
Safe Run-time Overloading

Abstract

Francok Rouaix
INRIA’

B-P.105 78153 Le Chesnay Cedez, Fence

We present a functional language featuring a form of
dynamic overloading akin to message passing in ob-
ject oriented languages. We give a dynamic semantics
describing a non-dete rministic evaluation, as well as
a type discipline (static semantics) supporting type
inference. The type system ensures that a well-typed
program has a correct execution, unique up to a se-
mantic equivalence relation, and allows this execution
to proceed deterministically, while resolving overload-
ing at run-time.

1 Presentation

1.1 Motivation

When analyzing the history of relations between lan-
guage design and types, we can point out two dif-
ferent uses of types in a language. The first one
has for purpose the guarantee of correct execution
of a well-typed program. A static type-checker en-
sures an execution free of type-errors. This con-
cept is mainly popular in languages designed as for-
mal systems, such as ML. The second one is to
help gaining efficiency, and design facility for pro-
grams. Using type information, one may be able
to compile some features of the language with op-
timizations, or to provide tools for program mainte-
nance (SchaCoo 86, MeyNM 87, Johnson 861. While
formal systems need new constructs (such as ab-
straction from implementation), object-oriented lan-
guages need formalization and types. We present
a system which incorporates concepts from the two
worlds.

*This work has been partially supported by the Eureka Soft-
ware Factory (ESF) project

Permission to copy without fee all or part of this matertial is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the tide of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

1.2 Intuitive Overview

One of the ideas underlying the system presented
here is that these two points of view (formal types
vs. efficient implementation) are to be treated sep-
arately, following ideas in CLU [Liskov 811, Emerald
[RajLev 891 or Duo-Talk [Lunau 891. If we take inher-
itance, we think that it should be split in two distinct
issues: the first aspect is property inheritance (or be-
havior inheritance), which says that, for example,“a
.child has more properties than its parent”. It should
concern only the type-system. The second aspect is
sharing data representation or primitive functions be-
tween child and parent, and this is an implementation
issue.

In ML’s interpretation of types, a functional value
is said polymorphic if it has many types. Now, re-
versing this definition, one may understand a poly-
morphic function (or object such as nil) as a de-
scription of a set of monomorphic values (one for
each instance) sharing the same implementation. The
idea here is to extend the notion of parametric poly-
morphism by qualifyiig type variables with sets of
properties. These properties will be used to con-
strain the set of permitted implementations for the
entity having a “qualified polymorphic type”. Al-
though this extension is similar to ad-hoc polymor-
phism [CarWeg 86, WadBlo 891, it behaves like para-
metric polymorphism. In particular, function types
are covariant with argument types, with respect to
our definition of type inclusion.

We introduce a restricted form of overloading, that
can be typed with usual polymorphism, and we argue
that it addresses a wide range of programming issues,
such as object-oriented languages or code reuse.

Let us describe what kind of overloading mecha-
nism we want for our language.

1. Resolution may be done at run-time. That is,
the value denoted by an overloaded symbol is not
necessarily determined statically from the pro-

gr-*

2. Resolution of overloading does not fail at run-
time. The (correct) solutions are the values that

@ 1990 ACM 089791-3434/90/0001/0355 $1.50 355

3.

will not cause a type-error.

When multiple solutions are found, all possible
solutions are “equivalent?‘.

The idea is to delay the resolution of an over-
loaded symbol to its occurrence where the context
provides enough information to choose a safe value.
This mechanism is very close to the “call by name”
of Algol 60. Like call by name, the suspension may
yield different values at each evaluation. However,
here the changes are due to contextual typing con-
straints instead of side-effects since our language is
purely applicative. The syntactic construct in the
language that introduces this form of evaluation is
the let in construct. If we take the example

let double = Ax.(x + x) in (double 3, double n)

where + is overloaded with addition of Integer and
addition of Float, we see intuitively that lazy expan-
sion for double allows a safe choice for both occur-
rences of +.

Informally, we consider a set of specifications (i.e.
types) of overloaded symbols, a set of specifications
of implementations (resolution values of overloaded
symbols), and want to determine if the code we
write is compatible with these specifications. This
is achieved by interpreting types of objects as sets of
properties, sometimes called classes.

The typing may be found very flexible when com-
paring with other systems. The way the typing is
designed makes that highly overloaded code is al-
most always typable (the only errors detected are ap-
plications of non-functional objects). It just means
that the code may be executed provided there exists
a proper implementation of the primitives that are
used. In a way, the type inference computes the min-
imal constraints on the code, imposed by some speci-
fications, such that fulfilling these constraints ensure
a proper execution. The advantage of minimal con-
straints is that they give maximum re-use.

In terms of object-oriented programming, over-
loaded symbols are methods, but more powerful, since
the selection is not necessarily on the first argu-
ment, and they are first-class citizens of the func-
tional language (which is also the choice in CLOS
[DeMGab 871). Polymorphic functions or objects
may be seen as methods associated to meta-classes’.

’ Meta-classes are entities for grouping common method def-
initions among different classes

2 Comparison with current so-
lut ions

We are interested in existing solutions for functional
languages implementing run-time overloading and
type inference.

Kaes work

The formalism presented in [Kaes 881 has the same
basis: qualified type variables and overloading
schemes. The enhancements presented here are
mainly: dynamic semantics for an untyped functional
language featuring overloading, a known framework
for operations on types, and more general overload-
ing schemes.

Has kell

Haskell proposes a class system with similar goals.
However, the approach is different on some points.
We will go into certain details because they enlighten
some aspects of our system.

l The first essential difference is that Haskell im-
poses the declaration of classes. This strongly
influences the type-inference by forcing com-
puted types to belong to a predefined hierar-
chy of types. This is an argument for readabil-
ity of types and strictness of programming, but
tends to be a drawback in the areas of object-
oriented programming and reusability. For ex-
ample, modifying the hierarchy of classes (while
keeping the same definitions of overloaded sym-
bols) greatly changes the typing. The advantage
we have here is that we compute types in a larger
set with a more convenient structure. There are
cases where Haskell would produce a type-error
because it tries to infer a class which is not pre-
declared. Our choice is that any inferred “class”
is legitimate. The matter that there exists an
implementation for this “class” may or may not
be relevant depending on the context. If it is
relevant, then the user-interface may inform the
user of what actual implementations exists and
which primitive they lack to match the “class”.

l A second important difference is the notion of
principal type. In Haskell, static resolution when
ambiguity arises is considered as a failure be-
cause there is no principal types. In our point of
view, the principal type still exists before static
resolution. Static resolution consists in an arbi-
trary choice, but all choices have to be equivalent
from a semantic point a view. We certainly do

356

not have a principal type property after static
resolution, but we don’t consider this as a fail-
ure. The point here is that in our system, we
may not be able to translate a well-typed term
into an ML term by following Haskell technique
([HudWad 881 ,p. 64).

SML

SML provides another form of overloading, that
should be solved statically. Expressions such as
Az.(z + CC) where + is overloaded are not typable.
However, in the spirit of giving tools for program
maintenance, SML provides modules. These mod-
ules also provide a form of overloading, that must be
solved with aid of the user, using explicit qualifiers to
select primitives from a structure previously opened.
If we consider only this aspect of modules, then we
may say by analogy that we infer the minimal “open”
statements (we infer the signature of the module as
well), and the qualifiers are now implicit’. The same
issue of declaring or not structures appears here.

Work on 00 languages

There has been considerable work in the 00 commu-
nity to design type systems for safe object-oriented
languages. The mechanisms involved are delegation
and inheritance (from the language approach), sub-
typing and subclassing (from the type approach).
The system presented here relies mainly on a covari-
ant subclass relation, coded by polymorphism. The
separation of the hierarchies allows a separate treat-
ment for the subtyping hierarchy.

3 Formal Language definition

To formalize these concepts, we define a simple lan-
guage, its dynamic and static semantics and then
show how they interact’. This language has only
the minimum constructions to express that it is func-
tional and has overloading. Detailed examples are
given in an appendix.

If Id is a denumerable set of non-overloaded sym-
bols and Oid a finite set of overloaded symbols, we

3provided primitives with the same name in different struc-
tures are defined homogeneously

‘All semantics are written with Natural Semantics
[CleDDK 861, this choice being justified later

note e an expression ranging over OEzp defined by:

b

e :I= x

basic constant
where x E Id

1 1x.e
where o E Oid
abstraction

I application
1 le,fx = e in er lazy expansion

3.1 Dynamic Semant its

The semantical objects of the langage are:

basic values (constants) in predefined sets

Bl ,“., B, and built-in primitives (closures)

closures, composed of a symbol name (formal pa-
rameter), a body expression and an environment,
for &abstractions.

thunks, composed of an expression and an envi-
ronment , for tet expressions.

There are two kinds of environments, E used in clo-
sures and thunks and a global environment 0, which
describes the values associated to each overloaded
symbol. Formally,

b E BaseValues = B1 U . . . U B,

[x, e, E] E Closwes = Id x OEzp x Env

(e, E) E Thunks = OExp x Env

v E F/al= BaseValues + Closures

E E Env = Id + (Val + Thunka)

0 E OEnv = Oid + P(Val)

The dynamic semantics (Figure 1) is a set of in-
ference rules, describing evaluation of expressions
in OExp. Sequents are of the form E kd e - v,
meaning that v can be derived from e in environment
E (0 is global).

An evaluation is a proof in this system. This se-
mantics is clearly non-deterministic, since the evalua-
tion of an overloaded symbol may yield any of its pos-
sible values (cf. rule Odd). There is no rule defining
a wrong execution, nor a specific wrong value. Fail-
ure is expressed by the fact that no rule is available
to interpret an expression or by type-errors in appli-
cation of built-m closures. Besides non-determinism,
another important point is the interpretation of the
let construct. The object (e, E) fieezea the source
code just lie in a closure. The purpose is to delay
the actual evaluation of the binding value until it is re-
ally used, possibly with different evaluations for each
occurrence. The IDd rule describes this evaluation,
by calling a small subsystem R&4.& and TAUTdl

357

Figure 1: Dynamic semantics

0 E Dam(0) 21 E O(0)

E i-d o-v

I&
z E Don@) t-d’ E(x) - v

Ei-,jX-V

REALd,

i-d’ v-v

E t-,-j km? - [x,e, E]

APPd
E kd e --+ [t”, e”, E”] E t-d e’ - V’

E kd e e’ - v

EN U {z” H v’} t-d err - v

LETd
E U {x H (e, E)} bd e’ -+ v’

E i-d let 2 = e in e’ - v’

which says how to realize a thunk. Strict determinis- 3.3 Static semantics
tic evaluation would force the resolution of overload-
ing statically. Non-determinism was the significant
argument for choosing Natural Semantics over Deno-
tational Semantics. It is totally implicit in Natural
Semantics.

3.2 Correct programs

As a program (a closed expression of OEzp) may have
different executions, we need a notion of correctness
for program execution.

Definition 3.1 Let S be some equivalence relation
on the set Vd of values that we call semantic equiv-
alence. Execution of a term e E OExp is correct for

s iff

l there is a proof of bd e - v in k,j , b& for
some v.

6 all such v are equivalent in S

These definitions do not imply the use of a type-
system. Naturally this is a formal reference seman-
tics, and the typing algorithm will allow us to trans-
form the original term in a term that can be executed
deterministically according to one of the safe compu-
tations.

Our goal is to provide an algorithm that, given a term
in OExp and an overloading environment, will deter-
mine statically if there exists a correct execution in
the former system. For this purpose, we wiIl use a
type-system derived from ML. If we examine our re-
quirements on overloading, we reasonably choose that

l the type expression for an overloaded symbol in
the environment should be polymorphic.

l the actual value of an occurrence of an over-
loaded symbol depends on its type at this occur-

rence, this type reflecting somehow the context of
application of this overloaded symbol. We then
need a new syntactic form for types of overloaded
symbols.

l This new syntactic form should have some prop-
erties we can use when defining our semantic
equivalence

An overloaded symbol acts lie a polymorphic object,
the values of which are chosen from its type instance
when it is used. This interpretation extends to poly-
morphic functions, which are now abstract functions,
“realized” when they are used.

358

We have chosen a language of sorted and rational
terms’ for the types. The following consists in its
definition and many useful notations. Most of this
is borrowed from RBmy’s extension to ML types for
records and variants.

Expressions are of two sorts Type and Field. Sig-
natures of function symbols are written as usual with
+ and @ operators. Given

B a set of basic constants of sort Type

L a finite ordered set of symbols’ of cardinality
1.

the constructors C = { 4, A, v,O} with signa-
tares:

::

A ::

v ::

0 ::

Type @ Type =P Type
Type =s Field

Field

Field 8 Field @ . . . Field =P Type

1

two denumerable sets of variables V’,Vf of re-
spective sorts Type, Field, their union is denoted
byV=V*uVf

two denumerable sets of generic variables I$, Vi
of respective sorts Qpe, Field, their union is de-
noted by V, = Vi U V,’ ,

we define

l R as the set of fist order sorted regular trees
constructed over the set of variables V, constants
in B and constructors in C. Elements of R of sort
Type are called types. Their subset is noted 7.

l ‘R, as the set of first order sorted regular trees
constructed over the set of variables V, UV, con-
stants in B and constructors in C. Elements of
7E, of sort iSype are called generic types. Their
subset is noted Tg,.

l A (non-generic) grafta p is a mapping from V to
R respecting the sorts.

l A total graft is a total mapping from V to 72
respecting the sorts.

‘Intuitively, a rational term may be Been aa an infinite term
with a regular structure.

‘These symbols in L are intended for field names in O-terms
(see below). Since each O-term has a field for each of the
symbols in L, they are left implicit, and the correspondance is
based on field order and L order

“In non-rational terms, a graft is a substitution

l A generic graft p. is a mapping from Vg to 72,
respecting the sorts.

l A monotype (or ground type) is a type with no
variables (noted I).

l A graft is ground if it ranges in monotypes.

In the following we use the notations: a (resp. as)
for type (resp. generic type) variables ; o, -r for types;

us, Q for generic types ; 4 for Aeld variables (i.e. vari-
ables of sort Field). We will note T/A (resp. Ap) the
application of the graft ~1 to r (resp. A).

To help understanding what follows, here is an in-
tuitive interpretation of these new constructions. A
non-functional type is denoted by a e-term. The
fields correspond to the possible properties (e.g.
primitive functions) of the type. The construction
A(r) means that the field is present with the type 7.
The construction v means that the field is absent.
An abstract data type (ADT) may be seen as an open
set of properties. “Open” means that this set may be
extended during unification for example. Such an ex-
tension restricts the possible implementations of this
ADT.

In our formalism, an ADT is a type constructed
with 0 such that all fields are either variables or con-
structed with A, (not all being A since ADTs are
open)‘.

An implementation is a type constructed with 0
with no field variable. It is a non-expandable set of
properties. We will be using the name of the imple-
mentation as a special label because we must be able
to tell between two implementations of a same ADT.
This label also acts as a discriminant when lJnifving
two implementations.

Deflnition 3.2 (Abstract,Real) By estension, we
will say that a type ur k abstract if at least one sub-
term of as &I an ADT. Otherwise ur is aaid to be
real.

3.4 Overloading scheme and imple-
mentations

This section shows how we are going to use these new
type constructs. The overloading environment is a set
of overloading schemes, which intuitively, describe the
type of an overloaded symbol, together with a set of
implementation descriptions.

For any set V of symbols, we define the language
SimpZe(V) by

8 := VEV

I s--+.9

‘see appendix for examples

359

Figure 2: Examples of overloading schemes

+ - (w 4 w -+ w,o>
fst ?r) (w f ag,(left : a9))

snd ti (w-+crg,{ right : %I 1)

{

elem : cxg
hd - t w + a#, tz : w+w)

cons : ag+w+w

elem : a0
con.8 - t Qg -+ w + w, t1 : w4w 1

hd : w --t cYg

nil cu (4)

Oid = (-+, f st, snd, hd, cons, nil)

Quali f iets = {left, right, elem}

ag E v;

Let Qualifiers be a finite set of symbols, and w be
a special symbols. Let Z be a set of symbols to be
used as implementation names.

Deflnition 3.3 (Implementation description)
An implementation description is a binding i N p
where

a i E Z is the implementation name.

l p is a mapping from Qualifers U Oid to
SimpZe(Vi U {w} U {B,, . . . ,B,} U (I- i))

p describes what primitives the implementation pro-
vides, and eventually what properties it has. A mini-
mal implementation of natural numbers could be de-
scribed by

i

natural : w
numo N 0 :w

succ : w-+w 1

An implementation description i N p is expanded in
a O-type, built from p, using the following rules:

l the set L is defined as Quati f iets U Z U Oid

l w denotes an occurrence of the O-type we are
building (i.e. it expresses recursion in the type).

‘one may think of w denoting self in object-oriented
languages

l the fields of the Q-type are A(~(Q)) when Q is
defined in p, A(w) for the field corresponding to
i, and v for other fields.

As expected, the generated type is an implementa-
tion, according to our terminology. It has a field cor-
responding to its name, to be used as a discriminant
with other implementations with the same primitives
and properties.

Definition 3.4 (Overloading scheme) An over-
loading scheme is a binding o ‘u (s, p) where

a o E Oid

0 8 E SimpZe(Vi U (w} U {&, . . . ,&) U Z) such
that w appears in s

l p is a mapping from Qudif iets U Oid to
Simple(Vj U {w} U {&, . . . , B,} U I), such that
/9(O) = 8.B

Examples of overloading schemes are given in Fig-
ure 2.

An overloading scheme o cu (s, p) is expanded in a
type, built from s, using the following rules:

l the set L is defined as Qualifiers U 5 U Oid

l w denotes an occurrence of an O-type which
fields are built using p: the fields are A@(q))
when q is defined in p, A(s) for the field corre-
sponding to o, and a fresh generic field variable
#9 E Vi for each other field.

Intuitively, w can be considered as a type variable
which instantiation is restricted by the presence of
properties described in p. Polymorphism appears in
the field variables 49 which provide the possibility of
later instantiation that changes the status of the 0
type from an ADT to an implementation. The recur-
sion on w (i.e. the presence of o : B in the 0 construc-
tion, implicit in the figure examples) shows where we
will take the actual value of o: when the O-type be-
comes an implementation, then this implementation
will provide the specific adequate value for o in its
primitives. One can read the example hd in Figure 2
as hd : 8 + cy, such that 8 has properties hd : B + a,
andalsoelem:a, tl:B-+0, cOns:a-+8-+8.

Although the description of an implementation is
syntactically similar to an overloading scheme, it is
expanded into a “closed tree”, rather than an “open”
tree (i.e. ADT) for overloading schemes.

‘For conciseness, the value p(o) is not given in the descrip-
tion of p

360

Figure 3: Typing rules

OID,
o E Oid u E LWJ

A k, o:u

ID,
x E Id Q E LWJ

A t-, x:u

A,U{XI+~} t-, e:T

A k-. Xx.e : u + r

A k-. e:u+r A k. ,‘:a

A I-, ee’ : r

LET,
A I-, e:a A,U{xw [A,ul} I-, e’:T

A C, letx=eine’:r

3.5 Typing rules

Static semantic rules use sequents of the form

A t-, e:r

where :

T,U E 7

U# E 5
A E TEnu = (Id U Oid) --) ‘&

Following [CleDDK 86, Remy 891, we define a mod-
ified version of the original typing rules [Milner 78,
DamMil 821 in Figure 3, wherelo

l lug] is the set of instances of og, i.e. types ob-
tained from us by grafting all generic variables
in ug by trees in 72

l Generalization [A, u] is the grafting of all non-
generic variables in u which do not appear in A
by new generic variables.

l A, denotes A where the binding x H A(x) has
been removed if it exists.

Remark 3.1 Since Id and Oid are disjoint, the
mapping A 1 Oid l1 is never modified in I--. .

As proved in [R&my 891, there exists an algorithm
(W), sound and complete, that computes a princi-
pal type for expressions in OExp. Basically, we are

lothe rule for basic constants is omitted, since we can treat
them as identifiers in Id

“A 1 Oid (reap. A 1 Id) denotes the restriction of A to to
Oid (reap. Zd).

reusing here Remy’s result that the original W algo-
rithm designed by Milner may be extended to ratio-
nal types, with Huet’s unification algorithm(Huet 761.
Types are also simpler than in RCmy’s system since
we don’t consider records as objects of the language,
so that operations on types do not introduce the
problem of forgetting fields. Note that this part of
the type-checking is really syntactic work on the lan-
guage. Our special interpretation of the let in con-
struct does not change the typing. Also, since recur-
sive types in W allow the typing of expressions such
as Ax.(x x) or the Y combinator, we must be care-
ful when interpreting types. In this presentation, we
forbid recursive types which are not O-types.

It should be noted that the algorithm W, as well as
computing a principal type12 for an expression, armo-
tates (deterministically) each node of the expression
by its type. We remind here an essential property of
the static semantics:

Lemma3.1 (Sub) A t-, e: 7 =$ Ap I-, e: 7~
(where p is a non-generic graft.)

Remark 3.2 In the inference system defined above,
generic types appear only in type-environment3 A.

3.6 Safety and static resolution

We now need to prove the consistency of static and
dynamic semantics, which is that a well-typed term
has a correct execution. The fbst point is that the
type computed by W is not sufficient to determine

“which, in this presentation, is a type, not a generic type as
noted by Tofte[Tofte 871

361

if there exists an execution. Using the overloading
environment described in Figure 2, the term

AZ. hd(cons 2 nil)

would be typed by a j a. Typing does not guarantee
that we have compatible values for hd, cons and nil.
The problem comes from variables of sort Field that
are created by ID, or OID,, and eliminated during
APP, rule. These Field variables may be thought of
as variables that delay the choice of an implementa-
tion.

Deflnition 3.6 (Safety) We need a caracteriza-
tion of types and grafts that takes in account the
interpretation of Field variables.

A type uB is safe if either us is real or all field
variables in u9 are generic.

A type environment A is safe if Qx E A, A(x) is

safe.

A graft p ia safe for T if rp is safe

A graf3 ~1 is safe for A if Ap ia safe

Static Resolution: We define here an algorithm
which purpose is to complete W to get the consis-
tency, while keeping some overloading resolution at
run-time. We consider an expression e decorated by
r , (noted e :: T), where r is the type inferred by W

(i.e. the principal type r such that A f-, e : T),
and where each subexpression of e is decorated in the
same fashion. Let-bindings13 are decorated with their
generalized types rather than the simple type during
this algorithm. Let OFree be the set of non-generic
field variables in all types decorating e. Find a ground
graft SR on OFree, safe for A and all types in e :: r.
If we can’t find SR then the typing fails. If we find
SR, then SR is applied on the proof tree of W in
the following, and we note the sequents in the proof
A t,r+SR e: r.

Lemma 3.2 (Static resolution) All typea
in (e :: r)SR are safe. Sequenta A kr+SR e : T
with r abstract only appear in the proof under appli-
cation of the LET, rule.

ProoE by construction, since the SR removes all
non-generic field variables. Abstract types are now
necessarily generic.
Example:(following previous specifications of over-
loaded symbols) Xx.hd(cons x nil) is typed with

a+a

lSi.e. the e expression in let z = e in e’

with SR forcing the choice of compatible values for
hd, cons and nil.

Finding the ground graft SR implies an arbitrary
choice when there are multiple implementations for
a same ADT. We must remind this when we will ex-
amine the relation between static resolution and our
definition of correct execution.

Another remark concerns the implications of static
resolution on a real implementation of this system
in a language. If we consider a closed term (i.e. a
term as defined in the formalism OExp), then static
resolution may be seen as a two-step operation, which
consists in macro-expansion’4 of let expressions, and
then full resolution of overloaded symbols. However,
in a toplevel loop for example, which consists in “open
lets”, such as let 2 = e;; (expression that does not
belong to OExp), there is no macro-expansion. As
said before, the identification of overloaded symbols
in e will be delayed until the typing of an occurrence
of x provides enough information. The purpose of SR
in this case is to identify overloaded symbols that do
not depend on future instantiations of the type of x,
and to solve them immediately.

3.7 Consistency

The object of this section is to give the seman-
tic interpretation of types in our system. This
interpretation” is given by a relation + between
v E Val + Thunka and us E &.

We first define the relation on BaseValues and
monotypes. Note that implementations are not nec-
essarily monotypes. They may contain generic vari-
ables of sort Type. The point is that implementations
types do not contain field variables.

a + b : LB E {B1,... , BR) by definition of the
built-in environment

l k v : II E Z where 11 is a ground type, by defi-
nition of the built-in environment

l I= tx,e,El: ‘1 + 12 if for all zI such that b v : bl,
there exists r such that

- EU{XHV} l-d e-r

-I= t : La

A type environment A is said closed and noted x
when all variables (of sort Field or Type) in types on
the range of 2 are generic.

“in fact redex elimiuitation, with eventual renaming3

Isbased on [Tofte 871

362

The semantic relation + is extended on types,
generic types and environments. We need a defini-
tion for environment with non-generic variables (i.e.
not closed) for the proofs.

+v: u if for all total, ground, safe graft /J,

I= u : up

0 b v : ug if for all safe generic grafts ps, /== 21 :

u&J

0 b (e, E) : ug if for all safe instance uo, of us
there exists 71 such that f--d’ (e,E) - TV and
pv: QO,

l j= 0 : A 1 Oid, if Vo E 0, Vu E O(o), (with
b v : ug), ug is real and 3pg, ug = a(,),~,

l j=E:~‘LIdifVz~Dom(E), J=E(z):x(z)

l b E : x if &m(E) u Dam(0) = Dorr+i) ,
~Oo:;riJOid,j=EE:~JId.

l + E : A if for all total, ground, safe graft /.L,
~EE:/J

~peomq 3.1 (Consistency) I’ b E : A ,
, e : r , and A i8 safe, then

3r,E t-d e-+r, suchthat kt:r

Sketch of Proof: by structural induction on e.
The game consists in using the premises of static rules
to prove (by induction) the premises of the dynamic
rules, thus finding a safe derivation le. Note that
when A is not safe, the theorem does not hold (non-
generic field variables in types potentially means un-
resolved overloading with possible failure). We need
the following lemma:

Lemma 3.3 (Realization) If b E : A and
e : r then for all total, ground, safe

3, E bd e - T, such that k T : 7,~

This lemma does not give unicity of the result t. How-
ever, we may now write the proof of the Consistency
theorem, using the static resolution lemma. All in-
ductions but for let-bound symbols are done on the
theorem itself, and for these symbols we use the Re-
alization lemma. The important point is that during
induction on the theorem itself, A and types are al-
ways safe.

16For a given term structure in OEzp, there is only one pos-
sible rule for static semantics and for dynamic semantics

3.8 Correctness

Static resolution may involve an arbitrary choice of
implementations to transform the non-deterministic
program in a deterministic one: We need to be sure
that this choice is compatible with our correctness
definition. Intuitively, the typing inferred by W gives
the observable behaviour of the values derived in the
program. The miniium semantic equivalence be-
tween different values derivable from the same term is
defined by the set of operations*’ that can be applied
to these values. The type inferred by W is exactly
this set of properties. SR as defined above is then
seen as the choice of a set of implementations sat-
isfying these properties. Therefore, any valid choice
from SR is compatible with the equivalence relation
defined by the type inferred in W.

4 Recursion

We already said that we considered recursive types as
invalid (except those cycling on e). Static semantics
supports them (syntactically) but we have no inter-
pretation of these types in the k’ relation. We still
can add recursion in OExp, using ret rules in static
and dynamic semantics to provide the same kind of
extension as for ML, with the Y combinator for exam-
ple. The type of Y is simply declared in the built-in
environment. From a practical point of view, it is
easy to add recursion both in the language and in the
typing. We believe that the definition of correctness
of execution with recursion could be a step-by-step
equivalence of possible executions.

Note also that we don’t have “polymorphic recur-
sion”. We then know that overloading resolution will
be the same in each recursive call, since the resolution
happens at instantiation time.

5 A real language

The previous sections deal only with the formal pre-
sentation of the language. It is clear that a real
implementation is not a non-deterministic language,
and that we do not want to re-compute completely
thunks when they are used. However, we are able to
use the information gathered during type-inference to
produce a compiled code for thunks. The occurrence
of overloaded symbols that depend on the type of the
instance may be replaced by a look-up function call to
their corresponding property in the type. This means
that the evaluation of a thunk needs a new argument

“pomibly extended with properties

363

which is the type of its instance. This new evalua-
tion mechanism becomes deterministic, with respect
to the arbitrary choices during static resolution. Note
that tagging values with their implementation type
does not help, since we may have to select a value
from the result type.

The construction above neither describes how im-
plementations are managed, nor details the static res-
olution. As noted in the introduction, this issue be-
longs to a different topic. Some issues are:

l when dealing with polymorphic implementations
during static resolution, it should be noted that
only field variables are grafted. The implemen-
tation is not an instance of the unresolved type.

0 relying in structural equivalence of implementa-
tion types as semantic equivalence if not suf-
ficient. However, as our types are compatible
with record types, it seems natural to use for-
malisms such as [CooHC 901 to code implemen-
tations with records. Stronger semantic rela-
tions may be enforced by direct operations on
the primitives of implementations.

In fact, the whole hierarchy dealing with code in-
heritance, or delegation, has to be managed in the
implementation’s world.

There are still some major limitations in our ap-
proach, due to the very simplicity of the instantia-
tion relation considered as a “subclass” relation. It
is not possible to have more than one occurrence of a
primitive symbol in a 8 type. This makes impossible
to overload, for example, matrix multiplications by a
matrix and by a scalar and use them simultaneously
in a program. However, this kind of overloading is
more a syntactical facility than a conceptual notion
of abstraction or code reuse.

Conclusion

We presented in this paper a new approach for over-
loading that can reconciliate functional programming
and object-oriented concepts (abstraction, subclass-
ing, overloading) using familiar techniques such as
call-by-name and polymorphism, while keeping use-
ful properties of strong static typing. The formalism
presented here is not only an extension of existing
type-checkers but rather an attempt for a full sys-
tem with adequate semantics. The definition of over-
loading schemes being rather flexible, a wide range of
programming methodologies may be modelled by this
system. We believe that this formalism can be turned
into a real language, with more work on implemen-
tation management and new constructs for manipu-

lating the overloading environment. Future work in-
cludes also generalization of overloading schemes and
run-time extensions of the overloading environment.

Acknowledgements. I am grateful to B. Lang
for initiating this work as a formalisation of the im-
plicit typing used in the VTP [Lang 861, and for his
support. D. Rbmy explained to me many key points
in ML typing. B. Lang, V. Donzeau-Gouge and J.-J.
L&y helped in choosing the dynamic semantics.

References

[Boring 821

[CarWeg 861

[CleDDK 861

[CooHC 901

[DamMii 82)

[DeMGab 871

[HudWad 881

[Huet 761

A.H. Borning, D.H.H Ingalls: “A type
declaration and inference system for
SmallTalk”, Proc. of the ACM Conf.
on Principles of Programming Lan-
guages 1982.

L. Cardelli, P. Wegner: “On Un-
derstanding Types, Data Abstraction,
and Polymorphism”, ACM Computing
Surveys, Vo1.17, No.4, pp.471-522, De-
cember 1986.

D. Cldment, J. Despeyroux, T. De-
speyroux, G. Kahn: “A Simple Ap
plicative Language: Mini-ML”, Proc.
of the ACM Symp. on Lisp and Func-
tional Programming 1986,13-27.

W. Cook, W. Hill, P. Canning: “Inher-
itance is not Subtyping” to appear in
Proc. of the ACM Conf. on Principles
of Programming Languages 1990.

L. Damas, R. Mimer: “Principal type-
schemes for functional programs”,
Proc. of the ACM Conf. on Principle3
of Programming Languages 1982

L.G. DeMichiel, R.P. Gabriel: “CLOS
Overview”, Proceedings of ECOOP 87.

P. Hudak, P. Wadler et al.: “Report
on the Functional Programming Lan-
guage Haskell, Draft proposed stan-
dard”, Research report, Yale Univer-
sity, Dec. 88.

G. Huet: “R&solution d’dquations dans
les langages d’ordre 1,2,. . . , w”, These
de doctorat d’etat, Universitd Paris 7,
1976.

364

[Johnson 861

[Kaes 881

[Liskov Sl]

[MeyNM 871

[Miier 781

[Lunau 891

[RajLev 891

[R&my 89]

[SchaCoo 861

[Suzuki 811

[Tofte 871

[WadBlo 891

R.E. Johnson: “Type- Checking
SmallTalk” in OOPSLA ‘86 Proceed-
ing ACM SIGPLAN Vol 21., No. 11,
pp.315-321, November 86.

S. Kaes: “ Parametric Overloading
in Polymorphic Programming Lan-
guages”, Proc. of the 2nd European
Symp. on Progmmming 88 LNCS
300,Springer-Verlag.

B. Lang “The Virtual Tree Processor”
Esprit Project GIPE, Third review re-
port,September 1986.

B .H. Liskov: “Clu Reference Man-
ual”, Lecture Notes in Computer Sci-

ence 114,Springer-Verlag 1981.

B. Meyer, J-M. Nerson, M. Matsuo:
“Eiffel: Object-oriented design for
software engineering”, Proc. of the 1st
European Software Engineering Con-
ference Sept.87, AFCET.

R. Milner: “A Theory of Type Poly-
morphism in Programming”, .I. Com-
pul. Sysi. Sci 17 (1978), pp.348-375.

C. Pii Lunau: “Separation of Hierar-
chies in Duo-Talk”, Journal of Object-
Oriented Progmmming Jul/Aug 1989.

R.K. Raj, H.M. Levy : “A Compo-
sitional Model for Software Reuse”,
Conf. Proceedings of ECOOP ‘89.

D. R&my: “Typechecking records and
variants in a natural extension of ML”,
Proc. of 2he ACMSymp. on Principles
of Progmmming Languages 1989

C. Schaffert, T. Cooper et al. : “An In-
troduction to Trellis/Owl”, Conf. Pro-
ceedings of OOPSLA ‘86

N. Suzuki: “Inferring Types in
SmallTalk”, Proc. of the ACM Symp.
on Principles of Programming Lan-
guages f 981.

M. Tofte: “Operational Semantics and
Polymorphic Type Inference”, Ph.D.
Thesis University of Edinburgh, 1987.

P. Wadler, S. Blott: “How to make ad-
hoc polymorphism less ad-hoc”, Proc.
of the ACM Symp. on Principles of
Progmmming Languages 1989

Figure 4: Overloading schemes

O,l,... U (w,{ num:w })

“(p
1’” - (w, { str : w })

=* (w + w + BooZ),{})

+-+ (w-+w-+w90)

hd - (w +ag,{ elem : err })

t1 * (w + wm

cons - (ag+w--tw,(elem : as })

nil - (~4)

null? ?A (w + BOOZ, {})

A Examples

The examples given below are samples of what
a prototype of the system (with recursion and a

toplevel) produces. As announced, ,the readability
of inferred types is not good. e-types looks like
~={p~:tr~,p~:~~...p,,:a,;~) for ADTs. Field
names (symbols in L) are here explicitly given. v
fields are omitted. Field variables are grouped in a
unique extension variable, noted 4. Generic variables
are prefixed with the quote character(e.g. ‘a). In the
following, they are written, for example:

SA={+:SA->SA-GA ; ‘u)

Implementations are denoted by their unique name.
The environment used in the following examples con-
tains

l a basic type for booleans (Boor)

l a built-in implementation of integers, with prim-
itives: addition (+), equality (=), and property
num. All integer constants are overloaded, and
we use the property num for this purpose.

l a built-in implementation of strings, with primi-
tives: concatenation (+), equality (=), and prop-
erty str to overload all string tokens.

l a built-in implementation of lists, with usual
primitives: hd, tl, cons, nil,null?

The formal definition of this environment is given in
Figure 4 and Figure 5.

365

Figure 5: Implementations descriptions

I = : w+w+Bool
Integer N

i
+ : w+w--tw

num : w

String N

1

= : w4w4Bool

+ : w 4 w 4 w

stt : w

hd : w4ag

t1 : w-+w

List N

L

cons : ag4w-+w

nil : w
null? : w 4 Boo1
elem : ag

Each example is chosen to exhibit a feature or a
property of the type system.

Example 1 : Simple overloading

#let double =funx-)x+x;;
(* SR is happy *>
double : SA -> SA
with
SA={+:SA->SA->SA ; ‘a)

Double may be used on any data type providing a +
operation, so here

#(double 3, double Yoo”) ; ;
(* SR finds Integer, String *>
(6, “f oof 00”) : (Integer t String)

Note that lexical tokens 3 and “foe” are overloaded
though here only one implementation is provided for
each. Static resolution had to find an implementation
fortheADTsw=(num:w;+:w-+w+w;&}and
W={&:W;+:W--+W4W;ip~}.

Example 2 : Static resolution at work

#fun x -> hd (cone x nil) ;;
(* SR finds List *>
fun : ‘a -> ‘a

In this example, the overloaded symbols hd,cons,nil
have been statically resolved since the inference de-
termined that their resolution do not depend on the
type ofx.

Example 3 : Constructor/Destructor
dissociation

dletrec map =
fun f ->
(fun 1 ->
if (null? 1)
then nil
else (cons (f (hd 1))
(map f (tl 11))) ;;
(* SR is happy *>
map : (‘a -> ‘b) -> SA -> SB
uith
SA=(hd:SA->‘a , tl:SA->SA, elem:‘a,

null?:SA->Bool ; ‘a)
SB=(nil:SB, cons:‘b->SB->SB, elsm:‘b, ‘v>

The fact that the list primitives are dissociated in our
environment explains this typing, where constructors
and destructors of the list have been separated in the
two types. A remarkable consequense is that the re-
sult list may not have the same implementation as
the input list.

Example 4 : More on implement at ion
independance

#letrec append =
fun 11 ->
(fun 12 ->
if (null? 11)
then 12
else (cons (hd 11)
(append (tl 11) 12)) 1 ; ;
(* SB is happy *>
append : SA->SB->SB
with
SA=Xhd:SA->‘a, tl:SA->SA, null:SA->Bool,

elem: ‘a)
SB=fcons:‘a-MB->SB, elem:‘a)

Although the input lists must contain elements of
the same type, their implemention might be Mer-
ent. However, by construction of the program, the
result list has the same implementation as the second
input list.

366

