Higher-Order Equational Logic Programming

Zhenyu Qian*
Universitat Bremen!

Abstract

Higher-order equational logic programming is a par-
adigm which combines first-order equational and
higher-order logic programming, where higher-order
logic programming is based on a subclass of simply
typed A-terms, called higher-order patterns. Cen-
tral to the notion of higher-order equational logic
programmiing is the so-called higher-order equational
unification. This paper extends several important
classes of first-order equational unification algorithms
to the higher-order setting: only problems of the ex-
tensions are discussed and first-order equational uni-
fications are viewed as black boxes whenever possible.

We first extend narrowing and show that the com-
pleteness of many higher-order narrowing strategies
reduces to that of their underlying first-order counter-
parts. Then we propose an algorithm for higher-order
equational unification of free higher-order patterns in
an arbitrary equational theory. Finally a general ap-
proach to extend first-order unification combination
algorithms is sketched informally. The termination
property of the above higher-order extensions is con-
sidered in a uniform way.

1 Introduction

Higher-order logic programming paradigm, like e.g.
Ly [20], EIf [27] or the recent implementation [23] of
Isabelle [25], provides a powerful and efficient com-

*Recearch partially supported by ESPRIT Basic Research
WG COMPASS 6112.

tAddress: FB 3 Informatik, Universitdt Bremen, D-28334
Bremen, Germany. E-mail: qian@informatik.uni-bremen.de

Permission to copy without fee ali or part of this material is
granted provided that the copies are not mads or distributed for
direct commaercial advantage, the ACM copyright notica and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

POPL 94- 1/94, Portland Oregon,USA
@ 1994 ACM 0-89791-636-0/94/001..$3.50

putational mechanism for succintly representing and
manipulating syntactical structures involving notions
of abstractions, scope, bound and free variables, and
is therefore very suitable for syntactically handling
formulas, types, proofs and programs. Equational
logic programming paradigm (as in [7, 10, 12, 13,
21, 31, 32, 35, 39] and in the collection {6}) includes
first-order extensions of Prolog, where symbols can
be specified by equations. Although the higher- and
first-order paradigms are successful on their own, no
techniques of one paradigm, to our knowledge, have
been systematically used in the other. In this paper
we investigate the integration of them.

The integration is important from the perspective
of higher-order logic programming, since equations
exist naturally in many mathematical systems and
facilities to handle them naturally ease the manipu-
lation of these mathematical systems in the higher-
order setting. Examples are the mathematical sys-
tems that include the number theory, where arith-
metic operations on numbers may be naturally de-
fined by equations. Changing the perspective, ex-
tending equational logic programming to a higher-
order setting is also important, since equational the-
ories are often subject to some syntactical structures,
which can be naturally formulated in a higher-order
setting. Examples are parameterized many-sorted al-
gebraic specifications.

The higher-order logic programming paradigm
mentioned above is based on a subclass of A-terms,
discovered by Miller, where the unification is decid-
able, unifiable terms always have a most general uni-
fier [20] and a most general unifier can be computed
in linear time and space [28]. This subclass consists
of all B-normal forms where free variables F' may
only occur in the form F(zy,---,z3),k > 0, with
z1,- -, % being distinct bound variables. We follow
Nipkow [22] to call these terms higher-order patterns
(short: patterns). Their unification is called higher-
order unification in this paper. Roughly speaking,

254

the higher-order logic programming paradigm can be
viewed as an extension of Prolog where first-order
terms are replaced by patterns, and first-order uni-
fication by higher-order one. Just as in the first-
order case, where unification modulo equations, usu-
ally called equational unification, is central to the no-
tion of equational logic programming, so is higher-
order unification modulo equations, called higher-
order equational unification hereafter, to the notion
of higher-order equational logic programming. Unifi-
cation modulo no equations is said to be syntactic.

In the first-order setting, a unification algorithm in
an equational theory can either be designed directly
or composed of existing unification algorithms for dis-
joint sub-theories (cf. e.g. [1, 17]). In the higher-order
case, the situation seems to be similar. However, we
should make use of first-order algorithms whenever
possible. Nipkow, Qian and Wang proposed some
equational unification algorithms, which accept all
simply typed A-terms and are parameterized by ar-
bitrary first-order equational unification algorithms
([24, 29]). But the restrictions of these algorithms to
higher-order patterns inherit some unpleasant opera-
tional properties from syntactic unification of simply
typed A-terms. The aim of this paper is to extend
three important kinds of first-order equational unifi-
cation algorithms to the higher-order setting, where
the resulting algorithms have operational properties
close to those in the first-order case.

Firstly, we consider functional logic programming
systems (in Section 4), which are logic programming
systems, where function symbols may be specified by
directed equations, called rewrite rules. The equa-
tional unification in this case is also called narrow-
ing. For example, let the usual addition 4+ be defined
by 0+ X — X and suc(X) +Y — suc(X +Y) where
0 is zero and suc the successor function as usual.
Then narrowing X +Y =7 suc(Y) may yield a solution
{X + suc(0)}.

We introduce a notion of higher-order narrowing
such that e.g. the unification problem Ay.F(y) +
y =" Ay.suc(y) with F being a free (function) variable
may be solved modulo the above rewrite rules. Al-
though different first-order narrowing strategies have
been considered in the literature, which have led to
very different first-order functional logic program-
ming systems (cf. e.g. [7, 10, 12, 13, 21, 31, 32, 35, 39]
and the collection [6]), it will be shown here that if a
strategy of higher-order narrowing is a total higher-
order extension of its first-order restriction in a cer-
tain sense, then the completeness of the strategy re-
duces to that of the first-order restriction.

255

As the second contribution of this paper, the notion
of unifiers is extended and an algorithm is presented
(in Section 6) for computing the most general uni-
fiers of free patterns in the presence of an arbitrary
equational theory. Note that in the first-order case,
syntactic unification is conservative in equational uni-
fication in the sense that if the terms to be unified
are free, (i.e. contain no function symbols occurring
in the equations,) then their equational unification is
just syntactic unification. This property is lost in the
higher-order case.

Consider the unification prob-
lem Azy.F(z,y)="Azy.F(y,z) in the presence of a
usual commutative function symbol +, where F is a
free variable. Let 8,, denote the substitution

{F — Azy.Gn(Hy(z,y) + Hi(y, z),- -,
Hn(:cv y) + Hn(ya w))}a

where n is a natural number, G,, H;,i = 1,-- <, n,
are distinct free variables. It may be easily
checked that 6, is a unifier of the above unifica-
tion problem. But the syntactical unification of
Azy.F(z,y) =7 Azy.F(y, z) yields a most general uni-
fier {F ~— Azy.H} with a new free variable H, which
is obviously not a most general one in the presence
of 4. Thus, the algorithms in [20], [22] and [27] are
not complete for equational unification of free pat-
terns. In general, 8, is not a most general unifier
either, since 6,41 is a unifier and strictly more gen-
eral than 6,. Note that Azy.F(z,y) and Azy.F(y,z)
are both free patterns and 8, contains A-terms that
are not patterns. It may be proved that in the simply
typed A-calculus every unifier of the above unification
problem is an instance of 6, for some n. Therefore,
the higher-order unification is not finitary, even if all
simply typed A-terms are allowed in the solutions.

In the first-order case, a unification algorithm for
an equational theory may be built by combining uni-
fication algorithms for the disjoint sub-theories using
some combination algorithm (cf. e.g. [2, 9, 33, 38]).
Higher-order equational unification can also be pur-
sued in an analogous way. We informally sketch
(in Section 7) a uniform way of extending first-
order combination algorithms to the higher-order set-
ting. Higher-order combination algorithms combine
the higher-order equational algorithms proposed in
this paper, and also those developed elsewhere (cf.
[30] for a higher-order AC unification algorithm).

Termination of a unification algorithm is an im-
portant property, since the decidability property may
depend on it. A general method is proposed (in Sec-
tion 5) which reduces the termination of a higher-
order equational unification to its first-order counter-

part. The method is applied several times in this

paper.

2 Other related work

This section discusses other related work not men-
tioned in Section 1.

Breazu-Tannen and Meyer were the first who
showed that the integration of a first-order equational
theory in a simply typed A-calculus is conservative
w.r.t. the first-order equational theory {5]. The point
was then made more clearly by Breazu-Tannen and
Gallier [3, 4] where the computational reductions in
the integrations are studied.

In the spirit of “universal unification” [11], Sny-
der studied equational unification of simply typed A-
terms [34]. Wolfram considered the same problem
in terms of a general form of term rewriting [37],
Dougherty and Johann for restricted equational theo-
ries in a combinatory logic framework [8]. As already
mentioned, Nipkow, Qian and Wang proposed a uni-
fication algorithm parameterized by first-order equa-
tional unification algorithms ([24, 29]). Weber and
Moller implemented the Nipkow, Qian and Wang’s
algorithm in their software development system (cf.
[36]). All the above algorithms inherit some seri-
ous problems from the syntactic unification of sim-
ply typed A-terms: the unification is undecidable and
unifiable terms may have infinite independent uni-
fiers. With a higher-order logic programming para-
digm based on patterns we have a new starting point
in this paper.

3 Preliminaries

This section briefly introduces our notations. More
technical details are given in Appendix A.

We follow the standard notations for the simply
typed M-calculus and use the following conventions: s,
t, v and v stand for the simply typed A-terms (short:
terms), z, y and z for bound variables, X, Y, Z, F, G
and H for free variables, ¢, d, f, g and A for function
symbols, a and b for atoms (i.e. function symbols,
bound or free vaiables). Bound and free variables
are always kept disjoint. The set of all bound (or
free) variables in a syntactic object O is denoted by
BY(0) (or FV(0O)). The letters «, 3, 7 range over
types, and &y — - -+ — an, — (3 or &, — 3 stands for

ay = (- — (an — f)).

We may write AZ,.s, or simply AZ.s for
Az1....Az,.5, where s is not an abstraction, and
a(u1, .., un), a(ty) or a(%) for (((a u1) uz)...un).

In the same context, occurrences of T (or ©) always

256

denote the occurrences of the same Z,, (or %n, resp.).
If @ stands for %, and ¥ for ¥, then {u— v} stands
for {uy = % }.

Let X € {6,n,0n}. We use —y to denote one
step A-reduction, —?% the reflexive and transitive
closure and =y the equivalence of —y. Define
H(AT.a(tn)) = a. Let s|g denote the S-normal form
of s. An 75-long form is a S-normal form AZ.a(%,)
with a(?,) being of a base type and each ¢; being 7-
long. Use 51, to denote the unique 7-long form such
that s7, —; slg. The n-long form of a single bound
variable ¢ may still be written as z.

Patterns are the n-long forms, in which argu-
ments of a free variable may only be distinct
bound variables. If F(y,z), G(z), f(G(z)) and
y(*z.G(z), f(G(z))) are of base types, then terms
Azyz.F(y,z) and Azy.y(rz.G(z), f(G(z))) are pat-
terns. The terms Az.F(c¢,2), Azy.F(z,z) and
Az.F(G(z)) are not patterns. In the sequel, (-
reductions are always assumed to be performed au-
tomatically, and all terms are patterns unless stated
otherwise.

We use O(s) to denote the set of the positions of
all subterms in a pattern s, O(s) that of all rigid
subterms. For p € O(s), s|, denotes the subterm of s
at p, s[u], the result of replacing s), in s by u.

A substitution may be written as {X; +—
11,y Xn > tn} of {X, > tn}. The letters 0, 6, p
range over substitutions. Let § = {X,, — t,}. Then
D) = {X1, -, Xn} and I(6) = FV(t1, -, ta).
The restriction of 6 to a variable set W is denoted
by 6)w, the composition of o and 8 by o6 satisfying
o6(X) = o(6(X)) for every X. We call 6 a variable
renaming if 11, - -, t, are distinct free variables.

A rewrite rule | — r is an ordered pair, an equation
! ~ r an unordered pair of first-order terms. A term
rewrite system (short: TRS) R is a finite set of rewrite
rules, an equational theory F a finite set of equations.

In this paper, many notions and notations defined
for rewrite rules may also be used for equations in
an obvious way. For example, function symbols free
w.r.t. R are those not occurring in R, and function
symbols free w.r.t. E means similar.

In the sequel, all TRS’s are assumed to be con-
sistent and confluent. In Section 4, every rewrite
rule [—r is required to additionally satisfy that
FV(ry C FV(l) and ! is not a free variable.

We use — g to denote one step R-rewriting, —7% the
reflexive transitive closure and =g the equivalence of
—pg. Let =g,r denote (=r U =g,)*. Since for all
patterns u and v, u =gyr v if and only if uT, =r v7,

[3], we need only to consider =g instead of =g,r.

Let W be a free variable set. We use o =g 6 [W]
to denote o(X) =g 6(X) for each X € W, where [W]
may be omitted if clear from the context. We may
write o Dg 6 (W] if po =g 6 [W] for some p.

A unification pair s =" t is an unordered pair of pat-
terns s and ¢ of the same type. It may be assumed
that both sides of a unification pair are always auto-
matically a-converted to have the same sequence of
outer A-binders. Unification problems are multisets
of unification pairs. Let P, @ range over them. Then
we use Ur(P) to denote the set of all higher-order
R-unifiers of P. f Ur(P) = Ur(Q), P and Q are said
to be equivalent w.r.t. R.

4 Higher-order narrowing

In the first-order case, an R-narrowing step on a first-
order term s is the combination of guessing a first-
order substitution o, for s and applying a rewrite
rule [—r to o1(s) at a position p € O(s). Let o2
be such that o3(l) = o1(sp). Then the result of the
R-narrowing step is ¢1(s)[o2(7)],. It may be assumed
that FYV(I—r)NFVY(s) = {}. Thus oy Uo, may be
chosen as a most general syntactic unifier of s, and

L.

For a rewrite rule [y —»r; and a variable renam-
ing p such that D(p) 2 FV(l; —r1) and I(p) con-
tains only new variables, we call p(l;) — p(r1) a vari-
ant of Iy —ry. Let s be a first-order term and
R={lij—ry -, lm—rm}aTRS. If | —ris a vari-
ant of some [, —r;, 1 < i < m, and ¢ a most general
syntactic unifier of s, and /, an R-narrowing step
may be written as s ~p; o, 0(s[r]p). We may write
s~ t for s ~p; o t. A narrowing derivation

8§ = 81 g, 82 g, ' Mgy S =t
may be denoted as s ~} ¢, where 0 = 0,101, If
n =1 then o = {}.

Regard =" as a new binary function symbol. Then
a unification pair s="1 is a term with (s="1);., =
sjp and (s="t)j3, = t,. A narrowing derivation
s="t~% u="vis called successful if there is o/ with
o'(u) = o'(v). In this case, o'c is an R-unifier of
s="t.

Let R={0+X — X, suc(X)+Y —suc(X +Y)}.

Then the unification pair X + ¥ =7 suc(Y) has only
one successful narrowing derivation

X +Y =" suc(Y)

suc(Xy +Y) =" suc(Y)
suc(Y) =7 suc(Y),

~~1,2,0,

~1.1,1,02

257

where suc(X1)+Y7 — suc{X1+Y1) is the variant used
in ~124, and 04+ Xo— X3 in ~1.110, With o1 =
{X r suc(X1),Y1 ~~ Y} and 03 = {X; = 0, X3 —
Y}. Restricting o201 to {X,Y} yields an R-unifier
{X suc(0)}.

In the higher-order setting, unification pairs may
contain patterns, thus higher-order unification is
needed. Roughly speaking, a higher-order narrowing
step is a first-order narrowing step where first-order
syntactic unification is replaced by higher-order one.

As a preparation, we first explain how to make
a rewrite rule applicable in the higher-order setting.
The idea is inspired by the notion of “lifting over pa-
rameters” in [26].

Definition 4.1 Let | —r be a rewrite rule with
Fy(l—r) = {X_n} Let Hy,---, H, be distinct new
free variables, and y1, - - -, yx distinct bound variables.
Let u and v be the results of replacing all occurrences
of X, inl and r, resp., by H;(¥x). Then Agx.u— Agx.v
is a variant of l — r over Ug.]

Lemma 4.2 Forl—r € R, if \§.u— AF.v is a vari-
ant of l— r over ¥y, then A§.u—pr Ay.v holds.

Let R= {0+ X — X, suce(X)+Y —suc(X +Y)}.
Then the unification pair Ay.F(y) + y=" Ay.suc(y)
has a higher-order narrowing derivation

Ay Fy) +y =? /\y.su?c(y)
~11,2,0, Ay-suc(Xi(y) + y) =7 suc(y)
~ri1,0, Ay-suc(y) =7 Ay.suc(y)

where Ay.suc(X1(y))+Y1(y) — Ay.suc(X1(y)+Y1(y))
is the variant used in ~s1.329, and Ay.0 +
Xg(y)—>X2(y) in ~1.1.1,1,0; With

61
02

{F + Az.suc(X1(2)), Y1 — Az.2}
{X; = Az.0, X5 — Az.2}.

Wa

The resulting R-unifier is (6201)yr;y = {F =
Az.suc(0)}. If no lifting over y were made in e.g.
the variant in ~»1.1 2,9,, then the syntactical unifica-
tion of the subterm F(y) + y and the left-hand side
suc(X1)+Y; of the variant would fail, since y cannot
occur free in the substitution of Y3.

Definition 4.3

Suppose R = {l; =71, +, by — " }. Let s be a pat-
tern, p € Z’)—(s) and Azi,---, Azg all A-binders in s
covering p. Let AZg.u — ATk.v be a variant of ; - »;
over Tg. A higher-order R-narrowing step (short: R-
narrowing step) is defined as s ~»p , 9 0(s[v]p), where 6
is a most general syntactic unifier of A\Zx.s, =" \zg.u
such that D(8) C FV(s, ATx.u) and D(6)NZI(8) = {}.
We may write s ~+, t O 8~y t for s ~p; 5 t. The
notation s ~»? t is defined in the same way as in the

first-order case. If D(6) N FV(s) = {}, we may write
s =i 5[0(v)]p- 0
Lemma 4.4 Let R be ¢ TRS. Then s —p;t of and
only if s —>gt.

Lemma 4.5 If s ~p, o t then o(s) —p;t.
Theorem 4.6 (Soundness) Let R be a TRS. If a
unification pair s ="t has an R-narrowing derivation
*u="v with o' satisfying o'(u) = o' (v),
then o'o is an R-unifier of s="1.

A
s="1 ~»

Definition 4.7 Let 6 be a substitution. An R-
narrowing derivation s ="t ~+% u="v is called suc-
cessful (for 0) if there is o' satisfying o'(u) = o'(v)
and o'c Dr 6[FV(s,1)].]

4.1 Completeness

Usually the completeness of narrowing means that
if s="¢ has an R-unifier 6, then there exists an R-
narrowing derivation issuing from s =’ ¢ and success-
ful for 8. However, in order to find a successful one,
too many R-narrowing derivations may need to be
looked at in general. Therefore, restricted TRS’s
and restricted unification pairs have been considered
where special and efficient strategies can be devel-
oped for finding successful narrowing derivations (cf.
the references of [19]). Since we are only interested in
the problems of higher-order extensions, the details
of the existing first-order approaches will be avoided
whenever possible. A notion of narrowing strategy is
then defined in an abstract way.

Definition 4.8 A higher-order narrowing strategy
(short: narrowing strategy) is a function & which for
each TRS R and pattern ¢ yields a set S(R,t) of R-
narrowing derivations issuing from . O

Many existing first-order narrowing strategies can
be naturally extended to the higher-order case. Take
basic narrowing as an example. Then higher-order
basic narrowing should have the same idea as the
firsr-order one ([15]): for a confluent and terminating
TRS, a narrowing step need not happen at a subterm
introduced by a substitution in a previous narrowing
step. The difference is just that higher-order substi-
tutions are used in higher-order basic narrowing. It
should not be surprising that the definition of higher-
order basic narrowing is almost identical to that in

[15].

Definition 4.8 Let R = {{y —»ry, -, lm —rm} be
a TRS. Then higher-order basic R-narrowing consists
of all R-narrowing derivations of the form

tl i T P tn tn

258

where p, € B, for 1 < j < n — 1, and the sets
B,,-.-, B, are inductively defined as

Bl = —O—(tl)

Byy1= (B; —{g|p qu})U{P; -q|g€0(m,)},
j=1,...,n—

O

Let us now introduce an abstract notion of com-
pleteness. Note that we will only consider normalized
R-unifiers, as in most existing work, although TRS’s
R are not required to be even weakly normalizing in
general.

Definition 4.10 Let R be a TRS and P a class of
unification pairs. A narrowing stragety & is said to
be complete for R and P if for every s="t € P and
every normalized R-unifier of s =", there is an R-
narrowing derivation in S(R, s = t) which is success-
ful for 6. O

We will present a result which reduces the com-
pleteness of a higher-order narrowing strategy to that
of its first-order underlying counterpart. The key is
to relate a pattern with a first-order term by view-
ing A-binders as new unary free function symbols and
flexible subterms as new first-order free variables. For
example, Az.f(F(z)) should be viewed as Az(f(X))
where Az denotes a free function symbol.

When fixing A-binders as free function symbols,
no explicit a-conversion is possible. Therefore pat-
terns should be a-converted beforehand so that no
explicit a-conversion is needed any more. For doing
this, assume an infinite list of new bound variables
for every type. A pattern is said to be a-converted if
each A-binder in the pattern always uses in the cor-
responding list the first bound variable that has not
been used by other covering A-binders. For example,
Ay1. F(Ay2ys-Y2, Ay2.y2) is an a-converted form, pro-
vided that f is of the type (8 - 8 — 8) — (6 —
B) — v and (y1,y2,¥3,) the list of bound vari-
ables for 8. Note that a A-binder may occur more
than once in an a-converted form, but only at inde-
pendent positions. Occurrences of the same A-binder
will be viewed as occurrences of the same function
symbol. No explicit a-conversions are needed in prov-
ing R-equivalence of a-converted forms (cf. [29] for a
proof). It is assumed in the rest of this section that
all patterns are a-converted.

For viewing flexible subterms as first-order free
variables, we introduce a special mapping.

Definition 4.11 A weak abstraction is a large
enough injective mapping ¢ which maps a flexible
subterm F(Z) into a first-order variable X. If v is

a pattern then ¢(u) denotes the result of replacing
each flexible subterm F(Z) in u by ¢(F(ZF)). For
a substitution 6, define ¢(8) to be a substitution
such that if §(F) = AZg.t then #(6)(¢(F(Tk))) =
¢({Tx = Tx }(t)) for all bound variable sequences Jg
with each y; being of the same type as that of z;. O

Note that if FF # G or § # Z then ¢(F(7)) #
#(G(z)). For a pattern u, ¢(u) can be regarded as
a first-order term when the types of the symbols in «
are forgotten and all A-binders in u are regarded as
free function symbols. For a substitution 8, ¢(#) can
be regarded as a first-order substitution in a similar
way, where the domain D(¢(8)) is restricted to a fi-
nite set including only ¢(F(g)) of those F(y) which
are in consideration. By definition we may directly
prove that the weak abstraction mapping can always
be moved into a substitution in the following way:

Lemma 4.12 For a pattern u and substitution 6,

#(0(u)) = ¢(0)(¢(u)) always holds.

Furthermore, the weak abstraction mapping pre-
serves rewriting relations.

Lemma 4.13 Let R be a TRS and s,t two patterns.
Then s —p;t if and only if ¢(s) —p: ().

Proof See Appendix B.]

A rewrite step always transforms a weak abstrac-
tion into a weak abstraction.

Lemma 4.14 Let s be a pattern. If ¢(s) —p, u then
there exists o pattern t such that u = ¢(t).

Finally, we formulate how ¢ relates narrowing
derivations with their first-order counterparts. Note
that derivations (1) and (2) below employ the same
rewrite rules at the same positions.

Lemma 4.15 Let R be a TRS, s="t a unification
pair and 6 a normalized R-unifier of s="t. Then
¢(8) is a normalized R-unifier of ¢(s)="¢(t). Fur-
thermore, if

$(s)Z6(t) ~opyiy -

is successful for ¢(6), then we have

? ?
s=t s 2T TP SURRGS P TN u=v (2)

et 295 sl ;tl (1)

for some o1, - -+, 0q such that there is ' with o'(u) =
o'(v) and o'op ---01 DR 0 [FV(s,1)].
Proof If 6 is a normalized R-unifier of s ="t, then
6(s) =g 8(t), thus ¢(8) is a normalized R-unifier of
¢(s) =7 ¢(¢) by Lemmas 4.4, 4.12 and 4.13.

The proof of the second claim is based on Lem-

mas 4.5, 4.14, 4.13 and an additional lemma, which
is rather technical. For details see Appendix B. 0O

Now we may introduce a way to characterize nar-
rowing strategies.

Definition 4.16 A higher-order narrowing stragety
S is said to be a total higher-order extension for
a TRS R and a class P of unification pairs if for
every s='t € P and every normalized R-unifier 8 of
s="t, whenever S(R, ¢(s)="¢(t)) contains a first-
order R-narrowing derivation as derivation (1) suc-
cessful for ¢(6), S(R,s="t) contains a higher-order
R-narrowing derivation as derivation (2). 0

By Lemma 4.15, the existence of derivation (1) al-
ways implies that of derivation (2). Therefore, to
see whether a narrowing strategy S is a total higher-
order extension, we need only to check that whenever
derivation (1) is in S(R, ¢(s) =" #(¢)), derivation (2)
is in S(R,s="¢).

Higher-order basic narrowing is a total higher-order
extension. For, every position of narrowing in deriva-
tions (1) and (2) corresponds to a rigid subterm in
either the initial s ="t or the right-hand side of a
rewrite rule, and s="t and ¢(s)="4(t) have the
same set of positions of rigid subterms.

A narrowing strategy consisting of all those higher-
order basic narrowing derivations where the positions
of narrowing are always outermost is a total higher-
order extension. To see this, we can check that if
a position p, of narrowing in derivation (2) is not
outermost, assuming that it is the first one which is
not outermost, then the position p; in derivation (1)
cannot be outermost.

Theorem 4.17 Let R be a TRS and P a set of uni-
fication pairs. A higher-order narrowing strategy S
is complete for R and P if S is a total higher-order
eztension and complete for R and ¢(P).

Proof Follows from Lemma 4.15 and Definition 4.16.
0

As an instance of the above theorem, by the fact
that basic narrowing in the first-order setting is com-
plete for all confluent and strongly normalizing TRS’s
and all first-order unification pairs [15], we know
that higher-order basic narrowing is complete for all
confluent and strongly normalizing TRS’s and all
(higher-order) unification pairs.

5 Termination of equational unifica-
tion

A very important property of an equational unifica-

tion algorithm is the termination. This section in-

troduces an approach to reduce the termination of a
higher-order equational unification algorithm to that

259

of its first-order counterpart.

Let us first formulate very abstractly the notions
of unification process and unification algorithm.

Definition 5.1 An abstract unification process is a
(finite or infinite) sequence of pairs of unification
problems P, and substitution sets S, in the form

<P1,51> = <P2,52> = .

An abstract unification algorithm UA is a function
which for every unification problem P yields a set
of abstract unification processes issuing from (P, {})
such that if P contains only first-order terms then
UA(P) contains only first-order terms and substitu-
tions. An algorithm UA is called terminating if for
every P, UA(P) contains no infinite abstract unifica-
tion processes. |

To relate a higher-order equational unification algo-
rithm to its first-order counterpart, we view all bound
variables of the same type as identical. This implies
that all A-binders with their bound variables being of
the same type are viewed as identical and so are all
flexible subterms with the same head free variable.

Definition 5.2 Let us associate each type 7 with
two new function symbols I, and o, such that all
these new function symbols are pairwise distinct. A
strong abstraction ¢ is a mapping which transforms
every pattern in a topdown way as follows:

Pp(Az.s) = L(¥(s))
¥(a(3n)) = P(a)(¥(sn))
Y(F(zx) = F
be) = o
¥(f) = f

where z is a bound variable of type 7, a a function
symbol or a bound variable, F a free variable and
f a function symbol. For a substitution o, define
P(o) = {F — 9(t) | F — Xy.t € o}. Strong abstrac-
tions of sets of patterns or of substitutions are defined
componentwise, |

For a pattern ¢, %(f) may be viewed as
a first-order term. For example, if z and
y are bound variables of type «, and 2z of

type £, then o(Azyz.z(z, F(z,y), F(y,z),v))
la(la(lg(9p(0as F, Fy 0a)))).

Definition 5.3 An abstract unification algorithm
UA is said to be first-order embedded in another ab-
stract unification algorithm U.A; if for every unifica-
tion problem P,

(P, {}) = (P2, 82) = - - CUA(P,)

260

always implies

W’(Pl)w {}> = <¢(P2)a ¢(SZ)> = .- E U.Al(T,()(Pl)).
O

We may now easily prove the following theorem.

Theorem 5.4 Let UA be firsi-order embedded in
UA;. For a unification problem P, if all abstract uni-
fication processes in UA1(¢(P)) are terminating then
so are all those in UA(P).

5.1 Termination of higher-order narrowing

The method developed in the above will be used sev-
eral times in this paper. First of all, let us con-
sider narrowing strategies as equational unification
algorithms and see how to reduce the termination
of higher-order narrowing strategies to that of their
first-order counterparts.

We show first that the most general unifiers are
preserved by strong abstractions.

Proposition 8.5 If 6 is a most general syntactic
unifier of two patterns s and t then (6) is a most
general syntactic unifier of Y(s) and (t).

The preservation of the most general unifiers can
be extended to narrowing derivations.

Proposition 5.6 Let R be a TRS. If

~F . e~ . g cee
S1 P1,%1,01 Pj—11%3-1,0;3-1 s] MPJ)"J:UJ

18 an R-narrowing derivation, then so is

Y(s1)

“pia,y(or) T
ij—lylj—h"/’(a‘i—l) ¢(8])
ij,z_,,'l#(a‘j) e
' . . .
Let s; =" t; be a unification pair. Then we may
view an infinite R-narrowing derivation

-7
81="11 ~pia0m

2
~ ="
Proiin-1,0n-1 Sn= ln
~3 ;
Pnyin:Tn

as an abstract unification process

(15t (1) == (sn tnonao o) = o

and a finite R-narrowing derivation

”
s1=1 ~Mp1e1,01 T Pyt 1,0ney S0 = in

with o’ being a most general syntactic unifier of
Sn :?tn as

(s1="t1,{}) ,
(sp =" tn,?o'n—l - - 01)
(0'(sn)="0"(tn),0'On_1--01).

e

Propositions 5.5 and 5.6 say that a strong abstraction
of an R-narrowing derivation is still an R-narrowing
derivation of the same length and may also be con-
sidered as an abstract unification process as defined
above.

Let § be a narrowing strategy for some TRS R
and some set P of unification pairs and §; a narrow-
ing strategy for R and ¢(P) with S being first-order
embedded in &;. By Theorem 5.4 we know that for
a unification pair s="t € P, if S(R, ¥(s)="¥(t)) is
terminating, then so is S(R,s="1).

6 Equational unification of free pat-
terns

In this section we propose an algorithm for equational
unification of free patterns. The algorithm is com-
plete for every consistent equational theory. Let E
be an arbitrary but fixed consistent equational the-
ory.

Our algorithm is in fact a revision of the one in {22]
(see also Appendix A.3). The key of the revision is to
leave unification pairs of the form \z.F(3) =’ Az.F(Z)
as constrainits in the unification process. For nota-
tional simplicity, the outer A-binders AZ may be omit-
ted, since any A-binders AZ such that {z} D {g}U{z}
can have the same effect. Let C and D range over sets
of constraints. A substitution o is said to E-satisfy C
if o(F(y)) =g o(F(z)) for every F(y)="F(z) € C.

Suppose that o = {F — A7.a(Hm (7))} is a sub-
stitution with a being a function symbol or a bound
variable and Hi,---, H,, distinct free variables. Let
C be a set of constraints. Then we use constr(c(C))
to denote

{Hn(9) =" Hn(2) | F(3)="F(z) € C}
]

U{G)="G(x') e C |G # F}.

For example,
if C = {F(z,2,y)="F(y,z,2), Gy,2)="G(z,2)}
and ¢ = {F -)\:cyz.f(Hl(:c,y,z),Hz(a:,y,z))},
then constr(o(C)) {H\(z,z,y)=" Hi(y, 2, 2),
Hy(z,2z,y) =" Hy(y, ,2), G(y, 2) =" G(z, 2)}.

A decorated substitution is a pair (o,C), which
can be viewed as representing a set of instance sub-
stitutions ZNSg(0,C) = {po | p E-satisfies C}.
Let (6, D) be another decorated substitution. We
may write (¢,C) Dg (8,D) if INSg(c,C) D
INS8g(8, D). Obviously, a single substitution o can
be written as (o, {}): (0,{}) 2& (8,{}) if and only
if 0 Dg 6. A decorated substitution (o, C) is also
called an F-unifier of a unification problem if so is
every o' € INSg(0o, C).

261

Our algorithm is given by four transformation rules
on triples of unification problems, substitutions and
sets of constraints. The algorithm starts with the
triple (Po, {},{}) for any unification problem Py and
terminates with ({},o,C) if Py is E-unifiable, in
which case the (o,C) is the most general E-unifier
of Py. The four rules are extensions of rules (Bin),
(Dec), (FF-1) and (FF-2) in Appendix A.3, resp. We
only present two rules here in Figure 1. Other two
rules can be obtained in a corresponding way.

Intuitively, rule (Bin’) yields a partial solution for
the head variable, and rule (FF-2’) yields a partial
solution with a constraint on the coomon head vari-
able.

Compared with the algorithm in Appendix A.3, we
have one more failure case here, i.e. where a = y; with
z; # 2! for some F(%;) =" F(2}) € C in rule (Bin’).

Theorem 8.1 There are no infinite sequences of
transformations by the four rules of our algorithm
here. For any equational theory E, a free unifica-
tion problem P is E-unifiable if and only if (P, {},{})
can always be transformed into ({},0,C), where
(o17v(P); C) is the most general E-unifier of P.

Proof Use the method in Section 5 to prove the
termination. First, our algorithm here is first-order
embedded the algorithm in Appendix A.3, since some
strong abstraction mapping ¢ may map each trans-
formation sequence here into a transformation se-
quence via the rules in Appendix A.3. Since the al-
gorithm in Appendix A.3 is terminating, so is our
algorithm. The proof of soundness and completeness
is similar to that in [22]. m

7 Combining higher-order equational
unification algorithms

In this section we consider informally the higher-
order extensions of first-order combination algo-
rithms. Only the termination property of the higher-
order extensions is discussed, since experiences in the
first-order case show that it may be a hard problem
(cf. e.g. [9, 38, 33, 2]). Again, our approach here is to
reduce the termination of the higher-order extensions
to that of their underlying first-order counterparts.

When a combination algorithm is available, an
equational unification algorithm can always be ob-
tained by combining an equational unification for free
patterns (as in Section 6) and an equational unifica-
tion algorithm for so-called pure patierns.

Definition 7.1 A pattern is called pure (in an equa-
tional theory E) if it contains no subterms of the form

Mo -H(yYp,, .- Yp,)} and H is a new variable.

(V. F(7) £ Ma.a(f;) }@P, 0, C) = ({\8.Hpm(Tn) = MB.tm }@0' (P), o'a, constr(c’ (C)))
if F @& FV({n), a € CU{Tn}, a =y with 1 < i < n implies z, = 2] for every F(Z;)=" F(2}) € C, where
o' = {F — A\yn.a(Hn(Y=))} with new distinct variables Hy,: -, Hp,.

({F (@) £ F(@)}OP,0,0) = (¢/(P),0'0,0'(C) U{H(%;) = H(%)})

where p,,1 < ¢ < g, are all those from {1,...,n} such that y,,,2,;, € {Gn} N {Z2}, ¢/ = {F —

(Bin’)

(FF-2)

Figure 1: Equational unification of free patterns

a(t,) with n > 0 and a being a free function symbol
or a bound variable. A substitutions or unification
pair is called pure if it contains only pure patterns. O

Assume that some equational theories are given,
which are disjoint in the sense that no function sym-
bols occur in more than one theory. If a term is
pure in none of the equational theories, it can be
decomposed into pure ones. For doing this, every
atomic symbol in the term should be given an equa-
tional theory in the following way: First of all, every
function symbol is either free or already belongs to
an equational theory. Then bound variables and A-
binders are always treated as free function symbols.
For notational simplicity, all free function symbols
are assumed to belong to a trivial equational theory
Eo = {}. So free patterns are pure in Ey. Note that
Ey is disjoint to all other equational theories.

Those patterns, which contain function symbols be-
longing to different equational theories, may be trans-
formed by rule (Abs) formulated as follows:

{s[u] =’ t}UP =
{s[H@m)lp="t, A\ - H(Fm) =" A\Gm.u} U P

if u is a maximal rigid subterm of a base type in s
such that H(u) and H(s) or H{u) and H(¢) belong to
different equational theories, where Ayq,- -, Ay, are
all A-binders in s[u] covering u.

In order to completely understand the compact
form of the above rule, we should mention that, due
to the well-typedness of a pattern, a subterm of the
form Az.s cannot be directly covered by a function
symbol belonging to some given (first-order) equa-
tional theory, since Az.s is of a function type.

Repeatedly applying the above rule will eventually
yield some unification pairs that are pure in a certain
equational theory E. The given equational unifica-
tion algorithm for the theory F may be then used to
unify these pure unification pairs.

262

For collapse-free regular equational theories such as
AC theories, a cycle can be detected in applying rule
(Abs) when t = AZ.F(7) with F € FV(u). A cycle
corresponds to a failure of unification. For example,
the unification pair Azy.G(z) + f(F(y)) =" Azy.F(z)
with + being an AC and f free function symbol is
not AC-unifiable, since F' occurs both in the right-
hand side at the outermost level and in the subterm
f(F(z)) of the left-hand side.

A higher-order combination algorithm for collapse-
free regular equational theories can in fact be ob-
tained by repeating rule (Abs) with the detection of
cycles and the application of given equational unifica-
tion algorithms just as in the first-order case ([9, 38}).
Note that the notion of decorated substitution may
have to be used (cf. [30]). But it can be dealt with
in a natural way as in Section 6. The higher-order
combination algorithm as above is always terminat-
ing since the strong abstract mapping as defined in
Section 6 maps all its unification processes into unifi-
cation processes of some underlying first-order com-
bination algorithm in [9, 38] and the first-order com-
bination algorithm is terminating.

We may also build & higher-order combination al-
gorithm for arbitrary equational theories by naturally
extending the first-order combination algorithms in
[33, 2]. At the moment we see no serious problems in
the higher-order extensions. The strong abstraction
mapping reduces the termination of the extensions to
that of the first-order combination algorithms [33, 2].

8 Conclusion

We have shown in this paper that the notion of
higher-order patterns is the key to connect first-
order equational and higher-order logic programming.
Three essential aspects in building higher-order equa-
tional unification have been considered: higher-order
narrowing, unification of free patterns in the pres-

ence of equations and combination of higher-order
equational unification algorithms for special equa-
tional theories. The results cover a large part of the
whole spectrum of higher-order equational unification
due to their formulations at an abstract level. Only
problems of higher-order extensions are considered
and details for the existing first-order approaches are
avoided whenever possible.

What is missing in this paper is the development
of higher-order equational unification algorithms for
pure patterns in special equational theories. Combi-
nation algorithms may use these special algorithms
in building algorithms for arbitrary patterns and for
combined theories. Although general equational uni-
fication algorithms for arbitrary simply typed A-terms
and arbitrary equational theories have been proposed
in [24, 29], where first-order equational unification al-
gorithms are called as parameters, it seems difficult
for us to build a similar algorithm just for patterns,
which behaves closely to the called first-order unifi-
cation algorithms. Therefore, equational unification
algorithms for pure patterns in special equational the-
ories might have to be developed individually. See
[30] for such an algorithm in AC theories.

Another possible future direction would be to con-
sider higher-order conditional narrowing by extending
the results in the first-order case (cf. e.g. [14, 16, 18]).
From the semantic point of view, model theoretic se-
mantics still need to be studied. The work by Breazu-
Tannen and Meyer [5, 3] might be a good starting
point.

ACKNOWLEDGEMENT

We sincerely thank Claude Kirchner for helpful dis-
cussions and Dale Miller for useful comments on the
paper.

References

[1] F. Baader and J. Siekmann. Unification the-
ory. In D. Gabbay, C. Hogger, and J. Robinson,
editors, Handbook of Logic in Artificial Intelli-
gence and Logic Programming. Oxford Univer-
sity Press, Oxford, UK, 1993. To appear.

A. Boudet. Combining unification algorithms. J.
Symbolic Computation, 11, 1992.

V. Breazu-Tannen. Combining algebra and
higher-order types. In Proc. 3rd IEEE Symp.
Logic in Computer Science, pages 82-90, 1988,

[4] V. Breazu-Tannen and J. Gallier. Polymorphic
rewriting conserves algebraic strong normaliza-

263

[16]

tion and confluence. In Proc. 16th Int. Coll.
Automata, Languages and Programming, pages
137-150. Springer-Verlag LNCS 372, 1988.

V. Breazu-Tannen and A. Meyer. Computable
values can be classical. In Proc. 14th ACM
Symp. Principles of Programming Languages,
pages 238-245. ACM, 1987.

D. DeGroot and G. Lindstrom (eds.). Logic Pro-
gramming: Relations, Functions and Equations.
Prentice Hall, 1986.

N. Dershowitz and D. Plaisted. Logic program-
ming cum applicative programming. In Proc.
1985 Symp. on Logic Programming, pages 54—
67. IEEE Comput. Soc. Press, 1985.

D. Dougherty and P. Johann. A combinatory
logic approach to higher-order E-unification. In
Proc. 11th Int. Conf. on Automated Deduction,
pages 79-93. Springer-Verlag LNCS 607, 1992.

F. Fages. Associative-commutative unification.
In R. Shostak, editor, Proc. 7th Int. Conf. Au-
tomated Deduction. Springer-Verlag LNCS 170,
1984.

L. Fribourg. SLOG: A logic programming lan-
guage interpreter based on clausal superposition
and rewriting. In Proc. 1985 Symp. on Logic
Programming, pages 172-184. IEEE Comput.
Soc. Press, 1985.

J. Gallier and W. Snyder. Complete sets of trans-
formations for general E-unification. Theoretical
Computer Science, 67:203-260, 1988.

E. Giovannetti, G. Levi, C. Moiso, and
C. Palamidessi. Kernel-LEAF: A logic plus func-
tional language. J. Computer and System Sci-
ences, pages 139-185, 1991.

M. Hanus. Compiling logic programs with equal-
ity. In Proc. Int. Workshop on Language Imple-
mentation and Logic Programming, pages 387—
401. Springer-Verlag LNCS 456, 1990.

S. Holldobler. Foundations of Equational Logic
Programming. Springer-Verlag LNCS 353, 1989.

J.-M. Hullot. Canonical forms and unification.
In W. Bibel and R. Kowalski, editors, Proc. 5th
Int. Conf. Automated Deduction, pages 318-334.
Springer-Verlag LNCS 87, 1980.

Unification in conditional-
In Proc. European Conf.

H. Hufimann.
equational theories.

(17]

18]

[21]

[25]

on Computer Algebras, pages 543-553. Springer-
Verlag LNCS 204, 1985.

J.-P. Jouannaud and C. Kirchner. Solving equa-
tions in abstract algebras: A rule-based survey
of unification. In J.-L. Lassez and G. Plotkin,
editors, Computational Logic: Essays in Honor
of Alan Robinson. MIT Press, 1991.

S. Kaplan. Simplifying conditional term rewrit-
ing systems: Unification, termination and con-
fluence. J. Symbolic Computation, 4(3):295-334,
1987.

A. Middeldorp and E. Hamoen. Complete-
ness results for basic narrowing. In Proc. 3rd
Int. Conf. on Algebraic and Logic Programming,
pages 244-258. Springer-Verlag LNCS 632, 1992.
A long version to appear in the journal of Ap-
plicable Algebra in Engineering, Communication
and Computing.

D. Miller. A logic programming language with
lambda-abstraction, function variables, and sim-

ple unification. Journal of Logic and Computa-
tion, 1(4):497 ~ 536, 1991.

J. Moreno-Navarro and M. Rodriguez-Artalejo.
BABEL: A functional and logic programming
language based on constructor discipline and
narrowing. In Proc. 2th Int. Conf. on Alge-
braic and Logic Programming, pages 223-232.
Springer-Verlag LNCS 343, 1989.

T. Nipkow. Higher-order critical pairs. In Proc.
6th IEEE Symp. Logic in Computer Science,
pages 342-349, 1991,

T. Nipkow. Functional unification of higher-
order patterns. In Proc. 8th IEEE Symp. Logic
in Computer Science, pages 64-74, 1993.

T. Nipkow and Z. Qian. Modular higher-order
E-unification. In R. Book, editor, Proc. 4th
Int. Conf. Rewriting Techniques and Applica-
tions, pages 200-214. Springer-Verlag LNCS 488,
1991.

L. Paulson. Isabelle: The next 700 theorem
provers. In P. Odifreddi, editor, Logic and Com-

puter Science, pages 361-385. Academic Press,
1990.

L. Paulson. Introduction to Isabelle. Techni-

cal report, University of Cambridge, Computer
Laboratory, 1993.

264

[27]

[29]

[32]

F. Pfenning. Logic programming in the LF log-
ical framework. In G. Huet and G. D. Plotkin,
editors, Logical Frameworks, pages 66—78. Cam-
bridge University Press, 1991.

Z. Qian. Linear unification of higher-order pat-
terns. In J.-P. J. M.-C. Gaudel, editor, Proc.
TAPSOFT’93, pages 391-405. Springer-Verlag
LNCS 668, 1993.

Z. Qian and K. Wang. Higher-order E-
unification for arbitrary theories. In Proc. 1992

Joint Int. Conf. and Symp. on Logic Program-
ming. MIT Press, 1992.

Z. Qian and K. Wang. Modular equational
unification of higher-order patterns: The AC
case. Technical report, Draft, Universitit Bre-
men, June 1993.

U. Reddy. Narrowing as the operational seman-
tics of functional languages. In Proc. 1985 Symp.
on Logic Programming, pages 138-151. IEEE
Comput. Soc. Press, 1985.

P. Réty, C. Kirchner, H. Kirchner, and P. Les-
canne. NARROWER: A new algorithm and its
application to logic programming. In Proc. 1st
Int. Conf. Rewriting Techniques and Applica-
tions, pages 141-157. Springer-Verlag LNCS 256,
1985.

M. Schmidt-Schaufl. Unification in a combina-
tion of arbitrary disjoint equational theories. J.
Symbolic Computation, 8:51-99, 1989.

W. Snyder. Higher-order F-unification. In Proc.
10th Int. Conf. Automated Deduction, pages
573-587. Springer-Verlag LNCS 449, 1990.

M. van Emden and K. Yukawa. Logic program-
ming with equality. J. Logic Programming, pages
265-288, 1987.

F. Weber. Softwareentwicklung mit Logik hoe-
herer Stufe. PhD thesis, FZI, Universitit Karl-
sruhe, 1993.

D. Wolfram. Rewriting, and equational unifica-
tion: the higher-order cases. In R. Book, edi-
tor, Proc. jth Int. Conf. Rewriting Techniques
and Applications, pages 25-36. Springer-Verlag
LNCS 488, 1991.

K. Yelick. Unification in combinations of

collapse-free regular theories. J. Symbolic Com-
putation, 3:153-181, 1987.

[39] J.-H. You. Unification modulo an equality theory
for equational logic programming. J. Computer
and System Sciences, pages 54-75, 1991.

A Appendix
Al

A term of the form (s t) is called an application and
Az.s an abstraction. The topmost part Az in Az.f is
called a A-binder of z. It is assumed that no terms
may contain Az more than once, unless stated other-
wise. Every symbolin ¢ of Az.? is said to be covered by
or in the scope of Az. In a(uy, -, un) the subterms

The simply typed)-calculus

uy, -, U are called arguments of a, and symbols in
Uy, -, Un are said to be covered by or in the scope of
a.

Terms are only compared modulo a-conversion.

The fB-normal form s is called flezible if H(s) is a
free variable, rigid if not.

If t is a pattern and o a substitution containing only
patterns, then o(t)] s is a pattern. In the sequel, all
terms are patterns unless stated otherwise.

Positions are strings of numbers, denoted by p, g,
and concatenated by “-”. The empty string is denoted
by ¢. Subterms of a pattern may be numbered by
positions such that (i) ¢, = ¢, (ii) Az.tj1, = ¢, and
(iil) (a(%k))jip = (ti)jp for 1 <4 < k. We write p < g
if there is p’ such that p-p’ = g. If neither p < g nor
g < p, we say that p and ¢ are independent.

A.2 Equational theories

An algebraic term (or first-order term) is a pattern of
a base type, which is either a free variable or of the
form f(3,) with n > 0, f being a function symbol
and each s; an algebraic term.

The R-rewriting —g is the smallest relation such
that (i) ¢(I) oro(r) for all substitutions ¢ and all
l—r € R, and (ii) s—pt implies (u s)—r(u t),
(s u)—r(t u) and Az.s—pgAz.t. For example,
Ay f(y) = r Ay-g(y) if f(X)— g(X) € R.

A TRS R is called consistent if X =i Y does not
hold for distinct free variables X and Y. A TRS
R is called confluent if for every u —% s and u —xt
there is a term v with s —%v and t =% v. For a
confluent R, we may write —% 5 — for =p. A
pattern s is R-normal if there is no pattern ¢ with
s—pt. A pattern s is R-normalizable if there is a
R-normsl pattern # with s -%¢. A substitution o
is R-normal or R-normalizable if so is ¢(X) for all
X € D(v). A TRS R is weakly normalizing if every
pattern is R-normalizable. A TRS R is strongly nor-

265

malizing if there are no infinite rewriting derivations
t1—rtz— R

An equational theory E can always be considered
as a confluent TRS {l—r,r—1 |l ~r € E}. Fur-
thermore, E is called regular if each | >~ r € E sat-
isfies FV(I) = FV(r), E is called collapse-free if no
equation [~ r € E satisfies /€ V and r ¢ V.

A substitution o is called idempotentif oo =g . A
substitution is idempotent whenever D(c)NI(o) = 0.
Let W be a set of free variables such that there are
still infinite many free variables not in W. If W D
D(o) then there always exists o’ such that D(¢') N
Z(¢') = 0, D(o) = D(c¢'), 0 Dr ¢’ W] and ¢’ Dr
o [W]. Note that o' is idempotent. It suffices to
consider the substitutions like ¢,

An R-unifier of a unification problem P is a sub-
stitution 6 such that 6(s)ls =r 6(t)ls for each
s="t € P. Let W be a set of free variables such that
there are still infinite many free variables not in W.
A set U of R-unifiers of P is said to be complete w.r.t.
W if for every R-unifier 8 there is ¢ € U such that
o Dgr 6 [W]. We may write such U as CSU r(P)[W].
It is always assumed that for each o € CSUR(P)[W],
D(o) C FY(P) and I(0) N (D(0) UW) = 0 where
W contains all free variables that have been used be-
fore, i.e. the free variables in Z(c) are always fresh
variables.

A.3 Syntactic unification of patterns

Miller was the first to present an algorithm for syn-
tactic unification of patterns [20]. Here we slightly
revise the Nipkow’s algorithm [22] and give an algo-
rithm consisting of four transformation rules on pairs
of substitutions and unification problems. The rules
are shown in Figure 2, where unification problems
are viewed as lists instead of multisets of unification
pairs and @ denotes the concatenation operation of
lists. The transformation starts with the pair (P, {})
for any unification problem P and terminates with
({}, o) if P is unifiable, in which case o is the most
general unifier of P.

Intuitively, rule (Bin) finds a partial binding for
a head variable, rule (Dec) breaks a unification pair
into simpler ones, rule (FF-1) finds a unifier of two
flexible patterns with distinct heads, and rule (FF-2)
finds a unifier of two flexible patterns with the same
head.

Inversing the preconditions to the rules in Figure 2
yields the following failure cases. The first case, called
clash, is the case a # b in rule (Dec). The second
case, called cycle, is the case F € FV({,) in rule

if a,b € CU{Z}, a = b (and thus n = m).

new free variable.

(DF.F(@) 2 25.0[F0)}QP, 0) = ({AF.Hm () = \F-tm }Q0'(P), o'0)
if F ¢ FV(tm) and a € CU {y} where Hy, -, Hp, are new variables and ¢’ = {F — Ag.a(Hm (7))}

({\F.a(57) £ \T.b(In)}OP,0) = ({\T.5, = \T.1,}QP, o)

({)2.F(7) = \2.G(2)}QP,0) = (¢'(P),0’7)
if F and G are distinct free variables, where o/ = {F + A7.H(%),G — AZ.H(%)}, {7} ={y}N{Z} and His a

(Bin)

(Dec)

(FF-1)

({V2.F (%) £ \2.F(%;)}0P,0) = (o'(P),0'0) (FF-2)
where o/ = {F v Ay, . H(?)}, {3} = {v» | s = 2,1 <1 < n} and H is a new free variable.
Figure 2: Unification of patterns
(Bin). The third case, called bound variable capture, s—pi08[0(v)]p = sltplp =1t 0

is the case a € {Z} — {¥} in rule (Bin).

Theorem A.1 There are no infinite sequences of
transformations by the rules in Figure 2. A unifi-
cation problem P 1s syntactically unifiable if and only
if every segquence of transformations starting with
(P,{}) terminates with ({}, o), in which case o|Fy(p)
1s a most general syntactic unifier of P.

B Appendix
Proof of Lemma 4.13.

=: Assume s—p;9t. Then there is a variant
ATg.u— ATg.v such that 6(A\Zx.u) = ATx.s), and
t = s[6(v)],. By Lemma 4.12, ¢(8)(¢(u)) = é(s}p)
and ¢(t) = ¢(s)[¢(6)(¢(v))]p. Since ATg.u = ATg.v is
a variant of a rewrite rule in R over Zx, ¢(u) — ¢(v) is
a variant of the same rule. Hence ¢(s) —;. ¢(0) $(t).

<: Assume that ¢(s) —p.,0 #(t). Then there
is a variant I-— r in the first-order case such that
o(1) = (s))p and $(2) = 4(s)[o(r)]y. Assume D(c) C
FV() and (o) C FV(¢(s)). Let Ayi,---,Ayr be
all A-binders in ¢(s) covering the position p. Let
FY(—r) = {X,}. Without loss of generality, we
may assume that [- r is so chosen that for each vari-
able X;, ¢~1(X;) is of the form H;(yx). Construct a
variant Ayg.u — ATg.v from | — 7 as required in Defin-
ition 4.1, where each X; is replaced by H,(yx). Con-
struct a substitution 8 = {H; — A7s.¢ " Ho(X.)) |
1<i<n}. Then 8(u) = ¢~ Ho(D)) = p~1(#(s)y) =
s, and 6(v) = ¢~ o (7)) = ¢71(4(t)p) = tp. Hence

266

To prove the second claim of Lemma 4.15, we need
the following lemma, which lifts the relationship be-
tween a rewrite and narrowing step in the first-order
case to the higher-order setting. Indeed, the following
lemma is a natural higher-order extension of the one
in [19] except a subtle change in the requirement (v).
The change is because the lemma in [19] is based on
the fact that two unifiable first-order terms s and ¢
that contain no common free variables always have a
most general syntactic unifier o with D{c)NT (o) = {}
and P(o) UZ(c) = FV(s,t), while an analogous fact
does not hold in the higher-order setting. A most gen-
eral syntactic unifier in the higher-order setting may
have to introduce new free variables, even in the case
when the patterns to be unified contain no common

free variables [20, 22].

Lemma B.1 Let R be a TRS. Suppose we have a
pattern s, a normalized substitution 6 and a set W
of free variables such that FV(s) UD() C W. If
0(s) —p.t' holds, then there exist a pattern s’ and
substitutions 0,0’ such that

(i) s ~pio 8

(i) ¢'(s') =1,

(1) 8'c = 6[W),

(iv) @' is normalized and

(v) FY(s')UD(') CW ~D(o) UZ(ow).

Proof Similar to that in [19].

Now we continue to prove Lemma 4.15.

Proof of 4.15 (continued): By using an induction on
n in each line, we may prove as follows:

Derivation (1)

= $(0)(8(5)) =7 $(8)(B(1)) =pryir*+ —papn T="T
by Lemma 4.5
= 6(0)(4(s)) =" 4(6)(¢(2))

11 " Pt ¢(sl) =7 ¢(3/)
by Lemma 4.14
8(s)="6(t) =pyis * —puan V' =1V
by Lemma 4.13
Derivation (2) for some o' with
o'(u) = o'(v) A 0'on-- 01 DR 0 [FV(s,1)]
by Lemma B.1

0

267

