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A b s t r a c t  

We present a novel approach to scalable implementation of 
type-based flow analysis with polymorphic subtyping. Using 
a new presentation of polymorphic subtyping with instanti- 
ation constraints, we are able to apply context-free language 
(CFL) reachability techniques to type-based flow analysis. 
We develop a CFL-based algorithm for computing flow in- 
formation in time O(n3), where n is the size of the typed 
program. The algorithm substantially improves upon the 
best previously known algorithm for flow analysis based on 

8 polymorphic subtyping with complexity O(n ). Our tech- 
nique also yields the first demand-driven algorithm for poly- 
morphic subtype-based flow-computation. It works directly 
on higher-order programs with structured data of finite type 
(unbounded data structures are incorporated via finite ap- 
proximations), supports context-sensitive, global flow sum- 
marization and includes polymorphic recursion. 

1 I n t r o d u c t i o n  

Type-based program analyses have received much attention 
(see, e.g., [Hei95, PO95, Mos96, HM97, NNH99, FRD00b]). 
Attractive properties of such analyses include: they typ- 
ically work directly on higher-order programs with struc- 
tured datatypes, they provide a natural separation between 
the specification (type system) and implementation of the 
analysis, and standard techniques from type theory are ap- 
plicable to reason about properties (e.g., soundness, com- 
pleteness) of the analysis. 

Type-based flow analysis tracks the flow of values by an- 
notating type structure with flow labels t, representing val- 
ues at specific program points (see, e.g., [Mos96, NNH99]). 
Answering queries of the form "Does any value at program 
point £1 flow to program point ~2" solves many static anal- 
ysis problems such as finding potential pointer aliases, de- 
termining possible targets of indirect function calls, and de- 
limiting storage escapement. This paper studies efficient 
techniques to answer such queries in the setting of type- 
based flow analysis with polymorphic subtyping. Based on 
the polymorphic type structure of the program, our analysis 
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is context-sensitive, i.e., it avoids spurious flow between dif- 
ferent calling contexts. Subtyping further enhances analysis 
precision by modeling a directional (non-symmetric) notion 
of value flow, see, e.g., [Hei95]. 

While each of the features - polymorphism and subtyp- 
ing - are established as practical components of type infer- 
ence systems, their simultaneous combination in polymor- 
phic subtyping is not: scaling up polymorphic subtype in- 
ference to even moderately realistic program sizes is an out- 
standing open problem. This paper presents a new attack on 
the scaling problem for subtyping-based polymorphic flow 
analysis. 

The main contributions of this paper are: 

• A novel presentation of polymorphic subtyping, us- 
ing instantiation constraints (also known as semi- 
unification constraints [Hen93]). Based on this pre- 
sentation, we are able to apply Context-Free Language 
(CFL) Reachability [Yang0, RHS95, MR00] techniques 
to compute directional, context-sensitive flow informa- 
tion for higher-order programs in polymorphic subtyp- 
ing systems (including polymorphic recursion). 

• Our resulting algorithm improves the asymptotic com- 
plexity of the best previously known algorithm [Mos96] 

s 3 based on polymorphic subtyping from O(n ) to O(n ), 
where n is the size of the typed program :Programs are 
explixitly typed, and n measures the size of the pro- 
gram and the size of the explicit types in the program. 
In theory, n can be exponential in program size but is 
close to program size in practice [Mit96]). 

• Our results open the door to new implementation tech- 
niques for flow computation with polymorphic subtyp- 
ing. First, by obviating the need to simplify and copy 
systems of subtyping constraints, our technique may 
circumvent one of the main scaling inhibitors for such 
systems. Second, our algorithm leads to demand-driven 
techniques, which, to our knowledge, have not been ob- 
tained before with polymorphic subtyping. 

In a previous paper [FRD00b] we have presented a flow 
analysis in polymorphic type systems based on instantiation 
constraints but without subtyping. The present paper pro- 
vides a substantial generalization of [FRD00b] through the 
incorporation of subtyping. 

In order to keep the present paper within limits, some 
details and proofs are omitted. These can be found in 
[FRD00a]. 

In the remainder of this introduction we describe the 
language framework we use for our flow analysis. 
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Figure 1: Object language 
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Figure 2: Annotated types 

1.1 O b j e c t  l a n g u a g e  

Figure 1 shows the language we use to illustrate our flow 
analysis. I t  is a higher-order functional language containing 
integers (n), pairs, lambda-abstractions,  conditionals (test- 
ing for 0), recursive functions, and pair selection (~r/). Our 
language is typed using a s tandard monomorphic type sys- 
tem. Monomorphic types are ranged over by v. The lan- 
guage distinguishes between A-bound variables x and let- or 
letrec-bound variables f .  Our object language is explicitly 
typed, i.e., we assume that  the type structure of programs 
is given in the form of type annotations on A- and letrec- 
bound variables, writ ten x : r and f : 7, respectively. Uses 
of let- and letrec-bound variables f* are annotated with an 
instantiation site i, distinguishing all occurrences of such 
variables. 

1.2 A n n o t a t e d  t y p e s  

Since we are interested in flow, we will annotate type con- 
structors with flow labels £, and we will allow labels on ex- 
pressions, e t. Annotated types are written a and are defined 
in Figure 2. Annotated types will be used as a technical 
device for performing flow analysis on programs of the ob- 
ject language shown in Figure 1, they do not belong to that  
language itself. Erasing all labels from an annotated type 
results in a monomorphic type of the object language. The 
reader should think of the flow label annotations as being 
superimposed on the types of the object language, and flow 
analysis will be specified later using a separate type system 
for assigning annotated types to programs. To distinguish 
between annotated types and the types of the object lan- 
guage, we sometimes refer to the lat ter  as underlying types, 
and the type system of the object language is called the 
underlying type system. 

The underlying types of let- and letrec-bound variables 
are given monomorphic types in the underlying type system, 
but  label annotations on types of let- and letrec-bound vari- 
ables will be t reated polymorphically by our flow analysis. 
We will allow polymorphic recursion [Myc84, Hen93] over 
flow labels, as found in [Mos96]. We will also allow our flow 
analysis to exploit subtyping relations over flow labels, writ- 
ten £1 _< $2, to represent the fact that  a value identified by 

let id = Ax:int t* .x 12 

in 

((id' OtS/4 , (id ~ 
end 

d5/6) 

Figur e 3: Example program e 

label £1 flows to the  program point labeled ~2, in the style of 
[Hei95, Mos96]. As in the case of polymorphism, subtyping 
belongs to the flow analysis framework and is not part  of 
the object language. 

Each of the features - polymorphism and subtyping over 
flow labels - enhance the precision of type-based flow anal- 
ysis  [Hei95, Mos96], and when combined into one system we 
arrive at  flow analysis based on polymorphic subtyping as 
studied in this paper. The polymorphic t reatment  of flow 
labels will allow a certain form of context-sensitivity (values 
only flow interprocedurally through well-matched call-return 
sequences of functions) and subtyping allows us to t reat  flow 
directionally (the fact tha t  a value at  £1 flows to £2 does not 
imply that  a value at g2 flows to gl). 

The language- and analysis framework described above 
will be held fixed throughout most of the paper. However, 
in a later section (Section 6) we will indicate how our tech- 
niques can be extended to a language whose underlying type 
system is polymorphic.  

The remainder of this paper is organized as follows. Sec- 
tion 2 reviews problems in combining polymorphism and 
subtyping and sketches our solution. Section 3 presents 
polymorphic subtyping with instantiat ion constraints. Sec- 
tion 4 defines our flow relation based on CFL-reachability. 
Section 5 presents a cubic t ime algorithm for computing all 
flow queries. Section 6 shows tha t  our techniques extend 
to polymorphic and recursive types in the underlying type 
structure. Section 7 discusses related work, and Section 8 
concludes. 

2 F l o w  a n a l y s i s  w i t h  p o l y m o r p h i c  s u b t y p i n g  

Scaling up type inference for polymorphism combined with 
subtyping remains a challenging problem. In this section, 
we first identify two major  problems with current imple- 
mentat ion techniques for flow analysis based on polymor- 
phic subtyping (Section 2.1 and Section 2.2). In Section 2.3 
and Section 2.4 we then give an intuitive overview of our 
solution. 

We illustrate our techniques with a very simple example 
program e, as shown in Figure 3. We are interested in track- 
ing the flow of constants 0 and 1 labeled with Is and £5. We 
will do so by performing type inference over the annotated 
types in the program (our explanation will be intuitive, and 
the type system used will be precisely defined later). 

2.1 P r o b l e m  1: C o n s t r a i n t  c o p y i n g  

All previous work in polymorphic subtype inference is based 
on qualified polymorphic types. In our setting of flow analy- 
sis, a qualified polymorphic type  has the form 

In this type, quantification occurs over flow labels, and a is 
an annotated type, which typically contains labels that  are 
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quantified. The component C is a set of captured subtyping 
constraints over flow labels of the form £ _< £', qualifying the 
type 0. Since C may contain quantified labels from [, such 
an approach gives rise to copies of the captured constraints 
at all instantiation sites for that  type, as we will illustrate 
next• 

A s tandard 1 polymorphic constrained type (see, e.g., 
[Smi94, TS96, Mos96]) for our example function id  of Fig- 
ure 3 is 

V£I£2.{£i  ~ £2} ~ int  t l  ~ int t2 

In this typing, the constraint set {gl _< £2} captures the fact 
that  any value (represented by £1) passed as argument to id  
flows to the result of the function (represented by £2). 

In a copy-based framework, program e is typed by copying 
the constraint set {£1 _< £2} associated with ±d at each of 
the instantiation sites i d  ~ and id  j .  At instantiation site i, 
the label £1 on the domain type of i d  gets copied to the 
label £3, because £~ labels the actual argument 0 at  call site 
i. The label £2 of the range type of i d  gets copied to the 
label £4, because £4 labels the result of the call. Because the 
type of i d  is constrained by £1 <_ £2, the constraint set as 
a whole gets copied into the set {£z _< £4} at site i. By a 
similar argument,  the constraint set {£a _< £2} gets copied 
into {£5 <_ £6} at site j .  After these steps we arrive at the 
s tandard polymorphic typing judgment  for e 

{£3 ~ £4,£5 ~ £6} ;0  I'- e : in t  t4 x int ts (1) 

Such a typing has four components,  from left to right: a set 
of subtype (or flow) constraints, a type environment (here 
empty),  a term and a type. From this typing we can read off 
interesting flow relations. For example, because £3 _< £5 is a 
constraint in the type (1), we can conclude tha t  the value 0 
(£3) flows to the first component of the resulting pair (£4). 
Similarly, we can see tha t  the value 1 (£5) flows to the second 
(gs), as indicated by the constraint g5 _< £6 in (1). 

Polymorphism over labels, here implemented via con- 
straint copying, keeps the two instantiation sites apart ,  
matching up a call site (e.g., :Ld ~ 0 is) with its proper return 
(£4). This was achieved by making two distinct copies, dur- 
ing type inference, of the constraint set {£1 _< £2}, one copy 
at instantiat ion site i, and another at site j .  A monomorphic 
analysis, in contrast, typically predicts, imprecisely, that  ei- 
ther value (g3 or £5) flows to either return point (£4 or £6). 

The seeming need to copy subtype constraint sets at ev- 
ery distinct instantiat ion site has been identified as a ma- 
jor problem, making it very difficult to scale polymorphic 
subtyping to large programs. 2 In particular,  the problem 
has generated a significant amount of research on constraint 
simplification, which aims at  compacting constraint sets be- 
fore they are copied [FM89, Cur90, Kae92, Smi94, EST95, 
Mos96, Pot96, TS96, FA96, AWP97, l:teh97, FF97]. I t  is 
unlikely that  constraint simplification techniques alone will 
solve this problem, and complete simplification is a hard 
problem itself [Push98, FF97]. 

2.2 P r o b l e m  2: D e m a n d - d r i v e n  f l o w  c o m p u t a t i o n  

Constraint copying methods for polymorphic subtyping sys- 
tems axe not demand-driven [Mos96]. For instance, if we 

1Function id can be given a most general typing without any sub- 
typing constraints, but  we choose the present typing for i l lustrative 
purposes. 

2The small size of the Constraint set in our toy example is illusory 
in practice, of course• 

only ask for the flow between £3 and £4 in our example pro- 
gram ±d, t radit ional  methods still copy. the constraint set 
{£1 <_ £2} into both call sites i d  ~ and id  J , even though only 
the former copy is necessary to answer the qnestion. 

A related, more subtle problem is that  flow queries may 
originate at arbi t rary  program points. For example, we may 
ask which values globally flow into the formM parameter  x 
of the function definition :i.d (in our example~ the answer is 
ga and gs, since 0 is an actual  parameter  to id  at call site i, 
and 1 is an actual parameter  to i d  at site j ) .  Because copy- 
ing does not keep track of the source of constraint copies, 
it  does not represent the flow of values between a polymor- 
phie function and its instantiations. Recovering this infor- 
mat ion in the t radi t ional  framework has proven to be non- 
trivial [Mos96, FFA00], both  in terms of computat ional  ex- 
pense and correctness, because it requires the entire typing 
derivation rather  than merely the final typing judgement of 
the program. Furthermore,  it is unclear how such techniques 
can natural ly accommodate demand-driven versions. 

2 .3  A n e w  m e t h o d  b a s e d  o n  i n s t a n t i a t i o n  c o n -  
s t r a i n t s  

Both of the problems mentioned in Section 2.1 and 2.2 in- 
hibit scalability of polymorphic subtype-based flow analysis. 
We tackle these problems by introducing a new presenta- 
tion of polymorphic subtyping, based on instantiation con. 
strain,s. Instant iat ion constraints were used in [FRD00b] to 
support  scalable context-sensitive flow analysis. Here, we 
generalize the approach by incorporating subtyping, and, as 
we will see, this will significantly change the way flow com- 
putat ion is done. We refer to our system as POLYFLOWcFL. 

Instead of constrained types V[.C ~ a ,  POLYFLOWcFL 
uses s tandard  quantified types of the form V[.a, which are 
given meaning in combination with a global set of con- 
straints. In POLYFLOWcFL, the term e from the example 
shown in Figure 3 receives a typing of the form 

{ ~1 "~-£3,£2 . ~ £ 4 ,  } {£1 < £ 2 } ; 0 1 - e  o" (2) 
£1 ~+ £5, £2 ~ _  e~ ; - 

where ~ = int t4 x int ts. A judgment  in POLYFLOWcFL has 
five components,  from left to right: a set of instantiati(~n 
constraints I ,  a set of flow constraints C, a type environment 
(here empty),  a term and a type. 

The instantiat ion constraints I explicitly represent the 
label substi tutions ~ and ~j  given by 

and 

~j  = {£1 ~ £5,£2 ~ £6} 

These substi tutions are used at  instantiat ion sites i and j ,  
respectively, to produce instances of i d ' s  type int ll  --+ int 2. 
In the constraint set I ,  the subst i tut ion ~ is represented by 
the constraints £1 ~ .  £3,£2 ~_~- £4, and ~oj is represented 
by £1 .~J+ £5,£2 _~J+ £6. In a constraint  copying framework, 
~i and ~j  are applied at sites i and j to copy the subtype 
constraint set {~1 <_ £2} associated with ±d, yielding {£3 <_ 
£4) at site i and {£5 _< £6} at site 3. In our instantiation 
constraints, The indices i and j serve to keep substitutions 
at  distinct instantiat ion sites apart .  

The crucial difference of POLYFLOWcvL to copy-based 
systems is tha t  we avoid constraint  copying altogether: 
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* Instead of explicitly representing copies of the original 
constraint system ({ l l  < £2}), only the substitutions 
necessary to create them are represented. The con- 
straint copies are thereby implicitly given in terms of 
the original set ({gl _< g2}) and the instantiation con- 
straints. 

Having addressed the copy-problem from Section 2.1, we 
now show how the flow at all instantiation sites is recov- 
erable in a completely demand-driven fashion through the 
combination of flow and instantiation constraints. Suppose 
that  we demand to know where g3 flows. Drawing flow con- 
straint {gl _< g2} as a directed edge from gl to g2 and draw- 
ing instantiation constraints gl _+-g/£3,g2 ~ -  £4 for site i as 
dot ted edges, we recover the flow from £3 to g4 at  instanti- 
ation site i by completing the following diagram, the lower 
dashed edge representing the "recovered" flow constraint: 

~1 ~ g2 

: --+ 
V V 

£3 ..  _ ~. g4 

Label £3 represents the actual argument at call-site i and g4 
represents the result at call-site i. Intuitively, there is flow 
from £3 to £4 because the argument flows into the identity 
function i d  to the formal gl, within the identity function to 
the return value g2, and back out of the identity function 
to the result £4 at call site i. The flow is valid because the 
in-flow + and out-flow + agree on the instantiation site i. 

Note how the negative (+) instantiation edge gl ~ -  t3 
represents the flow of an actual to a formal, and the positive 
(-t-) edge g2 -~- ga represents the flow of the result to the 
call-site i. The polarities p E {+, +} on instantiation edges 
indicate their flow direction (in-flow or out-flow). Negative 
+ instantiation edges represent flow in the direction oppo- 
site the instantiation, whereas positive + instantiation edges 
represent flow in the direction of the instantiation. 

Polarities are assigned to instantiation constraints ac- 
cording to the polarity of the "source types" of instantia- 
tions. In our example, £1 occurs negatively, £2 positively 
in the type int ~ --~ int ~ of id.  Instantiat ion polarities 
were introduced in [FRD00b]. Disregarding polarities and 
interpreting instantiat ion constraints as bi-directional flow 
constraints results in a complete loss of context-sensitivity. 

We have sketched how to recover the flow on-demand, 
using only parts of the constraint systems needed for this 
query. This addresses the on-demand problem from Sec- 
tion 2.2. 

A further advantage of instantiation constraints, address- 
ing the second problem in Section 2.2, is that  all flow is 
present in the constraint sets I and C obtained in a typ- 
ing judgment for POLYFLOWcFL. Consider for example the 
flow of both value 0 (go) and 1 (t~) to formal parameter  x 
(gl). We can recover such flow similarly to the flow above 
via gt ~+  g3 and gl ~_J+/5. As mentioned in Section 2.2, to 
recover such flow in copy-based systems, the entire typing 
derivation is required instead of merely the final judgment.  

2.4 C F L - r e a c h a b i l i t y  

How can we systematically recover global flow from instan- 
t iation and flow constraints? As we will show in this pa- 
per, this is best formulated as Context-Free Language (CFL) 

[ C I " L < L  I 

C, gl _< £2 ~- gl _< £2 [Id] 

c ~ g < g [Refi] 

C ~ g o < g l  C t - g l  <g2 [ ans] 
C ~- go _< g2 

Figure 4: Constraint  relation 

teachability on a graph formed by flow and instantiation con- 
straints (edges) and labels (nodes). Let us give the intuition 
behind this idea. We assume tha t  in this graph negative in- 
s tantiat ion constraints are reversed and labeled with open- 
ing parentheses (i. Positive instantiat ion edges are labeled 
closing parentheses )i, and flow edges with d. All flow paths  
in the graph now spell words. For example, the path  

e3 &gl &g4 
spells the word "(id)i". The invalid flow path  

~3 & ~1 --~ ~2 "~'~')" ~6 
spells the word "(id)j" and corresponds to calling ±d at in- 
stance i, but  returning to instance j .  Valid and invalid flow 
are distinguished by membership in a particular language. 
For our example, the language contains the words (id)i and 
(jfl)j, but  no others. In general, valid flow paths are char- 
acterized by words with matching sets of parentheses. Spu- 
rious flow paths  are simply not par t  of that  language. 

Matched flow paths bear a close resemblance to the pre- 
cise interprocedural flow paths  of matching call- and return 
sequences studied in [P~HS95] for the case of first order pro- 
grams manipulat ing atomic data. In contrast to this work, 
our analysis allows context-sensitive tracking of the flow of 
values through any finite data- type,  and it directly incor- 
porates finitely typed higher-order functions, since function 
types are just  another kind of da ta- type  in type-based anal- 
ysis. We note that ,  in higher-order programs, a function 
symbol may occur in contexts tha t  are not call sites and 
matched flow may not correspond to actual calls and re- 
turns. Well-matched paths  are also used in [MR00], where 
an analysis is described for higher-order programs manipu- 
lating arbi t rary  s t ructured data. However, this analysis is 
context-insensitive, whereas the presence of polymorphism 
in our type system provides for a form of context-sensitivity. 
On the other hand, we can only handle unbounded data- 
structures (such as lists) in an approximative way, as shown 
in Section 6. The reader is referred to Section 7 for more 
comparisons with previous work. 

3 P o l y m o r p h i c  s u b t y p i n g  w i t h  i n s t a n t i a t i o n  c o n -  
s t r a l n t s  

POLYFLOWcFL uses polymorphic types over labels of the 
form V~.a without qualifying constraints. Judgments have 
the form 

I;C;AI--CFL e : a  
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C t- ,e~ _< .e2 [Int] 
C ~- int el < int t2 

C~- a~ < a~ C ~- a2 < a' g _ _ 2 C t - £ <  [Pair] 
C ~- a~ x~ a2 _< a~ x v o-~ 

C }- o'~ _< o'1 C e a2 _< a'~ C~-e_< g [~n]  

Figure 5: Subtype relation 

/ ~- ~ ~ e' lint] 
I t- int t ~ int v 

2 

I~-a~  x tcr2 L<~a~ x t ' a~  
[Pair] 

~p £ I ~ a~ ~ a l  I ~- ~r2 ~p 2 [Fun] 

Figure 6: Instantiat ion Relation 

shown in Figure 7. Here, I is a set of instantiation con- 
straints, C is a set of f low constraints on labels, and A is a 
type environment assigning types to free variables in term e. 
Such a judgment means that,  under the assumptions con- 
tained in I ,  C and A, term e has labeled type a. 

The subtyping rule [Sub] of Figure 7 uses standard logic, 
shown in Figure 4 and Figure 5, for flow judgments C ~ £ _< 
£' and subtyping judgments C I- a _< a ' ,  where C is a set of 
flow constraints on labels, £ <_ £'. 

Type environment A contains two kinds of assumptions. 
One has the form A ' , f  : (V/.a,~), where f is a l e t -  or 
l e t r e c - b o u n d  variable. Here, V/.a is the quantified type 
assumed for .f, and ~ is a vector containing the labels that  
are free in X .  The notation .fl(a) and f l ( A )  denotes the free 
labels occurring in a and A, respectively. The remaining 
type assumptions have the form A ' , x  : a assigning (non- 
quantified) labeled types to A-bound variables. 

Rule [Let] binds a l e t - b o u n d  variable .f to a quantified 
type, and rule [Rec] binds a l e t r e c - b o u n d  variable .f to a 
quantified type. Notice that, in rule [Rec], the quantified 
type is used in typing the term el in the le t rec-b inding ,  
thereby allowing polymorphic recursion over labels. In rule 
[Lam] and [Rec] we use the notation la[ to denote the un- 
derlying type that arises from the annotated type a by eras- 
ing all label annotations from a. In rule [Lain] we require 
la[ = % i.e., a must have the same structure as r ,  and 
similarly in rule [Rec] for ax and v. 

An instantiation constraint e ~ ~' states that £ instanti- 
ates to £' at site i with polarity p. Instantiation constraints 
represent substitutions at instantiation sites. A polarity p is 

either positive + or negative ÷, and ~ negates the polarity 
of p. Sets of instantiation constraints are written I.  Fig - 
ure 6 lifts instantiations to labeled types, where I ~ a ~ a '  
expresses that  a instantiates to a '  given I.  

Instaatiation constraints I must satisfy: for any partic- 
ular index i and any label £, one hasS: 

W'. e ~_~, ~' e I A e _~,, ¢ '  ~ ; ~ e' = e" (3) 

A constraint set I thus gives rise to a collection of substitu- 
tions ~i, indexed by instantiation site i, where 

~o, (£) = £' if £ ~_~ g 6 I 

and the identity everywhere else. We use the: notation 

to mean that  given I,  a instantiates to a ~ under ~ (i.e., 
~ ( . )  = ~'). 

Instantiat ion constraints are used in rule [Inst] in Fig- 
ure 7. From the assumption A, f : (Ve.a, £;) we derive the 
type a ~ for f at instantiation site i, provided that  

I~-  a ~_ipa ' : ~ 

holds for some ~ with dora ~ = ~. Moreover, for the labels 
£;, which are unquantifiable at the point of l e t -  or l e t r e c -  
binding, we require 4 

I~-£ ;  ~ .  £; and I ~ ~ :<i+ ~; 

which have the effect that  for all g in £;, there are constraints 
£' ~ _  e' and £' ~ .  £' in I.  

In rule [Label], a[~] denotes the type a with top level 
label £. The rule allows a subterm e to be labeled with the 
top-level label of its type, so that  flow queries on labels can 
refer to arbitrary subterms in the program. The remaining 
rules of Figure 7 are standard type rules. 

4 F l o w  r e l a t i o n  

This section defines our flow relation and flow-graphs in- 
duced by typing derivations. The presence of instantiation 
constraints in the subtyping system leads to a clean flow 
logic, which is implementable via CFL-reachability. 

4 . 1  F l o w  l o g i c  

Given a derivation of I;  C ~-CFL e : a, the flow graph G = 
(I, C, L) is defined by the set of labels L appearing in the 
derivation, along with the flow edges C and instantiation 
edges I.  As was explained in Section 1, we must recover 
flow from l~ to ~ in the following situation: 

£1 

~i+ 

Y 

~2 

Y 
e~ 

SThe reader familiar with semi-unification will note that this rule 
is enforced by the algorithm of [Hen93]. 

4For ~ = l~ . . . . .  t~ we write I b ~ ~ l "7 as shorthand for I I- 
t i ! l$ ~--n tj, j = 1 . . .n .  
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Ix; b; A t-CF  , :  o-[ 
Base Rules 

I;  C; A, x : a kCFt. x : a [Id] 

I ;  C; A ~¢FL el : a2 ._.~t o"1 I ;  C; A &CFL e2 : o'2 lapp]  
I ;  C;  A }-CFL el  e2 : O'1 

I ;  C; A, x : a ~-CFL e : a' Jo'[ = r , _  

I ;  C; A t-CFL el : a l  I ;  C; A t-CFL e2 : a2 [Pair] 
ely T ;7 

I;  C; A }"CFL e : a l  ×~ a2 [Proj j = 1, 2] 
I ;  C; A KCFL r /  e : aj 

I; C; A }-CFL eo : int ~ I; C; A b'CFL el : a I ;  C; A }-CFL e:  : q [Cond] 
I ; C ; A  ~-CFL if eo t h e n  e l  e l s e  e2 : o" 

I ;  C; A KCFL e : a C ~- a < ~ '  I ;  C; A KCFL e : a[£] 
I ;  C;  A ~CFL e : o" --  [Sub] I ; C ; A K c F L e  ~ : a  

Polymorphic Rules 

I ;  C; A FCFL n t : int t lint] 

[Label] 

I ;  C; A KCF L el : a l  
I;  C; A, / : (VZal, ~ FCFL e2 : o'2 
[---- gen(A, al) t' = f l (A) 

I ; C ; A  ~CFL l e t  f = el in  e2 : o'2 
[Let] 

I ;  C; A, / : (V[.al, ~7) }-CFL el : al 
I ;  O; A, f : (VZal, ~)  ~CFL e2 : 0"2 
[ =  gen(A, al) ~ = f l(A) I(711 = T 

I ; C ;  A ~CFL l e s r e c  f : r  = el in  e2 : O"2 
[Rec] 

i ;  C; A, f :  (V[.a, ~)  b-CFL / i :  a '  

gen(A,a) = fi(a) \ f l (A) 

[ I ; C K c F L t ~ t ]  

Figure 7: CFL-Based System POLYFLOWcFL 

C ~ ~1 ~ ~2 2 [Levell 
I ;  C ~- t l  ~-~p 

I ,  Ii ~ t2; C b- t l  "-~,+ 12 [Out] 

I,& ~_~+ 12; C ~- t2 "~+ & [In] 

I ;  C }- to ~ p  & I;  C F t l  ~ p  12 [Trans ] 
I ;  C ~ to ~ p  t2 

I ;  C F go ~ p  tz [Match] 

I ;  C }- go ~'~+ t l  I ;  C }- gl "~'+ t2 [Stage] 

p---- -I-, + ,  m 

Figure 8: Flow relation for POLYFLOWcFL 
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Our solution is given in Figure 8 axiomatizing judgments 
I;  C PCFL ~1 ~ £~. This judgment means that, under con- 
straints I and C, there is valid flow from label el to £2. 
Some flow paths only involve flow constraints in C and are 
deduced directly from C via rule [Level], i.e., if C ~- £1 .~ £u is 
derivable, then we deduce flow from £1 to e2. Internally, the 
rules use auxiliary judgments of the form I;  C I- ~1 *~'~+ e2, 
I;  C b- £1 "~'~+ £2 and I;  C ~ £1 "~-~m £2, which define posi- 
tive, negative and matched flow, respectively. Rules with an 
occurrence of p are actually rule schemes for all rules ob- 
tained by selecting + , +  or m for p. Rule [Trails] encodes 
transitivity for all auxiliary relations. 

Rule [Match] introduces matched flow, of the form I;  C l- 
e* ~'~m £2, capturing that  the sequence of instantiation 
edges traversed along a matched flow path forms a well- 
parenthesized string, where ~ matches ~_.  Matched flow 
allows us to recover, on demand, the flow represented by 
copies of constraint systems in constraint copying frarne- 
works. Matched flow avoids spurious flow paths that  in- 
volve negative and positive instantiation edges from distinct 
instantiations. In the first-order case, such paths correspond 
to spurious flow from one call site of a function ff to another 
call site of f .  

The remaining rules [In], [Out], and [Stage] encode that  
some flow paths may contain unmatched initial closing 
parentheses and unmatched final open parentheses. The un- 
matched parentheses arise because a flow path may start and 
end in scopes other than the top-level scope of the program. 

4.2 C F L  f o r m u l a t i o n  

We now formulate flow queries as a context-free language 
reachability problem (see for example [MR97]). Given a flow 
graph G = (I, C, L), construct the graph GCFL with nodes 
L, and the following labeled edges: 

t l  ~ t2 
i f £ 1 ~ _ £ 2 E I  

£1 - ~  £2 

£2 --~ £1 
i f tz_~ezEl 

t2 ~ £1 

gl--~£2 if ez < g 2 E C  

Edges with labels p (n) correspond to positive (negative) 
instantiation edges used in the [Out] ([In]) rule of the flow 
relation. Edges with labels (~ and )i correspond to the in- 
stantiation edges used in the [Match] rule, and d-edges rep- 
resent flow constraints. 

A flow relation I;  C bCFL £1 ~ e2 is derivable via rules of 
Figure 8 if and only if there exists a path in GCFL where the 
sequence of labels along the path from £1 to £2 is accepted 
by the following grammar with start symbol S: 

S ~ P N  
P ~-- M P  

I P P  

N ~-- M N  
I n N  

M ~ (i M ) i  
I M M  
I d 
I e 

Productions for P accept paths that  corresponds to positive 
flow I;  C }- £1 -~-~+ t2, productions for N produce negative 
flow paths, and productions for M produce matched flow 
paths. 

In practice, the graph GCFL need not be computed explic- 
itly. Instead, the graph closure can be computed directly on 
the set of constraints C and I.  

4.3 Examples 

Figure 9 shows the flow graph and the CFL-graph for an 
example program. Function idpa±r is the identity on integer 
pairs. It is instantiated at site i within f,  which in turn is 
instantiated at site j.  

The top contains the flow graph G with flow and instan- 
tiation edges. The bot tom contains the corresponding CFL 
graph GC~L where we omit the d labels on flow edges. There 
is a flow path from b to z: 

where the flow from £b to £1 forms a matched flow path that  
is explicit in a system based on constraint copying. 

One advantage of using the type-based approach to flow 
analysis presented here is that  it deals directly with higher- 
order programs. The type-theoretic notions of polarity and 
contra-variance are essential here, and are exploited in our 
annotation of polarities on instantiation edges. Appendix A 
contains an example (Figure 13) of a higher-order flow graph 
and its flow interpretation. 

Interestingly, the flow relation of [FRD00b] without sub- 
typing emerges by collapsing all M-productions to e, cor- 
responding to an equational interpretation of the subtype 
relation. The flow relation thereby becomes regular, and 
flow queries become linear time in the size of the flow graph. 
Our present results show that  the addition of subtyping cor- 
responds to a passage from regular to context-free flow. 

4.4 Soundness 

Soundness of our flow relation I;  C ~CFL £1 ~ £2 is non- 
obvious and requires proof, which we provide in our tech- 
nical report [FRD00a]. To prove soundness we use a la- 
beled polymorphic subtyping system called POLYFLOWccpy 
(we refer the reader to [FRD00a] for the definition). This 
system is similar to a standard copy-based system studied by 
Mossin in [Mos96]. It  induces a flow relation, denoted I-cp, 
which arises from the relation FCFL (Figure 8) by removing 
rule [Match]. The soundness theorem states that  our flow 
relation ~-CFL is a sound approximation to the relation ~¢p. 
Since soundness has been established for copy-based systems 
by Mossin [Mos96], soundness of our notion of flow follows. 
Technically, we show 

T h e o r e m  4.1 (Soundness) For every judgment 

I;  C; A }-CFL e : a 

derivable in POLYFLOWcFL there exist Co, Io, Ao such that 
the judgment 

Co; Io; Co; Ao ~ e : o" 

is derivable in POLYFLOWcopy and such that, for all labels £ 
and ~' occurring in e one has 

Io; Co Pep ~ ~ t' ~ I;  C ~c~L ~ ~ ~' 
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let idpair = Ax:int x int.x in 
l e t  f = Ay:int.idpair ~ (a la ,b  £b) in 

let z = (~2 (fJ 0))  l" 
, ° ,  

X X 

y : y 

~+ x ii =d + ~ x 

, / \  
t .  ~b 

Flow graph G 

Y 
x i_% 

X X 

• ~ • p . .  )~ • 

• . . . . 

: :  : :  ~y 

n X ( i  • n P ).i X P " ) i  

.iV \ i /   //i\ii 
~a £b • p i )j t l  

.~ :.: 

: : 

P ::)j X Pi i)J 

CFL Graph GEFL 

Figure 9: POLYFLOWcFL example 

S +-- P N  
P e-- M P  

[ P P  

N ~ M N  
[ n N  

K~ +- M )~ 
M +- ( i K i  

[ M M  
I d 

Figure 10: Grammar for CFL queries. 

This theorem implies that,  for any program typable 
in POLYFLOWcFL, the induced flow logic FCFL over- 
approximates the induced relation ~cp of PO/YFLOWcopy. 
A core step in the proof consists in showing that our no- 
tion of CFL-based flow recovers all implicit substitutions ~o~ 
on constraint systems needed in copy-based derivations, as 
explained in Section 2.3. The presence of polymorphic re- 
cursion is a complicating factor for the proof, and our proof 
uses ideas introduced in [Mos96]. 

Conversely, by turning label substitutions into instanti- 
ation constraints, it is easy (tedious, but  not difficult) to 
see that any typing in POLYFLOWeopy gives rise to a typ- 
ing in POLYFLOWcFL such that  the induced flow relation 
of POLYFLOWcFL is soundly approximated by the induced 
flow relation of POLYFLOWcopy. 

5 A l g o r i t h m  

Let e be an explicitly typed program, and let n denote its 
textual size. Thus, n measures the size of the program text 
together with the type annotations. Furthermore, let m de- 
note the textual size of the type erasure of e (the type erasure 
of e arises from e by deleting all type annotations from e). 
Thus, m measures the size of e when type annotations are 
disregarded. We show how to compute flow queries for a 
term e of type-erasure size m, and with type-annotated size 
n. Our algorithm takes O(n 3) time for computing individual 
or all queries. In the worst case, the size n is exponentially 
larger than m, although n will typically be close to m in 
practice [Mit96]. 

5.1 C o n s t r a i n t  d e r i v a t i o n  

The type rules in Figure 7 directly serve as constraint in- 
ference rules. As is standard for inference systems, the use 
of the subsumption rule [Sub] is restricted to the argument 
derivation in [App], the branches in [Cond], and the binding 
in [Rec]. Constraints are inferred at rules [Inst] and [Sub] by 
using the rules of Figures 6 and 4 in reverse, i.e., to obtain 
the conclusion, we generate the constraints required by the 
antecedents. To guarantee the well-formedness of instantia- 
tion constraints, rule (3) must be enforced. 

After constraint derivation we produce the graph GCFL 
according to the description given in Section 4.2. 
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W = edges of GCFL 
Go = 
for each production A e-e and node e 

add ~-~£ to  W;  
while W not empty 

remove edge e----£1 -~£2 from W; 
(i) if e not in Go do 

add e to Go; 
for each rule r of the form A~--B 

(2) add £1 -~£2  to  W;  

(3) 

f o r  each ru l e  r of the form A ~--B C 
add £1 to  predr(g2); 
for each £3 in sucer(£2) 

add £1 ~ £ s  to  W;  
end 

end 

(4) 

for each rule r of the form A ~-C B 
add £2 to SUCCr(£1); 
for each £o in predr(£1 ) 

add £0 ~ £ 2  to W; 
end 

end 
endif  

end 

Figure 11: CFL algorithm 

5.2  C u b i c  t i m e  a l g o r i t h m  

We follow [MR97, MR00] and normalize the grammar for the 
CFL problem such that  the right hand sides of productions 
contain at most two symbols (terminals or non-terminais), 
resulting in the grammar shown in Figure 10. The generic 
CFL-algorithm in [Ml:t97, MI~00] has worst case complexity 
O(]~13n3), where E is the set of terminals and non-terminais 
used. Our grammar has I~ l  = O(m). 

As is observed in [MR97, MR00], the generic upper 
bound of O([Elan 3) can be substantially improved in spe- 
cific applications by exploiting the properties of the gram- 
mars that  arise. Thus, we can improve the upper bound 
O(mSn a) by using the generic algorithm of Figure 11 and 
taking advantage of specific properties of our grammar. We 
show that  the algorithm runs in time O(n a) for the grammar 
in Figure 10. The proof of the following theorem is given in 
Appendix B. 

T h e o r e m  5.1 Given I, C, £, £', answering a flow query 
I ;  C FCFL £ ~ ~' is decidable in time O(n3). Moreover, the 
entire flow relation derivable from I and C is computable in 
time O(nS). 

This result improves the best previously known algo- 
8 3 rithm, given by Mossin [Mos96], from O(n ) to O(n ), when 

polymorphic recursion is included and from O(n r) to O(n 3) 
when it is not. The gain is in both cases realized by avoiding 
repeated copies and simplifications of constraint sets, and 
also by avoiding iterating the inference to obtain ffixpoints 
for the polymorphic recursive type schemes. 

On termination, the algorithm produces a graph Go con- 
taining all possible edges labeled by non-terminals of the 

£a 

(i :n 

X 

£b 

p :! )~ 

× 

• p i )i £1 
.:~ : ~:. 

• £z 

Figure 12: Type polymorphic example 

grammar. To answer a query for flow from gl to £2 we sim- 
ply need to inspect Go for an S-edge from £1 to £2. 

5.3 D e m a n d - d r i v e n  a l g o r i t h m  

Although the algorithm in Figure 11 is not directly demand- 
driven, the CFL-formulation allows straight-forward adapta- 
tion of the technique in [HRS95, Rep98], yielding a demand- 
driven algorithm. 

6 P o l y m o r p h i c  a n d  r ecu r s ive  t y p e  s t r u c t u r e  

In this section we show that  our techniques remain effective, 
when the underlying types axe polymorphic and recursive. 

6.1 P o l y m o r p h i c  t y p e  s t r u c t u r e  

POLYFLOWcFL type derivations are polymorphic in labels 
but not in the underlying type structure. Extending poly- 
morphism to the underlying type structure results in more 
complicated flow queries. Since type variables are instanti- 
ated to arbitrary labeled types at instances, flow paths that  
traverse a type polymorphic function may involve travers- 
ing type constructor edges from child to parent and back. 
Consider the example from Figure 9, but with i dpa i r  being 
the polymorphic identity function, instead of the identity 
on integer pairs. The resulting type instantiation graph is 
shown in Figure 12. We use h ~ for labels annotating type 
variable c~. The flow path from £b to £z has the form 

£b [x2> ]x2> x -~2+ h? ---4 h~ ~ × £1 -2+£z 

and involves traversing constructor edges between pair types 
and their right child. We label constructor edges with the 
constructor c and the child index j. Traversing such an 
edge from child to parent corresponds to an opening paren- 
thesis It#, and traversing from parent to child corresponds 
to a closing parenthesis ]c#. At first sight, the resulting flow 
queries appear to involve interleaved matchings of instanti- 
ation parentheses and constructor parentheses. In general, 

62 



in the presence of unbounded da ta  structures such as lists, 
interleaved matchings define the intersection of two context 
free languages, and flow-relations induced from them be- 
come undecidable by a recent result of l:teps [Rep00]. In 
the absence of recursive types however, polymorphic type 
structure is bounded and guarantees that  there always ex- 
ists a flow path  where the two matchings are perfectly nested 
(this follows abstractly from the fact that  the intersection of 
a context-free language and a regular language is context- 
free). As a result, the path  is given by a single context-free 
grammar,  and all flow queries remain computable in O(n 3) 
time. Our observations above show tha t  bounded type struc- 
ture can generally be exploited to eliminate the interleaved 
matching problem. This may, however, come at  the cost 
of approximating the flow relation when unbounded da ta  
structures are present, as we will discuss next. 

6.2 R e c u r s i v e  t y p e s  

l:tecursive types represent regular infinite type structure. 
The most general labeling of such structures involves in- 
finitely many distinct labels. The undecidability result of 
Keps [Rep00] suggests tha t  there exists no part ial  labeling 
without loss of precision. However, we can use regular la- 
belings of recursive types, where labels repeat  in recursive 
unfoldings. Such labelings introduce spurious flow between 
unrelated parts  of the recursive type but  enable us to com- 
pute a finite and sound approximation of the interprocedural 
flow. This technique again amounts to exploiting bounded 
type structure (which in the case of recursive types is im- 
posed by approximation) to eliminate the interleaved match- 
ing problem. Our report  [FRD00a] has more details. 

77 R e l a t e d  w o r k  

Mossin [Mos96] studies the problem of interprocedural flow 
computat ion with polymorphic subtyping including poly- 
morphic recursion. His system is based on constraint copy- 
ing and simplification. Our techniques improve the asymp- 
totic complexity of flow computations and obviates the need 
to copy and simplify constraints during inference. We prove 
soundness by reduction to the soundness of the system stud- 
ied by Mossin. In [Mos98], Mossin describes type-based, 
higher-order value flow graps. In this work, it is noted that  
it would be desirable if type-based flow graphs could be used 
to express well-matched flow paths in the style of [l:tHS95] 
(see below). Our work shows that ,  indeed, this is possible. 

Our use of instantiation constraints draws on Henglein's 
work on semi-unification [Hen93]. Dussart  et. al. [DHM95a] 
present a copy-based algorithm for binding time analysis us- 
ing subtyping and polymorphic recursion. The unpublished 
work [DHM95b] seeks a solution in terms of semi-unification. 
Our work shares motivation with [DHM95b] but  our main 
results on matched flow and CFL-reachabili ty are new. 

The work of Reps, Horwitz and Sagiv [1~HS95, MR00] 
provided the connection between CFL-reachabili ty problems 
and interprocedural,  context-sensitive analysis. The work 
[RHS95] concerns context-sensitive (interprocedurally pre- 
cise) analysis of first order programs manipulating atomic 
data. Well-matched paths are used to select interproce- 
durally valid call-return sequences. The work [MR00] con- 
tains a higher-order but  context-insensitive analysis. Well- 
matched paths are used for data-dependence analysis, i.e., to 
model cancellation properties of da ta  constructors and de- 
structors to track the flow of da ta  through data-structures.  

Reps [l~ep00] has shown tha t  the combination of the  two 
techniques - context-sensitive data-dependence analysis - 
results in an uncomputable  analysis problem. In contrast,  
our type-based techniques concern context-sensitive (in the 
sense of type polymorphism) analysis of higher-order pro- 
grams manipulat ing possibly s t ructured da ta  of finite type. 
Unbounded data-s t ructures  can be incorporated via finite 
approximation using recursive types. The techniques of 
[HKS95, Rep98] for answering flow queries on demand trans- 
fer to our setting via our CFL-reachabil i ty formulation. 

By incorporating subtyping, the present paper  provides 
a substantial  generalization of [FRD00b], where we describe 
a flow analysis with instantiat ion constraints but  without 
subtyping. In this setting, CFL-reachabil i ty specializes to 
linear-time graph teachability. 

In Lackwit [OJ97], O'Cal lahan and Jackson define a re- 
lation called compatibility. Compatibi l i ty  is undirected and 
can be understood as a special case of our flow relation, 
similar to the one in [FRD00b]. 

Heintze and McAllester [HM97] present a demand- 
driven, type-based flow-analysis for ML. Like ours, their 
analysis traces flow paths  on type graphs, but  flow paths 
are not context-sensitive. 

Gustavsson and Svenningsson [GS00] have recently de- 
veloped a usage analysis with polymorphic subtyping us- 
ing constraint abstractions to succinctly represent constraint 
systems. I t  is possible that  their constraint abstractions 
could be used to obtain flow analysis with properties similar 
to ours. 

8 C o n c l u s i o n  

We have presented an O(n ~) algorithm for computing 
context-sensitive, directional flow information for higher- 
order programs (n is the size of the typed program). This 
substantially improves on the best  previously known )(n s) 
algorithm. Our technique is based on a novel presentation of 
polymorphic subtyping with instantiat iou constraints. We 
thereby applied CFL-reachabil i ty techniques to the setting 
of type-based and higher-order flow analysis with structured 
da ta  of finite type. Unbounded data-structures can be in- 
corporated via finite approximation using recursive types. 
A novel aspect of our techniques is that  they obviate the 
need to copy constraint systems globally, and they support  
demand-driven flow computat ion over a clean, graph-based 
abstraction. This may turn out to be a major  benefit of our 
approach in practice. 
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A Higher-order example 

Figure 13 shows a higher-order example. The app function 
takes a function f as an argument and returns a function 
(labeled g~) that  in turn takes a parameter  x and applies :f to 
x. The figure shows the flow graph resulting from applying 
app at instance i to the identity function ±d (instance j )  and 
a value b. We have used boxes around labels annotating 
function types to make the type structure more readable. 
First note that  we can determine what functions are called 
indirectly within app, by observing what labels flow to g/. 
There is a path 

showing that  the identity function (labeled ~d) flOWS to e/ .  
The flow edges connecting the types labeled by £s and g9 
arise from the subtype relation between the instance of ±d 
(the argument) and the domain of the instance of app. The 
reversed edge gl _< £2 arises through contra-variance of the 
subtype relation for function domains. 

Edge £x _< g0 represents the argument passing of x to f 
within app, and similarly, g6 _< £7 represents the flow of the 
result of this application to the result of the function labeled 
g~. The flow path  connecting b with w is then as follows: 

Observe how the pa th  enters app through instance i and 
then emerges back along the edge 

go - ~  i1 

The polari ty of this edge was determined to be positive, 
because the polari ty of the argument type g f within the 
type of app is itself negative. The pa th  then traverses ±d on 
instance j and reenters app at  instance i through 

before finally emerging along the edge 

£7 -h+ • 

The example shows that  in the higher-order case, the traver- 
sal of an instantiat ion edge does not correspond directly 
to an argument passing or return step as in the first-order 
case. In this example the pa th  traverses app twice through 
instance i. 

B C o m p l e x i t y  proof 

Constraint generation produces a flow constraint set C of 
size O(n), and an instantiat ion constraint set of size O(mn). 
The m factor in the size of I is a direct result of the extra  
instantiat ion constraints added on free labels at rule [Inst]. 
Wi thout  these, we generate only O(n) instantiation con- 
straints. Our technical report  [FRD00a] shows a variant 
of the algorithm presented here, producing only O(n) con- 
straints. 

Constraint generation can be implemented in time pro- 
portional to the number of derived constraints. The only 
non-obvious steps are in rules [Let] and [Rec], where we 
avoid using gen(A, crl) to find the quantifiable labels and 
avoid recomputing the vector ~ = fl(A). The first problem 
is solved with an extra  subsumption step on a l  _< a~ guar- 
anteeing that  all labels in a~ are fresh. Binding this type 
in place of a l  allows instantiation of all labels occurring in 
a~ at all instances. As for the second problem, labels ~ can 
be accumulated incrementally in the abstraction rule [Lam] 
once and for all. The details of this are s tandard and can 
be found in [FRD00a]. 

Grammar  10 has m terminals (~,)i and m non-terminals 
Ki,  since the number of distinct instantiations i is linear in 
the program size and independent of the type size. 

Theorem 5.1 Given I,  C, g, g', answering a flow query 
I; C FCFL g ~ g is decidable in time O(na). Moreover, the 
entire flow relation derivable from I and C is computable in 
time O(na). 

PROOF: The proof is in two steps. We first give a suboptimal 
bound to show that  the generic algorithm in Figure 11 com- 
putes all derivable paths  in t ime O(en + un 2 + bna). Here e 
is the number of epsilon productions, u is the number of dis- 
t inct  unary grammar productions of the form A +- B, and 
b is the number of distinct binary grammar productions of 
the form A ~ B C. Applied to our part icular CFL problem 
(grammar of Figure 10) where e = 3, u = 1, and b ---- 2m, 
we obtain an initial complexity of O(mn 3) for computing all 
pairs reachability. In the second step we tighten the com- 
plexity to O(n 3) by exploiting the particular structure of 
constraints generated by POLYFLOWcFL. 
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let app = (Af.(Ax. f x)L~) t"pp 
in 

let id = (Ay.y) rid 

in 

let w = ((app ~ idJ) t'~ bib) t~' 

to g~ g= 7 
! A ! A i 
: : ~ 

Figure 13: Higher-order example (only relevant edges shown) 
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~P 
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We assume that  given an edge labeled B, we can index 
through B the rules r that  apply in the for-loops without 
looking at rules that don' t  apply. 

The algorithm uses a work list W and adds edges to the 
result graph Go. For each node g and each production r of 
the form A ~ B C of the grammar, we use two sets pred~ (g) 
and suecr(£ ) containing the predecessors of g reachable via 
an edge labeled B, and the successors of g reachable via an 
edge labeled C. 

Step 1. To see that  the bound O(en + un 2 + bn 3) holds, 
consider that  the number of steps needed to add all edges 
for epsilon-productions is en. Now consider the statement 
labeled (2) in the algorithm. For a fixed unary rule r and 
node gl, this statement is executed at most n times, since 
the test at (1) guarantees that we see each edge at most 
once. There are u rules and n nodes gl, thus the overall 
number of executions of statement (2) is un 2 times. Next 
consider the statement labeled (3) in the algorithm dealing 
with productions of the form A ~ B C. For a particular 
node g2 and particular binary production r, this statement 
is executed at most n 2 times, because there are at most n 
distinct predecessors in pred,(g2) and n distinct successors 
in succr(g2) that can be paired up. The test at (1) guar- 
antees that we never add a node twice to a bucket predr or 
suce~. Since there are b distinct productions and n distinct 
nodes g2, we obtain the bound O(bn3). The argument for 
productions of the form A ~ C B is analogous. The overall 
complexity bound of the algorithm is thus O ( e n + u n  2 +bn3). 

Step 2. The complexity bound given above can be tight- 
ened by considering t~ and b to be the average number of 
grammar rules that  apply at any particular node. In that 
case it doesn't matter what the number of overall distinct 
grammar rules are. The complexity is solely determined by 

the average number of rules that  apply at each node. The 
overall complexity improves in the case where u and b axe 
constant at each node, but  the productions are drawn from 
a non-constant set of distinct productions (in our case, there 
are 2m distinct productions). 

As an example consider the family of O(m) productions 
of the form M ~- (i Ki. If we can bound the average number 
of edges labeled (i on all nodes in our initial flow graph 
by a constant, then on average only a const~mt number of 
productions of the form M ~- (i Ki apply at any node. This 
hinges on the fact that  the algorithm does not add any new 
edges labeled with terminals (i. 

If we discount the instantiation self-loops of the form 
. < i  

g "P> g added through rule [Inst] for the moment, we ob- 
tain the desired bounds on b. On average at any label, only 
a constant number of productions apply. However, the num- 
ber of self-loops added through rule [Inst] is O(m) per label 
in the worst case. Fortunately, the complexity analysis for 
general binary rules given above can be tightened due to 
the self-loop. Consider rule M +- (i Ki,  when applied to a 
self-loop. The situation is as follows: 

. . - - ~  K i 

' . , , . ,  

For a fixed g and fixed i, the number of times this rule 
triggers is at most n, since there are at most n labels g' 
connected to g via an edge Ki. Since there are at most 
m such self-loops on g and n distinct labels g, the number 
of executions of line 3 in the CFL algorithm involving self- 
loops is bounded by O(mn2).  The same argument applies 
to K~ +- M )i, thereby proving the cubic bound of the 
theorem. [] 
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