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Abstract
The performance of many dynamic language implementations suf-
fers from high allocation rates and runtime type checks. This makes
dynamic languages less applicable to purely algorithmic problems,
despite their growing popularity. In this paper we present a simple
compiler optimization based on online partial evaluation to remove
object allocations and runtime type checks in the context of a trac-
ing JIT. We evaluate the optimization using a Python VM and find
that it gives good results for all our (real-life) benchmarks. 1

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—code generation, interpreters, run-time envi-
ronments

General Terms Languages, Performance, Experimentation

Keywords Tracing JIT, Partial Evaluation, Optimization

1. Introduction
The objective of a just-in-time (JIT) compiler for a dynamic lan-
guage is to improve the speed of the language over an implementa-
tion of the language that uses interpretation. The first goal of a JIT
is therefore to remove the interpretation overhead, i.e. the overhead
of bytecode (or AST) dispatch and the overhead of the interpreter’s
data structures, such as operand stack etc. The second important
problem that any JIT for a dynamic language needs to solve is how
to deal with the overhead of boxing primitive types and of type dis-
patching. Those are problems that are usually not present or at least
less severe in statically typed languages.

Boxing of primitive types is necessary because dynamic lan-
guages need to be able to handle all objects, even integers, floats,
booleans etc. in the same way as user-defined instances. Thus those
primitive types are usually boxed, i.e., a small heap-structure is al-
located for them that contains the actual value. Boxing primitive
types can be very costly, because a lot of common operations, par-
ticularly all arithmetic operations, have to produce new boxes, in

1 This research is partially supported by the BMBF funded project PyJIT
(nr. 01QE0913B; Eureka Eurostars).
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addition to the actual computation they do. Because the boxes are
allocated on the heap, producing many of them puts pressure on the
garbage collector.

Type dispatching is the process of finding the concrete imple-
mentation that is applicable to the objects at hand when performing
a generic operation on them. An example would be the addition of
two objects: For addition the types of the concrete objects need to
be checked and the suiting implementation chosen. Type dispatch-
ing is a very common operation in modern2 dynamic languages be-
cause no types are known at compile time. Therefore all operations
need it.

A recently popular approach to implementing just-in-time com-
pilers for dynamic languages is that of a tracing JIT. A tracing JIT
works by observing the running program and recording its com-
monly executed parts into linear execution traces. Those traces are
optimized and turned into machine code.

One reason for the popularity of tracing JITs is their relative
simplicity. They can often be added to an existing interpreter,
reusing a lot of the interpreter’s infrastructure. They give some
important optimizations like inlining and constant-folding for free.
A tracing JIT always produces linear pieces of code, which sim-
plifies many of the hard algorithms in a compiler, such as register
allocation.

The use of a tracing JIT can remove the overhead of bytecode
dispatch and that of the interpreter data structures. In this paper
we want to present a new optimization that can be added to a
tracing JIT that further removes some of the overhead more closely
associated to dynamic languages, such as boxing overhead and
type dispatching. Our experimental platform is the PyPy project,
which is an environment for implementing dynamic programming
languages. PyPy and tracing JITs are described in more detail
in Section 2. Section 3 analyzes the problem to be solved more
closely.

The core of our trace optimization technique can be viewed as
partial evaluation: the partial evaluation performs a form of escape
analysis [4] on the traces and makes some objects that are allocated
in the trace static, which means that they do not occur any more
in the optimized trace. This technique is informally described in
Section 4; a more formal description is given in Section 5. The
introduced techniques are evaluated in Section 6 using PyPy’s
Python interpreter.

The contributions made by this paper are:

2 For languages in the LISP family, basic arithmetic operations are typically
not overloaded; even in Smalltalk, type dispatching is much simpler than in
Python or JavaScript.
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1. A description of a practical, efficient and effective algorithm for
removing object allocations in a tracing JIT.

2. A characterization of this algorithm as partial evaluation.

3. Performance benchmarks for this algorithm.

2. Background
2.1 PyPy
The work described in this paper was done in the context of the
PyPy project3 [26]. PyPy is an environment where dynamic lan-
guages can be implemented in a simple yet efficient way. When
implementing a language with PyPy one writes an interpreter for
the language in RPython [1]. RPython ("restricted Python") is a
subset of Python chosen in such a way that type inference becomes
possible. The language interpreter can then be compiled (“trans-
lated”) with PyPy’s tools into a VM on C level. During translation
to C, many low-level aspects of the final VM, such as object layout,
garbage collection and memory model, are woven into the gener-
ated code. Therefore the interpreter itself can remain at a relatively
high level of abstraction.

A number of languages have been implemented with PyPy.
The project was initiated to get a better Python implementation,
which inspired the name of the project and is still the main focus
of development. In addition a number of other languages were
implemented, among them a Prolog interpreter [7], a Smalltalk VM
[6] and a GameBoy emulator [8].

The feature that makes PyPy more than a compiler with a run-
time system is its support for automated JIT compiler generation
[5]. During the translation to C, PyPy’s tools can generate a trac-
ing just-in-time compiler for the language that the interpreter is
implementing. This process is mostly automatic; it only needs to
be guided by the language implementer using a small number of
source-code hints in the interpreter. Mostly-automatically generat-
ing a JIT compiler has many advantages over writing one manually,
an error-prone and tedious process. By construction, the generated
JIT has the same semantics as the interpreter. Optimizations can be
shared between different languages implemented with PyPy.

Moreover, thanks to the internal design of the JIT generator, it
is very easy to add new backends for producing the actual machine
code. Examples of JIT backends that are implemented are those for
Intel x86 and x86-64 and an experimental one for the CLI .NET
Virtual Machine [12].

2.2 Tracing JIT Compilers
Tracing JITs are a recently popular approach to write just-in-time
compilers for dynamic languages. Their origins lie in the Dynamo
project, which used a tracing approach to optimize machine code
using execution traces [2]. Tracing JITs have then be adapted to be
used for a very light-weight Java VM [15] and afterwards used in
several implementations of dynamic languages, such as JavaScript
[13], Lua4 and now Python (and other languages) via PyPy.

The core idea of tracing JITs is to focus the optimization effort
of the JIT compiler on the commonly executed, i.e., hot paths of
the core loops of the program and to just use an interpreter for
the less commonly executed parts. VMs that use a tracing JIT are
mostly mixed-mode execution environments, they contain both an
interpreter and a JIT compiler. By default the interpreter is used
to execute the program, doing some light-weight profiling at the
same time. This profiling is used to identify the hot loops of the
program. If a hot loop is found in that way, the interpreter enters a
special tracing mode. In this tracing mode, the interpreter tries to

3 http://pypy.org
4 http://luajit.org/

record all operations that it is executing while running one iteration
of the hot loop. This history of executed operations of one loop is
called a trace. Because the trace corresponds to one iteration of a
loop, it always ends with a jump to its own beginning. The trace
also contains all operations that are performed in functions that
were called in the loop, thus a tracing JIT automatically performs
inlining. This trace of operations subsequently forms the basis of
the generated code. The trace is first optimized, and then turned
into machine code. Both optimization and machine code generation
are simple, because the traces are linear. This linearity makes many
optimizations a lot more tractable, and the inlining that happens
gives the optimizations automatically more context to work with.

Since the trace corresponds to one concrete execution of a loop,
the code generated from it is only one possible path through the
loop. To make sure that the trace maintains the correct semantics,
it contains a guard at all places where the execution could have
diverged from the path. Those guards check the assumptions under
which execution can stay on the trace. As an example, if a loop
contains an if-statement, the trace will contain the execution of
one of the paths only, which is the path that was taken during the
production of the trace. The trace will also contain a guard that
checks that the condition of the if-statement is the same as during
tracing, because if it isn’t, the rest of the trace would not be valid.

When generating machine code, every guard is turned into a
quick check to see whether the assumption still holds. When such
a guard is hit during the execution of the machine code and the
assumption does not hold, the execution of the machine code is
stopped, and interpreter continues to run from that point on. These
guards are the only mechanism to stop the execution of a trace, the
loop end condition also takes the form of a guard.

If one specific guard fails a lot (i.e., more than some threshold),
the tracing JIT will generate a new trace that starts exactly at the
position of the failing guard [14]. The existing assembler is patched
to jump to the new trace when the guard fails. This approach
guarantees that all the hot paths in the program will eventually be
traced and compiled into efficient code.

2.3 Running Example
For the purpose of this paper, we are going to use a tiny interpreter
for a dynamic language with a very simple object model, that just
supports an integer and a float type. The objects support only two
operations, add, which adds two objects (promoting ints to floats
in a mixed addition) and is_positive, which returns whether the
number is greater than zero. The implementation of add uses clas-
sical Smalltalk-like double-dispatching. The classes can be seen in
Figure 1 (written in RPython).

Using these classes to implement arithmetic shows the basic
problem of a dynamic language implementation. All the numbers
are instances of either BoxedInteger or BoxedFloat, therefore
they consume space on the heap. Performing many arithmetic op-
erations produces lots of garbage quickly, putting pressure on the
garbage collector. Using double dispatching to implement the nu-
meric tower needs two method calls per arithmetic operation, which
is costly due to the method dispatch.

Let us now consider a simple “interpreter” function f that uses
the object model (see the bottom of Figure 1). The loop in f iterates
y times, and computes something in the process. Simply running
this function is slow, because there are lots of virtual method calls
inside the loop, one for each is_positive and even two for each
call to add. These method calls need to check the type of the
involved objects repeatedly and redundantly. In addition, a lot of
objects are created when executing that loop, many of these objects
are short-lived. The actual computation that is performed by f is
simply a sequence of float or integer additions.
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class Base(object):
pass

class BoxedInteger(Base):
def __init__(self, intval):

self.intval = intval

def add(self, other):
return other.add__int(self.intval)

def add__int(self, intother):
return BoxedInteger(intother + self.intval)

def add__float(self, floatother):
floatvalue = floatother + float(self.intval)
return BoxedFloat(floatvalue)

def is_positive(self):
return self.intval > 0

class BoxedFloat(Base):
def __init__(self, floatval):

self.floatval = floatval

def add(self, other):
return other.add__float(self.floatval)

def add__int(self, intother):
floatvalue = float(intother) + self.floatval
return BoxedFloat(floatvalue)

def add__float(self, floatother):
return BoxedFloat(floatother + self.floatval)

def is_positive(self):
return self.floatval > 0.0

def f(y):
res = BoxedInteger(0)
while y.is_positive():

res = res.add(y).add(BoxedInteger(-100))
y = y.add(BoxedInteger(-1))

return res

Figure 1. An “Interpreter” for a Tiny Dynamic Language Written
in RPython

If the function is executed using the tracing JIT, with y being
a BoxedInteger, the produced trace looks like the one of Fig-
ure 2 (lines starting with a hash “#” are comments). The trace cor-
responds to one iteration of the while-loop in f.

The operations in the trace are indented corresponding to the
stack level of the function that contains the traced operation. The
trace is in single-assignment form, meaning that each variable is
assigned a value exactly once. The arguments p0 and p1 of the loop
correspond to the live variables y and res in the while-loop of the
original function.

The operations in the trace correspond to the operations in the
RPython program in Figure 1:

• new creates a new object.
• get reads an attribute of an object.
• set writes to an attribute of an object.
• guard_class is a precise type check and precedes an (inlined)

method call and is followed by the trace of the called method.
• int_add and int_gt are integer addition and comparison

(“greater than”), respectively.
• guard_true checks that a boolean is true.

1# arguments to the trace: p0, p1

2# inside f: res.add(y)
3guard_class(p1, BoxedInteger)
4# inside BoxedInteger.add
5i2 = get(p1, intval)
6guard_class(p0, BoxedInteger)
7# inside BoxedInteger.add__int
8i3 = get(p0, intval)
9i4 = int_add(i2, i3)
10p5 = new(BoxedInteger)
11# inside BoxedInteger.__init__
12set(p5, intval, i4)
13

14# inside f: BoxedInteger(-100)
15p6 = new(BoxedInteger)
16# inside BoxedInteger.__init__
17set(p6, intval, -100)
18

19# inside f: .add(BoxedInteger(-100))
20guard_class(p5, BoxedInteger)
21# inside BoxedInteger.add
22i7 = get(p5, intval)
23guard_class(p6, BoxedInteger)
24# inside BoxedInteger.add__int
25i8 = get(p6, intval)
26i9 = int_add(i7, i8)
27p10 = new(BoxedInteger)
28# inside BoxedInteger.__init__
29set(p10, intval, i9)
30

31# inside f: BoxedInteger(-1)
32p11 = new(BoxedInteger)
33# inside BoxedInteger.__init__
34set(p11, intval, -1)
35

36# inside f: y.add(BoxedInteger(-1))
37guard_class(p0, BoxedInteger)
38# inside BoxedInteger.add
39i12 = get(p0, intval)
40guard_class(p11, BoxedInteger)
41# inside BoxedInteger.add__int
42i13 = get(p11, intval)
43i14 = int_add(i12, i13)
44p15 = new(BoxedInteger)
45# inside BoxedInteger.__init__
46set(p15, intval, i14)
47

48# inside f: y.is_positive()
49guard_class(p15, BoxedInteger)
50# inside BoxedInteger.is_positive
51i16 = get(p15, intval)
52i17 = int_gt(i16, 0)
53# inside f
54guard_true(i17)
55jump(p15, p10)

Figure 2. An Unoptimized Trace of the Example Interpreter

Method calls in the trace are preceded by a guard_class
operation, to check that the class of the receiver is the same as the
one that was observed during tracing.5 These guards make the trace
specific to the situation where y is really a BoxedInteger. When
the trace is turned into machine code and afterwards executed
with BoxedFloat, the first guard_class instruction will fail and
execution will continue using the interpreter.

The trace shows the inefficiencies of f clearly, if one looks at
the number of new, set/get and guard_class operations. The
number of guard_class operation is particularly problematic, not
only because of the time it takes to run them. All guards also have
additional information attached that makes it possible to return to

5 guard_class performs a precise class check, not checking for sub-
classes.
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Figure 3. Object Lifetimes in a Trace

the interpreter, should the guard fail. This means that too many
guard operations also consume a lot of memory.

In the rest of the paper we will see how this trace can be
optimized using partial evaluation.

3. Object Lifetimes in a Tracing JIT
To understand the problems that this paper is trying to solve in more
detail, we first need to understand various cases of object lifetimes
that can occur in a tracing JIT compiler.

Figure 3 shows a trace before optimization, together with the
lifetime of various kinds of objects created in the trace. It is exe-
cuted from top to bottom. At the bottom, a jump is used to execute
the same loop another time (for clarity, the figure shows two itera-
tions of the loop). The loop is executed until one of the guards in the
trace fails, and the execution is aborted and interpretation resumes.

Some of the operations within this trace are new operations,
which each create a new instance of some class. These instances
are used for some time, e.g., by calling methods on them (which
are inlined into the trace), reading and writing their fields. Some of
these instances escape, which means that they are stored in some
globally accessible place or are passed into a non-inlined function
via a residual call.

Together with the new operations, the figure shows the lifetimes
of the created objects. The objects that are created within a trace
using new fall into one of several categories:

1. Objects that live for some time, and are then just not used any
more afterwards.

2. Objects that live for some time and then escape.

3. Objects that live for some time, survive across the jump to the
beginning of the loop, and are then not used any more.

4. Objects that live for some time, survive across the jump, and
then escape. To these we also count the objects that live across
several jumps and then either escape or stop being used.

The objects that are allocated in the example trace in Figure 2
fall into categories 1 and 3. Objects stored in p5, p6, p11 are in
category 1, objects in p10, p15 are in category 3.

The creation of objects in category 1 is removed by the opti-
mization described in Sections 4 and 5. Objects in the other cate-
gories are partially optimized by this approach as well.6

4. Allocation Removal in Traces
The main insight to improve the code shown in Section 2.3 is that
objects in category 1 do not survive very long – they are used only
inside the loop and there is no other outside reference to them.
The optimizer identifies objects in category 1 and removes the
allocation of these objects, and all operations manipulating them.

This is a process that is usually called escape analysis [18].
In this paper we will perform escape analysis by using partial
evaluation. The use of partial evaluation is a bit peculiar in that
it receives no static input arguments for the trace, but it is only used
to optimize operations within the trace. This section will give an
informal account of this process by examining the example trace in
Figure 2. The final trace after optimization can be seen in Figure 4
(the line numbers are the lines of the unoptimized trace where the
operation originates).

To optimize the trace, it is traversed from beginning to end and
an output trace is produced. Every operation in the input trace is
either removed or copied into the output trace. Sometimes new
operations need to be produced as well. The optimizer can only
remove operations that manipulate objects that have been allocated
within the trace, while all other operations are copied to the output
trace unchanged.

Looking at the example trace of Figure 2, the operations in lines
1–9 are manipulating objects which existed before the trace and
that are passed in as arguments: therefore the optimizer just copies
them into the output trace.

The following operations (lines 10–17) are more interesting:

10p5 = new(BoxedInteger)
12set(p5, intval, i4)
15p6 = new(BoxedInteger)
17set(p6, intval, -100)

When the optimizer encounters a new, it removes it optimisti-
cally, and assumes that the object is in category 1. If later the opti-
mizer finds that the object escapes, it will be allocated at that point.
The optimizer needs to keep track of the state of the object that
the operation would have created. This is done with the help of
a static object7. The static object describes the shape of the ob-
ject that would have been allocated, i.e., the type of the object and
where the values that would be stored in the fields of the allocated
object come from.

In the snippet above, the two new operations are removed and
two static objects are constructed. The set operations manipulate
static objects, therefore they can be removed as well; their effect is
remembered in the static objects.

After the operations the static object associated with p5 would
store the knowledge that it is a BoxedInteger whose intval
field contains i4; the one associated with p6 would store that it is a
BoxedInteger whose intval field contains the constant -100.

6 We also started to work on optimizing objects in category 3, which will be
the subject of a later paper.
7 Here “static” is meant in the sense of partial evaluation, i.e., known at
partial evaluation time, not in the sense of “static allocation” or “static
method”.
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The subsequent operations (line 20–26) in Figure 2, which use
p5 and p6, can then be optimized using that knowledge:

20guard_class(p5, BoxedInteger)
22i7 = get(p5, intval)
23guard_class(p6, BoxedInteger)
25i8 = get(p6, intval)
26i9 = int_add(i7, i8)

The guard_class operations can be removed, since their ar-
guments are static objects with the matching type BoxedInteger.
The get operations can be removed as well, because each of them
reads a field out of a static object. The results of the get operation
are replaced with what the static object stores in these fields: all the
occurences of i7 and i8 in the trace are just replaced by i4 and -100.
The only operation copied into the optimized trace is the addition:

26i9 = int_add(i4, -100)

The rest of the trace from Figure 2 is optimized in a similar vein.
The operations in lines 27–35 produce two more static objects and
are removed. Those in line 36–39 are just copied into the output
trace because they manipulate objects that are allocated before the
trace. Lines 40–42 are removed because they operate on a static
object. Line 43 is copied into the output trace. Lines 44–46 produce
a new static object and are removed, lines 48–51 manipulate that
static object and are removed as well. Lines 52–54 are copied into
the output trace.

The last operation (line 55) is an interesting case. It is the jump
operation that passes control back to the beginning of the trace.
The two arguments to this operation at this point are static objects.
However, because they are passed into the next iteration of the loop
they live longer than the trace and therefore cannot remain static.
They need to be turned into dynamic (runtime) objects before the
actual jump operation. This process of turning a static object into a
dynamic one is called lifting.

Lifting a static object puts new and set operations into the
output trace. Those operations produce an object at runtime that
has the shape described by the static object. This process is a bit
delicate, because the static objects could form an arbitrary graph
structure. In our example it is simple, though:

44p15 = new(BoxedInteger)
46set(p15, intval, i14)
27p10 = new(BoxedInteger)
29set(p10, intval, i9)
55jump(p15, p10)

Observe how the operations for creating these two instances
have been moved to a later point in the trace. This is worthwhile
even though the objects have to be allocated in the end because
some get operations and guard_class operations on the lifted
static objects could be removed.

More generally, lifting needs to occur if a static object is used
in any operation apart from get, set, and guard. It also needs to
occur if set is used to store a static object into a non-static one.

The final optimized trace of the example can be seen in Figure 4.
The optimized trace contains only two allocations, instead of the
original five, and only three guard_class operations, compared
to the original seven.

5. Formal Description of the Algorithm
In this section we want to give a formal description of the semantics
of the traces and of the optimizer and liken the optimization to
partial evaluation. We focus on the operations for manipulating
heap allocated objects, as those are the only ones that are actually
optimized. We also consider only objects with two fields L and R in
this section, generalizing to arbitrary many fields is straightforward.
Traces are lists of operations. The operations considered here are
new, get, set and guard_class.

1# arguments to the trace: p0, p1

3guard_class(p1, BoxedInteger)
5i2 = get(p1, intval)
6guard_class(p0, BoxedInteger)
8i3 = get(p0, intval)
9i4 = int_add(i2, i3)
26i9 = int_add(i4, -100)

37guard_class(p0, BoxedInteger)
39i12 = get(p0, intval)
43i14 = int_add(i12, -1)

52i17 = int_gt(i14, 0)
54guard_true(i17)

44p15 = new(BoxedInteger)
46set(p15, intval, i14)
27p10 = new(BoxedInteger)
29set(p10, intval, i9)

55jump(p15, p10)

Figure 4. Resulting Trace After Allocation Removal

The values of all variables are locations (i.e., pointers). Lo-
cations are mapped to objects, which are represented by triples
(T, l1, l2) of a type T , and two locations that represent the fields of
the object. When a new object is created, the fields are initialized
to null, but we require that they are initialized to a real location be-
fore being read, otherwise the trace is malformed (this condition is
guaranteed by how the traces are generated in PyPy).

We use some abbreviations when dealing with object triples. To
read the type of an object, type((T, l1, l2)) = T is used. Reading
a field F from an object is written (T, l1, l2)F which either is l1
if F = L or l2 if F = R. To set field F to a new location l, we
use the notation (T, l1, l2)!F l, which yields a new triple (T, l, l2)
if F = L or a new triple (T, l1, l) if F = R.

Figure 5 shows the operational semantics for traces. The inter-
preter formalized there executes one operation at a time. Its state
is represented by an environment E and a heap H , which may be
changed by the execution of an operation. The environment is a
partial function from variables to locations and the heap is a partial
function from locations to objects. Note that a variable can never
be null in the environment, otherwise the trace would have been
malformed. The environment could not directly map variables to
objects, because several variables can point to the same object, be-
cause of aliasing.

We use the following notation for updating partial functions:
E[v 7→ l] denotes the environment which is just like E, but maps
v to l.

The new operation creates a new object (T,null, null) on the
heap under a fresh location l and adds the result variable to the
environment, mapping it to the new location l.

The get operation reads a field F out of an object, and adds the
result variable to the environment, mapping it to the read location.
The heap is unchanged.

The set operation changes field F of an object stored at the
location that variable v maps to. The new value of the field is the
location in variable u. The environment is unchanged.

The guard_class operation is used to check whether the ob-
ject stored at the location that variable v maps to is of type T . If
that is the case, then execution continues without changing heap
and environment. Otherwise, execution is stopped.

5.1 Optimizing Traces
To optimize the simple traces of the last section, we use online
partial evaluation. The partial evaluator optimizes one operation
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new
l fresh

v = new(T ), E,H
run
=⇒ E [v 7→ l] , H [l 7→ (T,null, null)]

guard
type(H(E(v)) = T

guard_class(v, T ), E,H
run
=⇒ E,H

get
u = get(v, F ), E,H

run
=⇒ E

[
u 7→ H (E (v))F

]
, H

type(H(E(v)) 6= T

guard_class(v, T ), E,H
run
=⇒ ⊥,⊥

set
set (v, F, u) , E,H

run
=⇒ E,H [E (v) 7→ (H (E (v))!FE(u))]

Object Domains:

u, v ∈ V variables in trace
T ∈T runtime types
F ∈ {L,R} fields of objects
l ∈L locations on heap

Semantic Values:
E ∈ V ⇀ L Environment
H ∈L ⇀ T× (L ∪ {null})× (L ∪ {null}) Heap

Figure 5. The Operational Semantics of Simplified Traces

of a trace at a time. Every operation in the unoptimized trace is
replaced by a list of operations in the optimized trace. This list is
empty if the operation can be optimized away. The optimization
rules can be seen in Figure 6. Lists are written using angular
brackets < ... >, list concatenation is expressed using two colons:
l1 :: l2.

The state of the optimizer is stored in an environment E and
a static heap S. Each step of the optimizer takes an operation, an
environment and a static heap and produces a list of operations, a
new environment and a new static heap.

The environment is a partial function from variables in the un-
optimized trace V to variables in the optimized trace V ∗ (which are
themselves written with a ∗ for clarity). The reason for introducing
new variables in the optimized trace is that several variables that
appear in the unoptimized trace can turn into the same variables
in the optimized trace. The environment of the optimizer serves a
function similar to that of the environment in the semantics: to ex-
press sharing.

The static heap is a partial function from V ∗ into the set of static
objects, which are triples of a type and two elements of V ∗. The
object referenced by a variable v∗ is static, if v∗ is in the domain
of the static heap S. The object S(v∗) describes what is statically
known about the object, i.e., its type and its fields. The fields of
objects in the static heap are also elements of V ∗ (or null, for short
periods of time).

When the optimizer sees a new operation, it optimistically re-
moves it and assumes that the resulting object can stay static. The
optimization for all further operations is split into two cases. One
case is for when the involved variables are in the static heap, which
means that the operation can be performed at optimization time and
can be removed from the trace. These rules mirror the execution
semantics closely. The other case is for when not enough is known
about the variables, and the operation has to be residualized.

If the argument v of a get operation is mapped to something
in the static heap, the get can be performed at optimization time.
Otherwise, the get operation needs to be residualized.

If the first argument v to a set operation is mapped to some-
thing in the static heap, then the set can be performed at opti-
mization time (which updates the static heap). Otherwise the set
operation needs to be residualized. This needs to be done carefully,
because the new value for the field, from the variable u, could itself
be static, in which case it needs to be lifted first.

If a guard_class is performed on a variable that is in the static
heap, the type check can be performed at optimization time, which
means the operation can be removed if the types match. If the type
check fails statically or if the object is not in the static heap, the
guard_class is residualized. This also needs to lift the variable
on which the guard_class is performed.

Lifting takes a variable and turns it into a dynamic variable. If
the variable is already dynamic, nothing needs to be done. If it is
in the static heap, operations are emitted that construct an object
with the shape described there, and the variable is removed from
the static heap.

Lifting a static object needs to recursively lift its fields. Some
care needs to be taken when lifting a static object, because the
structures described by the static heap can be cyclic. To make
sure that the same static object is not lifted twice, the liftfield
operation removes it from the static heap before recursively lifting
its fields.

As an example for lifting, consider the static heap

{v∗ 7→ (T1, w
∗, v∗), w∗ 7→ (T2, u

∗, u∗)}
which contains two static objects. If v∗ needs to be lifted, the
following residual operations are produced:

v∗ = new(T1)
w∗ = new(T2)
set(w∗, L, u∗)
set(w∗, R, u∗)
set(v∗, L, w∗)
set(v∗, R, v∗)

After the lifting the static heap is the empty set, because both
static objects were lifted. If we had lifted w∗ instead of v∗, then the
following operations would have been produced:

w∗ = new(T2)
set(w∗, L, u∗)
set(w∗, R, u∗)

In this case, the static heap afterwards would be:

{v∗ 7→ (T1, w
∗, v∗)}

5.2 Analysis of the Algorithm
While we do not offer a formal proof of it, it can argue informally
that the algorithm presented above is sound: it works by delaying
(and often completely removing) some operations. The algorithm
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new
v∗ fresh

v = new(T ), E, S
opt
=⇒ 〈 〉 , E [v 7→ v∗] , S [v∗ 7→ (T,null, null)]

get
E(v) ∈ dom(S)

u = get(v, F ), E, S
opt
=⇒ 〈 〉 , E [u 7→ S(E(v))F ] , S

E(v) /∈ dom(S), u∗ fresh

u = get(v, F ), E, S
opt
=⇒ 〈u∗ = get(E(v), F )〉 , E [u 7→ u∗] , S

set
E(v) ∈ dom(S)

set (v, F, u) , E, S
opt
=⇒ 〈 〉 , E, S [E (v) 7→ (S(E(v))!FE(u))]

E(v) /∈ dom (S) , (E(v), S)
lift

=⇒ (ops, S′)

set (v, F, u) , E, S
opt
=⇒ ops :: 〈set (E(v), F, E(u))〉 , E, S′

guard
E(v) ∈ dom(S), type(S(E(v))) = T

guard_class(v, T ), E, S
opt
=⇒ 〈 〉 , E, S

E(v) /∈ dom(S) ∨ type(S(E(v))) 6= T, (E(v), S)
lift

=⇒ (ops, S′)

guard_class(v, T ), E, S
opt
=⇒ ops :: 〈guard_class(E (v) , T )〉 , E, S′

lifting
v∗ /∈ dom(S)

v∗, S
lift

=⇒ 〈 〉 , S

v∗ ∈ dom(S), (v∗, S)
liftfields
===⇒ (ops, S′)

v∗, S
lift

=⇒ 〈v∗ = new (type (S (v∗)))〉 :: ops, S′

(
S (v∗)L , S \ {v∗ 7→ S (v∗)}

) lift
=⇒ (opsL, S

′) ,
(
S (v∗)R , S′

) lift
=⇒ (opsR, S

′′)

v∗, S
liftfields
===⇒ opsL :: opsR ::

〈
set

(
v∗, L, S (v∗)L

)
, set

(
v∗, R, S (v∗)R

)〉
, S′′

Object Domains:

u, v ∈ V variables in trace
u∗, v∗ ∈ V ∗ variables in optimized trace

T ∈T runtime types
F ∈ {L,R} fields of objects

Semantic Values:
E ∈ V ⇀ V ∗ Environment
S ∈ V ∗ ⇀ T× (V ∗ ∪ {null})× (V ∗ ∪ {null}) Static Heap

Figure 6. Optimization Rules
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runs in a single pass over the list of operations. We can check that
although recursively lifting a static object is not a constant-time
operation, the algorithm only takes a total time linear in the length
of the trace. The algorithm itself is not particularly complex; our
focus is rather that in the context of tracing JITs it is possible to
find a simple enough algorithm that performs well.

Note in particular that objects in category 1 (i.e., those that do
not escape) are completely removed; moreover, objects in category
2 (i.e., escaping) are still partially optimized: all the operations in
between the creation of the object and the point where it escapes
that involve the object are removed. Objects in category 3 and 4 are
also partially optimized, their allocation is delayed till the end of
the trace.

The optimization is particularly effective for chains of opera-
tions. For example, it is typical for an interpreter to generate se-
quences of writes-followed-by-reads, where one interpreted opcode
writes to some object’s field and the next interpreted opcode reads
it back, possibly dispatching on the type of the object created just
before. A typical example would be a chain of arithmetic opera-
tions.

6. Implementation and Evaluation
The allocation removal techniques described in this paper were im-
plemented in the optimizer of PyPy’s tracing JIT. The optimization
is independent of which interpreter a JIT is generated for. There are
some practical issues beyond the techniques described in this paper.
The actual implementation needs to deal with more operations than
described in Section 5, e.g., to also support static arrays in addition
to static objects. The implementation of this optimization is about
400 lines of RPython code.

A further complication is that most interpreters written with
PyPy use heap-allocated frame objects to store local variables.
Those severely hinder the effectiveness of allocation removal, be-
cause every time an object is stored into a local variable, it is stored
into the frame-object, which makes it escape. We implemented a
technique to treat such frames objects in a special way to solve
this problem. This is a common approach in VM implementations
[13, 22]; the novelty of our approach is that we generalized it
enough to be usable for different interpreters.

To evaluate our allocation removal algorithm, we look at the
effectiveness when used in the generated tracing JIT of PyPy’s
Python interpreter. This interpreter is a full implementation of
Python 2.5 language semantics and is about 30,000 lines of
RPython code.

The benchmarks we used are small-to-medium Python pro-
grams, some synthetic benchmarks, some real applications.8

Some of them are from the Computer Language Benchmark
Game9: fannkuch, nbody, meteor-contest, spectral-norm.

Furthermore there are the following benchmarks:

• crypto_pyaes: An AES implementation.
• django: The templating engine of the Django web frame-

work10.
• go: A Monte-Carlo Go AI11.
• html5lib: An HTML5 parser.

8 All the source code of the benchmarks can be found at
http://codespeak.net/svn/pypy/benchmarks/. There
is also a website that monitors PyPy’s performance nightly at
http://speed.pypy.org/.
9 http://shootout.alioth.debian.org/
10 http://www.djangoproject.com/
11 http://shed-skin.blogspot.com/2009/07/
disco-elegant-python-go-player.html

• pyflate-fast: A BZ2 decoder.
• raytrace-simple: A ray tracer.
• richards: The Richards benchmark.
• spambayes: A Bayesian spam filter12.
• telco: A Python version of the Telco decimal benchmark13,

using a pure Python decimal floating point implementation.
• twisted_names: A DNS server benchmark using the Twisted

networking framework14.

We evaluate the allocation removal algorithm along two lines:
first we want to know how many allocations could be optimized
away. On the other hand, we want to know how much the run times
of the benchmarks is improved.

The benchmarks were run on an otherwise idle Intel Core2 Duo
P8400 processor with 2.26 GHz and 3072 KB of cache on a ma-
chine with 3GB RAM running Linux 2.6.35. We compared the per-
formance of various Python implementations on the benchmarks.
As a baseline, we used the standard Python implementation in
C, CPython 2.6.615, which uses a bytecode-based interpreter. Fur-
thermore we compared against Psyco[25] 1.6, a (hand-written) ex-
tension module to CPython which is a just-in-time compiler that
produces machine code at run-time. It is not based on traces. Fi-
nally, we used two versions of PyPy’s Python interpreter (revision
77823 of SVN trunk16): one including the JIT but not optimizing
the traces, and one using the allocation removal optimizations (as
well as some minor other optimizations, such as constant folding).

As the first step, we counted the occurring operations in all gen-
erated traces before and after the optimization phase for all bench-
marks. The resulting numbers can be seen in Figure 7. The op-
timization removes between 4% and 90% and of allocation op-
erations in the traces of the benchmarks. All benchmarks taken
together, the optimization removes 70% percent of allocation op-
erations. The numbers look similar for reading and writing of at-
tributes. There are even more guard operations that are removed,
however there is an additional optimization that removes guards,
so not all the removed guards are an effect of the optimization de-
scribed here (for technical reasons, it would be very hard to separate
the two effects).

In addition to the count of operations we also performed time
measurements. All benchmarks were run 50 times in the same pro-
cess, to give the JIT time to produce machine code. The arithmetic
mean of the times of the last 30 runs were used as the result. The
errors were computed using a confidence interval with a 95% con-
fidence level [16]. The results are reported in Figure 8. For each
implementation the table also reports the speedup that PyPy with
optimization achieves over it.

With the optimization turned on, PyPy’s Python interpreter out-
performs CPython in all benchmarks except spambayes (which
heavily relies on regular expression performance and thus is not
helped much by our Python JIT) and meteor-contest. All bench-
marks are improved by the allocation removal optimization, by at
least 20% and by as much as a factor of 6.95.

Psyco is able to outperform PyPy’s JIT in five out of 14 bench-
marks. We hope to overtake Psyco (which is no longer being ac-
tively developped) by adding some further optimizations.

12 http://spambayes.sourceforge.net/
13 http://speleotrove.com/decimal/telco.html
14 http://twistedmatrix.com/
15 http://python.org
16 http://codespeak.net/svn/pypy/trunk
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num loops new removed get/set removed guard removed all ops removed
crypto_pyaes 78 3088 50% 57148 25% 9055 95% 137189 80%
django 51 673 54% 19318 18% 3876 93% 55682 85%
fannkuch 43 171 49% 886 63% 1159 81% 4935 45%
go 517 12234 76% 200842 21% 53138 90% 568542 84%
html5lib 498 14432 68% 503390 11% 71592 94% 1405780 91%
meteor-contest 59 277 36% 4402 31% 1078 83% 12862 68%
nbody 13 96 38% 443 69% 449 78% 2107 38%
pyflate-fast 162 2278 55% 39126 20% 8194 92% 112857 80%
raytrace-simple 120 3118 59% 91982 15% 13572 95% 247436 89%
richards 87 844 4% 49875 22% 4130 91% 133898 83%
spambayes 314 5608 79% 117002 11% 25313 94% 324125 90%
spectral-norm 38 360 64% 5553 20% 1122 92% 11878 77%
telco 46 1257 90% 37470 3% 6644 99% 98590 97%
twisted-names 214 5273 84% 100010 10% 23247 96% 279667 92%
total 2240 49709 70% 1227447 14% 222569 93% 3395548 89%

Figure 7. Number of Operations and Percentage Removed By Optimization

CPython [ms] × Psyco [ms] × PyPy w/o optim. [ms] × PyPy w/ optim. [ms] ×
crypto_pyaes 2757.80 ± 0.98 10.33 67.90 ± 0.47 0.25 1652.00 ± 4.00 6.19 266.86 ± 5.94 1.00
django 993.19 ± 0.50 3.83 913.51 ± 4.22 3.52 694.73 ± 2.86 2.68 259.53 ± 1.79 1.00
fannkuch 1987.22 ± 2.02 4.26 944.44 ± 0.61 2.02 566.99 ± 1.06 1.21 466.87 ± 1.85 1.00
go 947.21 ± 1.58 3.00 445.96 ± 0.68 1.41 2197.71 ± 25.21 6.95 316.15 ± 9.33 1.00
html5lib 13987.12 ± 19.51 1.39 17398.25 ± 36.50 1.72 27194.45 ± 46.62 2.69 10092.19 ± 23.50 1.00
meteor-contest 346.98 ± 0.35 0.88 215.66 ± 0.23 0.55 433.04 ± 1.45 1.10 392.85 ± 0.87 1.00
nbody_modified 637.90 ± 1.82 6.14 256.78 ± 0.18 2.47 135.55 ± 0.33 1.30 103.93 ± 0.25 1.00
pyflate-fast 3169.35 ± 1.89 1.74 1278.16 ± 3.13 0.70 3285.89 ± 8.51 1.80 1822.36 ± 11.52 1.00
raytrace-simple 2744.60 ± 51.72 4.24 1072.66 ± 1.08 1.66 2778.27 ± 15.13 4.29 647.24 ± 5.44 1.00
richards 354.06 ± 1.00 4.01 63.48 ± 0.15 0.72 383.93 ± 3.28 4.35 88.32 ± 0.91 1.00
spambayes 299.16 ± 0.35 0.75 338.68 ± 3.14 0.85 580.90 ± 24.68 1.46 397.37 ± 10.60 1.00
spectral-norm 478.63 ± 0.80 4.27 139.83 ± 1.54 1.25 353.51 ± 1.39 3.15 112.10 ± 1.17 1.00
telco 1207.67 ± 2.03 2.44 730.00 ± 2.66 1.47 1296.08 ± 4.37 2.62 495.23 ± 2.14 1.00
twisted_names 9.58 ± 0.01 1.34 10.43 ± 0.01 1.46 17.99 ± 0.27 2.52 7.13 ± 0.09 1.00

Figure 8. Benchmark Times in Milliseconds, Together With Factor Over PyPy With Optimizations

7. Related Work
There exists a large number of works on escape analysis, which
is a program analysis that tries to find an upper bound for the
lifetime of objects allocated at specific program points [4, 11,
18, 24]. This information can then be used to decide that certain
objects can be allocated on the stack, because their lifetime does
not exceed that of the stack frame it is allocated in. The difference
to our work is that escape analysis is split into an analysis and an
optimization phase. The analysis can be a lot more complex than
our simple one-pass optimization. Also, stack-allocation reduces
garbage-collection pressure but does not optimize away the actual
accesses to the stack-allocated object. In our case, an object is not
needed at all any more.

Chang et al. describe a tracing JIT for JavaScript running on top
of a JVM [10]. They mention in passing an approach to allocation
removal that moves the allocation of an object of type 1 out of
the loop to only allocate it once, instead of every iteration. No
details are given for this optimization. The fact that the object is still
allocated and needs to be written to means that only the allocations
are optimized away, but not the reads out of and writes into the
object.

SPUR, a tracing JIT for C# seems to be able to remove alloca-
tions in a similar way to the approach described here, as hinted at
in the technical report [3]. However, no details for the approach and
its implementation are given.

Psyco [25] is a (non-tracing) JIT for Python that implements a
more ad-hoc version of the allocation removal described here. Our
static objects could be related to what are called virtual objects in

Psyco. Historically, PyPy’s JIT can be seen as some successor of
Psyco for a general context (one of the authors of this paper is the
author of Psyco).

The original SELF JIT compiler [9] used an algorithm for
forward-propagating the types of variables as part of its optimiza-
tions. This makes it possible to remove all type checks on a variable
but the first one. The optimization does not deal with removing the
full object, if it is short-lived, but the type check removals are sim-
ilar to what our optimization achieves.

Partially known data structures are built directly into Prolog (via
unbound logic variables) and thus the treatment of partially static
data structures was part of partial evaluation of Prolog programs
from the early stages [21]. One effect of unfolding in Prolog is that
terms that are constructed and immediately matched again, com-
pletely disappear in the residual program. This is similar to what
our optimization does for an imperative language. In functional
programming this idea was introduced as constructor specialisation
by Mogensen [23].

A related optimization is also that of deforestation [17, 27]
which removes intermediate lists or trees in functional languages.
A more general approach is boxing analysis [20] which optimizes
pairs of calls to box/unbox in a functional language. Similarly,
"dynamic typing" [19] tries to remove dynamic type coercions
in a dynamically typed lambda-calculus. All these optimizations
work by analyzing the program before execution, which makes
them unsuitable for dynamic languages like Python, where almost
nothing can be inferred purely by looking at the source code.
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8. Conclusion and Future Work
In this paper, we used an approach based on online partial eval-
uation to optimize away allocations and type guards in the traces
of a tracing JIT. In this context a simple approach based on partial
evaluation gives good results. This is due to the fact that the tracing
JIT itself is responsible for all control issues, which are usually the
hardest part of partial evaluation: the tracing JIT selects the parts
of the program that are worthwhile to optimize, and extracts linear
paths through them, inlining functions as necessary. What is left to
optimize are only those linear paths.

We expect a similar result for other optimizations that usually
require a complex analysis phase and are thus normally too slow to
use at runtime. A tracing JIT selects interesting linear paths by it-
self; therefore, a naive version of many optimizations on such paths
should give mostly the same results. For example, we experimented
with (and plan to write about) store-load propagation with a very
simple alias analysis.
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