
AUTOMATIC DATA STRUCTURE SELECTION IN SETL

Edmond Schonberg and Jacob T. Schwartz and Micha Sharir
Illinois Institute of Technology Courant Institute of Mathematical Sciences

Abstract

SETL is a very high level programming

language supporting set theoretical syntax

and semantics. It allows algorithms to be

programmed rapidly and succinctly without

requiring data structure declarations to

be supplied, though such declarations can

be manually specified later, without re-

coding the program, to improve the effici-

ency of program execution. We describe a

new technique for automatic selection of

appropriate data representations during

compile-time for undeclared, or partially

declared programs,and present an efficient

data structure selection algorithm, whose

complexity is comparable with those of the

fastest known general data-flow algorithms

of Tarjan [TA2] and Reif [RE].

1. Introduction

The level of a programming’ language is

determined by the power of its semantic

primitives, which influence the ease and

speed of programming in the language pro-

foundly. (See [HA] for an attempt a t

quantifying these abstract concepts.)

Thus a language of very high level shc]uld

provide high level abstract objects and

operations between them, high level cc)n-

trol structures and the ability to select

data representation in an easy and flexi-

ble manner. It is the third property of

very high level languages that we address

in this paper.

In relatively low level programming

languages, data-structures have to be

selected in advancer before starting to

code the program; the code to be written

then depends heavily on this selection and

large sections of it are solely devoted to

the manipulation of the selected data-

structures. These lengthy code sections

constitute a significant source of bugs

and become deeply imbedded in the program

logic to the extent that they have to be

replaced or modified when we want to

change the data representation.

The programming language SETL, being

designed and implemented at New York Uni-

versity, will serve in this paper as a

prototype of a very high level language

which treats the selection of data struc-

tures in a different way. We will

describe an automatic technique which

enables the SETL programmer to code his

program in a high level, relatively inde-

pendent of specific data-structure, and

yet allows a reasonable level of effici.

ency to be achieved.

In the SETL system, the data represen-

tation used to realize an algorithm

depends on its code and not vice versa.

More specifically, algorithms are coded

without specifying any concrete data

structures at all. The objects appearing

in a program are (dynamically) assigned

appropriate abstract data types from among

the basic data types supported by the

=S work was supported by the National Science Foundation Grant MCS-76-00116 and the
U.S. D.O.E. Office of Energy Research Contract EY-76-C-02-3077.

197

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1979 ACM 0-12345-678-9…$5.00

language. In the optimizing version of

SETL, each such data type is viewed as a

generic indication representing a collec-

tion of more specific data-structures,

all of which are capable of representing

the same abstract data type. Thus the

data type ‘set’ can be represented as a

hash table, or a linked linear list, or

a bit-string, etc. However the semantic

features of the abstract SETL data types,

as well as of the operations on them, are

independent of any specific data struc-

ture selection. Thus program code need

not be modified when this selection is

made.

Once an algorithm in SETL has been

coded, debugged and executed successfully

(and in future endeavors, also proved

correct) , data–representations can be

selected in order to improve execution

efficiency. Two selection techniques are

provided. The more conservative technique

is manual. In khis technique the program

text is supplemented with declarations

specifying data structure representation

for some (or all) program variables to be

used. If these representations are con-

sistent with the abstract data types

actually acquired by the declared vari-

ables during execution, then the supple-

mented program will be precisely equiva-

lent to the original purely abstract one,

but can run much more efficiently.

In the second, more ambitious data-

structuring mode, which is the one to be

described in this paper, data-structure

selection is performed automatically by an

optimizing compiler. This is in general a

complex task because each particular data

structure will usually be more efficient

for some instructions and less efficient

for others, so that in order to arrive at

a realistic evaluation of the cost of us-

ing alternative data structures for a

given program variable, we must perform

an appropriate global analysis of the way

in which program objects are used and

related to each other.

Our main aim in this paper is to pre-

sent an automatic data structure choice

algorithm. While this algorithm reflects

the particular semantic environment of

SETL, and therefore cannot be regarded as

a general purpose automatic data structure

selection procedure, it does establish the

possibility of performing automatic data

structure selection in a reasonably effi-

cient manner in a language of very high

level.

This paper is organized as follows:

In Section 2 we briefly review SETL and

its manual data structuring system, known

as the ‘basing’ system. Section 3 will

describe our data-structure selection

algorithm in detail, including examples

illustrating the way in which this algo-

rithm applies to sample programs.

We take this opportunity to thank

several members of the SETL project at

New York University, namely: Robert B. K.

Dewar, Ssu-Cheng Liu and Arthur Grandr

for numerous suggestions concerning auto-

matic data-structure selection. In

particular, our work has been greatly

influenced by earlier work of Liu [LI].

2. The SETL Language and its Basing System

We now summarize the principal

features of the SETL language. SETL

admits finite set theoretical objects,

such as arbitrary finite sets, maps and

tuples, and supports most of the opera-

tions between these objects. The language

also supports the major elementary data

types, found in most programming languages,

in particular integers, reals and strings.

‘true’ and ‘false’ are strings used to

represent boolean values.

Tuples in SETL are arbitrary-length,

dynamically extensible ordered sequences

of component values, which can be either

primitive or themselves structured. Tuple

concatenation, indexed retrieval and

storage of components, subtuple retrieval

and storage operations, and a tuple length

198

operator are provided.

Sets in SETL are unordered collections

of elements (these elements being p.cimi-

tive or structured), such that no element

can appear in a set more than once. SETL

provides the usual set-theoretic opera-

tions (union, intersection, etc.) , and

some special operators, summarized below.

SETL also provides general set former

expressions, universal and existential

quantifiers, compound operators on sets

and similar high level constructs.

Maps in SETL are simply sets of tuples

of length 2 (called pairs) , and can repre-

sent both functions and relations. SETL

provides functional style constructs for

map retrieval and storage, as well as

several special operators, e.g. domain and

range, which compute the domain set and

the range set of a map. Since maps are

sets, all set-valued operators can also be

used with maps. Data structures such as

trees and graphs are represented in SETL

using maps which give the relationships

between the elements of the structure,

without having to specify the detailed

storage structure to be used.

A special value OM (for omega) is used—

to indicate an undefined value. All vari-

ables are initialized to OM and certain—

operations can also yield OM if domain—

constraints are not met. For example,

v(i) yields OM if v is a tuple whose pre-—

sent length is less than i.

The SETL control structures are gener-

ally conventional, and include the if-then-

else clause, case statements, while loops,

numerical iteration, etc. , and also a few

additional very high level control struc-

tures, e.g. iteration over a set, univer-

sal and existential quantifiers, etc.

SETL, like APL, has value semantics

rather than pointer semantics. This means

that the value of each program variable is

essentially independent of the values of

other variables and will not be affected

when other variables are modified. Fc}r.

storage optimization, several variables

can share a common value using pointer

mechanisms, but care will always be taken

to create new copies of that value when-

ever logically necessary. This value

semantics also implies that subprocedure

parameters are passed by value rather than

by name, and that no explicit reference

and manipulation of pointers are

allowed.

The following table summarizes the

main operations of SETL. For additional

details, see [DE] and [SC3].

Table 1. Some of the Primitive SETL

Operations.

Operation Remarks

X+y

x- Y

x*y

x/y

x and y,
x or y,
x implies
not x

#x

X=y,

x /=Y

X<y,
X>y,
x >= y,
X<=y

x with y

x less y

xiny

arb x

X from y

{x/y,...}

[X,yr. ..l

f(x)

integer and real addition, set

union, tuple and string concat-

enation.

integer and real subtraction,

set difference

integer and real multiplication,

set intersection, string and

tuple repetition

arithmetic division

Boolean operations

Y

cardin~lity of sets, length of

tuples and strings

equality and inequality

comparisons

arithmetic comparisons,

string lexicographical

comparisons

set insertion, tuple increment-

ing

set deletion

set membership test

select arbitrary element of x

select and delete an arbitrary
,:

element of the set y

set with specified elements

tuple with specified elements

function or subprocedure call,

indexed retrieval from a tuple

or a string. If f is a map,

199

f{x}

domain f,
range f

x := Y

f(x) := y

f{x} := y

f(x. ..y)

newat

type x

f(x) is the unique y such that

[x,y] in f, if,such y exists;

otherwise f(x) = om (undefined)—

the set of all y such that

[xry] in f; f must be a map.

operators producing domain and

range of maps

simple assignment, yielding y

as a value

map storage (which will cause

all other pairs [x,z] to be

deleted from f) indexed assign-

ment for tuples and strings

map storage corresponding to

the retrieval operator f{x}

extract subpart starting at

component number x and ending

at y of the tuple or string f

(corresponding storage operator

is also available) .

generate a new unique

the current type of x

atom

In addition to the above primitives

SETL provides several high level con-

structs involving explicit or implicit

iterations over sets and tuples. Table 2

summarizes some of these constructs. In

this table, the clause-type ‘ iterator’

denotes a construct of the form

‘1
ine,x

1
*in e2(xl),xn in

en(x ,...,x n_l) I c@lrx2r. ..,q1

where e
1

r...r e n are set-valued expres–

sions , and iteration is carried out by

assigning all possible elements in the

corresponding sets to x ~rx2,xn.

Moreover, C(X , . . . ,x) is a Boolean
1 n

valued expression, which defines the

sets of values to be bypassed in the

iterations.

Table 2. Additional High Level SETL

Name

iteration
over sets

set former

tuple
former

existential
quantifier

The special

Constructs

Form

(if iterator)

{exp(xl,. ..,xn) : iterator}

where x
1

f...! x are the free
n

variables of the iterator.

[exp(x, ,. ..,)-) : iteratorl
J. 11

where x
l’. ..’xn are as

(if order is important

iterations should be

numerical.)

3 iterator

the free variables x, ,.

above

all

. . , x-
1 11

are set to their first value

during the iteration for which

the condition c is true, and

are otherwise undefined. The

expression yields ‘true’ or

‘false’ respectively.

constant nl denotes the null

set (or map) .

Let us now describe the data-struc-

tures which SETL supports. Tuples are

represented as dynamic arrays of consecu–

tive memory locations (which have to be

re-allocated if their length increases

beyond their current allocation); sets are

represented as ‘breathing’ linked hash

tables, so that iteration over a set is

fairly rapid, but most of the other set

operations involve hashing into a set, an

operation which can be expected to be

relatively costly. In fact, as will be

seen later, the main optimization that our

automatic selection of data structures

aims to achieve is to minimize the number

of hashing operations performed during the

execution of a program.

The default representation of maps is

either their standard set representation,

or, if it can be asserted during compilat-

ion that an object will always assume a

map value, then it is represented as a

linked hash table, hashed on the domain

elements of the map, where each entry in

the table points to the range value of the

corresponding domain element. This expe-

dites map-related operations, such as map

retrieval and storage, but makes glcbal

set operations, such as set union, ,slighti-

ly more cumbersome than they are for the

default set representation.

In order to obtain a coherent extended

class of efficient data representations,

we introduce new program objects, called

bases, which are used as universal sets of

program values (cf. [DE] for a more

detailed description). Bases enable us to

access related groups of program variables

in specially efficient manner. This is

the only use of bases.

Once one or more bases have been

introduced, other program variables can be

described by their relationship to these

bases. The set of these declarations will

determine the run time value of these

bases, because bases are constantly updat-

ed to maintain the validity of these

relationships. For example, we can

declare a program variable x to be an

element of a base B by writing

If this declaration is made, then during

execution, any value assigned to x is auto-

matically inserted into B, unless this

value is found to be already in B.

Internally, a base B is represented as

a linked hash table of ‘element blocks’ .

Each such block contains a program value

(or a pointer to such a value) and as many

additional fields as are needed to store

program variables which have been declared

to be based on B. i’+ variable x declared

as E B is represented by a pointer tic> some

element block of B, so that the actual

value of x can be obtained simply by de-

referencing this pointer. Whenever x is

represented in this way we shall say that

x is located in B. Computation of such a

po%nter, which may imply insertion of a

new value into B, will be called a base

locate operation. A main aim of our data

structuring system is to minimize the

number of these ‘search and insert’ opera-

tions (normally realized as hashing oper-

ations) which are performed during program

execution.

In addition to the ‘element of a base’

representation described above, which can

be declared for any program variable,

related based representations are avail-

able for sets and maps. A set s can be

declared as a subset of a base B by writ-

ing one of the following declarations:

s: local set (C B);— —

s: indexed set (~ B) ;

s: sparse set (~ B) ;

If the first declaration is used, a

single bit position is reserved in each

element block of El; this bit is on iff the

element represented in the block belongs

to s. This representation of s supports

very fast insertion and deletion of

elements from s and membership tests,

operations that would have otherwise

required hashing into s, and it corres-

ponds to the familiar notion of an attri-

bute bit (or flag) in a plex structure.

If the second declaration is used,

then all these bits will be grouped into a

bit-string, stored independently of B. In

order to access this string via B, a

unique index is assigned to each element

block of B when this block is created. The

bits of s are arrahged in the order of

these indices. Thus , to perform the

insertion operation ‘s with x ;’ where x

is declared as E B, the following steps

are taken:

(A) retrieve i(x), the index of the

element block to which x points.

(B) turn on the i(x)-th bit of s.

Note that in both cases the set inser-

201

tion operation ‘s with x; ‘ is fast only if

x is represented as an element of B. In

any other case, the value of x must first

be hashed into B to find the corresponding

element block (or create a new element

block if the value of x is not yet in B).

This observation indicates that based

representations are profitable when con-

sistent basings are given to all the vari-

ables involved in hashing operations,

using the same base. Even when this is

done, hashing operations will still be

required to create B; however, they will

be fewer than in the unbased case.

The first two declarations have one

common disadvantage. To iterate over s

we must iterate over B and perform a

membership test in s for each element in

B. This is certainly less efficient than

a direct iteration over s as would have

been done in the unbased case, and is

especially so if the cardinality of s is

much smaller than that of B. When itera-

tion over such a sparse set is performed

often,we can use the third representation,

in which s is represented by a linked

hash table whose entries are pointers to

element blocks of B. This representation

suPports fast iteration over s, and is

slightly more advantageous than the

unbased representation for search, inser–

tion and deletion from s, since equality

of pointers can be checked rapidly whereas

equality of general values is much more

expensive.

Similar alternative representations

are available for maps. A map f whose

domain is a subset of a base B can be

declared in one of the following ways:

f: local map (G B) *;— —

f: indexed map (~ B) *;

f: sparse map (E B) *;

where * denotes any representation for the

range of f. We will temporarily assume

that f is single-valued, to simplify the

description of its corresponding represen-

tations. Thus for example, ‘map (~B) int’

denotes a map from some subset of B to

some set of integers.

If the first declaration is used, a

fixed field within each element block x of

B is allocated and reserved for storing

the value, or a pointer to the value, of

f(x) (or om if f(x) is undefined). This

makes map retrieval and storage operations

very efficient. For eammple, the instruc-

tion ‘Y := f(x);’, where x is represented

as an element of B, can be implemented as

a simple indexed load, and the need to

hash on x in f is eliminated. This local

map representation captures the familiar

notion of data structures consisting of

plexes (base element blocks) within which

various fields contain either values (if

the range of the corresponding map is

unbased) or pointers to other plex

nodes.

Local representation of sets and maps

have one basic disadvantage. Since they

are allocated in static fields within each

element block of a base, their number must

be predetermined at compile time. Also,

no other variable can share their value

without violating the value semantics of

the language. Thus whenever such variables

are assigned to other variables, or incor–

porated within other composite objects, or

are passed as parameters to a procedure,

their value must be copied first. Hence,

if such a variable is frequently subjected

to operations of this kind, its represen–

tation may be quite inefficient.

The indexed representation is provided

to avoid such problems. If the indexed

declaration is used for f, then an array

V, disjoint from B, is allocated for f and

contains the range values of f in the

order of the element-block indices in B.

Thus to retrieve f(x) , provided that x is

represented as ‘E B’ , two indexed loads

are performed, as follows:

(A) retrieve i(x), the index of the

element block to which x points.

(B) retrieve V(i(x)).

We will refer to each of the data

structures which can be declared in the

LUL

above-described basing system as a mode..—

Modes thus range from primitive modes such

as int, ~, atom and string, to compos-

ite modes which can be nested to any

level. For example, a two dimensional map

can be represented as

local map (e Bl) indexed map (C B2) int— —

A value of a map declared to have this

representation can be retrieved using

three indexed loads, which is even faster

than retrieval of a component of a two

dimensional array in FORTRAN.

17e now illustrate the preceding con-

siderations by an example showing the

process of declarative data-structure

selection in SETL. The following program

computes a minimum cost path between two

nodes in a directed graph (statement

numbers are given for later reference) :

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Program minpath;

read (graph,cost,x,y) ;

$ read in graph and auxiliary infor-

$ mation. graph is a set of eclges,

$ cost is an integer-valued map on

$ these edges, x is the source node

$ and y is the target.

prev := g; $ prev is a map from

$ each encountered node to its

$ ‘cheapest’ predecessor.

val := ~; $ val maps each encounter-

$ ed node to the minimal cost c)f a

$ path reaching it from x.

val (x) := O; $ start node has zero

$ cost path

newnodes := {x}; $ initially, start

$ node is newly reached

(while newnodes /= nl) $ while there—

$ exist newly reached nodes

n from newnodes;

$ select such a node

(Vm~graph{n})

$ and for each of its successors

newval := val(n)+cost

$ calculate new path

(10) j& val(m)=om or val(m,

$ cheaper path

(11) val (m) := newval;

n,m) ;

cost

$ note path value

(12) prev(m) := n;

$ and cheapest predecessor

(13) i&m/=y~

$ keep searching if goal

$ not reached

(14) newnodes with m;

end if;

end if;

end V;

end while;

if val(y) = om then $ y is not reachable— ——

$ from x

print(’y is not reachable from x’);

else

path := [y]; $ build up reversed path

z := y; $ starting with the last node

(while (z := prev(z)) /= om)—

$ chain to preceding node

path with z;

end while; $ and now reverse path——

path := [path(#path+l-i) :i:=l. ..#pathl ;

print(path) ;

end if;

end program minpath;

This is the ‘pure’ SETL program in

which no specification of data structures

has been supplied. After this program has

been coded and tested, we can select effi-

cient data structures for its variables.

A typical choice

introduce a base

set of all nodes

declare:

graph: local map— .

might be as follows:

nodes, which will be

in the graph. Then

(G nodes) C nodes;

cost: local map (~”nodes) indexed map

(6 nodes)=;

newnodes: local set (~ nodes);— .—

prev: local smap (~ nodes) e nodes;— .— —

(i.e. single-valued map)

val: local smap (G nodes) int;— — — .

x,yrm!n: E nodes:

path: tuple (~ nodes);— _

the

203

In the presence of these declarations, a

hash table will be generated for the base

nodes. This hash table will be filled in

automatically as soon as the graph is read

in by our program. Each block in this

hash table will contain several fields

which store values, bits and pointers to

other entries in this table. After the

input phase, the rest of the program is

executed without performing a single

hashing operation. We pay a very small

price for this huge saving when we print

path, since each component must be

dereferenced to its actual value before

being printed out. We stress the point

that we can map our objects onto lower

level data structures and generate code

sequences quite close to those which would

appear in a lower level variant of our

algorithm (such as one written in PASCAL

or PL/1) and attain comparable efficiency

without recoding the original form of our

algorithm at all.

This example indicates that the trade-

off between programming language level and

execution efficiency need not be as unfav-

orable as is generally expected. Of

course, in our example we lower somewhat

the level of ‘ pure’ SETL, by supplying the

data-structure declarations . However,

this program supplement is very small,

compared with the labor that would be

involved in an actual recoding of the

algorithm in a lower level language.

Furthermore, as will be shown in the

followlng sections, the data–structures

that we have declared can be selected

automatically, thus relieving the program-

mer of the task of specifying any data

structures at all.

3. An Automatic Data-Structure Selection

Algorithm

The algorithm to be sketched below is

not our first attempt at performing auto-

matic data-structuring in SETL; see [SC] ,

[SLI and [DE]. A strategy common to these

approaches, and to our new algorithm as

well, is to generate provisional bases and

corresponding based representation for

variables involved in operations otherwise

requiring hashing. These provisional

bases initially reflect only local infor-

mation, and separate bases are generated

for each hashing operation. To integrate

these “local” provisional basings into an

overall basing structure, they are prop-

agated globally. During propagation

individual bases are equivalence whenever

logically appropriate. We feel that the

efficiency and simplicity of our present

algorithm makes it our best candidate for

performing automatic data structuring in

SETL .

To illustrate the strategy which this

algorithm employs, consider the following

SETL code fragment (taken from the MINPATH

program shown in the previous

(1) n from newnodes;

(2) prev(m) := n;

. . .

(3) newnodes with m;

section) :

In this code, instructions (2) and (3)

implicitly require hashing operations.

Thus we first generate two bases
‘2’ ~3

and provisionally establish the represen-

tations

prev2 : m- (~ B2) *; m2 : ~ B2;

newnodes : set (~ B3) ;
3— ‘3

:EB.
3’

(where vi denotes the occurrence of a

variable v at instruction i, and * denotes

any mode) . Note that we generate repre-

sentations for variable occurrences rather

than for the variables themselves; this is

because SETL is only weakly typed, so that

each variable may assume more than one

data-type in the course of execution.

(Various problems arising in view of this

fact will be addressed later on.) However,

since there exists a data–flow link

between m2 and m3 ~ it follows that m2 and

‘3
can assume the same value, which must

therefore be an element both of B
2

and B3.

We therefore merge the representations of

‘2
and m

3
into one common representation

by identifying B2 with B3. We can then

204

propagate the resulting basing to instruc-

tion (1) , which is a retrieval operation

whose execution speed is virtually inde-

pendent of the representation of its

arguments. Then, in view of the data-flow

link between newnodesl and newnodes3, we

give newnodesl the same representation as

newnodes3, and also put nl : C 133. An

additional propagation step, using the

‘1
- n2 link, gives prev2 the representa-

tion ‘map (e B3) ~ B3 ‘.

Our algorithm mechanizes the strategy

that has been sketched above in a rela-

tively efficient and simple manner. Before

describing this algorithm, let us sketch

the form of input it assumes. We suppose

that the program to be analyzed has

already undergone several other analyses

and optimization, including a modified

version of the definition-use chaining

analysis (cf. [AL]) which computes a data-

flow map, called BFROM, whose definition

is as follows: Let VO1, V02 be two occur-

rences of a variable V. Then

Vol E BFROM{V02} iff V02 is a use of V and

their exists an execution path leading

from VO1 to V02 which ~s free of other

occurrences of V (cf. [SC2] for more

details) .

We also assume that type analysis has

been performed using Tenenbaum’s approach

[TEI , so that type information will have

been assigned to each variable occurrence,

in a manner ensuring that the calculated

type of each variable occurrence dominates

every data type that the variable can

acquire at that program point during

execution.

Assuming all this, our algorithm

consists of the following phases: ..

(a)

(b)

(c)

(d)

base generation

representation merging and base

equivalencing

base-pruning and representation

adjustment

name-splitting.

(a) base generation: This phase performs

a linear pass through the code being

analyzed. For each instruction I we

introduce enough bases and corresponding

based representations for arguments of I

to ensure that execution of I with these

based representations for its arguments is

not slower than execution of I with unbas-

ed arguments. For example,

(i) Suppose that I is ‘S with x’. Then

we introduce a base B1, and provisionally

assume the representations set (~ B1) ;
‘1: —

.EB
‘1- 1.

Note that here the introduc-

tion of BI speeds up the execution of I

considerably.

(ii) Next, suppose that I is ‘f(x) := y’.

Here we introduce two bases, B;, B:, and

provisionally represent fl: map (G B~)~B~;
1:GB. 2

‘I 1’
: G B1;

‘I
here only B; is

essential, since its introduction elimi-

nates a hashing operation, and we refer to

B: as an effective base. The introduction

of B: does not speed up execution of I

(but does not slow it down either), and
2

we refer to B1 as a neutral base. The

utility of neutral bases will become

clear in our description of the next phase

of the data structure choice algorithm.

(iii) Next, suppose that I is ‘x := v(j) ‘,

where v is a tuple. Here no speed-up is

possible, but nevertheless we introduce a

(neutral) base B= , and provisionally

establish the representations

: tuple (~ B1); X1 : ~ B1; .
‘I —
(iv) Finally, suppose that I is

‘x :=x,+ 1’. Here no base can be intro-

duced without running the risk of slowing

I down significantly, because of the pos-

sible introduction of conversion opera-

tions for the newl~ created values of x ,

between their int mode and their tenta–

tive (~ B) mode. Hence we introduce no

base for I.

In this first phase we also build up a

map EM, mapping each generated base to the

mode of its elements. During this phase

all these modes are

be transformed into

unbased, but they may

based modes during

205

phase (b) .

(b) representation merging and base

equivalencing: This phase executes

a linear pass through the map BFROM. For

each pair of variable occurrences

(V01,V02) ~ BFROM such that both VO
1

and

Vo ~ have the same type, and supposing

that VOl and V02 have both received based

representations in phase (a) , we perform

the following representation merging oper-

ation (recursively) :

Let RI, R2 denote the based represen–

tations of VOl, V02 respectively. Three

cases are possible:

(i) Both R1 and R2 are base pointers,

i.e. R
1

isEB
1

and R
2

isEB
2“

In this

case, equivalence B1 and B2.

(ii) One of these representations, say

‘1 ‘
isEB ~ and the other is a composite

based representation. In this case, merge

EM(B1) with R2, setting EM(B1) to R2 if

the former is an unbased mode.

(iii) Both R1 and R2 are composite repre-

sentations . Since the gross set-theoretic

types of VO1 and V02 are ass’umed to be

equal, the composite structures specified

by RI and R2 must also have the same gross

type (i.e. both must be sets, or maps, or

tuplesr if one is) . In this case merge

the element-mode of RI with that of R2

(if RI and R2 represent maps, merge their

domain element-modes and their range

element-modes separately; if Rl and R2

represent tuples of the same known length

n, each component then having its own

type and representation, perform n

componentwise merges) .

This merging/equivalencing process can

be made highly efficient by using a

compressed–balanced tree representation

for the set of all generated bases (cf.

[T?+]) . This representation allows execu-

tion of a sequence of equivalencing opera-

tions in almost linear time. The element–

mode map EM need be kept only for tree–

roots (i.e. we only need to keep one

value per equivalence class) . Whenever

two trees whose roots are Bl,B2 are merged

into one, we also update the map EM of the

new root (which is either B1 or B2) , as

follows:

(i) If both EM(B1) and EM(B2) are

unbased, they must be equal, so that no

updating need take place.

(ii) If one of them is based and the

other is not, set EM of the new root to

the based mode.

(iii) If both are based, then leave either

of the two basings at the new root, but

merge them with one another.

Note that phase (b) uses the neutral

bases introduced in phase (a) to transmit-

basing information between instructions

without actually having to use any

global propagation technique. This point

is illustrated by the following example:

(1) _S with x; $ S is a set

(2) V(i) := S; $ V is a tuple

(of sets)
(3) T := V(j);

(4) _y from T; $ T is a set

Phase (a) will have generated the follow-

ing provisional

: set (G Bl);
‘1 —

: tuple (e B2
‘2 —

: tuple (~ B3
V3 —

set (~ B4) ;
‘4: —

Using the S1- S2

epresentations:

x:EB
1 1

; ‘2
:EB

2

: ‘3
:EB

3

Y4: G B4

link, phase (b) will set

EM(B2) = set (~ Bl). In virtue of the

V2- V3 link we then equivalence B2 and B3,

setting EM of the new root to ‘set (~ Bl) !

Then, in virtue of the T3– T 1 link, we

merge EM(B3 z B2) with ‘set (~ B4)’, i.e.

merge ‘Set (~ Bl) t and ‘Set (~ B4) ‘ which

causes B
1

and B q to be equivalence. If

‘2
and B3 were unavailable, this deduc–

tion would have been more difficult, and

rather complex propagation of basing

information through the code would have

been required.

(c) base pruning and representation

adjustment: When phase (b) termi-

nates , the set of all initial bases will

have been split into equivalence classes.

Each such class corresponds to one actual

base B, and the map EM maps the root of

206

this class to the common representation of

the elements of B. Howeverr it is possi-

ble that such a base B may be useless, in

the sense that its introduction cannot.

speed Up the execution of any instruction,

or, even if some instructions are made

more efficient due to the introduction of

B, all these instructions involve only the

same composite object s based on B. In

this latter case, introduction of B will

simply replace the hash table of s by that

of B, which gains us nothing. Such cases

are detected and eliminated by phase (c) ,

as follows:

(i) We find all actual bases which are

useless according to the criterion stated

above, and flag them as such.

(ii) We update all based representations

of variable occurrences and also the

element modes of all actual bases, in the

following recursive manner:

(ii.1) unbased modes are left unchanged;

(ii.2) each provisional base B appearing

in a mode is replaced by the corresponding
A

actual base $ if ~ is not useless. If B is

useless, we replace the submode ~ B by

EM(;) .

(iii) We enter all useful bases into the

symbol table.

It can be shown that the preliminary

type-analysis phase of the optimizer can

be adjusted in such a way as to guarantee

that this recursive adjustment operation

will always converge. Note also that it

is only after this adjustment that a

variable occurrence can have a based

representation involving more than one

level of specification, e.g.

set (tuple (~ B)) .——

As an example, consider the case of an

inkeger-valued bivariate map f. In

compilation of SETL, each retrieval of the

value f(x,y) is expanded into the code

sequence

(1) t := f{x};

(2) z := t(y);

Phase (a) of our algorithm will generate

the following provisional representations:

‘1
:EB.

2’
: map (~ Bl) ~ B2;

‘1 —

: map (~ B3) C B4;
‘2 —

Now we assume that (the equivalence class

of) B2 turns out to be useless (which is

the case, e.g., if f is always accessed as

a bivariate map) and also that B4 is use-

less (e.g. no set manipulation of the

range of f occurs in the program being

analyzed) . Phase (b) will merge the

representations of tl and t2 to obtain

EM(B2) = map (E B3) ~ B4. Hence phase (c)

will update the representation of fl to

‘map [~ Bl) map (c B3) e B4’ and again to

‘map (~ Bl) map (~ B3) int’, which is

probably the representation that a program-

mer would have chosen manually, and is

also the best representation for sparse

multivariate maps defined on-arbitrary

domains.

(d) Name-splitting: This is the final

phase of our data-structuring algorithm.

At the end of phase (c) , based rePreSenta-

“ tions, as well as type information, will

have been computed for each variable occur-

rence, rather than for each variable. We

use occurrences rather than variables

because the weak typing of SETL allows a

variable to assume more than one data-type

during execution; moreover, even objects

with the same data-type may be represented

in different ways at difference occur-

rences of the same variable. Nevertheless

the information collected by our algorithm

must finally be stated on a per variable

basis, since subsequent compiler phases

(e.g. our machine-code generator) cannot

support more than one type or detailed

representation per variable. Furthermore,

the first three phases of our algorithm

ignore the operations which actually

insert elements into a base B. For example,

consider the code

(1) x := x + 1;

(2) s with x;

The first three phases of our algorithm

will assign ‘int’ as

‘1 ‘
and ‘e B’ as the

the representation of

representation of x2t

207

where B is some base. This means that

instruction (2) can assume that the value

of x is represented by a pointer into B,

but of course such a pointer must be

first created.

These two problems of information

integration and base insertion are solved

simultaneously in the name-splitting phase

of our algorithm. In this phase we first

scan all occurrences of each program vari-

able x. For each representation R

assigned to at least one of these occur-

rences, we generate a new symbol-table

entry, which we denote by XR, and which is

said to be split from x. We then replace

all occurrences of x having the represen-

tation R by occurrences of XR. If two

occurrences of the same original variable

x having different representations RI, R2

are linked by BFROM, then we must of

course ensure that conversion of the value

of x from representation R ~ to representa–

tion R2 will take place as control

advances from the first occurrence to the

second one. To enforce this conversion,

we insert an assignment ‘ ‘R2 := xR ‘ into
1

the code at some optimal (lowest-frequen–

cy) place separating these two occur-

rences . The algorithm which inserts such

conversions into the code is rather simple

and is based on the interval structure

[AL] of the flow graph of a SETL program.

For each occurrence VO of a variable V

which is linked by BFROM to other occur-

rences of V which have different represen-

tations, our algorithm will insert a

conversion to the split variable of VO

either just before VO, or just before the

head of some interval containing VO. For

example, in the code fragment

(v . ..)

x := x + 1;

end ‘t;—.

A conversion from the unbased representa-

tion appropriate for x within the first

loop to the based representation appro-

priate for x within the second loop will

be inserted just before the start of the

second loop. The choice of the interval

at whose head we insert a conversion

involves safety criteria which will not be

mentioned here. For a full description of

this aspect of our method, the reader is

referred to [GS] .

It is important to note that the set

of all program points at which there occur

conversions to representations based on a

base B is also the set of all points at

which elements are added to B (by hashing

operations) . In general the number of

these conversions will be smaller (and for

typical programs, substantially smaller)

than the number of hashing operations

which would have been required without the

presence of B.

A comment on the complexity of our

algorithm: Phases (a) and (c) are linear

in the length n of the code. Phase (b)

is almost linear in the number m of BFROM

links, which for typical programs wili be

linear in n. Phase (d) is O(m + n) . Thus

the overall complexity of our algorithm is

of order O(n + ma(m)) , where a is an

extremely slowly growing function (cf.

[TA] for details).

An Example: We will now ~ndicate the way

in which our algorithm applies to the

MINPATH program g~ven earlier. For

simplicity, we consider only the first

section of the MINPATH program, which

searches through the graph within which a

path is sought.

Phase (a) will generate the following

provisional based representations:

(v . ..)

s with x;

end V;

208

graphl, cost , x , y : general;
111

map (G B21) G B22;prev2: _

va13: ~ (G B31) e B32;

va 1
4: ~ (~ B41) ~ B42; x4: ~ B41;

newnodes5: set (~ B5) ; X5: ~ B5;

newnodes : set (C B6) ;
6—

newnodes7: set (C B7) ; n,: E B7;

graph8: _map (e B81) ~ B82;

the general description of merging given

above. This merge step causes us to set

) = map (~ B921) e B922. The infor-
‘~~(B912 —
mation thereby generated will be used by

phase (c) to update representations con-

taining B912, which will turn out to be

useless.

At the end of phase (b), the followin9

n:CB
8 81; ‘8: E ’82;

equivalence classes of bases will have

been formed:

Instruction 9 of the

expands into roughly the

sequence

(91) tcost := cost{n};

(92) Vcost := tcost(m);

(93) vval := val(n);

MINPATH code

following

(94) newval := vval + vcost;

and thus generates the following provi-

sional representations:

c0st91
: m- (~ B911) G ‘912;

’91: = ‘911;
tcostg2: map (e B921)

’92’ E ‘921;
: map (e B931) ~

‘a~93 —

’93; 6 ‘931;
no bases are generated

: map (e B
‘al-lo — 101) e

‘1 o
: ● BLol;

: map (~ Bill) ~
‘alll —

‘U: = ‘111;

‘cost91 : = ‘912;

E ‘922;
Vcost

92: e ‘9:!2~

‘932;

‘va193: E ‘932!;
by instruction 94.

‘102;

‘ewvallo: =;

‘112;

‘ewvalll: = ‘112;

w=~12 _: map (G B121) C B122;

’12: E ‘121; ’12: E ‘122;

m13,y13: ● B13;

‘ewn0des14 : ~ (~ B14); m14: ● B14;

Among the above bases, only B41,
‘5 ‘

’81’ ‘911’ ‘921’ ‘931’ ‘101’ ‘111’ ’121

and ’14
are effective.

Phase (b) will perform the following

merging and equivalencing: In view of the

prev2-prev12 link, we equivalence B21 with

’121 and ’22 ‘ith ‘122”
In view of the

va13-va14 link, we equivalence B31 with

’41’ and ’32 ‘ith ’42”
In view of the

x -x
45

link, B41 and B5 are equivalence,

etc. Only one additional merge deserves

extra comment, namely the step which

merges the representation of tcost91 and

tcost92, and which belongs to case (ii) of

,.,.-

:3 =

‘4 =

{B
912}

{B]
922

{B32JB42JB932JB112}
a class containing all the remaining

bases.
.

Since only B4 is effective, the first

three classes are useless. Phase (c) will

thus eliminate any reference to bases in

these classes, e.g. the representation of

c0st91
will be updated to

.
map (~ 64) map (~ B4) int

As for 63 we simply replace the submode
A

‘EB’ by ‘int’r since, as is easily
3—

checked, EM(~3) = _int at the end of

phase (b).

Phase (c) will thus assign the repre-

sentations suggested in section 2 to most

of the occurrences of the variables graph,

cost,newnodes, prev, val, x, Y, m and n.

However, the occurrences graph2, cost2, X2

and y2 remain unbased. This will cause

phase (d) of our algorithm to split each

of these variables into two symbol-table

entries, a based one and an unbased one,

and to insert four conversions from each

of the unbased split variables to the

corresponding based one before entering

the while loop (but the conversion of x

will precede instruction 4, as X4 has

already the based representation) . The

base ;4 is built precisely at these places,

and then remains constant during execution

of the remainder of the MINPATH program.

A few final words concerning refine-

ment of the coarse based representations

selected by our algorithm: A main goal of

our algorithm is to speed up program execu-

tion by reducing the number of hashing

209

operations performed by the program.

Having achieved this optimization we can

expect a considerable speed-up in the

execution of the program. However addi-

tional improvement is possible if we

refine the based representations thereby

selected, choosing suitable local,

~ndexed or sparse representations for

based sets and maps. However, to choose

refined data-structures effectively may

require frequency information, object

size estimates, etc. , which are unavail–

able during compile time (but cf. [LO]

for various interactive and run-time

techniques which can help gather such

information) . Since our aim is to

develop a fully automatic data-structur–

ing technique, we abandon any attempt to

collect and use such information, and

make do with a coarser and more modest

approach, which can be summarized roughly

as follows: .

(i) If a based object A is iterated

upon, choose the sparse representation

for A.

(ii) If not, but A is ~nvolved in global

set–theoretic operations, or is assigned

to any variable, or passed as a procedure

parameter, or incorporated into other

objects or used destructively in a manner

requiring value copying, choose the index-

ed representation for A.

(iii) In all other cases,A can have local

representation.

[AL]

[DE]

[GS]

References

Allen, F. E., “Control flow analy-

sis,” Proc. Symp. Compiler Optimiza-

tion, SIGPLAN Notices 5 (1970) , 1–19.

Dewar, R.B.K., Grand, A., Liu, S.C.,

Schonberg, E. and Schwartz, J.T.,

“Programming by refinement, as

exemplified by the SETL representa–

tion sublanguage,” to appear in

CACM .

Grand, A. and Sharir, M., “On name

[HAI

[LI]

[LO]

[RE]

[SL]

splitting in SETL optimization,”

SETL Newsletter 206, Courant Inst.

Makh. Sci., New York, 1978.

Halstead, 11. H., “Elements of soft-

ware science,” Elsevier North-

Holland, New York, 1977.

Liu, S. C., “Automatic data-

structure choice in SETL,” Ph.D.

thesis, Courant Inst. Math. Sci.,

New York, 1978 (to appear).

Low, J. R., “Automatic data-

structure selection: an example

and overview,” CACM 21 (1978) ,

376-384.

Reif, J. H., Ph.D. Thesis, Harvard

University, (to appear).

Schonberg, E. and Liu, S. C.,

“Manual and automatic data-

structuring in SETL,” Proc. 5th

Annual III Conference, Guidel,

France, 1977, 284-304.

[Se] Schwartzr J. T.,, “Automatic daka–

structure choice in a language of

very high level,” Proc. 2nd POPL

Conference, Palo Alto, Calif., 1975,

36--40.

[SC21 Schwartz, J. T., “Use-use chaining

as a technique in typefinding,”

SETL Newsletter 140, Courant Inst.

lflath. Sci.r New York, 1974.

[SC3] Schwartz, J. T., “On Programming:

an interim report on the SETL

project,” 2nd edition, Courant Inst.

Math. Sci., New York, 1975.

[TA] Tarjan, R. E., “Efficiency of a good

but not linear set-union algorithm,”

JACM 22 (1975), 215-225.

[TA21 Tarjan, R. E., “Solving path

problems on directed graphs,”

STAN-CS–75-512 Tech. Rep., Stanford

University, Calif.r 1975.

[~E] Tenenbaum, A. M., “Type determina–

tion for very high level languages,”

Computer Sci. Rep. 3, Courant Inst.

Math. Sci., New York, 1974.

210

