions 1 and 3 that
(M ,1Q)a}Q. is true for any relational semantics M. We
abbreviate "Vs(P(s) » Q(s))" by "=(P - Q)" and note that P{a}Q
is true for R 1ff =(P - [R,1Q), which is why M IQ is called

"weakest”. (cf. [Pratt, 1976; Harel, Meyer, Pratt, 1975; Schwarz,
1974)).

The following system 1s usually referred to as the
Floyd-Hoare system for partial correctness.

Axioms:
FHI. P{NOP]}P,

FH2. (R ,JQ){41Q,

Inference Rules:
FH3. Pla}P’, P'{b}Q + P{g; b}Q,
FH4. (P A Q){a]Q + Qfwhile p do a)(Q A = P),

FH5. P{a}Q ~ (P AP {a{Q Vv Q")

We prove tn the appendix,

Theorem 3: The set of pca’s derivable from FHI-5, is equal to R,
the standard partial correctness semantics.

We have formulated Theorem 3 to emphasize our
view of the system FHI-5 as a specification of a mathematical
object, namely the set Th(FHI-b) of derivable pca’s. The more
familiar viewpoint in the literature would be to presume that
truth of pca’s was always to be reckoned relative to the standard
relational semantics. Theorem 3 could then be formulated as
saying that FHI-5 i1s sound -- only true pca’s can be derived --
and complete -- all the true pca’s can be derived.

The system FH2-4 corresponds to the Deductive
Theorf’ DI-3 of Hoare and Lauer, p. 146. The system FHI-4 is
not complete, but we will see in section 4.5 that there 15 a sense
in which the imcomplete' system FHI-4 specifies the standard
semantics.

43 Axioms for Parual Correctness Semantics

Although a deductive system resembling FHI-b is the
more usual specification of the standard partial correctness
semantics, we can also write an axiom system to specify it. The
axioms are suggested straightforwardly by the deductive system.

PCL [P{NOP}Q} & =(P » Q),
PC2. [P{4}Q) » =(P - [R JIQ),
PC3. [P{e;6}Q] « IP'(P{a}P’ A P'{b}Q),

PC4. [Qfwhile p do }Q'] « IQ LI(P A Q"){a]Q"]

A kz(Q,“’ QII)
ARQIA-P)>Q)]

To say how these axioms specify the partial
correctness semantics we must give a technical meaning to the
term model and distinguish several special kinds of models.

A mathematical object ts said to be a model for a set of
assertions if all the assertions are true for the object. We have
already used this notion tn section 3 where the objects were
relational semantics and the assertions were transition assertions.
We will be using disfferent kinds of objects, for example, both
relations and sets of pca's, as models of sets of assertions. The
assertions themselves may simply be pca’s, or they may be more
complicated kinds of mathematical assertions such as PCl-4.
{We will not need and therefore omit a more precise
explanation of what "mathematical assertions” are than is
provided by the example of PCl-4) The following definition
establishes how a partial correctness semantics can serve as a
model.

Definition 4: A partial correctness semantics T satisfies a
mathematical assertton (in which pca'’s may appear as
subassertions) 1ff the assertion’s value can be calculated to be
{rue when precsely the pca's n T are assigned the value true.
A partial correctness semantics 1s a model for a set of assertions
if 1t satisfies every assertton in the set. A partial correctness
semantics 1s a partial correctness model for an axiom system
(such as PCi-4) if 1t is 3 model for the set of all instances of
those axioms.

T heorem 4(deBakker6): TR 15 the only partial correctness model
of PCI-4.

The proof 1s in the appendix.

Again, we have formulated this theorem to emphasize
our view of PCl-4 as uniquely specifying a particular partial
correctness semantics. We constder next the more usual view of
PCI-4 as specifying a relational semantics.

4.4 Relational Models for Partial Correctness Specifications

We have just considered FHI-b and PCIl-4 as direct
specifications of partial correctness semantics. However, since
relational semantics determine truth values for pca’s by
Definition 1, we can regard a relational semantics as a possible
model of a set of pca’s or similar mathematical assertions.
Therefore we can also consider FHI-5 and PCIl-4 as
specifications of relational semantics according to their relational
models. Thus we can rephrase Theorems 2, 3 and 4 in part by

saying that R 1s a model of TI-5, FHI-5 and PCl-4.

Notice that despite Theorems 2 and 3, we cannot say
that R is the only model of T1-5 or FHI-5. For example, the
“empty” semantics which assigns the empty relation to every
program 1s a model of FHI-5, and the semantics which assigns
the “total” relation x to every program 1s a model of T1-5.

A set of pca’s will generally fail to have a unique
relational model because pca’s are "anti-monotone” in the
following sense. If M and N are relational semantics then we
shall say that N is larger than M iff N, o M for all programs

a. Then by Defintion | we see that 1f P{a}Q 1s true for N, and
N s larger than M, then P{a}Q is also true for IML. Thus, since
R s a model of FHI-5, so is any refational semantics smailer

than R8

On the other hand, Theorem 3 and Lemma | together
imply that R 1s larger than any model of FHI-5, so we can
conclude

Theorem 5: The standard relational semantics is the largest
model of FHI-5.

Similarly, transition assertions are "monotone” In the
sense that 1f s(@)s' 1s true for M, and N 1s larger than M, then
s{a)s’ 1s true for N. We conclude from Theorem 2 that

Theorem 6: The standard relational semantics 1s the smallest
model of TI-5.

Finally, we . o deduce from Theorem 4 that

Theorem 7: The standard relational semantics is the only model
of PCi-4

Thus, Theorems 5, 6, and 7 reveal precisely the
different ways 1in which R s determined uniquely Dy the
specifications FHI-5, Ti-5, PCI-4.

We should pont out that Theorem 7 1s technically a
slightly weaker result than Theorem 4. Theorem 7 in effect
asserts that among the partial correctness semantics which are
determined by relational semantics, only the partial correctness
semantics Il determined by R 1s a model of PCl-4. On the
other hand, Theorem 4 asserts that among e/l partial
correctness semantics, not just those determined by relations, R
1s the unique model.

184

45 Implications Between Incomplete Semantical Specifications

The need to deal with specifications having several
models of a given kind was allowed for by Hoare and Lauer in
their formulation of what they call "consistency” between
semantical specifications. They say that one specification is
consistent with another iff every model of the latter 1s a model
of the former.

Notice that this definition 1s asymmetrical, and so
conflicts with ordinary usage of the word "consistency.” For this

reason, we shall refer to "implication” between specifications,

that is, specification $ implies specification T iff every model of
S is a model of T.

Semantical specifications with more than one model
can be useful. We have just seen that while FHI-5 and TI-5
technically speaking have many models, nevertheless they
uniquely specify R in a natural way as the largest relational
model and smallest relational model, respectively. Even more
generally there may be situations in which any of several
models would suffice for some application, and we wish only to
specify this set of appropriate models -- not necessarily
distinguishing a canonical model in the set by some criterion
such as maximality or minimality. For example, in the
specification of practical programming languages 1t is typical to
leave undefined the meaning of certain syntactically well-formed
programs. In such cases there will be many acceptable
semantics differing only on the meanings, eg., error messages,
they assign to "meaningless” programs.

In addition to the axioms HLI-5 considered above,
Hoare and Lauer offer the furst four rules FHI-4 of the Floyd-
Hoare system (cf. footnote 5) as a specification with multiple
refational models, and they seem to suggest that these multipie
models represent possible acceptable semantics. However, when
we look more closely at the Hoare-Lauer and Floyd-Hoare
axioms we shall see that an example of a specification which
could be met by many acceptable semantics does not arise here;
there is only one intended model of these particutlar
specifications, although it takes some effort to discover the sense
in which these specifications determine that model.

In partcular, Hoare and Lauer observe [Hoare and
Lauer, Theorem 4] that HLI-5 implies the first four Floyd-

Hoare rules FHI-4.9 For some reason they do not consider the
converse question of whether FHI-4 imphies HLI-5. In fact, 1t
does not; not even the full' Floyd-Hoare system FHI-5 implies
HLI-5. This s because any IM smaller than R is a relational
model of FHI-5, so that, for example, the empty semantics is a
model of FHI-5 but not of HLI-5.

However, Hoare and Lauer’s proof that HLI-b implies
FHI-4 actually establishes a shghtly stronger result which we
can use to reveal the connections between HLI-5, FHI-4, and R.

An inference rule such as any of FH3-5, T4-5 will be
called sound for a relational semantics M, 1f, whenever the
conditions (such as those for T5) for applicability of the rule are
satisfied and the antecedent(s) of the rule is true for M, so 1s
the consequent. In other words, an inference rule is sound if
application of 1t preserves truth.

Lemma 2:1f M is a modeil of FHI-2 and the inference rules
FH3-4 are sound for M, then M 15 a model of FHI-5.

Proof: It 1s easy to see that FH5 is sound for all M.1

Theorem 8: R is the largest model of FHI-2 for which the
inference rules FH3-4 are sound.

Proof: We let the reader convince himself that FH3-4 are sound
for the standard relational semantics R (cf. [Hoare and Lauer],
Theorem 4). Thus, R 15 "a" model; that it 1s "the largest”
modei is immediate from Theorem 5 and Lemma 2.}

Lemma 3{(Hoare and Lauer): Let M be a model of HLI-5.
Then M is a model of FHI-2 and the inference rules FH3-4 are
sound for M.

We shall not repeat the proof (cf. [Hoare and Lauer], page 147).
T heorem 9: R 1s the largest model of HLI-5.
Proof: Immediate from Theorem 7 and Lemma 3.1

The preceding theorems thus reveal the sense in
which HLI-6 and the first four Floyd-Hoare rules FHI-4 serve
as semantical specifications equivalent to the others we have
considered -- a rather obscure sense which was left implicit in

[Hoare and Lauer]1©

Our point here is that while we agree with Hoare and
Lauer that relationships like implications between specifications
with multiple models are important ideas, 1t is even more
important to have a clear understanding of the family of models

-which are to be regarded as meeting the specifications. This is

tlustrated by the fact that the semantics L of section 3.2 is a
relational model both of HLI-b and FHI-5, yet we certainly do
not mean to accept an implementation of our language in which
all while-loops diverge.

5. Conclusion

We have looked at two kinds of semantics -- relational
and partial correctness -- and several means of specifying a
semantics -- inductive definitions, axiom systems, deduction
systems. Each semantics can be specified in several ways.
There was no particular technical problem in rigorously
defining how specifications determined semantics.

The set of all partial correctness assertions true for our
trivial programming language gives exactly the same
information as the relational semantics; a specification which
determines the pca semantics also determines the relational
semantics. This is true despite the fact that 1n a certain narrow
technical sense partial correctness assertions cannot be used to
express termmation of programs. Either kind of semantics can
be specified using an axiom system or a deductive system;
either semantics determines the other, independent of means of
specification.

185

The results of this paper can be extended to other
semantics and other means of specification, for example,
predicate transformer semantics. For deterministic programs,
the results are similar to those for pca’s. The situation is more
complicated for non-deterministic programs (cf. [Hoare, 1978;
Harel and Pratt, 1978]).

Syntax played a secondary role in this paper. Only
programs were syntactic objects; predicates were treated as
mathematical, set-theoretic objects. The next refinement of the
study begun here involves restricting predicates to those which
are definable in some agreed-upon formal notation, e.g., first or
second order logics of appropriate structures. When we restrict
predicates m this way the situation becomes more complicated -
and more interesting - and the conclusions we reached above
about the equivalence of various kinds of semantics must be
refined Thus, there are cases where the set of all true definable
pca’s may not determine the proper relational semantics; In
other cases a restricted deductive theory may contain only a
subset of all true definable pca's and yet determine the right
semantics. We postpone to a later paper further discussion of
predicate transformer semantics and the restriction to definable
predicates.

In sum, we have tliustrated that attempting to specify
the meaning of a language in several ways can be made to work
- at least for very simple programming languages when we
place no restrictions on the language for predicates. However,
care had to be taken to indicate how each specification was to
be understood before it could be applied by any of the variety
of possible users.

6. References

[The reference section of this paper does not constitute a
complete bibliography on the subject.]

deBakker,].W. 1975. Flow of Control in the Proof Theory of
Structured Programming. I6th Annual Symposium on
Foundations of Computer Science. 1EEE Computer
Society. Long Beach, Ca. pp 29-33.

deBakker, J.W. 1977. Recursive Programs as Predicate
Transformers. Proc. IFIP Conf. on Formal
Specifications of Programming Constructs. St. Andrews,
Canada. pp 71-7.15.

deBakker, J.W. and L.G.L.T. Meertens. 1975. On the
Completeness of the Inductive Assertion Method.
Journal of Computer and Systems Science, 1, pp 323-357.

Dijkstra, EW.D. 1975. Guarded Commands, Non-determinacy
and Formal Derivation of Programs. CACM 18, 8. pp
453-457.

Dijkstra, EW.D. 1976. A Duscipline of Programming, Prentice-
Hall, Englewood Cliffs, N.J., 217 pp.

Harel, D. 1978. Logics of Programs: Axiomatics and
Descriptive Power. Laboratory for Computer Science
Technical Report 200, M.1LT., Cambridge, Mass., 152 pp.

186

Harel, D, AR. Meyer, and V. Pratt. 1977. Computability and
Completeness in Logics of Programs. Proc. of 9th
Annual ACM Symposium on T heory of Computing.
Boulder, Colorado. pp 261-268.

Harel, D. and V. Pratt. 1978. Nondeterminism 1n Logics of
Programs. Conference Record of the Fifth Annual
Symposium on Principles of Programming Languages.
Tuscon, Arizona. pp 203-213.

Hoare, C.A.R. 1978. Some Properties of Predicate
Transformers JACM 25,3 pp 461-480.

Hoare, C.A.R. 1969. An Axiomatic Basis for Computer
Programming. CACM 12, 10. pp 576-583.

Hoare, C A.R. and P. Lauer. 1974. Consistent and
Complementary Formal Theories of the Semantics of
Programming Languages. Acta Informatica 3, pp 135-165.

Hoare, C AR. and N. Wirth. 1973, An Axiomatic Definition
of the Programming Language PASCAL. Acta
informatica 2, pp 335-355.

Manna, Z. 1974. Mathematical T heory of Computation,
McGraw-Hill, New York, 429 pp.

Pratt, V. 1976. Semantical Considerations on Floyd-Hoare
Logic 17th Annual Symposium on Foundations of

Computer Science. IEEE Computer Society. Long Beach,
Ca. pp 109-12L.

Schwarz,].S. 1974. Semantics of Partial Correctness
Formalisms. Ph.D. Thesis, Syracuse University.
Syracuse, N.Y. 126 pp.

7. Appendix
71 Proof of Theorem 1.

Theorem I: The standard relational semantics is the only model
of HLI-7.

Let T be the set of transitive assertions s{a)s’ true
for a relational model T of HLI-7 We will prove by induction
on a that (s, ') € R, iff sa)s’ eT Thus T = R.

If @ 1s NOP then by HL5, {NOP)s' € T & 5 =5' & (s5,5') €
RNOP‘ Similarly if @ 1s a primitive statement, A, then by HLL

{A)s' €T o (s.5')€R 4

If @ 15 by then by HL2, induction, and R2,
sbo)s’ €T o HsbheT Atl)s'eT]
o s, 1) € Ry A (t,5') € Rb]
o{s,s) e Rb°Rc
o5, 5 e Rb,c

The cize of while statements follows directly from the following
lemmas Al and A2

Lemma Al:(s,5') € R - s(while p do b)s’ € T.

while p do b
Proof:

Definution Al: For states s, s', program b and predicate P, let
dislb P(s, 5') be the least nonnegative integer k, if any, such that

there is a sequence sg .., 5; of states with the property that
() sg =5,
(1i) s =5’ and
(ui) P(s)) A (s, 5,,p) € Ry, for all nonnegative integers i<k;

if no such k exists the distance a’istbp (s,5') is said to be
mfinite.

We take the following two facts as obvious from
Definition Al First, 1f 'dist;, (s,5") = n+l, then P(s) and there is
an 5y such that (s, sl)eRb and dist, (sl,s’) = n. Second,
(s,s')eRw,”-[e pdob iff dzstb'p(s, 5') 1s finite and —P(s’).

Lemma Al follows by induction on dist, P(s s'). If the

distance 15 zero, then s s’ and from the second fact above
we conclude that —P(s). Then by HLS6, s(while p do b)s’T.

By the first fact above, 1f dist,, p(s. s')=n + 1 we have P(s) and

(s, 5)) € Ry, for some s; such that dist, S5 57) = n. From (s, s
€ Ry, by induction we have s(b)s; € T. By induction on n, we
have s|(while p do b)s' € T. Therefore, by HL7,

stwhile p do b)s' € T A

Lemma A2: s(while p dob)s' € T » (s,5') € R hite p dob

Proof : Let Q(t) be the predicate (s, ¢) € (RPORb)':°.
Claim: Q(sp) N P(s)) A 5y(b)sg » Qfso).

Proof of Claim: 5i(b)so€T = (s, 59) € Ry, by main induction on g,
hence the claim follows trivially.}

We have Qfs) by definition, and s(while p do b)s’ € T by
hypothesis. By HL4, we can’ conclude Qfs’), and by HL3 and
s(while p do b)s' € T, we have —P(s").

Now Q(s') A =P(s') » (5, 5') € R
R

while p do b by definition of

while p do b}

7.2 Proof of Lemma 1.

Let ma be a set of pca’s of the form P{a}Q.
Definition C1. max(ma) = {{(s,0] P(s) ~ Q1) for all P{a}Q_ema}.

Let R be a binary relation on states.

187

Definition C2. R (R) = {P{a}Q | P{a}Q_1s true for R}.

The following lemma formally establishes that
Defimtion 2 and CI are equivalent.

Lemma Cl. Rc max(ma) iff Ba(R) > ma.
Proof: Suppose R ¢ max(ll} ;) and that P{a}P’ e 11T .

Then for any s, s', P(s) A (5, s') € R smplies P(s) A (s, s') €
max(ma). By definition of max and the fact that P{q}P’' €

ma, we can then conclude P‘(s’). Thus P{a}P’' € ﬂa(R). by
the definition of Ra(R).

Now assume that ma c ﬁa(R) and (s, s’) € R. For any
Qfa}Q’ € ma such that Q(s), we have by the definition of
F\a(R) that Q'(s’). Thus, (s,5') € max(ma). I

emma C2:R = max(ﬂa(R))
Proof: R c max(RR (R)) by Lemma Cl.

To show equality, suppose (s}, so) ¢ R. Let E; be the
predicate true only of state s. Then Esl{a} —'E52 € ﬁa(R) by

definition of Ra(R), so (s, so) ¢ max(Ra(R)) by definition of
max.§

Note that if M is a relational semantics and I} is the
set of pca’s true for M, then ma = Ra(Ma), so Lemma |
follows immediately from Lemma C2.

7.3 Proof of Theorem 3

T heorem 3: The set of pca’s derivable from FHI-5, is equal to R,
the standard partial correctness semantics.

The proof that P{a}Q true for R implies P{a}Q
derivable is by induction on the structure of programs. If
P{NOP}Q 1s true forR, then by Definition | and Rl we
conclude that P implies Q. Hence P{NOP}Q is derivable by
applying FH5 to the FHI axiom P{NOP}P.

If P{A}Q is true for R, then by Definitions I and 3, P
implies [R 41Q, so P{4}Q, 1s derivable by applying FH5 to the

FH2 axiom ([RA]O){A}Q

If P{a;p}Q 15 true for R, then P{a}([R,]Q) must be
true for R, as the reader can verify from Definitions 1, 3, and
R2. Also, ([RJQ)HIQ, 15 true for R by Definutions 1 and 3. By
mduction we may conclude that P{a}([R,]Q) and (IR JQ{6}Q

are derivable, and therefore P{a;p}Q is derivable by applying
FH3. Finally, suppose Pj{while p do a}Pq 1s true for R. Let Q =
Ry hite p do aJPo- Then again it follows directly from the
definitions that

(l)‘Pl imphes Q,

(2) Q A =P imphes Py, and

(3) (Q_ A PYa]Q 15 true for R.

Then by induction, we conclude from (3) that (Q A P)}a}Q s
derivable. Applying FH4, we can therefore derive

Qfwhile p do a}{(Q A —P). But we can apply FH5 to the latter
assertion to derive (Pl N Q){while p do a}(P2 VA(Q A —P))
which by (1) and (2) 1s the same as Pl{wlzile p do a}P2.

We omit the proof that if P{a}Q is derivable then
“P{a}Q.is true for R.I

74 Proof of Theorem 4

Theorem 4: R is the only partial correctness model of PCI-4.
Proof:The following lemma summarizes some facts about

weakest antecedent which are used in the proof.

Lemma Bl: Let R, Rl’ and R2 be relations on states.
(@) AP '(=(P-[RIP ') A =(P'-Q)) iff =(P-[RIQ).

(b) [Rl][Rle’ = [RIOR 2]Q_

() =(R*1Q~Q)
(d) =((R*JQ~[RIR"IQ)
Proof of BI:

(a) the 1f direction is trivial and the only if direction is
equivalent to soundness of FHI-b.

(b) and (c) follow from definition 3. We omit the details.

(d) We use the following facts which again follow directly from
definitions:

(MR*=TURURZU.. =1UReR?
where Rl UR2 1s the union of Rl and Rz.

() =R} U RJQ & =([RJQNARHIQ)).
By (1) [R¥IQ(s) equals [I U ReR*IQ(s). Thus [R™IQ{s) imphes
(by 1) [1]Q(s)AIR°R*1Q(s) 1mplies (by definition 3)
Q(s)AIRoR¥IQ(s) which implies [RoR*]IQ(s). Thus
=(R*1Q-[R=R*IQ)I

Let {IV be any partial correctness model of PCi-4. We
show that ma = Ra by mduction on structure of program a.

P{NOP}Q e Ti¥ iff (by PCI) =(P ~ Q) iff (by def. 1)
P{NOP}Q e R.

P{A}Q e TV iff (by PC2) =(P ~ [R 4]Q) 1ff (by defs. |
and 3) P{4}Q ¢ K.

188

Suppose @ = bie. Then Qfa}Q ' e MY
iff (by PC2) 3P(QJ}P’ € Ti¥ and P'{c}Q’ TIT)
iff (by nduction) IP(QIEIP* € R AP'{c}Q e R)
i 3P ((=QAIRIP) A =(P > [R_IQ!))
if (by lemma B () =(Q = [R,JIR JQ.")
iff (by lemma BI (b)) =(Q_ + [R,°R Q)
iff 0fajQ’ e R

We need the following two lemmas for the case of
a = while P do b.

Lemma B2: Qfwhile p do)Q’ € U implies

BQ"'(‘:((PAQ")*[Rb]Q")A HQ~Q") A =(QA-P)=Q')).

Proof of B2: Qfwhile p do b}Q" € R implies
QAR e p do 51Q.") which implies,

by R3, b(Q»[(RPoRb)”-'oR —plQ")-

By lemma BI (b) this imphes
3Q;(*=(Q_—*[(RP°R1,)"]Q1)/\ =(Qy - [R .,p]Q,’).

Then by definition 3,
QUHQALR R FIQIA =(QA—P)=Q)).

Let Q" = ((RPORb)”]Ql. Then by definition of Q", =(Q-Q").
By lemma BI(c), h(Q"»Ql). This fact and =(Qq A—P)-Q/),

imply that =((Q"A=P)~Q’). Thus we need only show that
F(Q"AP)-[R,1Q"). By lemma Bl (c) and (d),

F(Q"-[R;°R,1Q") which by Bi(b) and definition 3 implies
':«Q'n/\p)_.[Rb]Qu) 1

Lemma B3: Qlwhile p do b} Q'¢ I implies
~3Q"(=(Q~Q") A=((QAP)-IRIQIN(QA—P)-Q).
Proof of B3:1f Q {while p do b} Q' ¢ « R then by definition |

(=) Fs,s"(Qfs) AssIER 2, pdob A—Qfs).

Since (5,5") € Ryypite pdob and Ryz0e pdob~ (Rp°Rb)'°R —p’
there 1s a sequence of states s, .5 such that either k=0, s=s’
and —P(s') or the following conditions hold:

k>0

5=SO

sk=s'

P(xl) for 1<k

=P(sy)

(s 5, €Ry for 1<k.

Now assume Q" exists and satisfies
(1) HQ-Q
(1) =(Q"AP) + [R,IQ"
(iti) =(Q A-P)=Q)

If k=0, then (1) and (i) tmply Q(s)-Q'(s’) 1s true, which
contradicts {x).

If k>0, then by (1) Q"(s) is true. By induction we find that
Q"(s)) 1s true for 1<k. Then (i) imphes that Q'(s') is true,
again contradicting (:).4

Suppose a = while p do b. Then Qfa}Q’ € TY iff (by PC4)

3QPAQY) 14}Q" € Ui and
=(Q-Q") and =(Q"A—P)>Q")]

iff (by induction)
3Q"[(P/\Qf’){b}Q" € “ and
=(Q-Q") and F(Q"A-P)»Q)]

iff 3QIE(PAQM-IRLIQM A HQAQIN=(QA-P)+Q')]

iff (by lemmas Bl and B2) QfalQ’ € R

8. Notes

1. In a later paper [Hoare, 1978] Hoare emphasizes the
verification aspects of proof rules rather than their use as an
alternative specification of the semantics. Nevertheless, others
{cf. Dijkstra, 1975] have used proof rules as a means of
defimtion. It 1s this issue which we address.

9. We avoid the use of the word "nondeterministic” here
because nondeterminism is a property of how final states are
computed from imtial states, rather than merely being a property
of which tmitial states map to which final states. Nonfunctional
relations can only arise from nondeterministic programs, but
functional relations do not necessartly arise only from
deterministic programs.

3. Technically speaking, HLI-5 are axiom schemes in which a, &
may be any programs, Q any predicate, etc.

4. A similar observation is made by Pratt [1976].

5. They omit FHI -- a minor oversight. Their D3 is misprinted,

but 1t 15 clear from their Lemma 9 that they intended to state
FH4.

6. Theorem 4, in particular the characterization of while
statements by PC4, 1s implicit in Lemma 2.3 of deBakker [1975).

7. Technically speaking, we should say that R is a model of
Th(FHI-5) and Th(T1-5) where Th(S) refers to the set of
theorems deducible in deductive system S.

8. This seems to be the technical content of the frequently heard
that pca’s cannot be used to demonstrate termination, (cf. eg.
[Hoare, 1969, [Manna, 1974)). The remark is correct, but must
not be taken to mislead the reader into thinking :that pca’s are
an inherently inadequate semantics. As we have seen in
Theorem 6, the complete set of true pca’s determines everything
about R despite the anti-monotonicity of pca’s.

9. Hoare and Lauer refer to "theorems..proved in the relational
theory”, rather than mentioning models explicitly. But since the
relational theory HLI-b consists solely of axioms without
inference rules, we must assume they refer to the usual model-
theoretic notion of theorem, namely, an assertion is a theorem
when 1t 15 true of all models of the axioms. With this
interpretation, their formulation of consistency 1s equivalent to
ours.

10. To emphasize the obscurity of Theorem 7, we note that
although FHi-4 speafy R according to Theorem 7, it is not true
that Th(FH1-4) = Th(FHI-5) or even that R 1s the largest model
of Th{FHI-4).

We regard the characterization of R in Theorem 8 as
subtle because there 1s no particular reason to look at largest
models 1n the context of an axiomatization like HLI-5. Indeed,
we saw that by adding HL&-7 only one model is possible, SO
there Is no reason to expect or rely on a condition like
maximahty to force uniqueness.

189

