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Abstract 

There has already been considerable research on construct- 
ing modular, monad-based specifications of computational 
effects (state, exceptions, nondeterminism, etc.) in program- 
ming languages. We present a simple framework in this tra- 
dition, based on a Church-style effect-typing system for an 
ML-like language. The semantics of this language is for- 
mally defined by a series of monadic translations, each one 
expanding away a layer of effects. Such a layered specifica- 
tion is easy to reason about, but its direct implementation 
(whether by parameterized interpretation or by actual trans- 
lation) is often prohibitively inefficient. 

By exploiting deeper semantic properties of monads, how- 
ever, it is also possible to derive a vastly more efficient im- 
plementation: we show that each layer of effects can be uni- 
formly simulated by continuation-passing, and further that 
multiple such layers can themselves be simulated by a stan- 
dard semantics for call/cc and mutable state. Thus, even 
multi-effect programs can be executed in Scheme or SML/NJ 
at full native speed, generalizing an earlier single-effect re- 
sult. As an example, we show how a simple resumption- 
based semantics of concurrency allows us to directly simulate 
a shared-state program across all possible dynamic interleav- 
ings of execution threads. 

1 Introduction 

By now, monads are firmly established as an key concept in 
functional programming, both as a semantic framework for 
ML-like languages [Mog89], and as a structuring technique 
for purely functional programs with computational effects 
[Wad92]. But the situation is less clear for the prospect of 
using monads to structure multiple, potentially intertwined 
effects: although a number of frameworks for this have been 
proposed [MogSO, Ste94, CF94, LHJ95, Esp95], none seem 
to have gained overwhelming acceptance. 

This is perhaps not surprising, since a truly modular 
characterization of computational effects is probably an ill- 
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specified problem, with no unique solution. Nevertheless, 
most monad-based formalisms tend to leave at least two ar- 
eas with definite room for improvement: 

Conceptual overhead. It is usually clear how a sin- 
gle monad in isolation represents a particular notion 
of computational effect (such as mutable state or ex- 
ceptions), and how individual effect-operations (such as 
reading and writing of the state, or raising and handling 
of exceptions) are expressed in terms of the monadic 
structure. But with multiple effects, the initial cost is 
higher: each notion of effect must now be specified in 
an integrable form, and the specification of the opera- 
tions must likewise be further parameterized. In some 
cases, operations for one effect are even fundamentally 
incompatible with the monadic structure of another, 
significantly complicating the semantics of the result- 
ing language. 

Practical overhead. A distinct problem with monad- 
based executable specifications of interacting effects 
is computational efficiency. Although explicit, purely 
functional definitions of effects make it easier to reason 
about programs, in practice key monads (such as state) 
are usually implemented imperatively by the compiler 
[LPJ95]. The efficiency problems are compounded for 
multi-level effects: in a naive implementation, the cost 
of each computational step is generally directly pro- 
portional to the total number of effects being modeled; 
and “built-in” monads are generally not integrable in 
a multi-effect framework with the same flexibility as 
user-specified ones. 

Although the present paper is hardly the final word on 
either subject, it does present a framework for monadic ef- 
fects addressing both problems in a novel way: conceptually, 
it offers a simple declarative specification based on nested 
translations, and practically, an efficient imperative imple- 
mentation in terms of low-level control and state primitives. 

In more detail, each notion of effect is specified inde- 
pendently by a formal monadic translation (state-passing, 
exception-passing, etc.), which also defines two proto- 
operations, monadic reflection and reification. These estab- 
lish a (trivial) bijection between opaque and transparent rep- 
resentations of an effect-computation, allowing us to define 
the usual effect-operations in terms of the transparent rep- 
resentation, and then write general programs using only the 
abstract, opaque form. This specification is purely local, and 
can be written independently for each effect. 

Secondly, we show that each such monadic translation can 
be simulated by a continuation-passing translation, which re- 
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Figure 1: Effect-typing and subtyping rules 

tains the original transparent representation of effects, but 
substitutes a different opaque one. We use this result to 
show correctness of a direct implementation of the proto- 
operations in terms of the control operators sh$ and reset. 
As previously shown [Fi194, Fi196], these operators can them- 
selves be implemented by Scheme-style primitives call/cc 
and state, but this “uses up” the call/cc operation of the 
host language. Here we show how, in addition to defining 
shift and reset, we can “regenerate” a call/cc that can be 
used to implement other effects without interference. Thus, 
a whole monadic tower can be embedded in a language with 
Scheme-like primitive effects. 

Accordingly, the paper is structured as follows: in Sec- 
tion 2, we present the translation-based specification of 
monadic effects. In Section 3, we show correctness of the 
continuation-based implementation using logical relations; 
we also present a concrete realization of the construction in 
SML/NJ. Section 4 contains a few practical examples, in- 
cluding a simulation of shared-state concurrency. Finally, 
Section 5 compares the present results with related work on 
monad layering and control operators, and Section 6 presents 
some conclusions and outlines future work. 

2 Specifying layered effects 

In this section, we introduce a simple functional language 
with a type system for keeping track of effect-behavior of 
terms, and show how this language can be systematically 
extended by new, programmer-defined effects. 

2.1 A multi-effect language 

For the purpose of the formal results, it will be convenient to 
work with a syntax in which all computational steps are ex- 
plicitly sequenced. That is, the results of all non-trivial oper- 
ations must be explicitly named, as in A-normal or monadic 
normal forms [FSDFSS, HD94]. (Ultimately, however, we 
will still be able to write concrete programs in ML notation, 
with implicit call-by-value sequencing.) 

We further refine this language with a type system for 
keeping track of effects, very similar to Tolmach’s and (to 
a lesser degree) Wadler’s intermediate languages for ML 
[Tol98, Wad98]. However, we will use effect-types prescrip- 

tively, to define a new language, rather than descriptively, 
to analyze an already given one. 

The raw syntax is thus as follows: 

r::=cu~b~71-e+~2~1~171X72~0~71+72 

E ::= x I cq....,rn I Xx’. E 1 El Ez I () I VE 1 (El, Ez) 
1x1 E I7r2 E I id E I inrE I case(E,xl.El,xa.Ez) 

I vale E I let” x + El in E2 ( letel~ez x ti El in E2 

e ::= n I p I ..* 

Here e ranges over a set of effect names, which classify the 
range of effects of an expression: the typing judgment I’ l- 
E : r / e states that under typing assumptions l? (mapping 
variables to types), E has type r, and possible effects e. 

In particular, the effect n (none) means that evaluation of 
E has no effects, and that E therefore behaves as a value for 
the purpose of equational reasoning. Another distinguished 
effect is p (partiality), which indicates that evaluation of E 
may diverge, but has no other effects. 

The typing rules are displayed in Figure 1. They are pa- 
rameterized by an effect-layering relation <, with ei < e2 
expressing that e2 is layered immediately above ei , in a sense 
to be made precise in the next section. (Typically it means 
that e2 was defined by a formal translation into a language 
with ei-effects.) 3 is the reflexive, transitive closure of -& 

We sometimes use pattern-matching binding syntax in- 
stead of projections; and in particular, we write X(). E for 
Xx’. E. We also often write ri % ~2 simply as ri + 72, and 
rkE:r/nasrt-E:r. 

A complete program is a closed term of base type. For 
simplicity, we may also put restrictions on the potentially 
“escaping” effects of such programs, in preference to compli- 
cating the top-level semantics. (For example, we may require 
that a complete program handles all exceptions it may raise, 
using a catch-all exception wrapper.) 

The language is also parameterized by a signature C as- 
signing (potentially polymorphic) types to the basic con- 
stants in the language. These would typically include the 
standard arithmetic functions, and in particular a family of 
CBV fixed-point operators, 

fixEl,az : ((cy14a2)_)cy1~$2)-_)(Y1~~2 (P 5 e) 

(Note that all recursively defined functions will thus have at 
least the effect of partiality.) Although complete programs 
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will be monomorphic, we need the extra generality of type 
schemas in order to define monad components as polymor- 
phic terms in Section 2.3. 

The l&& two lines of Figure 1 add implicit subeffecting and 
subtyping to the language. (But note that the only subtyp- 
ing relations introduced are changes of effect-annotations.) 
We can expand all occurrences of the general let-construct 
into the two primitive ones as follows: 

leteSe x e El in Ez = lete x -+ El in E2 

letelse x e El in E2 = 
let e+z 2 (E (lep5e z e El in vale x) in E2 

Similarly, well-typed terms in the system with subsumption 
can be expanded into the system without, by replacing all 
instances of the last rule by appropriate coercion terms: 

letede’ XX= E in vale’ x’<~‘(x) 

a 

Xa. x 72/e~r~le’(f(XT;~71(a))) 

(x 
Tl<T; 

- (Tl P), x 
s2<r; 

- (7QP)) 

case(s,x1. inl (x’l”;(xl)) 

x2. inr (xT2’21Tl (x2))) 

As always with subtyping systems, there is a potential coher- 
ence problem: the semantics must ensure that different, ways 
of inserting coercions in a program give the same result. We 
will see that for our application, this is automatically en- 
sured (see the note following Theorem 11). 

2.2 Layered monads and effect-semantics 

For concreteness, we present a denotational semantics of our 
language in the setting of CPOs (chain-complete poset,s, not 
necessarily containing least elements) and continuous func- 
tions. This specific choice is not essential, however. 

We start with a standard concept: 

Definition 1 A monad 7 consists of a triple (T, q,*), 
where T maps every CPO A to a CPO of A-computations; 
rl is a family of value-inclusion functions VA : A + TA; and 
* (normally written infix) is a family of binding functions 
*A,B : TA x (A+ TB) +TB; such that for any f : A+TB 
and g : B + TC, 

77a*f =fa, t*v=t, and (t*f)*g=t*(Xa.fa*g) 

(We generally omit the type subscripts on v and * when they 
are clear from the context.) When f : A + B, we also define 
Tf = Xt.t*(qo f) : TA+TB; and when f : A+TB, 
f’=Xt.t*f :TA+TB. 

Intuitively, elements of TA represent effectful computa- 
tions yielding values in A. qa represents the trivial (effect- 
free) computation of a, while t*f represents the computation 
consisting of evaluating t to a value a (possibly with some 
effects), followed by evaluating f a (again possibly with ef- 
fects). The monad laws ensure that the sequencing of effects 
is well-behaved. 

A very simple monad is the identity monad, with IA = A, 
r]A a = a, and t*f = ft. An important non-trivial example is 
the lifting monad, where the computation-type constructor 
is domain-theoretic lifting, LA = AJ_; unit is the inclusion, 
qa = [a]; and binding is strict extension, I * f = _L and 
[a] * f = fa. 

We now introduce a concept useful for stacking monads: 

_Defin&ion 2 A layering of a monad 7 over an_other monad 
?‘- = (T, Q, 4) consists of a function family <A : T(TA) +TA, 
such that each (TA,CA) is a T-algebra [n/rL71, VI.21, i.e., 

CA 0 ETA = idTA and CA o id&,,) = <A o T<,J 

and such that every f* is a T-algebra morphism, i.e., 

f*o<A=<BoTf*:T(TA)-+TB 

The definition of layering is 2 bit more technical, but cap- 
tures the requirement that a T-computation can be mean- 
ingfully interpreted as a more general 7-Emputation. When 
T is explicitly constructed in terms of T, we can generally 
obtain a suitable C directly from the shape of T, as shown 
in Section 2.3. And the additional condition on f* is usu- 
ally immediate to verify - informally it expresses that the 
T-computation represented by t * f performs any latent T- 
effects in t “first”. 

Any monad 7 can be layered over_itself by id;‘A : 
T(TA) + TA. And, if ‘T is layered over 7 by C, and 7 over 

7 by 1, then 7 is also layered over 5 by CA o <TA o T~TA : 
T(TA) --t TA. 

When 7 is layered over 7, we can also define a 
computation-inclusion or l$t;fting [LHJ95, To1981 function 

family iA = <A o TV.4 : !?A + TA. This is easily checked 
to be a monad morphism [MogSO], i.e., to satisfy the equa- 
tions 

iA(ijAa)=~Aa and i,(t’&f)=iAt’k(Xa.iB(fa)) 

Conversely, given a monad morphism i : T -+ T, we can 
obtain a layering by <A = id;‘A o i.4. Both formula_tions 
allow us to define a “mixed” binding operation %A,B : TA x 

(A-+TB) -+TB by: 

t’ zA.13 f = (iA t’) *Ad3 f = [B (t’ sA,TB (h fjTB (f a))) 

Defining layering in terms of inclusions may seem more nat- 
ural, but it turns out, that taking C as the primitive notion 
leads to a more direct implementation of monadic effects in 
Section 3. 

Any monad can be trivially layered over identity by taking 
[At = t. It can be layered over lifting when each TA is a 
pointed CPO (i.e., has a least element _!_TA, allowing C_L = 
ITA and [[t] = t) and f’ is always strict (that is, if the 
original computation t has a divergence-effect, then so will t* 
f). Conversely, if 7 is layered over lifting, TA is necessarily 
pointed (because for any t E TA, <I E [[t] = t), and f* is 
strict (because f*(CI) = ((Lf’l) = <I), 

We can now define a semantics of our language. This will 
be done in the style of Church, i.e., we only give meanings 
to well-typed terms: 

Definition 3 (effect-semantics) A semantics t of an 
effect-language L assigns first to every base type b, a CPO 
B(b); and to every eflect e, a monad&(e) = (Te, $, ke), such 
that if e’ 4 e then E(e) is layered over &(e’) by C”. This US- 

signment induces a semantics of general L-type phrases as 
follows. Let Q be an assignment of CPOs to type variables 
in 6. Then for any type r over G, we define a CPO 13irlp, 
as follows: 

&I, = @Q 

l1bBe = B(b) 
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This also extends straightforwardly to a semantics of type 
assignments, 

Further, C must assign to every constant c of L a family 
of elements C(c)i E L[C(C)~~,,A~. Then we define for every 

well-typed term r t-3 E : r/e, its meaning C[E], : CII’]lp + 
TeC[r], (omitting the subscript Q on all semantic brackets): 

L:CxIp = Px 

L[c,,,...,, IP = W.cM.4M 

L[Xx’.E]lp = Aa’171.L[E]p[x*a] 

L[El EzD P = L[&] P (L[Ez] P) 

L[vale E] p = qe (LIE] p) 

L[lete x -c= El in Ezlp = C[ElBp ke (Xa.C[Ez~p[x I+ a]) 

C[letelVe2 ze=,?&inEz]p = 

~yt[~~n~*el (xu.~~* (qEz~p[x~u~))) 

(together with straightforward clauses for sums and prod- 
ucts). 

Finally, 13 must include a collection of result interpreta- 
tion functions <be : Tef3(b) + PI from meanings of complete 
programs to observations, where P is some countable set of 
final outputs, such as character strings. For a complete pro- 
gram, I- E : b/e, we can then define 

In the standard semantics of the language, we take E(n) 
as the identity monad and E(p) as lifting. (An implementa- 
tion semantics, however, may use a different interpretation: 
for example, we can give a continuation-based semantics of 
partiality; the result interpretation function must then be 
adjusted appropriately.) We will also always use the stan- 
dard interpretation of fix, 

C(fiXe)Al,A2 = xf 
(A1-.TeA~)-‘A1-+TeA~ 

.uic, fi( Xa. &A,) 

where TeAz is pointed because e is layered above partiality. 
We can reason about terms in the language by means 

of a formal equational theory, including in particular the 
equations 

(Xz.El) Ez = El[Ez/z] 
Xx.Ex = E (ZBFV(E)) 

val” E = E 

letelde2 z -+ vale’ El in Ez = Ez[El/x] 

lete x e E in vale x = E 

letezse3 x2 + (letelde2 $1 -&El in Ez) in Es 
= 

letelse x1 X= El in lete25e3 x2 -c= E2 in E3 

(~l~FV(&)) 

(together with the usual ones for products and sums). Note 
that the strong &-rules for functions are only valid because 
we restrict the terms in an application to have no effects. 

2.3 Adding a new effect 

Of course, we can always enrich the language by adding a 
new effect at the level of the semantics. But a wide variety 
of effects can also be defined purely syntactically: 

Definition 4 A formal monad T over effect Z in L consists 
of a type constructor and three polymorphic terms, 

T- : Type -+ Type 

glue, : (1% TLY) -+ Tcu 

unit, : a-+ Ta! 

bind,, ,o12 : Toll x (al + TCQ) + Tcx2 

Such a T denotes an (actual) monad C[Tn” = (T,Q,*,<) 
layered over &(I?) in a semantics C of L if C[Tc$,,A] = 
TA, C[gk-& ++ A] 0 = xt.CA(t()), L[IJfJit&++A]0 = VA, 

and LBbih, ,azl[al ++ A1 ,a2 H AZ]0 = (*A, ,A*). 

Note that we do not require that T denote a monad for 
all interpretations of the effect E. For example, the formal 
list monad (used to give a semantics of nondeterminism in 
Section 4.2) can only be properly layered over a commutative 
monad [KW93], such as partiality. 

The component glue can usually be constructed system- 
atically from just the form of T, as follows: 

Tcu 1 glue: : (1% TLY) + TCY 
F Q 4 Gcu At. Au. let’ f + t () in f a 

Fa % T’a At. Xu.g/ue,f (A(). let” f + t () in val’ f a) 

Tlcu x Tza At. (glue? (A(). let” p + t () in val' ~1 p), 
g/ue,‘z (A(). let” p * t () in val’ ~2 p)) 

(In fact, in most cases, the first rule alone suffices.) It is 
easy to check that such a glueT satisfies the T-algebra con- 
ditions of Definition 2; and the verification of the additional 
property of bind is usually straightforward. 

Given T we construct an extension LT of L, with a new 
effect t and new proto-operations, monadic reflection and 
reification [Fi194]: 

reflect: : Tcu & cr 

reify: : (1 % CY) -+ Ta 

When E : Tr/n, we often write p’(E) : r/t for reflect) E; 
and conversely, when E : r/t, [El’ : Tr/n for reify’ (A(). E). 
Informally, evaluating p(E) performs the action represented 
by the datum E, while [El returns a datum representing 
the action that would result from evaluating E. 

Note that LT is a proper extension of L: any L-program is 
still a valid LT program with the same meaning. This means 
that we can define the semantics of LT by a formal monadic 
translation 1-1~ back into L, expanding out only the new 
type and term constructors into their L-definitions. 

First, the translation of an effect e is an effect-type con- 
structor lel T: 

ltlcv = TcL/n 

le[Q = cr/e (e # t) 

For types, only function spaces have a non-trivial trans- 
lation: 

171 % 721 = 1~11 4 ri where rile’ = lellr~l 

And finally, we define a translation 1-1~ of terms: if l? t 
E : ~/e then [FIT !- \E[T : lelTjT1T. Again, the only non- 
trivial clauses are: 

Ival’El = unitl,l IEJ 
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Ilet’ 2 * El in Ezl = bindl,,l,lrzl (IEI~, Ad”‘. 1321) 

Ilet”” x-+El inEzl = 

g/uel,l (A().let” z += IElI in vale IEzl) 

/reflectSI = Xtq7’.t 

[reify:1 = XPq”.t() 

This syntactic translation agrees with the denotational 
semantics: 

Lemma 5 13[l-I~] = ,Cr[-] luhere C7 is the semantics 

of LJ determined by extending C with E(t) = 7 = fZCITlm, 
C(reflect)A = XtTA. t, and C(reify)A = kl+TA. t (). 

For example, given some base type exn of exception 
names, the formal monad Ex of exceptions is defined by: 

TCY = 1% (a + exrr) 

gluea = XtlSTa. A(). let” r -+ t () in T () 

unit, = Xa”. A(). id a 

bind - X(k f) ollP2 - 
~‘VX(~l-+““~~(). 

let” r + t () in case (T, a.fa (), x.vaP inr x) 

This does in fact denote a monad for any monadic interpreta- 
tion of E. Calling the new effect 9, we can define operations 
in LJ with types 

raise, : exn % cy 

handle, : (1% cy) -_) (exn 14 (.y) 14 cz 

in terms of the proto-operations: 

raisea = XxeX”.pu”(X().valB inrz) 

handle, = Xt’S”.Ah”“~“.let”~‘~ T* [t()I’“() 
in case (r, a.vaP a, x.hx) 

That is, raise constructs an exception-computation that im- 
mediately returns with a right-tagged x, and reflects that as 
an Q-effect. Conversely handle reifies t into a &computation 
of a sum-typed value, performs that computation, and ei- 
ther returns the result or passes the exception name to the 
handler h. It is easy to check that the semantics of these op- 
erations capture the usual behavior ,of ML-style exceptions, 
even in the presence of state as an Z-effect. 

Note that we can often reason about LJ-programs directly, 
without either expanding them into L-programs, or comput- 
ing their denotational meanings. In particular, we have the 
following sound equations for well-typed terms: 

p(CEl) = E 

C,u(E)I = E 

[val*El = unit E 

[let’ x -c= El in Ezl = bind (CEil, AZ. [Ed) 

[let?<’ x X= El in E23 = 

glue (A(). le&” x + El in val’ [Ez]) (e<a<t) 

From these, and the equations at the end of Section 2.2, it 
is easy to derive laws about the particular operations, such 
as 

let’” r X= raisex in E = raisex 

hand/e(X().val’” a)h = val’l’ a 

hand/e(X(). raisex) h = hx 

2.4 Effect-ordering and monadic reflection 

The hierarchical organization among the effects is crucial to 
the translation-based definition. Although being able to in- 
tegrate effects “flatly” (i.e., with no mutual ordering) might 
seem a desirable goal, often different orderings correspond 
to different intended semantics, as illustrated below. 

An important consequence of the layering is that some 
source terms are meaningless, even if their effect-erasures are 
simply-typable. Specifically, attempting to apply the reifi- 
cation operator of a lower-level effect to a higher-level com- 
putation has no counterpart in a program written with ex- 
plicit effect-passing, and thus cannot be given a well-defined 
meaning by the translation. Where appropriate, the desired 
meaning of such a construct must instead be expressed ex- 
plicitly. As a simple example, let us analyze this issue in the 
context of mutable state and exceptions. 

We saw the definitions of raise and handle in Section 2.3. 
Similarly, using the formal state monad St, with type con- 
structor 

STCY = state % (a x state) 

for some base type state, we can define a new effect st, with 
operations 

as follows: 

get : 1 *state 

set : state rl, 1 

withst, : state x (1% CY) -% (Y 

get = X().,J’(Xs.val” (s,s)) 

set = Xn.$‘(Xs.val’((),n)) 

withst, = X(s, t). let” (a, s’) G [t ()l”‘s in val’ a 

But how do these operations interact with those for excep- 
tions? 

First, consider the ML-like layering of exceptions above 
state above partiality, p -X st 4 er, with the state persistent 
across exceptions. The composite translation, defining away 
first exceptions and then state, corresponds to the following 
effect type: 

Ila/qlEXlS~ = 11 %a+ eXnlST 

= 1 + state % (a + exn) x state 

That is, when started in some initial state from state, a 
computation may diverge; or it may result in a new state 
together with either an o-value or raised exception from exn. 
The proto-operators have types: 

reify:* : (1% cr) + state 4 a! x state 

reflect:* : (state 4 cr x state) *a 

reify: : (1% (Y) + 11 (c~ + exn) 

reflect: : (1 % (cy + em)) % (Y 

In this setting, we can always coerce a st-computation into 
an er-computation (and with the subtyping system, this CO- 
ercion can be left implicit). This means that the previous 
definition of handle, based on g-reification, works without 
changes even when the expression being guarded has only 
state-effects (which includes partiality-effects). 

But if we want to extend withst to computations 
may raise exceptions, we must explicitly account for 

which 
those. 
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For example, we can define a more general operation 

withst’, : state x (1% o) 14 (Y 

withst ‘a = 

X(s,t).leter (T,s’) X= [Ct()leF ()15’9 in per(X().valsf r) 

Here we first explicitly e,r-reify the original computation of cr 
into a &computation of a! + exn, perform the original withst- 

operation, and finally ey-reflect back the result, which may 
have the effect of raising an exception. 

Note that when withst’, is applied to a computation that 
provably does not have exception-effects, its behavior also 
provably coincides with the original withst. That is, we can 
show 

withst’(s, X().let?’ z + E in vales z) 

= letP5’” z es: withst (s, A(). E) in valer x 

using the equations from the end of Section 2.3. In a gen- 
eral optimizer for higher-order programs, however, it seems 
preferable to maintain explicit effect-types everywhere, as 
advocated by Tolmach [TolSb]. 

Note also that the behavior of withst’ differs from that of 
a more naive definition, 

withst”, = 

X(s, t). let?‘~‘~ 0 X= get () 

in letst~rg () -+ sets 

in let” r X= t () in let”‘~‘r () * set0 in valCF r 

Here, an unhandled exception raised in t () does modify the 
global state, which makes an observable difference if the ex- 
ception is eventually handled somewhere. 

Yet both versions behave the same on programs that never 
actually raise exceptions. Thus, it is not sufficient to merely 
require that programs in the original language (partiality 
and state) should retain their meaning in the extended lan- 
guage (partiality, state, and exceptions); the interactions of 
effects need to be considered explicitly in each case. 

On the other hand, suppose we want a transactional se- 
mantics with transient state layered atop exceptions, corre- 
sponding to effect-type 

]]o/st]Sr]sx = ]stdte % o x StdtelEX 

= state -+ 1 -Q (o x state) + exn 

Here the type already shows that the state must be discarded 
if a computation aborts with an exception. When p 4 q 4 
st, the monad reflection operators have types 

reify:* : (1 % cr) + state 14 Q x state 

reflect: : (state Zr, Q x state) % (Y 

reify: : (1 ZE, C-Y) + 14 (CY + exn) 

reflect: : (1 4 (cr + exe)) 14 o 

Thus, s&reification of any computation is well-defined, but 
we need to explicitly define the meaning of er-reifying a com- 
putation which may have state effects, as when handling ex- 
ceptions. In this case, a natural revised definition of handle 

is 

handle’, = AtlnA*“.Xhe”“S’f. 

$*(Xs. let”‘r T e Cl3 ()I"' de6 () 
in case(r, (a, s’).valCr (a, s’), z.Chxl”‘s)) 

where the state threading is made explicit before er- 
reification. 

It is worth reiterating that these considerations typically 
only arise when we want to assign well-defined meanings to 
al2 terms in a language without an effect-typing system, but 
with effect-delimiting operations such as hand/e or withst. If 
we are only using reflection and reification as a more concise 
notation for programs written with explicit effect-passing, 
such conflicts have by definition already been resolved in 
the original program. 

3 Implementing layered effects 

The previous section describes a framework for adding 
programmer-defined effects to an ML-like language. How- 
ever, a direct implementation of this semantics would be 
problematic for several reasons: 

In the context of a full programming language, it re- 
quires us to effectively write a full language processor, 
including parser, type checker, module system, stan- 
dard library, etc.; or, at the very least, perform major 
surgery on an existing implementation. 

Each level of translation imposes a potentially substan- 
tial execution-time overhead - especially for programs 
which only rarely use any particular effect, but must 
still provide the infrastructure for connecting such scat- 
tered uses. 

Perhaps most significantly, the semantics is given by in- 
duction on explicitly sequenced, fully effect-annotated 
terms. Although this verbosity is essentially equiva- 
lent to writing a program in explicit monadic style, it 
imposes an uncomfortably heavy burden on the pro- 
grammer accustomed to ML’s anonymous (and, given 
a guarantee of left-to-right call-by-value evaluation, of- 
ten completely implicit) sequencing of computations. 

In this section we show how all of these problems can be 
solved. In doing so, we demonstrate that the monad equa- 
tions and the layering conditions are not merely arbitrary 
category-theoretic overhead, or a mere convenience for man- 
ual or automated reasoning about programs, but are in fact 
the key to a vastly more efficient implementation of the spec- 
ification. 

The result falls in two parts: (1) that each individ- 
ual monadic translation can be uniformly simulated by a 
layer of continuation-passing, and (2) that any tower of 
continuation-passing layers can be simulated by a single no- 
tion of effect comprising Scheme-style first-class continua- 
tions and mutable state. 

We phrase these simulations in terms of realizations of 
one language in another, where a realization of an effect- 
language L’ > L replaces (not necessarily injectively) every 
new effect of L’ with an effect of L, and every new constant 
of L’ by a term of L, such that the meanings of complete 
L/-programs are preserved. 

3.1 Relating monadic effects to continuation- 
passing 

It is a fairly simple observation that continuation-passing can 
simulate monadic style [PW93], but actually showing that 
the translations are equivalent is surprisingly complicated. 

180 



This was sketched in [Fi194] for a single effect in an other- 
wise completely pure language; unfortunately the retraction- 
based approach [MW85] used there does not seem to gen- 
eralize well to more general settings, such as unrestricted 
recursion. In [Fi196], the proof was redone with admissible 
relations in the style of [Rey74], and extended to a base lan- 
guage with arbitrary pre-existing effects; and that approach 
does generalize to the multi-effect language of the previous 
section, as sketched in the following. 

One major complication is that to obtain a proper simu- 
lation, we must pick the answer type for the CPS transform 
“large enough”. In particular, this means that we cannot use 
a simple base type, but will need a recursively defined type 
of answers in the implementation language L, (the specifi- 
cation language L C L, remains simply typed). 

Let E be some effect of L, & (gothic “k”) a new effect name, 
and w some fixed t pe with effects from L extended with l?. 
We then define L KY as L extended with E 4 e, and two new 
constants shift and reset, with types 

shift, : ((a 4 w) 4 w) % a 

reset : (14 w) 4 w 

We write S,k. E ins syntactic sugar for shift, (Xk. E), and #E 
for reset (A(). E). (Conversely, we have shift, = Ah. S,k. hk 
and reset = Xt. #(t ()).) 

Informally, Sk. E evaluates E with k bound to a functional 
representation of the current evaluation context, but with 
E itself evaluated in an empty context. Conversely, #E 
evaluates E in an empty evaluation context, and returns the 
result to the current context. For example, writing out all 
the sequencing explicitly, 

letE r e #(let’ n + (Sk. let” x + k3 in kz) in vale 2 x n) 

in val” 1 + T 
= vale 1 + 2 x (2 x 3) = val” 13 

Much like for general effects, we give the formal semantics 

of LK by a continuation-passing translation into L,. For 
any type x, we define first a parameterized translation of 
the effect e as an effect-type constructor: 

I%(,)~ = ((a q x) 4 x)/n 
Let G = /.Lx. IwI~(~), with isomorphisms 

‘$ : IwIK(S) -)G and 11, : &I+ IwIK(~) 

(Note that if w does not contain any &effects, so that IwIK(~) 

does not actually depend on x, we can simply take G = w 
and the isomorphisms as identities.) We can then define the 
formal monad K of &continuations by 

TOcY=Ka! = (,%i)%G 

g/uee t = Xk. let” T + t () in r k 

unitea = Xk.ka 

binde (t, f) = Xk. t (xa. fa k) 

It is easy to check that this determines an actual monad 
K: = C[Kl” for any interpretation of I?. 

We use the formal monad to define the syntactic trans- 
lation l-11<, extended with the clauses for the specialized 
control operators: 

(shift,1 = Ah 
(I&+Jl)+(lWp+s)50~ xk”l”“. 

h(X~“‘.letPa~kIcinval”~a) 
(Xr’“‘. vale C$ r) 

lresetl = At l-t(lwlls)%,o 

let’ a + t () (Ad”’ . val’ 4 r) in val’ II, a 

(We could also have these operators explicitly in terms of 
pe(-), C-l’, r$ and +; the result of the translation would 
be the same.) 

Note that shift and reset are the only operations that ac- 
tually depend on the choice of G as the answer type. As 
usual for a continuation-passing translation, everything else 
is parametric in the answer type. 

Further, let d be a sufficiently large type to embed any LT- 
type at which we want to reify. (For any particular program, 
this can always be chosen as a finite sum; and if we only need 
to reify at outermost level, e.g., for state, it can even be a 
base type.) More precisely, let N be a (finite or infinite) set 
of types, with functions 

in,:r%d and out,:d&r 

for every T in N, such that outr (in, a) = valp a for any T- 
value a. 

For the actual simulation, we now take w = Td, allowing 
us to define a realization (P:’ of LT in LK by cP(t) = e, and 

@(reflect:) E 

XtT”.SakD15rd.vale bhd,,d(t, Xaa.g/ue,j(X().ka)) 

O( reify:) G 

Xt ‘I.‘“.g/ueol (A(). 

let” r (2 #(let’ a + t() in vale un/td(in,a)) 
in val” bindd,, (r, Add. letP z -4= out0 d in unit, x)) 

We want to show that for every LT-program I- E : b/p, the 
two translations give the same result. More precisely, we will 
show that given a specification semantics C, and implemen- 
tation semantics Ci of L, such that for complete L-programs, 
E, E,[E] = Ei[E], then also &[lEl~] = fZi~lE{@~}IK] for 

complete LT-programs E. But we cannot show this state- 
ment (or any simple variation of it) directly by induction 
on E: the problem is that at higher types, there is no di- 
rect equational characterization of the relationship between 
lEl~ and I EIK. Instead, we use a more general relational 
invariant, that will give us the original equation as a special 
case. 

We say that a relation R C A x A’ between two CPOs 
A and A’ is admissible if it ?s chain-complete, i.e., if the 
least upper bounds of pointwise R-related chains are also R- 
related. We write ARel(A, A’) for the set of all admissible 
relations between A and A’. 

Definition 6 A logical relation R between C, and Li of 
an effect-language L assigns to every base type b a relation 
B’(b) E ARel(B,(b), Bi(b)) between their interpretations; and 
to every eaect e, a relational action E’(e), mapping any re- 
lation R E ARel(A, A’) to &‘(e)R E ARel(T,“A,TFA). 

Let Q and e’ map type variables from Lu to CPOs, and for 
each a let 19cu E ARel(ecu, e’cr). For any type T ower cl?, we 

then define a relation R[T]~ E ARel(&[T]1,, /!Zi[Tlp’) by: 

R[cr]s = ea 

Rl[b], = B’(b) 

R[TI x ~21~ = {((m,a2), (a:,&)) I 
(al,ai) E R[TI], A (a2,ab) E 7+2B0) 

RBn + ~21~ = {((ha), CL&)) I ( al,&) E R[n]e) U 
(((2, a2), Rak)) I (a2,4) E W2B8) 

R[n + ~21~ = {(f, f’) I ‘J(a, a’) E MnBe. 

(f a, f’4 E ~‘(eD%d9)1 
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It is easy to check that these relations are all admissible. 
Moreover, the relations must respect interpretations of ef- 

fects and constants: for every e of L we require that, 

1. if ;r;;Rand (t, t’) E E’(a)(&‘(e)R) then (<:A t, <:A’ t’) 

2. If (a, a’) E R then ($A a, $A! a’) E P(e)R. 

3. If (t, t’) E &‘(e)Rl and for evenJ (~,a’) E RI, 
(fa, f’u’) E &‘(e)Rz then (t$ f,t’*; f’) E E’(e)Rz. 

And for c : \d& r in CL, and any relation-environment 0 with 
Bai E ARel(Ai, A:) for each CG, 

(Cs(c)xj G(C),) E R[T], 

Finally, we require that related meanings of complete pro- 
grams are interpreted as the same observation, i.e., if 
(p,p’) E Er(e)Br(b) then &g p = tit p’. 

For our purposes it suffices to take the relation at base 
types to be simple equality, i.e., 

B’(b) = {(n, 4 I n E WI) 

When Ci also interprets p as the lifting monad, we can define 
the relational action of p by: 

&‘(p)R = ((4 1)) U {([a], @I) I ha’) E RI 

(Note that then &‘(p)B’(b) becomes simply the equality rela- 
tion on B(b)l.) In other cases, we must explicitly construct 
a suitable action, as in the proof of Theorem 11 later. 

We can now state the usual logical-relations lemma, 
straightforwardly extended to effects and polymorphic 
terms: 

Lemma 7 (Logical relations lemma) Let there be given 
a logical relation between Cc, and Ci. Let G! be a list of type 
variables, Q and Q’ type environments, and 0 a relation envi- 
ronment, such that for each cy, ecu E ARel@, e’(r). Let I’ be 
a type assignment over cu’, and let p and p’ be environments 
such that for every x E dome?, pa: E .Cs[$, p’a: E &[r],l, 
and (pz,p’z) E R[l?(~)]s. Then for every well-typed term 

I? k-3 E : r/e, 

Proof. Straightforward induction on E. n 

Note that the standard interpretations of fix” are always re- 
lated. This is easily seen by fixed-point induction, using 
the fact that ‘R[T~ 4 ~21~ is admissible and contains (I, I) 
when p 5 e (follows from Definition 6(1-3)). 

Much as we previously interpreted a type construc- 
tor as a CPO constructor, we can define for any type 
constructor T its relational action, T’ : ARel(A,A’) + 
ARel(&[T&++A], Li[Ta][attA]) b T’R = ‘RlT~l[,,q. 

Suppose now we have a logical relation between semantics 
L, and Li of language L, and we want to extend it to LT, 
where we take E,(t) = 7 and Ei(t) = K: in the extended 
semantics. We then need to define E’(t). Intuitively, we 
are representing a T-computation t by the K-computation 
u = Xk. k’t. So we want something like 

(t, U) E &‘(t)R _ (Xk. t * k, u) E K’R 

where K’ is the natural choice: two K-computations u and 
u’ are related by K’R if for all continuations k and k’ map- 
ping R-related values to T’O-related results, vk is T’O- 
related to u’ k’, for some suitable relation 0 on u. But how 
to pick O? A suitable answer is to take 0 as the intersec- 
tion (always admissible) of all’the relational interpretations 
we will actually need. Formally: 

Lemma 8 The relational action E’(t) oft defined by 

&‘(t)R = {(t,u) E TA x KA’ 1 
VT E N.VO E ARel(C,I[TB, Li[dl). 

Vk : A + Cc,[TT], k’ : A’ + Ci[Td]. 
(‘+,a’) E R. (ku,C($(k’u’))) E T’O) 

* (t * k, C (II,(uk’))) E T’O) 

extends the logical relation between semantics Ls and ti of 
L to one between 136 and L” o +f;e of LT. 

Proof. Relatively direct verification for both the new ef- 
fect t and the new constants reflect’ and reify’ [Fi196]. For 
the latter two, we use the fact that (by Lemma 7) the inter- 
pretations of the term components of T are related, even if 
T does not actually define a monad in Li. W 

Theorem 9 (T-K simulation) Let Cs and Ci be related 

semantics of L, and let E be a complete LT-program, i.e., 
I- E : b / p. Then ,&[lEl~] = .&l[lE{@y}IK]. 

Proof. By Lemmas 7 and 8, (Cs[lEITIO,CialE{~:P,,K]S) E 

&‘(p)B’(b), from which the result follows by the assumption 
on& andci. H 

3.2 Relating continuation-passing to primitive ef- 
fects 

Let us now consider an implementation language essentially 
like Scheme or SML/NJ, i.e., containing first-class continu- 
ations and state as primitive effects. To keep things simple, 
we consider all state to be allocated before program execu- 
tion proper begins. 

That is, for a state-assignment A mapping ref-cell names 
v to types, the language L,, contains the basic syntax from 
Section 2 (products, sums, functions), a single effect E, and 
constants 

escape, : ((a % 0) % 0) % a 

get” : 1% A(v) 

set’ : A(v) % 1 

escape is a simple variation on cull/cc, interdefinable with 
both Scheme’s and SML/NJ’s operators. We usually write 
!v for get”0 and v := E for setl) E. 

The formal semantics of this language is also Scheme-like 
[KCR98]: we interpret cs as the continuation-state monad, 

Tc9A = A+Sa+P I 

7i4u = XK.XU.K,UU 

t*- f = X&Xa.t(Xu.Xa’. fUK(T’)(T 

where Sa = nvEdoma C[A(v)l. (Note that, since the types 
in A may themselves contain m-annotations, 5’~ is a recur- 
sively defined CPO. We elide the associated isomorphisms 
for conciseness.) 
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Then the interpretations of the operations are given by Theorem 10 (K-CS simulation) Let E be a complete 

C(escape)A = Xf.k.b. f (XUA.X~‘.X~‘.~a~‘)(Xzo.VZ)cr 

C(get”) = X().Xlc.Xcr.~.(uv)u 

C(set’) = Aa. XIG X0. K () (o[v ti a]) 

program of GA, 

whereA’=(A,v:w%O) forv$domA. 

FE:b/G. Then 

&, ]lEl~] = J%,, [E{@‘%}] 

We also define Ef” t = t (Xa. Au’. [printb a]) (TO, where the ini- 
tial store (TO is some fixed element of SA. 

We add a new effect e over cs and shift/reset to this lan- 

guage as described in Section 3.1, to obtain L&. Much as 
before, we now view the continuation-passing transform as 
the specification of the new language, and define a different 
implementation. 

To see how to obtain such an implementation, consider 
the interpretation of a e-effect: 

That is, the composite semantics is also a continuation-state 
semantics, only with a larger state. This suggests that we 
can implement L& by a simple embedding into LcsA,, where 

A’ extends A with a new cell to hold the metacontinuation 
[DF90, Fi196] of the original computation. 

Formally, we define the realization @>$ by a(e) = 
+(cs) = cs (thus conflating two previously distinct layers 
of effects), and 

@(reset) = 

At “‘“,escape, (XIC”~~~. 
letc4 m -4= !v 
in (v := (Xa”.v := m; ka); 

letc4 T -4= t () in letC’ 772 -k !v in mr)) 

@(shift,) = 

Xh ‘“‘“‘““*escape, (Xk”‘O_ 

letC* r -+ h(Av”.@(reset)(A().letC8 z+kv in Vz)) 
in letCS m + !v in mr) 

@(escape,) = 

Xh (~C~OF~o~escape, (Ak”“O. 

let” m e !v in (v := err; h(Xa”. (v := m; ka)))) 

where (El; Ez) G letcs () X= El in Es, w is a new cell with 
A’(w) = w % 0, and err : w % 0 is an error continuation 
that will never actually be invoked in an effect-type-correct 
program. 

The realization ensures that the newly exported escap: 
respects the meta-continuation used by shift and reset. 
But the more significant aspect of the construction is that 
it eliminates an entire layer of effects (technically, it con- 
flates two layers of state-passing into a single layer with a 
larger state), making & vs. cs-annotation on vals and lets 
unnecessary. Formally, we have the following result: 

lThis redefinition can also be seen as a more principled justi- 
fication for the practice of redefining the call/cc made available 
to the programmer in order to accommodate an implementation 
of dynamic-wind in Scheme [Ree92, KCR98], and for the implicit 
adaptation of the callcc/throw primitives in SML/NJ to also 
save and restore exception handlers [BCL+98]. 

Proof. (Sketched.) The proof is based on a logical relation 

between semantics L,“,, and L,,h o 9 of LEp. For this, 

we define the relational actions of two effects in the source 
language, 

&‘(e)R = {(t,t’) I V&K’. (V(a,a’) E R.ka x da’) 
*tkXt’/C’} 

E’(c5)R = {(t, t’) I Vk, IC’. (V(a,a’) E R. ka x ~‘a’) 
=S X/c.t(Xa.kaK) x t’d} 

using auxiliary relations on intermediate answers, (x) E 
ARel((C]w] 4 SA + PI) + SA + PI, Sal + PI): 

uxv u vlE,u,u’.(IE,u)Qu’*uIEu=vu’ 

on metacontinuation-state pairs, (4) E ARel((L]w] + SA -_) 
PI) x SA,~A~): 

(/c,U)QU' e 

(a,(~') E R]A] A 
V(r,r’) E R]w],(ur,u;) E R[A],~.nru; = u’v~‘~~u; 

and on state, R[A] E ARef(SA, SA, ,): 

R[A] = {(a, u’) 1 Vu E A. (uw, u’v) E R[A(v)],} 

Note that these relations are mutually recursively defined. 
Thus, their existence is not automatic, but can be estab- 
lished fairly easily using Pitts’s techniques [Pit96, FilSG]. We 
can then check directly that the interpretations of all con- 
stants in the two semantics are related by the corresponding 
relations, so the result follows by Lemma 7. n 

Putting all the pieces together, we finally obtain our main 
result: 

Theorem 11 (T*-CS’ simulation) For any formal 

monad T, define the composite realization of LT in L,, by 

‘PT 
Cc4 = 

92tqTdO@+T Let LO be the basic language with no 
effects other than n and p, with the standard semantics LO, 
and let ipprcs be the realization a(p) = ~5. Let Tl,. . . T, 
denote a sequence of monads, each layered over the previous 
one (and T1 over p). Then there exists a store-typing A, 

such that for any complete L2*...ST”-program F E : b/p, 

~dl~-IEl~, *..lT,] =~,,~E{~p’c”}{~~~}~~~{~,:~}~ 

Proof. For the base case, we need to relate the standard 
lifting semantics of p to the continuation-based one: when 
R E Rel(A, A’), we take 

E’(p)R = {(t, t’) E Al X ((A’ 3 SA -+ PI) -_) SA -+ PI) 1 
VIE, h’, uo. (V(a, a’) E R, u. rca = K’O’U) 

*t*PIE=t’duo} 

The general theorem then follows by induction on n, using 
Lemma 5 and Theorems 9 and 10 in each step. H 

Writing 0 for the composite realization, we also note that 
for all effects er 5 ez, L,,[(lete1~e2 z -+= El in E2){9}] = 
C,, [letCD x X= El { @} in E2{+}], and thus for all coercions 
C,,[x(E){@}j = C,,[EJ. That is, the effect-annotations do 
not actually matter for the purpose of program evaluation, 
and in particular, we can write our source programs in ML’s 
implicit-sequencing syntax, with the standard elaboration 
into single-effect monadic normal forms. 
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abstyp void = VOID of void 
with fun coerce (VOID v) = coerce v 

endi 

signature ESCAPE = 
sig 

val escape : (('a -> void) -> void) -> 'a 
end; 

structure Escape0 : ESCAPE = 
stnlct 

fun escape h = 
SMLofNJ.Cont.callcc (in k => 

coerce (h (fn x => SMLofNJ.Cont.throw k x))) 
end; 

signature CTRL = 
sig 

type ans 
val shift : (('a -> ans) -> am) -> 'a 
val reset include RSIAjnit -> ans) -> am 

d; 

functor RepCPS (type am 
structure E : ESCAPE) : 

CTRL where type ans = am = 
stlnct 

type am = am 
fun initmk a = raise Fail "Unexpected control effect" 
val mk = ref (initmk : ans -> void) 

fun abort v = !mk v 
fun reset t = 

E.escape (fn k => 
letvalm= !mk 
in n& := (fn a => (mk := m; k a)); 

abort (t 0) 
end) 

fun shift h = 
E.escape (in k => 

abort (h (fn v => 
reset (in 0 => coerce (k v))))) 

fun escape h = 
E.escape (fn k => 

let valm= !mk 
in mk := initmk; h (in a => (mk := m; k a)) end) 

end; 

Figure 2: Representing continuation-passing with escapes 
and state 

3.3 Representation in SML/NJ 

As suggested by the development, the construction applies 
directly to a language with first-class continuations and 
state, such as Scheme or SML/NJ. We show it here for the 
latter (in SML’97 syntax), using parameterized modules to 
represent syntactic realizations. 

Figure 2 is a straightforward encoding of the control- 
operator construction from Section 3.2. Figure 3 shows a 
simple implementation of the universal type required for the 
answer-embedding in Lemma 8; an alternative implementa- 
tion in terms of SML’s extensible datatype exn of exception 
names is also possible. Finally, Figure 4 shows the imple- 
mentation of monadic proto-operations using control opera- 
tors from Section 3.1. (The monad component show and the 
corresponding operation run are not formally part of the 
construction, but are useful for visualization of the effect 
layering.) 

signature DYNAMIC = 
sig 

exception Dynamic 
type dyn 
val newdyn : unit -> ('a -> dyn) * (dyn -> 'a) 

end; 

structure Dynamic :> DYNAMIC = 
struct 

exception Dynamic 
datatype dyn = DYN of unit -> unit 
fun newdyn 0 = 

let val r = ref NONE 
in (fn a => DYN (fn 0 => r := SOME a), 

fn (DYN d) => 
(r := NONE; d 0; 
case !r of SOME a => a 

I NONE => raise Dynamic)) 
end 

d: 

Figure 3: A universal type, with a state-based implementa- 
tion 

4 Examples and applications 

In this section, we show two examples of programming with 
effects in direct style. The first simply explores further the 
ordering of exceptions and state. The second, more sub- 
stantial, shows how we to use layered monads to simulate 
nondeterministic behavior in a shared-state concurrent pro- 
gram. 

4.1 Exceptions and state 

Using the definitions of the exception and state monads from 
Figure 5, we can represent a language with exceptions lay- 
ered over state, as familiar from ML: 

structure E = EffO; 

structure E = Represent (stmcture M =I Exceptions 
structure E = E); 

structure Rex = E 
structure ExcOps = ExceptionOps(stracture R = Rex); 

structure E = Represent (structure M = State 
StNCtWX E = E) 

StNCtl,,X Rst = E 
structure StateOps = StateOps(strnctnre R = Rst); 

valtl= E.run (fn 0 => (StateOps.set 3; "ok")); 
(* val tf = "Wt. 3>ok" * 
val t2 = E.run &n 0 =>' 

string *) 

(StateOps.set 4; ExcOps.fraise "err"; "ok")); 
(* val t2 = "<St: 4Xexn: err>" : string *) 
val t3 = E.run (fn 0 => 

(StateOps.set 5; 
ExcOps.fhandle 

(fn 0 => (StateOps.set 8; 
ExcOps. fraise "err"; "ok")) 

(fn x => x ^ 'I, ” ^ 
Int.toString (StateOps.get 0)))) 

(* val t3 = "<St: b>err, 8" : string *) 

Let us now switch the order of the two effect-definition 
blocks in the prologue, putting the state-block first. Then 
running the same three examples gives: 

val tl’ = E.run (in (1 => (StateOps.set 3; “ok”)); 
(* val tl' = "<St: 3>ok" : string *) 
vel t2' = E.run (fn 0 => 
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signature MONAD = 
sig 

type'at 
val unit : 'a -> 'a t 
val bind : 'a t * ('a -> 'b t) -> 'b t 
val glue : (unit -> 'a t> -> 'a t 
val show : string t -> string 

end; 

signature RMONAD = 
sig 

structure M : MONAD 
val reflect : 'a M.t 
val reify : (unit -> 

end; 

-> ‘a 
‘a) -> ‘a M.t 

signature WFREP = 
sig 

include ESCAPE 
val run : (unit -> string) -> string 

end; 

structure EffO : EFFREP = 
stract 

open Escape0 
fun run t = t () 

end; 

fun&or Represent (structure M : MONAD 
structure E : EFFREP) : 

sig include RMONAD include EFFREP end = 
strllct 

structure C = RepCPS (type ans = Dynamic.dyn M.t 
structure E = E) 

structure M = M 
fun reflect m = 

C.shift (fn k => 
M.bind (m, in a => M.glue (fn 0 => k a))) 

fun reify t = 
let val (in-d, out-d) = Dynamic.newdyn 0 
in M.glue (fn 0 => 

M.bind (C.reset (in 0 => 
M.unit (in-d (t O))), 

M.unit o out-d)) 
end 

val escape = C.escape 
fun run t = M.show (reify (fn 0 => E.run t)) 

end; 

Figure 4: Representing monadic effects with continuation- 
passing 

(StateOps.set 4; ExcOps.fraise "err"; "ok")); 
(* val t2' = "<exn: err>" : string *) 
vsl t3' = E.run (in 0 => 

(StateOps.set 5; 
ExcOps.fhandle 
(in (1 => (StateOps.set 8; 

Exb,ps.fraise "err"; "ok")) 
(in x => x - fi, u - 
Int.toString (StateOps.get 0)))) 

(* uncaught exception Fail: Unexpected control effect 
raised at: ctrl.sml:29.25-29.57 *) 

Here, the computation of t2’ shows that a raised excep- 
tion simply discards the current state. t3’ shows what hap- 
pens when we attempt to execute an effect-ill-typed pro- 
gram: the state-effect in the first argument to fhandle is 
meaningless in this ordering of effects. Consequently, the 
translation-based specification says nothing about the mean- 
ing of the program, and the simulation theorem does not 
constrain the behavior of the implementation. 

structure Exceptions (*: MONAD*) = 
struct 

datatype 'a res = OK of 'a I EXN of string 
'a t = unit -> 'a res 

unglue t = fn 0 => t 0 0 
fun unit a = fn (1 => OK a 
fun bind (t, f) = 

fn 0 => case t 0 of OK a => f a (1 I EXN s => EXN s 
fun show t = 

case t () of OK s => s I EXN x => "<exn: II ̂ x ^ ">" 
end; 

functor ExceptionOps (structure R : 
RMONAD where M = Exceptions) : 

sig 
val fraise : string -> 'a 
val fhandle : (unit -> 'a) -> (string -> 'a) -> 'a 

and = 
stnlct 

open Exceptions 
fun fraise s = R.reflect (in 0 => EXN s) 
fun fhandle t h = 

case R.reify t 0 
end; 

of OK a => a I EXN s => h s 

structure State : MONAD 
stnlct 

= 

type state = int 
type 'a t = state -> 
fun glue t = fn s => 
fun unit a = fn s => 
fun bind (t, f) = 

'a * state 
t 0 s 
(a,s) 

fn s => let val (a,s') = t s in f a s' end 
fun show t = 

let val (a,s) = t 0 
in if s = 0 then a 

else "tst: " ̂  Int.toString s ^ 11>11 ^ a 
end 

end; 

functor StateOps (structure R : RMONAD where M = State) : 
sig 

val get : unit -> int 
val set : int -> unit 

end = 
stract 

fun get (1 = R.reflect (fn s => (s, s)) 
fun set n = R.reflect (in s => (0, n)) 

end; 

structure ListMonad : MONAD = 
stnlct 

type 'a t = unit -> 'a list 
fun glue t = fn 0 => t 0 0 
fun unit a = in 0 => [al 
fun mapcan f [I = Cl 

I mapcan f (h::t) = f h Q mapcan f t 
fun bind (t, f) = 

in () => mapcan (fn a => f a 0) (t 0) 

fun disp [] = "<fail>" 
I disp [xl = x 
1 disp (h::t) = h ^ I' <or> ' - disp t 

fun show t = disp (t 0) 
end; 

Figure 5: Some simple monads and their operations 

4.2 Shared-state concurrency 

As a larger example, we will consider the monadic approach 
*to modeling concurrency, as sketched in [MogSO], based 

on the semantic concept of resumptions [Sch86]. (Strictly 
speaking, this example goes beyond the language outlined 
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in Section 2.1 by using a (positive) recursively defined type 
in the monad specifications. The relevant theorem extends 
easily to this case, however.) 

The monad of &resumptions is given by 

with straightforward unit and extension operations. That 
is, a resumption-computation of Q is a &computation that 
yields either an a-value (representing the final result), or an- 
other resumption-computation (representing the remaining 
computation). The ML representation of the monad and its 
associated operations can be found in Figure 6. 

As long as all resumption-computations suspend periodi- 
cally (e.g., by calling yield()), this setup can directly simu- 
late the parallel-or operation [Plo77], which returns true if 
either of of its arguments evaluates to true, false if both 
evaluate to false, and diverges in all other cases. Not that, 
because por constructs another resumption-computation, 
the branches of a parallel-or can themselves contain parallel 
subcomputations. 

More generally, we can model a concurrent system as a 
collection of resumption-computations, corresponding to the 
runnable processes. A scheduler flattens this collection into 
a single computation by repeatedly picking out an element 
of the collection, running it for a single step, and (if it has 
not yet terminated) putting it back into the collection. In- 
dividual processes can communicate by e.g., a shared store 
if z contains state-effects. Alternatively, we can use a more 
refined monad, 

To = j@. 14 (cy + req x (rsp + 0)) 

Here, a computation that suspends now produces a request 
of type req, and must be resumed with response of type rsp. 

With this setup, and a suitable structure on requests and 
responses, it is simple to write an scheduler matching up 
senders and receivers in purely functional style. And while 
similar in efficiency to a traditional call/cc-based thread 
package [Wan80], such a system also achieves a direct re- 
lationship to the usual denotational specification. 

We will instead pursue another important aspect of con- 
currency: instead of making the scheduler pick runnable 
processes in a strict round-robin fashion, we can make it 
choose non-deterministically which process to run at each 
step. That is, we can layer the entire construction atop a 
nondeterminism monad: 

structure E = EffO; 

structure E = Represent (structure E = E 

structure 
structure 

structure 

structure 
structure 

stractlue 

structure 
structure 

Rrs = E 
structure M = Resumptions) 

ParOps = ParallelOps (structure Fl = Rrs) 

E = Represent (structure E = E 
structure M = State) 

Rst = E 
Cell = StateOps (structure R = Rst); 

E = Represent (structure E = E 
structure M = ListMonad) 

Rls = E 
Cone = ConcurOps (structure RR = Rrs 

structure RL= Rls); 

structure 
stnlct 

Shared = 

fun store n = (ParOps.yield 0; Cell.set n) 
fun fetch 0 = (ParOps.yield 0; Cell.get 0) 

end; 

structure Resumptions (* : MONAD *) = 
strnct 

datatype 'a res = DONE of 'a I SlJSP of 'a t 
withtype 'a t = unit -> 'a res 
fun glue t = fn 0 => t 0 0 

fun unit a = fn 0 => DONE a 
fan step (DONE a, f) =faO 

I step (SUSP t, f) = SUSP (bind (t, f)) 
and bind (t, f) = fn 0 => step (t 0, f) 

fun disp (DONE a) 
I disp (SUSP t) 

and show t = disp 
end; 

=a 
= shov t 
(t 0) 

functor ParallelOps (structure R : 
RMONAD vhere M = Resumptions) : 

sig 
val yield : unit -> unit 
val por : (unit -> bool) * (unit -> bool) -> boo1 

end = 
struct 

open Resumptions 
fun yield () = R.reflect (fn 0 => SUSP (unit 0)) 
fun por (tl, t2) = 

let fun step (DONE true, _) = DONE true 
I step (DONE false, p) = p () 
I step (SUSP t1, t2) = SUSP (rpor (t2, tl)) 

end rpor (tl, t2) () = step (tl 0. t2) 
in R.reflect (rpor (R.reify ti. R.reify t2)) end 

end; 

functor ConcurOps (structure RR : 
RMONAD where M = Resumptions 

structure RL : 
RMONAD where M = ListMonad) : 

sig 
val par : (unit -> 'a) * (unit -> 'b) -> 'a * 'b 
val atomically : (unit -> 'a) -> 'a 

end = 
stract 

open Resumptions 
fun atomically t = 

let fun step (DONE a, y) = if y then SUSP (unit a) 
else DONE a 

I step (SUSP t, y) = step (t 0, true) 
and atom t 0 = step (t 0, false) 

in RR.reflect (atom @R.reify t)) end 
full par (tl, t2) = 

let fun step (DONE a, DONE b) = DONE (a,b) 
I step (DONE a, susp tb) = 

SUSP (bind (tb, fn b => unit (a,b))) 
I step (SUSP ta, DONE b) = 

SUSP (bind (ta, in a => unit (a,b))) 
I step (SUSP ta, SUSP tb) = SUSP (rpar (ta, tb)) 

and rpar (tl, t2) 0 = 
if RL.reflect (in ()=>[true, false]) 

then step (tl 0, SUSP t2) 
else step (SUSP tl, t2 0) 

in RR.reflect (rpar GtR.reify tl, RFt.reify t2)) end 
=d; 

Figure 6: Resumption monad and associated operations 

val tl = E.run (fn 0 => 
(Conc.par (fn 0 => Shared.store 3, 

fn 0 => Shared.store 
(Shared.fetch 0 + 1)); 

Int.toString (Shared.fetch 0))) 
0 val tl = 
"<st: 04 <or> <St: 4>4 <or> <St: 1>1 <or> <St: 3>3 \ 

\<or> <St: 4>4 <or> <St: I>1 <or> <St: 3>3 <or> ist: l>f \ 
\<or> <St: 3>3 <or> <St: 3>3" *) 

186 



val t2 = E.run (fn 0 => 
(Conc.par (fn 0 => Shared.store 3, 

fn () => Conc.atomically (in 0 => 
Shared.store 

(Shared.fetch (1 + 1))) 
Int.toString (Shared.fetch 0))) 

(* val t2 = 
"<St: 4>4 <or> <St: 3>3 <or> <St: 3>3 <or> <St: 3>3 \ 

\<or> <St: 3>3 <or> <St: 3>3" *) 

Here, we see that bracketing a part of the concurrent com- 
putation as an atomic section reduces the set of possible 
changes to the store. While the number of possible interleav- 
ings easily gets astronomical in any substantial concurrent 
program, the simulation is perfectly usable for exhaustively 
testing individual fragments, such as mutual-exclusion pro- 
tocols. 

Further refinements are possible. For example, by lay- 
ering a data monad (To = int % (Y) above resumptions, 
we can model thread-specific data, where a running compu- 
tation can perform a the equivalent of a getpid() call to 
obtain its own thread’s unique identifier. We can provide 
thread-local exceptions, or global ones for aborting the en- 
tire concurrent system. We can add an output monad for 
tracing, but inspect it only for nondeterministic paths in 
which an exception is raised, and so on. 

5 Related work 

There are already a large number of proposals for layering 
effects, both for structuring denotational semantics [MogSO, 
Esp95] and functional programs [KW93, Ste94, LHJ95]. 
Generally, however, these approaches pursue modularity in a 
“flat” multi-effect language, without an explicit effect-typing 
system. Accordingly, a central problem in such frameworks 
concerns defining the various effect-operations in such a way 
that they “lift through” other effects that may be present. 
For specific effects, more or less ad hoc solutions do exist, 
but operations that involve reification-like behavior (such as 
exception handling) do not seem to admit any general solu- 
tion. 

The approach presented in this paper is less ambitious: 
the basic translation-derived framework exposes the layer- 
ing explicitly in the effect-types of the proto-operations. 
Thus, those conflicts that are not automatically resolvable 
by effect-subsumption must either be exposed to the pro- 
grammer as typing restrictions that go beyond simple typa- 
bility (akin to, e.g., keeping track of a function’s exception- 
effects in Java), or the desired semantics must be explicitly 
encoded in the definitions of the programmer-visible opera- 
tions. Of course, existing results about lifting specific oper- 
ations through particular monads can be used for that. 

A further difference is that most executable specifications 
based on monad constructors actually construct and use the 
full compound monad - explicitly or implicitly - during ac- 
tual evaluation of programs, usually at a substantial cost. 
Here, we make a strong distinction between the simple but 
inefficient specification, and the efficient but (especially for 
multiple layers) not easily analyzable implementation, tak- 
ing care only that they agree on the meanings of complete 
programs. 

A second line of related work concerns implementation 
of various computational paradigms using control operators 
directly, without involving monads at all. Examples include 
uses of basic call/cc for thread packages [WanSO] and im- 
perative backtracking [HDM93]; simple composable-control 

[FWFD88, DF92] for nondeterminism and other basic ef- 
fects, and a number of proposals for hierarchical control 
[DF90, SF90, GRR95] to represent general layered effects. 
Most of these are based on operational definitions of the 
control operators in terms of their actions on evaluation con- 
texts (although many also include sample implementations 
in terms of Scheme primitives). 

Again, we take a more minimalist approach here: we view 
control operators not as an explicitly exposed programming 
abstraction in its own right, but only as a means to the 
end of implementing a monadic specification. (Of course, 
sometimes - although surprisingly rarely - the most natural 
description of a computational effect is in fact in terms of 
continuations; the monadic framework encompasses this as 
simply another instance.) This frees us from the constraint 
of defining a general-purpose control mechanism with intu- 
itive operational behavior, and allows us to provide instead 
a “lean and mean” implementation, which can be formally 
analyzed without too much work. 

6 Conclusions 

To be practically compelling, a monad-based framework for 
effects needs to minimize overhead, both conceptual and 
computational. We address the former concern by basing 
the specification on the intuitively familiar concept of def- 
initional translation (“explaining away an effect”), and the 
latter by an efficient implementation that keeps execution 
cost at roughly native levels, as long as the effect-invoking 
and effect-delimiting operations are comparatively rare - as 
is indeed the case in most functional programs. 

In other words, we aim to steer clear of two extremes: on 
the one hand “the specification is the implementation”, re- 
sulting from executing a monad-based specification (of, e.g., 
exceptions) literally; and on the other hand, “the implemen- 
tation is the specification”, resulting from taking a particu- 
lar imperative implementation (e.g., a thread package) as a 
guide to specifying interactions with other effects. Instead, 
we propose a paradigm - monadic reflection - to uniformly 
relate a layered declarative specification of an effect tower to 
its ultimate imperative implementation in terms of low-level 
primitives. 

Although the implementation presented here is nominally 
complete in an operational sense, it should still be viewed 
as a proof-of-concept prototype, rather than a final solution. 
That is, the construction establishes that - beyond avail- 
ability of call/cc and references - no further support from 
the compiler or runtime system is needed to efficiently im- 
plement layered effects. But this does not mean that such 
support would be undesirable. In particular, a type system 
for actually enforcing the effect-restrictions statically would 
be a big help in constructing large programs. To be practi- 
cal, this would probably need to be largely reconstruction- 
based, with only minimal explicit annotations; it should also 
include support for some notion of effect-polymorphism. 

On the semantic side, further refinements are also possi- 
ble. In particular, it should be possible to extend the formal 
simulation result to “effect-recursive monads”, in which the 
new effect being defined is implicitly used in its own spec- 
ification (e.g., for a higher-order state, we can store proce- 
dures that themselves have state-effects). This would also 
allow for a more uniform treatment of continuation monads 
with non-base answer types. It would also be worth inves- 
tigating whether the present results for simulating a linear 
s-hierarchy can be extended to more general orders. 
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