
Higher-Order Equational Logic Programming

Zhenyu Qian*

Universitat Brement

Abstract

Higher-order equational logic programming is a par-

adigm which combines first-order equational and

higher-order logic programming, where higher-order

logic programming is based on a subclass of simpIy

typed A-terms, called higher-order patterns. Cen-

tral to the notion of higher-order equational logic

programming is the so-called higher-order equational

unification. This paper extends several important

classes of first-order equational unification algorithms

to the higher-order setting: only problems of the ex-

tensions are discussed and first-order equational uni-

fications are viewed as black boxes whenever possible.

We first extend narrowing and show that the com-

pleteness of many higher-order narrowing strategies

reduces to that of their underlying first-order counter-

parts. Then we propose an algorithm for higher-order

equational unification of free higher-order patterns in

an arbitrary equational theory. Finally a general ap-

proach to extend first-order unification combination

algorithms is sketched informally. The termination

property of the above higher-order extensions is con-

sidered in a uniform way.

1 Introduction

Higher-order logic programming paradigm, like e.g.

LA [20], Elf [27] or the recent implementation [23] of

Isabelle [25], provides a powerful and efficient com-

* Res.arch partially supported by ESPRIT Basic Research

WG COMPASS 6112.

f ,&d&ess: FB 3 Infornmtik, Universitiit Bremen, D-28334

Bremen, Germany. E-mail: qlsn@inf ormat ik .uni-bremen. de

Perrrission to copy without fee 811 or part of this materi8! is

granted provided that the copies are not mede or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication end its date appear, and notica is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

POPL 94- 1/?24, Portland Oregon, USA

@ 1994 ACM O-89791 -836-91’941W1 ..$3.50

mutational mechanism for succintly representing and

manipulating syntactical structures involving notions

of abstractions, scope, bound and free variables, and

is therefore very suitable for syntactically handling

formulas, types, proofs and programs. Equational

logic programming paradigm (as in [7, 10, 12, 13,

21, 31, 32, 35, 39] and in the collection [6]) includes

first-order extensions of Prolog, where symbols can

be specified by equations. Although the higher- and

first-order paradigms are successful on their own, no

techniques of one paradigm, to our knowledge, have

been systematically used in the other. In this paper

we investigate the integration of them.

The integration is important from the perspective

of higher-order logic programming, since equations

exist naturally in many mathematical systems and

facilities to handle them naturally ease the manipu-

lation of these mathematical systems in the higher-

order setting. Examples are the mathematical sys-

tems that include the number theory, where arith-

metic operations on numbers may be naturally de-

fined by equations. Changing the perspective, ex-

tending equational logic programming to a higher-

order setting is also important, since equational the-

ories are often subject to some syntactical structures,

which can be naturally formulated in a higher-order

setting. Examples are parameterized many-sorted al-

gebraic specifications.

The higher-order logic programming paradigm

mentioned above is based on a subclass of A-terms,

discovered by Miller, where the unification is decid-

able, unifiable terms always have a most general uni-

fier [20] and a most general unifier can be computed

in linear time and space [28]. This subclass consists

of all /3-normal forms where free variables F may

only occur in the form F(zl, Zk), k ~ 0, with

~1,...,~k being distinct bound variables. We follow

Nipkow [22] to call these terms highe~-onie~ patterns

(short: patterns). Their unification is called higher-

order unification in this paper. Roughly speaking,

254

the higher-order logic programming paradigm can be

viewed as an extension of Prolog where first-order

terms are replaced by patterns, and first-order uni-

fication by higher-order one. Just as in the first-

order case, where unification modulo equations, usu-

ally called equational unification, is central to the no-

tion of equational logic programming, so is higher-

order unification modulo equations, called higheT-

oTdeT equational unification hereafter, to the notion

of higher-order equational logic programming. Unifi-

cation modulo no equations is said to be syntactic.

In the first-order setting, a unification algorithm in

an equational theory can either be designed directly

or composed of existing unification algorithms for dis-

joint sub-theories (cf. e.g. [1, 17]). In the higher-order

case, the situation seems to be similar. However, we

should make use of first-order algorithms whenever

possible. Nipkow, Qian and Wang proposed some

equational unification algorithms, which accept all

simply typed A-terms and are parameterized by ar-

bitrary first-order equational unification algorithms

([24, 29]). But the restrictions of these algorithms to

higher-order patterns inherit some unpleasant opera-

tional properties from syntactic unification of simply

typed A-terms. The aim of this paper is to extend

three important kinds of first-order equational unifi-

cation algorithms to the higher-order setting, where

the resulting algorithms have operational properties

close to those in the first-order case.

Firstly, we consider functional logic programming

systems (in Section 4), which are logic programming

systems, where function symbols may be specified by

directed equations, called rewrite rwles. The equa-

tional unification in this case is also called namow-

ing. For example, let the usual addition + be defined

by O + X 4X and SUC(X) + Y ~ SUC(X + Y) where

O is zero and suc the successor function as usual.

Then narrowing X+Y =? SUC(Y) may yield a solution

{x w Sue(o)}.

We introduce a notion of higher-order narrowing

such that e.g. the unification problem Ay.1’(y) +

y=? ~Y.suc(Y) with 1’ being a free (function) variable

may be solved modulo the above rewrite rules. Al-

though different first-order narrowing strategies have

been considered in the literature, which have led to

very different first-order functional logic program-

ming systems (cf. e.g. [7, 10, 12, 13, 21, 31, 32, 35, 39]

and the collection [6]), it will be shown here that if a

strategy of higher-order narrowing is a total higher-

order extension of its first-order restriction in a cer-

tain sense, then the completeness of the strategy re-

duces to that of the first-order restriction.

As the second contribution of this paper, the notion

of unifiers is extended and an algorithm is presented

(in Section 6) for computing the most general uni-

fiers of free patterns in the presence of an arbitrary

equational theory. Note that in the first-order case,

syntactic unification is conservative in equational uni-

fication in the sense that if the terms to be unified

are free, (i.e. contain no function symbols occurring

in the equations,) then their equational unification is

just syntactic unification. This property is lost in the

higher-order case.

Consider the unification prob-

lem ~zy.1’(z, y) =? ~zy.1’(y, z) in the presence of a

usual commutative function symbol +, where F is a

free variable. Let On denote the substitution

{F H kZy.Gn(~I(Z, y) + ~I(y, z), .0.,

Hn(z, y) + Zl(Y,~))}!

where n is a natural number, G~, Hi, i = 1, o””, n,

are distinct free variables. It may be easily

checked that On is a unifier of the above unifica-

tion problem. But the syntactical unification of

Aizy.F(z, y) =? Azy.F(y, x) yields a most general uni-

fier {F +-+ Axy.H} with a new free variable H, which

is obviously not a most general one in the presence

of +. Thus, the algorithms in [20], [22] and [27] are

not complete for equational unification of free pat-

terns. In general, 19fi is not a most general unifier

either, since Om+l is a unifier and strictly more gen-

eral than On. Note that Azy.F(z, y) and kzy.F(y, z)

are both free patterns and en contains ~-terms that

are not patterns. It may be proved that in the simply

typed A-calculus every unifier of the above unification

problem is an instance of 6n for some n. Therefore,

the higher-order unification is not finitary, even if all

simply typed A-terms are allowed in the solutions.

In the first-order case, a unification algorithm for

an equational theory may be built by combining uni-

fication algorithms for the disjoint sub-theories using

some combination algorithm (cf. e.g. [2, 9, 33, 38]).

Higher-order equational unification can also be pur-

sued in an analogous way. We informally sketch

(in Section 7) a uniform way of extending first-

order combination algorithms to the higher-order set-

ting. Higher-order combination algorithms combine

the higher-order equational algorithms proposed in

this paper, and also those developed elsewhere (cf.

[30] for a higher-order AC unification algorithm).

Termination of a unification algorithm is an im-

portant property, since the decidability property may

depend on it. A general method is proposed (in Sec-

tion 5) which reduces the termination of a higher-

order equational unification to its first-order counter-

255

part. The method is applied several times in this

paper.

2 Other related work

This section discusses other related work not men-

tioned in Section 1.

Breazu-Tannen and Meyer were the first who

showed that the integration of a first-order equational

theory in a simply typed A-calculus is conservative

w.r.t. the first-order equational theory [5]. The point

was then made more clearly by Breazu-Tannen and

Gallier [3, 4] where the computational reductions in

the integrations are studied.

In the spirit of “universal unification” [11], Sny-

der studied equational unification of simply typed A

terms [34]. Wolfram considered the same problem

in terms of a general form of term rewriting [37],

Dougherty and Johann for restricted equational theo-

ries in a combinatory logic framework [8]. As already

mentioned, Nipkow, Qian and Wang proposed a uni-

fication algorithm parameterized by first-order equa-

tional unification algorithms ([24, 29]). Weber and

Moller implemented the Nipkow, Qian and Wang’s

algorithm in their software development system (cf.

[36]). All the above algorithms inherit some seri-

ous problems from the syntactic unification of sim-

ply typed A-terms: the unification is undecidable and

unifiable terms may have infinite independent uni-

fiers. With a higher-order logic programming para-

digm based on patterns we have a new starting point

in this paper.

3 Preliminaries

This section briefly introduces our notations. More

technical details are given in Appendix A.

We follow the standard notations for the simply

typed A-calculus and use the following conventions: s,

t, u and v stand for the simply typed }-terms (short:

terms), z, y and z for bound variables, X, Y, Z, F, G

and H for free variables, c, d, f, g and h for function

symbols, a and b for atoms (i.e. function symbols,

bound or free vaiables). Bound and free variables

are always kept disjoint. The set of all bound (or

free) variables in a syntactic object O is denoted by

Z?V(0) (or 9V(0)). The letters a, ,8, ~ range over

types, and dl + . . . --+ an + /3 or ~ -i /3 stands for

al -+(... --+ (% + P)).

We may write ~Z.s, or simply Az.s for

AZ1. . . . Axn .s, where s is not an abstraction, and

a(ul, ..., tin), a(~) or a(li) for (((a ul) uJ) . . .un).

In the same context, occurrences of 3? (or ti) always

denote the occurrences of the same% (or w, resp.).

If D stands for w and ii for ~ then {u E-+ v} stands

for {’Uk ~ vk}.

Let X 6 {p, q, pq}. We use -+x to denote one

step %-reduction, -+$ the reflexive and transitive

closure and =X the equivalence of +x. Define

ti(~~.a(~)) = a. Let slp denote the @-normal form

of .s. An q-long form is a /3-normal form XZ.a(K)

with a(z) being of a base type and each tz being q-

long. Use .sTn to denote the unique q-long form such

that s~v ~~ s~p. The q-long form of a single bound

variable z may still be written as z.

Patterns are the q-long forms, in which argu-

ments of a free variable may only be distinct

bound variables. If &’(y, z), G(z), ~(G(z)) and

Y(~z. @z)t .f(G(z))) are of base types, then terms

Azyz.F(y, z) and Azy.y(}z.G(z), ~(G(z))) are pat-

terns. The terms ~z.1’(c, z), Azy.F(z, X) and

kz.1’(G(z)) are not patterns. In the sequel, @

reductions are always assumed to be performed au-

tomatically, and all terms are patterns unless stated

otherwise.

We use 0(s) to denote the set of the positions of

all subterms in a pattern s, ~(s) that of all rigid

subterms. For p c 0(s), SIP denotes the subterm ofs

at p, S[U]P the result of replacing SIP in s by u.

A substitution may be written as {Xl ~

tl, ..., Xn R tn} or {Xn +-+ -tn}. The letters a, 0, p

range over substitutions. Let 6 = {Xn ~ tn }. Then

D(e) = {xl,..., Xn} and Z(6) = YT(tl, c . .,tn).

The restriction of 6’ to a variable set W is denoted

by 91W, the composition of n and $ by cTtJ satisfying

08(X) = u(19(X)) for every X. We call 6 a variable

renaming if tl, . . . ! % are distinct free variables.

A rewrite rule ! + r is an ordered pair, an equation

1 = r an unordered pair of first-order terms. A term

rewrite system (short: TRS) R is a finite set of rewrite

rules, an equational theory E a finite set of equations.

In this paper, many notions and notations defined

for rewrite rules may also be used for equations in

an obvious way. For example, function symbols flee

w.r. t. R are those not occurring in R, and function

symbols free w.r. t. E means similar.

In the sequel, all TRS’S are assumed to be con-

sistent and confluent. In Section 4, every rewrite

rule 1--+ r is required to additionally satisfy that

7V(~) G ~Y(l) and 1 is not a free variable.

We use _+R to denote one step R-rewriting, --+; the

reflexive transitive closure and =R the equivalence of

.+R. Let =pq~ denote (=R U =@q)*. Since for all

patterns u and v, u =@@ v if and only if u~q =R vTq

256

[3], we need only to consider =~ instead of =pq~.

Let W be a free variable set. We use a =~ 19 [w]

to denote o(X) =~ 6(X) for each X c W, where [W]

may be omitted if clear from the context. We may

write o ~~ 6 [W] if pa =~ @ [W] for some p.

A unification pairs=? t is an unordered pair of pat-

terns s and t of the same type. It may be assumed

that both sides of a unification pair are always auto-

matically a-converted to have the same sequence of

outer A-binders. Unification problems are multisets

of unification pairs. Let P, Q range over them. Then

we use UR (P) to denote the set of all higher-order

R-unifiers of P. If UR(P) = UR(Q), P and Q are said

to be equivalent w.r.t. R.

4 Higher-order narrowing

In the first-order case, an R-narrowing step on a first-

order term s is the combination of guessing a first-

order substitution al for s and applying a rewrite

rule 1~ r to al(s) at a position p E ~(s). Let a2

be such that 02(1) = UI(SIP). Then the result of the

R-narrowing step is al(s) [C7Z(r)]P. It maybe assumed

that 3V(1 -+ r) fl 2V(S) = {}. Thus al U C72may be

chosen as a most general syntactic unifier of SIP and
,
6.

For a rewrite rule 11 + TI and a variable renam-

ing p such that D(p) ~ ~V(il ~ rl) and Z(p) con-

tains only new variables, we call p(ll) + p(~l) a va~i-

ant of tl -+ TI. Let s be a first-order term and

R={ Z1*TI, . . . ,h~T~} a TRS. If /+T is a vari-

ant of some 1, ~ ri, 1< i < m, and u a most general

syntactic unifier of SIP and 1, an R-narrowing step

may be written as s +P,z,a a(S[T]p). we may write

s -m t for s +P,i,u t. A narrowing derivation

may be denoted as s w; t,where c = nn–l . . OU1. If

n=l then o={}.

Regard =? as a new binary function symbol. Then

a unification pair s=? t is a term with (S=? t)1I.p =

Slp and (S =? t)12.P = t 1P. A narrowing derivation

s =? t +; u =? v is called successful if there is u’ with

o’(u) = a’(v). In this case, c’a is an R-unifier of

S=?t.

Let R = {O+ X -+X, SUC(X) + Y ~suc(X + Y)}.

Then the unification pair .X + Y=? SUC(Y) has only

one successful narrowing derivation

x + Y=? SUC(Y)

--1,2,01 Suc(xl + Y)=? SUC(Y)

-l.l,l, q stic(Y) =? SW(Y),

where SUC(X1) +Yl -+ SUC(X1 +Yl) is the variant used

in +l,z,~l and O + X2 -+ X2 in +l.l,l,CZ with al =

{X + SUC(XI), YI i-+ Y} and a2 = {Xl w O, X2 ~

Y}. Restricting U2U1 to {X, Y} yields an R-unifier

{x M Sue(o)}.

In the higher-order setting, unification pairs may

contain patterns, thus higher-order unification is

needed. Roughly speaking, a higher-order narrowing

step is a first-order narrowing step where first-order

syntactic unification is replaced by higher-order one,

As a preparation, we first explain how to make

a rewrite rule applicable in the higher-order setting.

The idea is inspired by the notion of “lifting over pa-

rameters” in [26].

Definition 4.1 Let i ~ T be a rewrite rule with

W(J ~ T) = {z}. Let Ill, c .0, lln be distinct new

free variables, and yl, 00., yk distinct bound variables.

Let u and v be the results of replacing all occurrences

of X, in 1 and ~, resp., by Ha(~). Then ~~.u ~ ~~.v

is a variant of 1b T over ~. •1

Lemma 4.2 For 1 ~ r E R, if A~.u -+ A~.v is a vari-

ant of 1-+ r over V, then ~~.u ~R ~~.v holds.

Let R = {O+X -+X, WC(X)+ Y~suc(X + Y)}.

Then the unification pair AY.F(Y) + Y=? ~Y.sue(Y)

has a higher-order narrowing derivation

Ay.F(y) + y =? ~Y.sue(Y)

-1.1,2, el Ay.suc(xl (y)+ y) =? Sue(y)

--1.1.1,1,62 Ay.sue(y) =? Ay.sue(y)

where ~y.suc(Xl(y))+yl (Y)+ ~Y.SUC(XI (Y)+Y1 (Y))

is the variant used in +1.1,2,01 and Ay. O +

x2(Y) -+ x2(Y) in +1.1.l,l,e, with

61 = {F W k. SUC(xI(Z)), Y1 ~ ~Z.Z}
82 = {xl ++ Az.o, X2 H Az.z].

The resulting R-unifier is (6261)I{F1 = {F H

Az.suc(0)}. If no lifting over y were made in e.g.

the variant in AI. 1,2,e,, then the syntactical unifica-

tion of the subterm F(y) + y and the left-hand side

SUC(X1) + Y1 oft he variant would fail, since y cannot

occur free in the substitution of YI.

Definition 4.3

Suppose R = {ll~rl, . . .,lm+T~}. Let s be a pat-

tern, p 6 ~(s) and kzl, ..., ~~k all ~-binders in s

covering p. Let A=. u ~ .A~. v be a variant of la ~ ri

over ~. A higher-order R-narrowing step (short: R-

narrowing step) is defined ass NP,t,e 6(s[v]P), where 6

is a most general syntactic unifier of A~.SIP =? AR.U

such that D((I) c FV(S, A=.u) and D(6) nZ(0) = {}.

We may write s ~~ t or s ~p,a t for s +P,i,u t. The

notation s G: t is defined in the same way as in the

257

first-order case. If 2)(6) n ?V(s) = {}, we may write

s --+p,i s[e(~)]p. ❑

Lemma 4.4 Let R be a TRS. Then s ~P,a t if and

only ifs ~R t.

Lemma 4.5 Ifs -P,,,. t -then a(s) ~P,i t.

Theorem 4.6 (Soundness) Let R be a TRS. If a

unification pair s =? t has an R-narrowing derivation

s =? t +; u=? w with o’ satisfying a’(u) = a’(v),

then U’F is an R-unifier ofs =? t.

Definition 4.7 Let 6 be a substitution. An R-

narrowing derivation s =? t +: u=? v is called suc-

ce,wfzd (for 0,) if there is a’ satisfying a’(u) = a’(v)

and da ~R 6[~~(s, t)]. ❑

4.1 Completeness

Usually the completeness of narrowing means that

if s =? i has an R-unifier 8, then there exists an R-

narrowing derivation issuing from s =? t and success-

ful for 0. However, in order to find a successful one,

too many R-narrowing derivations may need to be

looked at in general. Therefore, restricted TRS’S

and restricted unification pairs have been considered

where special and efficient strategies can be devel-

oped for finding successful narrowing derivations (cf.

the references of [19]). Since we are only interested in

the problems of higher-order extensions, the details

of the existing first-order approaches will be avoided

whenever possible. A notion of narrowing strategy is

then defined in an abstract way.

Definition 4.8 A higher-order narrowing strategy

(short: narrowing stTategy) is a function S which for

each TRS R and pattern t yields a set S(R, t) of R-

narrowing derivations issuing from t. ❑

Many existing first-order narrowing strategies can

be naturally extended to the higher-order case. Take

basic narrowing as an example. Then higher-order

basic narrowing should have the same idea as the

firsr-order one ([15]): for a confluent and terminating

TRS, a narrowing step need not happen at a subterm

introduced by a substitution in a previous narrowing

step. The difference is just that higher-order substi-

tutions are used in higher-order basic narrowing. It

should not be surprising that the definition of higher-

order basic narrowing is almost identical to that in

[15].

Definition 4.9 Let R = {11 +T1, . ~., Zm +Tm} be

a TRS. Then higheT-ordeT basic R-naTTowing consists

of all R-narrowing derivations of the form

where p~ e Bj for 1 < j < n – 1, and the sets

Bl,. ... Bn _ 1 are inductively defined as

Let us now introduce an abstract notion of com-

pleteness. Note that we will only consider normalized

R-unifiers, as in most existing work, although TRS’S

R are not required to be even weakly normalizing in

general.

Definition 4.10 Let R be a TRS and ‘P a class of

unification pairs. A narrowing stragety S is said to

be complete for R and ‘P if for every s=? t c P and

every normalized R-unifier O of s =? t,there is an R-

narrowing derivation in S(R, s =? t) which is success-

ful for O. ❑

We will present a result which reduces the com-

pleteness of a higher-order narrowing strategy to that

of its first-order underlying counterpart. The key is

to relate a pattern with a first-order term by view-

ing }-binders as new unary free function symbols and

flexible subterms as new first-order free variables. For

example, Az.f(F(z)) should be viewed as kc(f(X))
where AZ denotes a free function symbol.

When fixing A-binders as free function symbols,

no explicit a-conversion is possible. Therefore pat-

terns should be a-converted beforehand so that no

explicit a-conversion is needed any more. For doing

this, assume an infinite list of new bound variables

for every type. A pattern is said to be a-converted if

each A-binder in the pattern always uses in the cor-

responding list the first bound variable that has not

been used by other covering A-binders. For example,

~yl. f (Ay2y3 .y2, Ayz .y2) is an a-converted form, pro-

vided that f is of the type (~ a ~ --t /3) ~ (P -+

@ ~ 7 and (yl, y2, y3, . ..) the list of bound vari-

ables for /3. Note that a A-binder may occur more

than once in an a-converted form, but only at inde-

pendent positions. Occurrences of the same Xbinder

will be viewed as occurrences of the same function

symbol. No explicit a-conversions are needed in prov-

ing R-equivalence of a-converted forms (cf. [29] for a

proof). It is assumed in the rest of this section that

all patterns are a-converted.

For viewing flexible subterms as first-order free

variables, we introduce a special mapping.

Definition 4.11 A weak abstraction is a large

enough injective mapping 4 which maps a flexible

subt erm F(z) into a first-order variable X. If u is

258

a pattern then #(u) denotes the result of replacing

each flexible subterm F’(T) in u by #(J’(?F)). For

a substitution 6, define #(O) to be a substitution

such that if 6(F) = ~~.-t then @(6)(@(l’(~))) =

q$({z~ ~ y~ }(t)) for all bound variable sequences ~

with each yz being of the same type as that of xi. ❑

Note that if F # G or v # z then ~(F(v)) #

#J(G(z)). For a pattern u, ~(u) can be regarded as

a first-order term when the types of the symbols in u

are forgotten and all A-binders in u are regarded as

free function symbols. For a substitution 6, #(O) can

be regarded as a first-order substitution in a similar

way, where the domain D(#(6)) is restricted to a fi-

nite set including only #(F(~)) of those ~(~) which

are in consideration. By definition we may directly

prove that the weak abstraction mapping can always

be moved into a substitution in the following way:

Lemma 4.12 FOT a pattern u and substitution 6,

4(6(u)) = #(@)(@(u)) always holds.

Furthermore, the weak abstraction mapping pre-

serves rewriting relations.

Lemma 4.13 Let R be a TRS and s, t two patterns.

Then s ~p,i t if and only i.f 4(s) +P,i d(t).

Proof See Appendix B. ❑

A rewrite step always transforms a weak abstrac-

tion into a weak abstraction.

Lemma 4.I4 Let s be a pattern. If ~(s) 4P,, u then

there exists a pattern t such that u = ~(t).

Finally, we formulate how ~ relates narrowing

derivations with their first-order counterparts. Note

that derivations (1) and (2) below employ the same

rewrite rules at the same positions.

Lemma 4.15 Let R be a TRS, s=? t a unification

pair and 8 a normalized R-unifier of s=? t. Then

#(O) is a normalized R-unijiev of I#(s) =? ~(i!). Fw~-

thermore, if

4(s) 4 d(t) ‘p~,i~ . ..+ Pn,%ll s’ At’ (1)

is successful for ~((1), then we have

s: t +Pl,tl, ol . . . -+Pn,%m,on Uzv (2)

foT some UI, Un such that there is a’ with c+(u) =

a’(v) and C’an . . . al ~~ 19 [7V(S, t)].

Proof If 6’ is a normalized R-unifier of s=? t,then

0(s) =~ O(t), thus @(O) is a normalized R-unifier of

g+(s) =? @(t)by Lemmas 4.4,4.12 and 4.13.

The proof of the second claim is based on Lem-

mas 4.5, 4.14, 4.13 and an additional lemma, which

is rather technical. For details see Appendix B. ❑

Now we may introduce a way to characterize nar-

rowing strategies.

Definition 4.16 A higher-order narrowing stragety

S is said to be a total higher-order extension for

a TRS R and a class F of unification pairs if for

every s=? t c ‘Pand every normalized R-unifier 0 of

s=? t, whenever S(R, #(s) =? #(t)) contains a first-

order R-narrowing derivation as derivation (1) suc-

cessful for ~(d), S(R, s =? t) contains a higher-order

R-narrowing derivation as derivation (2). ❑

By Lemma 4.15, the existence of derivation (1) al-

ways implies that of derivation (2). Therefore, to

see whether a narrowing strategy S is a total higher-

order extension, we need only to check that whenever

derivation (1) is in S(R, ~(s)=? #(t)), derivation (2)

is in S(R, s =? t).

Higher-order basic narrowing is a total higher-order

extension. For, every posit ion of narrowing in deriva-

tions (1) and (2) corresponds to a rigid subterm in

either the initial s=? t or the right-hand side of a

rewrite rule, and s=? t and ~(s) =? #(t) have the

same set of positions of rigid subterms.

A narrowing strategy consisting of all those higher-

order basic narrowing derivations where the positions

of narrowing are always outermost is a total higher-

order extension. To see this, we can check that if

a position p% of narrowing in derivation (2) is not

outermost, assuming that it is the first one which is

not outermost, then the position pi in derivation (1)

cannot be outermost.

Theorem 4.17 Let R be a TRS and P a set of uni-

fication pairs. A higher-order narrowing strategy S

is complete for R and ‘P if S is a total higher-order

extension and complete for R and 4(P).

Proof Follows from Lemma 4.15 and Definition 4.16.

❑

As an instance of the above theorem, by the fact

that basic narrowing in the first-order setting is com-

plete for all confluent and strongly normalizing TRS’S

and all first-order unification pairs [15], we know

that higher-order basic narrowing is complete for all

confluent and strongly normalizing TRS’S and all

(higher-order) unification pairs.

5 Termination of equational unifica-

tion

A very important property of an equational unifica-

tion algorithm is the termination. This section in-

troduces an approach to reduce the termination of a

higher-order equational unification algorithm to that

259

of its first-order counterpart.

Let us first formulate very abstractly the notions

of unification process and unification algorithm.

Definition 5.1 An abstract unification process is a

(finite or infinite) sequence of pairs of unification

problems P, and substitution sets S, in the form

(P,, s,) =+ (P,, s,) ==$’

An abstract unification a~go?’ithm U.A is a function

which for every unification problem P yields a set

of abstract unification processes issuing from (P, {})

such that if P contains only first-order terms then

24.4(P) contains only first-order terms and substitu-

tions. An algorithm UA is called terminating if for

every P, UJI(P) contains no infinite abstract unifica-

tion processes. ❑

To relate a higher-order equational unification algo-

rithm to its first-order counterpart, we view all bound

variables of the same type as identical. This implies

that all A-binders with their bound variables being of

the same type are viewed as identical and so are all

flexible subterms with the same head free variable.

Definition 5.2 Let us associate each type ~ with

two new function symbols lT and o. such that all

these new function symbols are pairwise distinct. A

strong abstraction ~ is a mapping which transforms

every pattern in a topdown way as follows:

@(Az.s) = /7(+(s))

+(a(~)) = ~(a)(~(sn))

@(l@)) = F

+(z) = 0.

lKf) = f

where x is a bound variable of type r, a a function

symbol or a bound variable, F a free variable and

~ a function symbol. For a substitution u, define

~(a) = {F - +(t) I F ~ ~~.-t E o}. Strong abstrac-

tions of sets of patterns or of substitutions are defined

componentwise. ❑

For a pattern t, @(t) may be viewed as

a first-order term. For example, if z and

y are bound variables of type a, and z of

type /3, then ~(kzy.z.z(z, F(z, y), F(y, z), y)) =

la(~a(~p(op(oa, F, F, Oa)))). ‘

Definition 5.3 An abstract unification algorithm

UA is said to be fimt-order embedded in another ab-

stract unification algorithm UA1 if for every unifica-

tion problem PI,

(P,,{}) ==$’ (P,, s,) ==$’ . . . = UA(P1)

always implies

(@(Pi), {}) ==$ (4(P2),4(S2)) - ~. ~ E UA~(4(Pl)).

❑

We may now easily prove the following theorem.

Theorem 5.4 Let UA be fi?’st-orde?’ embedded in

UAI. For a unification problem P, if all abstTact uni-

fication processes in UAI (@(P)) are terminating then

so aTe all those in UA(P).

5.1 Termination of higher-order narrowing

The method developed in the above will be used sev-

eral times in this paper. First of all, let us con-

sider narrowing strategies as equational unification

algorithms and see how to reduce the termination

of higher-order narrowing strategies to that of their

first-order counterparts.

We show first that the most general unifiers are

preserved by strong abstractions.

Proposition 5.5 If O is a most geneTal syntactic

unijieT of two patterns s and t then ~(e) is a most

geneTal syntactic unijieT of ~(s) and ~(t).

The preservation of the most general unifiers can

be extended to narrowing derivations.

Proposition 5.6 Let R be a TRS. If

$1 ‘pl,il, ol “ “ “ ‘Pj-1,%3-19V3-1 ‘~ ~Pj,~j9°3 “ “ “

is an R-namowing derivation, then so is

‘#($1) --+P,,u,v(a,) “ ‘ “

‘Pj-l,zj-l,+(uj-l) @(sl)

‘P,!~3)*(Cj)
. . .

Let S1 =? tl be a unification pair. Then we may

view an infinite R-narrowing derivation

$1 =? tl -Pl,%i,g, . . .

-Pn-l, zn-19gw-1 Sn =? tn

‘P.,an,v.
. . .

as an abstract unification process

(sl~tl, {})s... q(sn~tn, al-ol)~ol) ~...

and a finite R-narrowing derivation

sl :tl +Pl,tl, ml . . . tipn_l,tn_l,an_l sm A tn

with a’ being

Sn =?tm as

(s, =’ t,, {})

a most general syntactic unifier of

* . . .

+ (sn=?tn, an_l. ..ol)

* (U’(sn) =?d(tn),c7’&l ...U1).

260

Propositions 5.5 and 5.6 say that a strong abstraction

of an R-narrowing derivation is still an R-narrowing

derivation of the same length and may also be con-

sidered as an abstract unification process as defined

above.

Let S be a narrowing strategy for some TRS R

and some set P of unification pairs and SI a narrow-

ing strategy for R and @(P) with S being first-order

embedded in S1. By Theorem 5.4 we know that for

a unification pair s =?t c 7, if S(R, ~(s)=? @(t)) is

terminating, then so is S(R, s =? t).

6 Equational unification of free pat-

terns

In this section we propose an algorithm for equational

unification of free patterns. The algorithm is com-

plete for every consistent equational theory. Let E

be an arbitrary but fixed consistent equational the-

ory.

Our algorithm is in fact a revision of the one in [22]

(see also Appendix A.3). The key of the revision is to

leave unification pairs of the form ~~.1’(ij) =? Az.1’(z)

as constraints in the unification process. For nota-

tional simplicity, the outer A-binders Xi maybe omit-

ted, since any A-binders AZ such that {Z} ~ {~} U {T]

can have the same effect. Let C and D range over sets

of constraints. A substitution IS is said to E-satisfy C’

if a(~(~)) =,g a(#’(Z)) for every l’(~) =? F(Z) 6 C.

Suppose that a = {F * ~V.a(H~(@)} is a sub-

stitution with a being a function symbol or a bound

variable and 111, ~m distinct free variables. Let

C be a set of constraints. Then we use constr(a(C))

to denote

{I&(y) =’ Hm(z) I F(Y)=’ F(z) E C}

u {G(z)=? G(z) e C I G + F}.

For example,

if C = {f’(z, z, y) =? F(Y1 z, z), G(y, z) =? G(z, z)}

and a = {F w }zyz.f(lll(z, y,z),Hz(z, y,z))},

then constr(a(C)) = {lfl(z, z, y) =? HI(Y, z, z),

lf2(z, z,y)=?H2(y, z,z), G(y, z) =? G(z, z)}.

A decorated substitution is a pair (u, C), which

can be viewed as representing a set of instance sub-

stitutions ~~SE (a, C) = {pa I P ~-satisfies C}.

Let (0, D) be another decorated substitution. We

may write (a, C) ~E (6, D) if ZAfSE(~, C) ~

ZAfSE (6, D). Obviously, a single substitution a can

be written as (cr, {}): (a, {}) 2E (8, {}) if and only

if a ~E 6. A decorated substitution (u, C) is also

called an E-unifier of a unification problem if so is

every u’ e ~~SE (~, C).

Our algorithm is given by four transformation rules

on triples of unification problems, substitutions and

sets of constraints. The algorithm starts with the

triple (Po, {}, {}) for any unification problem I’. and

terminates with ({}, a, C) if I’. is E-unifiable, in

which case the (a, C) is the most general E-unifier

of I’o. The four rules are extensions of rules (Bin),

(Dee), (FF-1) and (FF-2) in Appendix A.3, resp. We

only present two rules here in Figure 1. Other two

rules can be obtained in a corresponding way.

Intuitively, rule (Bin’) yields a partial solution for

the head variable, and rule (FF-2’) yields a partial

solution with a constraint on the coomon head vari-

able.

Compared with the algorithm in Appendix A.3, we

have one more failure case here, i.e. where a = yi with

Zz # z: for some F(z) =? F(%) ~ C in rule (Bin’).

Theorem 6.1 There are no infinite sequences of

‘transformations by the fou7 rules of OUT algo?’ithm

here. FOT any equational theo7y E, a f7ee unij$ca-

tion pToblem P is E-unijiable if and only if (P, {}, {})

can a!ways be transformed into ({}, u, C), whe?’e

(~lrvti=), C) is the most gene7al E-unifie?’ of P,

Proof Use the method in Section 5 to prove the

termination. First, our algorithm here is first-order

embedded the algorithm in Appendix A.3, since some

strong abstraction mapping @ may map each trans-

formation sequence here into a transformation se-

quence via the rules in Appendix A.3. Since the al-

gorit hm in Appendix A.3 is terminating, so is our

algorithm. The proof of soundness and completeness

is similar to that in [22]. ❑

7 Combining higher-order equational

unification algorithms

In this section we consider informally the higher-

order extensions of first-order combination algo-

rithms. Only the termination property of the higher-

order extensions is discussed, since experiences in the

first-order case show that it may be a hard problem

(cf. e.g. [9, 38,33, 2]). Again, our approach here is to

reduce the termination of the higher-order extensions

to that of their underlying first-order counterparts.

When a combination algorithm is available, an

equational unification algorithm can always be ob-

tained by combining an equational unification for free

patterns (as in Section 6) and an equational unifica-

tion algorithm for so-called pu7e patferns.

Definition 7.1 A pattern is called pu7e (in an equa-

tional theory E) if it contains no subterms of the form

261

({xi!.F(yJ : Az.a(G)}@P, a, c) * ({ M.Hm(~) : A7i.tm}@d(P), (7’(7,Cmstr(d(c))) (Bin’)

if F @ 3V(~), a ~ C U {~}, a = y~ with 1 < z < n implies Z$ = z; for every F(z) =? F(%) c C, where

o’ = {F + A~.a(Hm(~))} with new distinct variables HI, lifm.

({F(x) ~ F(~)} @P, CT,C’) ==+ (o’(P), a’a, o’(C) U {H(q) ~ H(=)}) (FF-2’)

where p,, l < i < q, are all those from {l, ..., n} such that yP~, ZP< 6 {~} n {z}, u’ = {F i-i

MX.~(Yp,, YP,)} and H is a new variable.

Figure 1: Equational unification of free patterns

a(~) with n > 0 and a being a free function symbol

or a bound variable. A substitutions or unification

pair is called pure if it contains only pure patterns. ❑

Assume that some equational theories are given,

which are disjoint in the sense that no function sym-

bols occur in more than one theory. If a term is

pure in none of the equational theories, it can be

decomposed into pure ones. For doing this, every

atomic symbol in the term should be given an equa-

tional theory in the following way: First of all, every

function symbol is either free or already belongs to

an equational theory. Then bound variables and }-

binders are always treated as free function symbols.

For notational simplicity, all free function symbols

are assumed to belong to a trivial equational theory

.EO = {}. So free patterns are pure in Eo. Note that

lJo is disjoint to all other equational theories.

Those patterns, which contain function symbols be-

longing to different equational theories, maybe trans-

formed by rule (Abs) formulated as follows:

{s[u] =’t} u P =%;

{s[H(lZ)]p =? t, AllX.H(G) =? Aw.u} u P

if u is a maximal rigid subterm of a base type in s

such that ‘H(u) and H(s) or %(u) and ?f(i) belong to

different equational theories, where Ayl,.. ., Aym are

all A-binders in S[U] covering u.

In order to completely understand the compact

form of the above rule, we should mention that, due

to the well-typedness of a pattern, a subterm of the

form Ax .s cannot be directly covered by a function

symbol belonging to some given (first-order) equa-

tional theory, since kc.s is of a function type.

Repeatedly applying the above rule will eventually

yield some unification pairs that are pure in a certain

equational theory E. The given equational unifica-

tion algorithm for the theory E may be then used to

unify these pure unification pairs.

For collapse-free regular equational theories such as

AC theories, a cycle can be detected in applying rule

(Abs) when t = Jz.F(v) with F E FV(U). A cycle

corresponds to a failure of unification. For example,

the unification pair }zy.G(z) + f(F(y)) =? ~zy.F(z)

with + being an AC and $ free function symbol is

not AC-unifiable, since F occurs both in the right-

hand side at the outermost level and in the subterm

f(F(z)) of the left-hand side.

A higher-order combination algorithm for collapse-

free regular equational theories can in fact be ob-

tained by repeating rule (Abs) with the detection of

cycles and the application of given equational unifica-

tion algorithms just as in the first-order case ([9, 38]).

Note that the notion of decorated substitution may

have to be used (cf. [30]). But it can be dealt with

in a natural way as in Section 6. The higher-order

combination algorithm as above is always terminat-

ing since the strong abstract mapping as defined in

Section 6 maps all its unification processes into unifi-

cation processes of some underlying first-order com-

bination algorithm in [9, 38] and the first-order com-

bination algorithm is terminating.

We may also build a higher-order combination al-

gorithm for arbitrary equational theories by naturally

extending the first-order combination algorithms in

[33, 2]. At the moment we see no serious problems in

the higher-order extensions. The strong abstraction

mapping reduces the termination of the extensions to

that of the first-order combination algorithms [33, 2].

8 Conclusion

We have shown in this paper that the notion of

higher-order patterns is the key to connect first-

order equational and higher-order logic programming.

Three essential aspects in building higher-order equa-

tional unification have been considered: higher-order

narrowing, unification of free patterns in the pres-

262

ence of equations and combination of higher-order

equational unification algorithms for special equa-

tional theories. The results cover a large part of the

whole spectrum of higher-order equational unification

due to their formulations at an abstract level. Only

problems of higher-order extensions are considered

and details for the existing first-order approaches are

avoided whenever possible.

What is missing in this paper is the development

of higher-order equational unification algorithms for

pure patterns in special equational theories. Combi-

nation algorithms may use these special algorithms

in building algorithms for arbitrary patterns and for

combined theories. Although general equational uni-

fication algorithms for arbitrary simply typed A-terms

and arbitrary equational theories have been proposed

in [24, 29], where first-order equational unification al-

gorithms are called as parameters, it seems difficult

for us to build a similar algorithm just for patterns,

which behaves closely to the called first-order unifi-

cation algorithms. Therefore, equational unification

algorithms for pure patterns in special equational the-

ories might have to be developed individually. See

[30] for such an algorithm in AC theories.

Another possible future direction would be to con-

sider higher-order conditional narrowing by extending

the results in the first-order case (cf. e.g. [14, 16, 18]).

From the semantic point of view, model theoretic se-

mantics still need to be studied. The work by Breazu-

Tannen and Meyer [5, 3] might be a good starting

point.

ACKNOWLEDGEMENT

We sincerely thank Claude Kirchner for helpful dis-

cussions and Dale Miller for useful comments on the

paper.

References

[1]

[2]

[3]

[4]

F. Baader and J. Siekmann. Unification the-

ory. In D. Gabbay, C. Hogger, and J. Robinson,

editors, Handbook of Logic in Artificial Intelli-

gence and Logic Programming. Oxford Univer-

sity Press, Oxford, UK, 1993. To appear.

A. Boudet. Combining unification algorithms. J.

Symbolic Computation, 11,1992.

V. Breazu-Tannen. Combining algebra and

higher-order types. In PTOC. 3rd IEEE Symp.

Logic in Computer Science, pages 82–90, 1988.

V. Breazu-Tannen and J. Gallier. Polymorphic

rewriting conserves algebraic strong normaliza-

[5]

[6]

[7]

[8]

[9]

[10]

[11]

12]

13]

tion and confluence. In PTOC. 16th Int. Coil.

Automata, Languages and Programming, pages

137-150. Springer-Verlag LNCS 372, 1988.

V. Breazu-Tannen and A. Meyer. Computable

values can be classical. In PTOC. Ilth ACM

Symp. Principles of PTogTamming Languages,

pages 238-245. ACM, 1987.

D. DeGroot and G. Lindstrom (eds.). Logic Pro-

gramming: Relationsl Functions and Equations.

Prentice Hall, 1986.

N. Dershowitz and D. Plaisted. Logic program-

ming cum applicative programming. In PTOC.

1985 Symp. on Logic PTogTamming, pages 54–

67. IEEE Comput. Sot. Press, 1985.

D. Dougherty and P. Johann. A combinatory

logic approach to higher-order E-unification. In

PTOC. Ilth Int. Conf. on Automated Deduction,

pages 79-93. Springer-Verlag LNCS 607, 1992.

F. Fages. Associative-commutative unification.

In R. Shostak, editor, Proc. 7th Int. Conf. Au-

tomated Deduction. Springer-Verlag LNCS 170,

1984.

L. Fribourg. SLOG: A logic programming lan-

guage interpreter based on clausal superposition

and rewriting. In PTOC. 1985 Symp. on Logic

Programming, pages 172–184. IEEE Comput.

Sot. Press, 1985.

J. Gallier and W. Snyder. Complete sets of trans-

formations for general E-unification. Theoretical

ComputeT Science, 67:203-260, 1988.

E. Giovannetti, G. Levi, C. Moiso, and

C. Palamidessi. Kernel-LEAF: A logic plus func-

tional language. J. Computer and System Sci-

ences, pages 139–185, 1991.

M. Hanus. Compiling logic programs with equal-

it y. In PTOC. Int. WoTkshop on Language Imple-

mentation and Logic Programming, pages 387–

401. Springer-Verlag LNCS 456, 1990.

[14] S. H611dobler. Foundations of .Equationa/ Logic

Programming. Springer-Verlag LNCS 353, 1989.

[15] J.-M. Hullot. Canonical forms and unification.

In W. Bibel and R. Kowalski, editors, Proc. 5th

Int. Conf. Automated Deduction, pages 318-334.

Springer-Verlag LNCS 87, 1980.

[16] H. Huf3mann. Unification in conditional-

equational theories. In Proc. European Conf.

263

on Computer Algebras, pages 543–553. Springer-

Verlag LNCS 204, 1985.

[17] J.-P. Jouannaud and C. Kirchner. Solving equa-

tions in abstract algebras: A rule-based survey

of unification. In J.-L. Lassez and G. Plotkin,

editors, Computational Logic: Essays in Honor

of Alan Robinson. MIT Press, 1991.

[18] S. Kaplan. Simplifying conditional term rewrit-

ing systems: Unification, termination and con-

fluence. J. Symbolic Computation, 4(3):295-334,

1987.

[19] A. Middeldorp and E. Hamoen. Complete-

ness results for basic narrowing. In Proc. 3Td

Int. Conf. on Algeb?’aic and Logic Programming,

pages 244-258. Springer-Verlag LNCX 632, 1992.

A long version to appear in the journal of Ap-

plicable Algebra in Engineering, Communication

and Computing.

[20] D. Miller. A logic programming language with

lambda-abstraction, function variables, and sim-

ple unification. Jou?’nal of Logic and Computa-

tion, 1(4):497 -536, 1991.

[21] J. Moreno-Navarro and M. Rodriguez-Artalejo.

BABEL: A functional and logic programming

language based on constructor discipline and

narrowing. In PTOC. 2th Int. Conf. on Alge-

braic and Logic Programming, pages 223-232.

Springer-Verlag LNCS 343, 1989.

[22] T. Nipkow. Higher-order critical pairs. In PTOC.

6th IEEE Symp. Logic in Computer Science,

pages 342-349, 1991.

[23] T. Nipkow. Functional unification of higher-

order pat t ems. In PTOC. 8th IEEE Symp. Logic

in Computer Science, pages 64–74, 1993.

[24] T. Nipkow and Z. Qian. Modular higher-order

E-unification. In R. Book, editor, PTOC. lth

Int. Conf. Rewriting Techniques and Applica-

tions, pages 200-214. Springer-Verlag LNCS 488,

1991.

[25] L. Paulson. Isabelle: The next 700 theorem

provers. In P. Odifreddi, editor, Jogic and Com-

puter Science, pages 36 1–385. Academic Press,

1990.

[26] L. Paulson. Introduction to Isabelle. Techni-

cal report, University of Cambridge, Computer

Laboratory, 1993.

[27] F. ‘Pfenning. Logic programming in the LF log-

ical framework. In G. Huet and G. D. Plotkin,

editors, Logical I+ameworks, pages 66-78. Cam-

bridge University Press, 1991.

[28] Z. Qian. Linear unification of higher-order pat-

terns. In J.-P. J. M.-C. Gaudel, editor, PTOC.

TAPSOFT’93, pages 391-405. Springer-Verlag

LNCS 668, 1993.

[29] Z. Qian and K. Wang. Higher-order E-

unification for arbitrary theories. In PTOC. 1992

Joint Int. Conf. and Symp. on Logic Program-

ming. MIT Press, 1992.

[30] Z. Qian and K. Wang. Modular equational

unification of higher-order patterns: The AC

case. Technical report, Draft, Universitat Bre-

men, June 1993.

[31] U. Reddy. Narrowing as the operational seman-

tics of functional languages. In PTOC. 1985 Symp.

on Logic Programming, pages 138–151. IEEE

Comput. Sot. Press, 1985.

[32] P. R6ty, C. Kirchner, H. Kirchner, and P. Les-

canne. NARROWER: A new algorithm and its

application to logic programming. In PTOC. 1st

Int. Conf. Rewriting Techniques and Applica-

tions, pages 141-157. Springer-Verlag LNCS 256,

1985.

[33] M. Schmidt-Schaut3. Unification in a combina-

tion of arbitrary disjoint equational theories. J.

Symbolic Computation, 8:51-99, 1989.

[34] W. Snyder. Higher-order E-unification. In PTOC.

10th Int. Conf. Automated Deduction, pages

573-587. Springer-Verlag LNCS 449, 1990.

[35] M. van Emden and K. Yukawa. Logic program-

ming with equality. J. Logic Programming, pages

265-288, 1987.

[36] F. Weber. Softwareentwicldung mit Logik hoe-

he?’e?’ Stufe. PhD thesis, FZI, Universitat Karl-

sruhe, 1993.

[37] D. Wolfram. Rewriting, and equational unifica-

tion: the higher-order cases. In R. Book, edi-

tor, PTOC. lth Int. Conf. R.ewTiting Techniques

and Applications, pages 25–36. Springer-Verlag

LNCS 488, 1991.

[38] K. Yelick. Unification in combinations of

collapse-free regular theories. J. Symbolic Com-

putation, 3:153-181, 1987.

264

[39]

A

A.1

J.-H. You. Unification modulo an equality theory

for equational logic programming, J. Computer

and System Sciences, pages 54–75, 1991.

Appendix

The simply typed J-calculus

A term of the form (s -t) is called an application and

Ax.s an abstraction. The topmost part Ax in Ax.tis

called a A-binder of z, It is assumed that no terms

may contain Ax more than once, unless stated other-

wise. Every symbol in tof ~x.t is said to be covered by

or in the scope of kc. In a(ul, Un) the subterms

U1 , u~ are called arguments of a, and symbols in

U1, . . ., u~ are said to be covered by or in the scope of

a.

Terms are only compared modulo a-conversion.

The /3-normal form s is called flexible if fi(s) is a

free variable, rigid if not.

If t is a pattern and u a substitution containing only

patterns, then a(t)lp is a pattern. In the sequel, all

terms are patterns unless stated otherwise.

Positions are strings of numbers, denoted by p, q,

and concatenated by “.”. The empty string is denoted

by c. Subterms of a pattern may be numbered by

positions such that (i) tlc = t,(ii)kz.tll.p= tlpand

(iii) (a(w)li.P = (t;)lP for 1< i <k. We write p < q

if there is p! such that p. p’ = q. If neither p < q nor

q < P, we say that p and q are independent.

A.2 Equational theories

An algebraic term (or $?’st-order term) is a pattern of

a base type, which is either a free variable or of the

form ~(~) with n ~ O, ~ being a function symbol

and each Si an algebraic term.

The R-rewriting ~~ is the smallest relation such

that (i) a(l) ~~ o(r) for all substitutions a and all

1~ r c R, and (ii) s ~~ t implies (u s) ~~(u t),

(s u) ~~(t u) and kc.s -+~ k.t. For example,

Ay.f(y) -+~ Ay.g(y) if ~(X) -i g(X) ~ R.

A TRS R is called consistent if X =R Y does not

hold for distinct free variables X and Y. A TRS

R is called confluent if for every u ~~s and u ~~ t

there is a term v with s ~~ v and t+; V. For a

confluent R, we may write ~~ ~ - for =R. A

pattern s is R-normal if there is no pattern t with

s dR t. A pattern s is R-formalizable if there is a

&!-normal pattern t with s -~ t. A substitution o

is R-normal or R-formalizable if so is a(X) for all

X G D(a). A TRS R is weakly normalizing if every

pattern is R-normalizable. A TRS R is strongly nor-

malizing if there are no infinite rewriting derivations

tl_+Rt2+R ----

An equational theory E can always be considered

as a confluent TRS {1--+ v,r~l I 1 z r c Ej, Fur-

thermore, E is called reguiav if each ! = r E E sat-

isfies ~~(z) = ~~(T), E is called coilapse-free if no

equation i z r E E satisfies 1 c V and T # V.

A substitution u is called idempotent if co =R CT. A

substitution is idempotent whenever Z2(IY) fl~(a) = O.

Let W be a set of free variables such that there are

still infinite many free variables not in W. If W ~

D(u) then there always exists u’ such that D(d) fl

~(a’) = 0, D(a) = D(a’), a ~R a’ [w] and u’ ~R

a [W]. Note that a’ is idempotent. It suffices to

consider the substitutions like u’.

An R-unifier of a unification problem P is a sub-

stitution 6 such that O(s)lp =R 6(t)Jp for each

s =? t G P. Let W be a set of free variables such that

there are still infinite many free variables not in W.

A set U of R-unifiers of P is said to be complete w.r.t.

W if for every R-unifier O there is u ~ U such that

a ~R d [W]. We may write such U as Ctl?4~(P)[W].

It is always assumed that for each o E CSUR(.P)[W],

D(a) ~ FV(P) and Z(a) rl (D(a) U W) = 0 where

W contains all free variables that have been used be-

fore, i.e. the free variables in T(o) are always fresh

variables.

A.3 Syntactic unification of patterns

Miller was the first to present an algorithm for syn-

tactic unification of patterns [20]. Here we slightly

revise the Nipkow’s algorithm [22] and give an algo-

rithm consisting of four transformation rules on pairs

of substitutions and unification problems. The rules

are shown in Figure 2, where unification problems

are viewed as lists instead of multisets of unification

pairs and @ denotes the concatenation operation of

lists. The transformation starts with the pair (p, {})

for any unification problem P and terminates with

({}, a) if P is unifiable, in which case CTis the most

general unifier of P.

Intuitively, rule (Bin) finds a partial binding for

a head variable, rule (Dee) breaks a unification pair

into simpler ones, rule (F F- 1) finds a unifier of two

flexible patterns with distinct heads, and rule (FF-2)

finds a unifier of two flexible patterns with the same

head.

Inversing the preconditions to the rules in Figure 2

yields the following failure cases. The first case, called

ciash, is the case a # b in rule (Dee). The second

case, called cycle, is the case F E FV(z) in rule

265

({/mF(jj) AW.a(q}tw, o-) =$’ ({ AzHm(y) 2 A?F.tm}Kw(P), da) (Bin)

if F @ 7V(Z) and a E CU {~} where HI). ... Hm are new variables and a’ = {F ~ AV.a(Hm(~))}.

({~~.a(~) ~ A5.b(~)}@LP, 0) =+ ({ AZ.Sn ~ AE.tn}@P, a) (Dee)

ifa,6EC U{ Z}, a= b(and thus n= m).

({ AE.F(Y) 4 XE.G(Z)}QP, o) ==+ (u’(P), a’u) (FF-1)

if F and G are distinct free variables, where u’ = {F + Av.H(ti), G w ~Z..H(T)}, {T} = {~} n {z} and H is a

new free variable.

({ Az.F(G) 3 Jz.F(z)}@P, o) = (o’(P), a’a) (FF-2)

where u’ = {F R Az.H(~)}, {ti} = {y, I y~ = z,, 1 < i < n} and H is a new free variable.

Figure 2: Unification of patterns

(Bin). The third case, called bound variable capture,

is the case a E {Z} – {~} in rule (Bin).

Theorem A.1 There are no injinite sequences of

transformations by the rules in Figure 2. A unifi-

cation problem P is syntactically unifiable if and only

if every sequence of transformations starting with

(P, {}) terminates with ({}, a), in which case 017V(P)

is a most general syntactic unifier of P.

B Appendix

Proof of Lemma 4.13.

~: Assume s -+P,i,e t. Then there is a variant

~~.u -+ ~~.v such that 6(A~.u) = }ZZ.slP and

t = SIO(V)]P. BY Lemma 4.12, #(@)(#(u)) = #($IP)

and @(t) = @(s)[#(@)(#(v))]P. Since Aw.u = ~~.v is

a variant of a rewrite rule in R over ~, ~(u) ~ ~(v) is

a variant of the same rule. Hence 4(s) +P,,,~(eJ ~(t).

~: Assume that #(s) --+P,.,a q+(t).Then there

is a variant 1 -+ r in the first-order case such that

o(i) = #(s)lP and #(-t) = q$(s)[a(~)]p. Assume D(a) G

FV(l) and Z(a) ~ FV(I#J(S)). Let ~Yl, .-. , ~yk be

all ~-binders in ~(s) covering the position p. Let

XV(J + r) = {~}. Without loss of generality, we

may assume that ZA ~ is so chosen that for each vari-

able Xi, #J– ‘(Xi) is of the form H;(~). Construct a

variant ~~.u ~ ~~.v from i - T as required in Defin-

ition 4.1, where each Xi is replaced by Ht(yk). Con-

struct a substitution 6 = {Hi H Am.q$- l(u(X,)) I

1< i < n}. Then 8(u) = ~-l(a(l)) = #-l(#(s)\p) =

Slp and O(v) = #–l(a(r)) = &l(#(t)p) = tp.Hence

s +P,z,e S[e(v)]p = S[tp]p = t. ❑

To prove the second claim of Lemma 4.15, we need

the following lemma, which lifts the relationship be-

tween a rewrite and narrowing step in the first-order

case to the higher-order setting. Indeed, the following

lemma is a natural higher-order extension of the one

in [19] except a subtle change in the requirement (v).

The change is because the lemma in [19] is based on

the fact that two unifiable first-order terms s and t

that contain no common free variables always have a

most general syntactic unifier a with D(0) IU(C) = {}

and D(u) U Z(o) = 3V(S, t), while an analogous fact

does not hold in the higher-order setting. A most gen-

eral syntactic unifier in the higher-order setting may

have to introduce new free variables, even in the case

when the patterns to be unified contain no common

free variables [20, 22].

Lemma B.1 Let R be a TRS. Suppose we have a

pattern s, a no?’maiized substitution @ and a set W

of free variabies such that 5V(S) U 2)(6) ~ W. If

9(s) +P,, t’ holds, then there exist a pattern s’ and

substitutions v, 0’ such that

(i) s -+P,i,c s’,

(’ii) 0’(s’) = t’,

(iii) @’a = 6[W],

(iv) 6’ is normalized and

(’v) Fv(s’) uD(e’) g w - D(a) uz(a,~).

Proof Similar to that in [19]. ❑

Now we continue to prove Lemma 4.15.

266

Proof of 4.15 (continued): By using an induction on

n in each line, we may prove as follows:

Derivation (1)

~(~)(d(s)) =? 4(@)(f#(~)) +P,,i, “ “ ‘+pn,zn ~ =? ~
by Lemma 4.5

q$(o)(q$(s)) =’ ~(o)(~(t))

+Pl,%l “ “ “ +Pm,an #(s’) =’#(s’)

by Lemma 4.14

e(s) =? e(t) 4P,,;, . . . +Pn,,m v’ =? v’

by Lemma 4.13

Derivation (2) for some a’ with

c+(u) = u’(v) A dc7n 0.. ml ~R 6 [~~(s,t)]

by Lemma B. 1

•1

267

