
Efficient Temporal Reasoning+

(Extended Abstract)

E. Allen EMERSON 1$2 Tom SADLERI Jai SRINIVASAN’

1. Department of Computer Sciences, The University of Texas at Austin, USA

2. Mathematics and Computing Science Department, Technical University of Eindhoven, The Netherlands

Abstract

There has been much interest in decision procedures for testing satisfiability (or validity) of formulae in various systems
of Temporal Logic. This is due to the potential applications of such decision procedures to mechanical reasoning about
correctness of concurrent programs. We show that there exist Temporal Logics that are (i) decidable in polynomial time,
and (ii) still useful in applications. One surprising corollary of our results is that the fragment of CTL (Computation
Tree Logic) actually used by Emerson & Clarke [EC821 to synthesize concurrent programs from temporal specifications is
decidable in polynomial time. Another is that the verification of many correctness properties of concurrent programs (such

as in Owicki & Lamport [OL82]) can be efficiently automated. This demonstrates that many useful correctness properties
can be expressed with a rather restricted syntax. Finally, our results provide insight into the relation between the structural
(i.e., syntactic) complexity of temporal logics and the complexity of their decision problems.

1 Introduction

Over the last decade there has been a great deal of rc+
search into the complexity of decision procedures for
testing satisfiability (or validity) in various systems
of modal or temporal logic, owing to their potential
applications to reasoning about concurrent programs
(cf. [Pn77], [FL79], [Ab80], [BHP81], [EH82], [VW84],
[ES84], [VS85], [CVWSS], [HV86], [EJ88]). For all
extant propositional logics of programs, the complex-
ity of testing satisfiability is at least NP-hard since
these logics subsume pure propositional logic. Assum-
ing P # NP, it thus seems most likely that the best
deterministic time decision procedure we can hope for
is of exponential complexity. The trend, therefore, has
been to consider logics of increasingly greater expressive

tThis work was supported in part by NSF grant DCR-
8511354, ONR URI contract NOOO14-86Ka763, and Nether-
lands NW0 grant &3/n.% 62-500.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Associal.ion for Computing Machinery. TO
copy otherwise, or to republish, requires a fee and/or specfic
permission.

@ 1989 ACM 0-89791-2942/89/0001/0166 $1.50

power, and recent work has concentrated on the prob-
lem of obtaining “efficient” exponential time decision
procedures for logics of quite high expressive power. For
logics of very high expressive power, it is difficult to get
even a double or multi-exponential decision procedure.

Despite the fact that even single exponential time
complexity can be a formidable obstacle to serious ap-
plications, consideration of such exponential time logics
for potential use in applications has been justified on
several grounds. First, it does seem to be the best we
can do in general. Secondly, these are the worst case
complexity measures; the “average” complexity may be
lower. Empirical evidence does show that the complex-
ity on many interesting example specifications is often
much better than the exponential worst case. In this pa-
per, we provide a surprising and convincing argument
explaining why the observed complexity is much better
than expected.

Contrary to the trend toward greater expressive
power, we focus on the basic correctness properties es-
sential to the majority of applications, and restrict our
logic’s expressive power accordingly. By appropriately
restricting the syntax, we can get a logic that (i) is
decidable in polynomial time, and (G) still has useful
applications to reasoning about concurrent programs.
Our results show, for example, that the satisfiability

166

problem for the fragment of the logic actually ud for

program synthesis in [EC821 is decidable in polynomial
time, and that the proofs of some liveness properties
established for example programs in [OL82] can be effi-
ciently automated.

The basic intuition is to restrict the syntax so that
not all of propositional logic is included as a sublogic.
Instead, we allow formulae to be built up from Horn
propositional logic, interacting with each other so as to
limit the depth of nesting of the basic temporal oper-
ators F (sometime), G (always), X (next time), and
U (until). Among the temporal formulae still allowed
are such “simple” but important ones as Gp (always p,
the prototypical safety property), G(p + Fq) (tempo
ral implication or the leads-to assertion, a fundamental
liveness property), and G(p =+ Xq) (temporal succes-
sion; this describes immediate successor states).

The success of our approach hinges on our ability to
separate the problem of propositional reasoning from
that of temporal reasoning. To understand this, it is
helpful to think in terms of the automata-theoretic tem-
poral framework (cf. [St82], [VW84], [Em85], [VWSS],
[Va87]). The standard paradigm for developing a deci-
sion procedure for a temporal logic involves two steps:

a) Reduce the satisfiability problem to the problem of
testing non-emptiness of a finite state automaton on in-
finite objects. In the case of linear temporal logic this
is an automaton on infinite strings, while in branching
time, it is a tree automaton. The automaton is typically
built by constructing a tableau. Intuitively, the tableau
is a finite graph which encodes all potential models of
the formula, and is derived from the syntax of the for-
mula. It may be viewed as the transition diagram of
an automaton that accepts as input the models of the
formula.

a) Test the automaton for non-emptiness. This in-
volves a graph reachability analysis, which is performed
by a pruning procedure to ensure that each eventuality
is fulfilled. For example, if a node of the automaton
indicates that Fp (sometime p) should hold, then it is
checked that there is indeed a path through the au-
tomaton leading to a node where p holds; if not, the
node is deleted. This process is repeated until no more
nodes can be deleted. For many logics, such a test for
non-emptiness can be done in time polynomial in the
automaton’s size.

In general, the time to construct the automaton is
proportional to its size. Thus, the total complexity is
governed by the size of the automaton and the time
to test non-emptiness. Since the automaton is usually
of exponential size in the length of the formula, even
though testing non-emptiness can be done in time poly-
nomial in the automaton’s size, the total time complex-
ity is exponential. However, we show that there exist
useful logicsstill able to express important correct-

ness properties of concurrent programs-for which the
automaton is of size polynomial in the formula length,
and, hence, is decidable in polynomial time.

The construction of the transition diagram of the
automaton is effected through propositional reasoning.
The syntactic restrictions on the logic ensure that the
size of the automaton is polynomial in the formula’s
size. Testing non-emptiness of the automaton is done
by graph reachability analysis, and corresponds to the
actual temporal portion of the reasoning in the sense
that it relates the truth of the assertions at the present
state to their truth at states that will be reached in the
future. This is significant because it means much of
temporal reasoning simply amounts to graph reachabil-
ity analysis and can be done very efficiently, in linear or
quadratic time.

The rest of this paper is organized as follows. In
Section 2, we describe SCTL (Simplified Computation
nee Logic), one of the systems of logic that we have
developed that permit efficient reasoning. Section 3 de-
tails the decision procedure that tests satisfiability of
an SCTL formula, while Section 4 shows how to decide
the validity of inference problem for SCTL. Finally, as
SCTL is designed to handle assertions of a concurrent
program as a whole, Section 5 describes how to con-
vert the compositional input specifications (in terms of
processes) to SCTL assertions, and indicates how the
decision procedures developed in the previous sections
could be applied to practical examples.

2 Preliminaries: The Logic SCTL

Numerous systems of temporal logic of differing ex-
pressive power have been introduced in the literature.
One that is commonly used for reasoning about concur-
rent programs is CTL (Computation Tree Logic) (cf.
[EC82], [EH82]) as it can express many interesting prop-
erties of programs. The basic CTL modalities are of the
form A (“for all paths”) or E (“for some path”) followed
by a single occurrence of F (sometime), G (always), X
(next time), or U (until). These eight basic modalities
can be combined using boolean connectives and nesting.
The reader is referred to the appendix for the details of
CTL’s syntax and semantics. Examples of CTL for-
mulae include: AG(~‘SI V +Sr) which expresses the
property of mutual exclusion of two processes (at any
time, either process 1 or process 2 is not in its critical
region), and AG(TRYI + AF CSI) which states that
process 1 does not starve (whenever it is in its trying
region, it eventually enters its critical region).

In this paper, we focus on the automation of tempo
ral reasoning using a decision procedure for the follow-
ing problems:
l testing satisfiability: Given a formula p, does there
exist a structure M and a state s of M such that M, s +

167

p (i.e., so that M is a mode.lof p)? This has applications
to mechanical program synthesis (cf. [EC82], [MW84]).

testing validity: given. a formula p, is it the case
Ihat in all structures M and all states s of h4, M, s b
p (so p is “universally valid”). This has applications
to mechanical program verification as explained below.
Note that p is valid iff -p is not satisfiable. So, if the
logic is closed under negation, validity is reducible to
satisfiability.

A particularly important special case of the problem
of testing validity is: Given assertions ~1, . . . , pk a.nd q,
is the inference (p1 A. . .Apk) j q valid? This problem is
useful in providing mechanical support for program ver-
ification, which might otherwise be performed by hand
using a temporal logic deductive system. By inspection,
one would first determine that the program meets, say,
specifications pl, pz, and ps. Then one would prove,
using the deductive syste:m, that p4 holds. In gen-
eral, one would prove from the antecedent assertions
Pl,...,Pk already established that the assertion pk+l
follows. This inference step amounts to showing that
(Pl A * - - A pk) + pk+i is valid. Thus each step could
be automated using a decision procedure for validity,
but the complexity for each step would, for most extant
systems of logic, be exponential in the size of the asser-
tions. However, if the assertions are in an appropriately
restricted syntax (such as the one detailed below), we
can show that the validity of each inference step can
be done in small polynomial time. We may note, par-
enthetically, that: (a) our polynomial time algorithms
for the validity of inference problem may be viewed as
a mechanization (and a considerable generalization) of
the informal proof lattice methodology in [OL82] and
[MP82]; note that the proof lattices resemble the tran-
sition diagrams of tree automata (cf. [Em85]), and
(b) this method can be applied even to infinite state pro-
grams (in some cases, by using an appropriate first order
language to define monadic predicates corresponding to
atomic propositions).

For problems such as mechanical synthesis and ver-
ification, the deterministic exponential time complete
decision procedure for determining the satisfiability of
a CTL formula is a serious handicap. One tractable
system of logic that suffices to express such problems
is SCTL (Simplified CTL). But as SCTL is a variant
of another logic, NESCTL (Non Euclidean SCTL), we
first state the syntax and semantics of NESCTL formu-
lae.

Let C be a finite alphabet of atomic propositions, P,

Q , . . ., which are assumed to be exhaustive and mutu-
ally exclusive. The syntax is restricted to allow only
conjunctions of the following five types of assertions (a,
pi, 7, d and 0 are subsets of C; Va denotes the disjunc-
tion of the propositions in a):

1. VB, the initial assertions,

2.

3.

4.

5.

AG(VG), the invariance assertions,

AG(P 3 AX(Va) A (AiEXVpi)), where i ranges
over a finite, possibly empty, index set, the suc-
cessor assertions; AX(Vcr) is called the universal
conjunct and EX(VPi), an existential conjunct,

AG(P 3 AF(v7)), the leads-to assertions; the
sub-formula AF(v7) is called an eventuality, and

AG(P + A((V0) U (Vy))), the ensures assertions;
the sub-formula A((V0) U (V7)) is called an assur-
axe.

Note that the two CTL formulae cited above as exam-
ples conform to this restricted syntax. For simplicity of
exposition, we shall refer to the antecedent and the con-
sequent of implications of assertions as the antecedent
and the consequent respectively of the assertion itself.

As NESCTL formulae are also CTL formulae, their
semantics is defined as it is for CTL formulae, with
one proviso: NESCTL formulae are interpreted over
only those structures whose labellings assign exactly one
proposition to each state of the structure. Hence, the
atomic propositions of C are termed mutually exclusive
and exhaustive. Ae usual, a structure M ia said to be
a model of an NESCTL formula f iff f is true at some
state of M. It is apparent that if f is true at state s
of a model, the non-initial conjunct6 off are true at all
states of the model reachable from s.

In the sequel, we adopt two simplifying notational
conventions. First, as C is exhaustive, the leads-to as-
sertion AG(P =+ AF(V7)) is equivalent to the ensures
assertion AG(P =+ A((VC) iJ (V7))); hence, we shall as-
sume that formulae have only ensures assertions. Leads-
to assertions can be handled likewise. Secondly, since
any NESCTL formula is a conjunction of the above five
kinds of assertions, we associate with each NESCTL
formula f, a set that has f’s conjuncts as its elements.
So any set of assertions of the above five kinds, say, .T,
corresponds to the NESCTL formula obtained by con-
joining its elements; we denote this formula by AF.

The reason for choosing the atomic propositions in C
to be mutually exclusive and exhaustive is to help fac-
tor out the propositional aspects of the reasoning from
the temporal aspects. This is essential because with n
“ordinary, overlapping” propositions 9, P2, . . . , P,, we
have 2” different subsets of propositions which could
be true at a state, all of which must be considered by
the decision procedure. Despite this simplification, and
NESCTL’s restricted syntax, a decision procedure for
testing satisfiability of an NESCTL formula would still
be exponential; the intuition for this (explained more
fully in the next section) is that, while it is no longer
required to consider sets of atomic propositions that
could be true at a state of a structure, it may be neces-
sary to consider different sets of assurances that must

be fulfilled at different states of the structure labelled
with the same atomic proposition.

So, we define the logic SCTL. Like all NESCTL
formulae, SCTL formulae are also conjunctions of the
above five kinds of assertions, but with an additional
restriction which we shall state in terms of the sets of
assertions that correspond to SCTL formulae. A for-
mula f is an SCTL formula iff the associated set 3 of
f’s conjuncts is a set of SCTL assertions. A set 3 of
assertions of the types l-5 above is a set of SCTL as-
sertions ifT (u) for every proposition P in C, 3 has at
least one successor assertion whose antecedent is P, and
(b) 3 satisfies the euclidean syntactic constraint: for ev-
ery ensures assertion AG(P =B A((VB) U (Vy))) in 3,
either P is in 7, or for every proposition Q E (e \ 7)
that is also in the sets Q of the universal conjuncts of
all successor assertions of which P is the antecedent, the
ensures assertion AG(Q + A((VB) U (Vy))) is in 3.

The first restriction, that of requiring every atomic
proposition P to have a successor assertion, is not crit-
ical as the assertion AG(P =+ AX(VC)) is implicit in
any set of assertions (because C is exhaustive). The
euclidean syntactic constraint, however, is crucial: it
allows the pending assurances to be recovered from an
atomic proposition alone. This restriction together with
SCTL’s restricted syntax-the mutually exclusive and
exhaustive set of propositions from which formulae are
built, the limited nesting of modalities within each as-
sertion plus the fact that all non-initial assertions hold
globally everywhere-make a polynomial time decision
procedure for testing satisfiability possible as demon-
strated in the next section.

We conclude this section with a definition and a tech-
nical lemma (analogous versions of which can be stated
for all NESCTL formulae). A set G of SCTL assertions
is said to be in canonical form iff:

(9

(ii)

it has precisely one initial and one invariance as-
sertion, and

every proposition Q in C is the antecedent of pre-
cisely one successor assertion. This successor as-
sertion must have at least one existential conjunct
and each set pi of each existential conjunct should
be a subset of the set cy that appears in the uni-
versal conjunct.

Lemma 1 For each set 3 of SCTL assertions, there
exists a set g of SCTL assertions in canonical form such
that l\E is equivalent to ~3, i.e., for every structure M
and state s of M, M, s b r\G iff M,s k l\T. Moreover,
6 can be computed from 3 in time linear in the length
of A3.

Proof: Given 3, the set Q can be computed as follows.
The invariance assertions AG(V61) and AG(V62) are

replaced by AG V (61 t-162) and the assertion AG(VC)
is added if there are no invariance assertions-this is
justified because C is exhaustive. Similarly, the initial
assertions V& and V&J are replaced by V(81flb$) and the
assertion Vc is added if there are no initial assertions
in 3.

Note that, for each proposition & in Z, 3 has
one successor assertion with Q as its antecedent (by
the definition of SCTL formulae). To obtain precisely
one such successor assertion in the set 0, the succes-
sor assertions AG(Q =+ AX(VQ) A (Ai EXV&)) and
AG(Q j AX(Vcr’) A (Aj EXVP;)) in 3 are replaced by
AG(Q * AX V (CY f~ a’) A (Ai EXVpi) A (Aj EXV$)).
To ensure that each successor assertion has at least one
existential conjunct, an assertion of the form AG(Q j
AX(Va)) is replaced by AG(Q + AX(Va) AEX(VCY));
this is justified because every state of a structure must
have a successor state. Finally, when there is only one
successor assertion with Q as the antecedent, each set
pi (of the ith existential conjunct in the assertion) is
replaced by a n pi where a appears in the universal
conjunct of the assertion.

The resulting transformed set is B; note that the
leads-to and ensurea assertions of 3 are in G without
modification and that Q satisfies the euclidean syntactic
constraint if 3 does. It is easily seen that ACif and AF
are equivalent and that Q can be obtained from 3 in
time linear in the length of A3. 0

3 Testing Satisfiability in SCTL

This section outlines an algorithm to decide the satis-
fiability problem for SCTL, which is: Given a set C of
mutually exclusive and exhaustive atomic propositions
and a set 3 of SCTL assertions over C, does there exist
a structure M and a state s in M such that M, s b AT,
i.e., such that M is a model of /\T?

Without loss of generality, we assume that the set
3 is in canonical form. The first step in checking the
satisfiability of ~3 is constructing a tableau called the
next time tableau out of the successor assertions in 3.
The initial next time tableau, TO, is a bipartite directed
graph whose vertex set is partitioned into the sets of
AND and OR nodes. T’ has one AND node for each
atomic proposition. We identify each AND node with
its proposition (so we might say “a state of a structure is
labelled with an AND node” to mean that it is labelled
with the corresponding atomic propcxsition). Consider
the successor assertion AG(Q =+ AX(Va)h(& EXV&))
in 3. Q has one OR node successor for each conjunct
EX(Va). The OR node corresponding to the ith ex-
istential conjunct has as its successors the AND nodes
which are elements of pi- Any AND node that occurs
in the initial assertion of A3 is termed an initial node

169

of the tableau. The AND nodes are labelled with the
assurances of which they are the antecedents in the en-
sures assertions of 3.

TQ accounts for the constraints imposed by successor
assertions in 3 on potential models of A3. Of course,
only its AND nodes may label states of structures, and
so, the OR nodes in it ma-y appear superfluous. The
intuitive meaning of an OR node is as follows. If the
non-initial assertions of 3 are true at a state s labelled
with P in a structure A4 (a9 they must be if M,t /=
h3 and s is reachable from t), then s must have one
successor r, for each OR nocde successor u of P in To and
rU must be labelled with some AND node successor of u
in TO. Note that though s could have successors labelled
with other atomic propositions (e.g., those that appear
in the set a of the universal conjunct of the successor
assertion with antecedent I’), it is not required to have
such successors, and, as the decision procedure has to
determine only the satisfiability of ~3, it can exclude
such models from its candidate models of AT. For this
reason, there are no OR nodes in To that represent the
universal conjuncts of successor assertions.

An important property d the tableau To, which fol-
lows from the fact that 3 satisfies the euclidean syntac-
tic constraint, is captured by the following lemma:

Lemma 2 If there is a path p from the AND node Q
to the AND node R in 2he tableau To, the assurance

NW U WY)) 1s in the label of Q, and all AND nodes
in p are in (0 \ r), then A((V0) U (V7)) is also in the
label of R.

Example 1 Let C = {P, Q, R, S, T, V, W} and 3 have
the assertions shown in Fig. 1. For clarity, leads-to as-
sertions are shown as such rather than as ensures as-
sertions. Note that 3 fulfills the euclidean syntactic
constraint and is in canonical form. The tableau con-
structed from 3 is shown in Fig. 2. AND nodes are
shown as boxes and OR nodes as circles. As the assur-
ances labelling the AND nodes can be inferred from the
set of assertions, they are not shown in the figure. q

The next step is to prune TO to delete inconsistent
nodes. The procedure repeatedly attempts to delete
nodes and edges in the current tableau that cannot oc-
cur in any model of A3. There are four deletion rules in
all, the first two of which are applied only once, at the
start, to the initial next time tableau. First, AND nodes
which do not occur in the :invariance assertion of 3 are
deleted: this assertion cannot be true at any state of any
structure labelled with suc:h an AND node. Secondly, if
the AND node P has the assurance A((VB) U (Vy)) in
its label and P is not in dUOy, P is deleted. Also, if P has

4w u (VY)) in its label, P E (e\-y), and u is an OR
node successor of P, the edge from u to any AND node

Q that is not an element of #U-y is deleted (for if Q were
to label a state succeeding one labelled P in some struc-
ture, the ensures assertion AG(P + A((V8) U (Vy)))
would be false at the latter state). Note that this is the
only deletion rule that removes edges of the tableau,
and it only removes edges from OR to AND nodes,

Now, the following two deletion rules are repeatedly
applied. First, any AND node, some one of whose suc-
cessors in To has been deleted, or any OR node with
no successors, is deleted. Secondly, for every assurance

AtWe) u (V7)) in the label of an AND node Q, the
tableau must contain a DAG (directed acyclic graph)
rooted at Q, fulfilling this assurance. The DAG may
have at most one copy of any node in the tableau and
Q must be the only node without a predecessor in the
DAG (i.e., its only root). Any interior AND node in the
DAG must be in (0\7) and have as its successors all its
successors in the tableau, and every frontier node of the
DAG must be an AND node that’s an element of 7. If,
for some assurance in its label, an AND node does not
have a DAG rooted at it which fulfills that assurance,
it is deleted. The pruning procedure terminates either
by deleting all the initiai nodes, in which case A3 is
unsatisfiable, or leaves a tableau from which no more
nodes or edges can be deleted by the above rules; such
a tableau can be unwound to a model of A3.

Example 2 The pruning procedure applied to the
tableau of Fig. 2 deletes Q, as it does not occur in the
invariance assertion, and S, aa the tableau does not
have a DAG fulfilling AF R rooted at S (as P must
be a successor of the OR node between S and P, and
S, a successor of the OR node between P and S). The
deletion of S causes the deletion of its only OR node
predecessor, and, hence, the deletion of P. No other
nodes can be deleted: there are DAGs rooted at each of
R, T, and V fulfilling AF(Q V V) and AF R and one
rooted at W fulfilling AF R. Since the pruned tableau
(shown in Fig. 3) contains an initial node (W), A3 is
satisfiable. In fact, a model for A3 (Fig. 4) is contained
in pruned tableau as each OR node in it has a single
successor.

If the assertions in {AG(w a AF P) 1 II E {R,T, V}}
were added to 3, the new set of assertions would not
be satisfiable as T would be deleted (P is not reachable
from T, so there is no DAG fulfilling AF P rooted at
T), causing the initial node W to be deleted. Similarly,
if the initial assertion in 3 were changed to P V Q V S,
the new set of assertions is unsatisfiable aa all of P, Q
and S are deleted. q

The following proposition is proved in the full paper:

Proposition 1 The above pruning procedure decides
the satisfiability of its input, A3, correc2ly. Specifically,

170

if it deletes an AND node P from the initial nezt time
tableau constructed from 3, then for any structure M
and state s of M labelled with P, some non-initial asser-
tion of 3 is false at 8. Conversely, if P is an AND node
in the pruned tableau, there is a structure M (which, if
the pruned tableau has an initial node, is also a model
of ~3) that has a state s labelled with P at which all
non-initial assertions of 3 are true. Thus A3 has a
model ifl the pruned tableau contains an initial node.
Moreover, the pruning procedure can be implemented to
run in time quadnztic in the length of A3.

Theorem 1 SCTL satisfiability is in deterministic
time O(n2). It is also P-hard.

Proofi Converting 3 to canonical form and building a
tableau for it can be done in time linear in the length of
A3. An implementation of the pruning procedure that
runs in time quadratic in the length of the canonical
form of A3 will be described in the full paper in the
proof of Proposition 1. The proof of p-hardness will be
presented in the full paper. q

We conclude this section with a summary of the fac-
tors involved in getting a polynomial sized tableau for
SCTL (and, hence, a polynomial time decision proce-
dure for its satisfiability problem). First, the syntax
of the SCTL’s initial, invariance, and successor asser-
tions over the (mutually exclusive and exhaustive) al-
phabet C ensures that the tableau built for an SCTL
formula, called the next time tableau, is of size lin-
ear in the length of the formula. Here we have suc-
cessfully factored out the propositional reasoning from
the temporal reasoning. We must now account for the
assurances. Viewed automata-theoretically, the ordi-
nary tableau is the product of the local automaton (the
next time tableau) with the global automaton, which is
itself the product of the two-state automata for each
assurance. The two-state automaton for the assur-
ance A(P U Q), say, has one state corresponding to
A(P U &) being immediately fulfilled and one state
for A(P U &) being pending. Therefore the global au-
tomaton is exponential in the number of assurances, and
the ordinary CTL tableau is of exponential size. The
exponential blow-up is due to the fact that each node
of the next time tableau must be refined into possibly
exponentially many nodes in the global tableau, corre-
sponding to the different sets of assurances that are re-
quired to be fulfilled there. Different sets of assurances
are required because the set of assurances depends on
the path followed to get to the node in the next time
tableau. But by the euclidean syntactic constraint on
SCTL, there is a unique set of assurances that needs
to be fulfilled at each node of the next time tableau:
this set is determined by the (unique) proposition la-
belling the node. Hence, the next time tableau suffices
for SCTL’s decision procedure for satisfiability.

4 Testing Validity of Inference in
SCTL

The validity of inference problem for SCTL is as follows.
Let A be a set of SCTL assertions composed from the
set C of atomic propositions. Let C be a set of ensures
assertions built from C such that the set A U C is also
a set of SCTL assertions (specifkally, it also satisfies
the euclidean syntactic constraint). Then, it is required
to determine whether (AA j AC) is valid, i.e., whether
AC (and, hence, A(AUC)) is true at every state of every
structure at which AA is true.

An algorithm to decide the validity of inference prob-
lem is outlined in this section. We assume that the en-
sures assertions in C are not in A, and that for each
ensures assertion AG(P + A((V0) U (V7))) in C, P
is not in 7 (else, such assertions can be dropped from
C as the inference of such assertions is trivially valid).
We also assume, without loss of generality, that A is in
canonical form. First, the next time tableau for AA is
built and pruned-let this pruned tableau be TA and let
the subgraph of the pruned tableau induced by nodes
reachable from some initial node in it be TL. The next
time tableau for A(AUC) is also constructed and pruned;
let this pruned tableau be TA”C and let the subgraph
of the pruned tableau induced by nodes reachable from
some initial node in it be Ti,,. The following lemma,
a consequence of Proposition 1, is proved in the full
paper.

Lemma 3 TA,, is a subgraph of T’,,. If it is a proper
subgraph, AA =+ AC is an invalid inference.

In the remainder of this section, we assume that
TAuc is not a proper subgraph of TA. We extend TL
to a tableau Ti, which contains T; as a subgraph, and,
additionally, has one more OR node successor for each
AND node. The additional OR node successor, call it U,
of the AND node P represents the universal conjunct
of the successor assertion of A that has P as its an-
tecedent. Its successors are the AND nodes in Ti that
are in the set a of the universal conjunct of the succes-
sor assertion and are also in v U v for those assurances

46’~) u WV)) of A in the label of P for which P $11.
Let & be the set of assurances contained in C, i.e., E

is in E iff the ensures assertion AG(P =F E) is in C for
some proposition P. For each E E E, let CE be the set
of ensures assertions in C whose consequents are E. It is
easily seen that (i) for each E E E, A UC, satisfies the
euclidean syntactic constraint (because AUC does), and
(ii) AA + AC is valid iff, for each E E E, AA j ACE is
valid. We now show how to test the validity of M +
ACE for an arbitrary assurance E = A((V6’) U (Vy)) in
C in time linear in the size of T;‘.

First, some notation and definitions. Let B be any
assurance in A U CE. Let Hz (HFE respectively) be

171

the set of AND nodez P in T’ such that the ensures
assertion AG(P + B) is in A (CE respectively). Note
that H2 is merely the set of vertices in T’ that the
assurance B labels. Also, note that HFE = 8 unless
B is the assurance E, and that Hz and H& are dis-
joint because ensures assertions in C that were also in
sl were deleted from C. Consider any infinite path p
in the extended tableau T:[. We say that p fulfills all
assurances of A that it makes iff, for each assurance

B = 4W u (VT))) in d, each time p goes through
a vertex, say P, in H$ it subsequently goes through
some AND node & E 7, and every AND node be-
tween P and & on p is in (v \ q). Also, the assurance
E = A((VB) U (V-y)) in CE is said to be made along p,
but remains unfulfilled forever aIongp iRp goes through
a vertex, say P, in H$, and all subsequent AND nodes
that it goes through are in (19 \ 7).

In the full paper, we prove the following proposition
that relates the extended tableau Ti to possible models
of Ad:

Proposition 2 If there is an infinite pdh p starting
from some initial node in the extended tableau Tz that
fulfills all assurances of A that it makes, there is a model
M of Ad that contains (I path r that starts at a state
of M at which Ad is true and such that the sequence
of propositions labelling its states is the same as the
sequence of AND nodes in p. Conversely, let M be any
structure, and, s, any of its states at which hA is true.
For any infinite path P in M starting at s, there is a path
p in T$ such that the sequence of AND nodes along p is
the same as that of the propositions labelling the states
of r, and all assurances of A made along p are fulfilled

by P.

Consider infinite paths p in T; with the following
property:

We shall call such paths “bad” paths. From Proposi-

p starts at an initial node of Ti and fulfills all
assurances in A that it makes; however, the
assurance E in CE, A((V8) U (Vy)), is made
along p and remains unfulfilled forever along

P-

tion 2, there is a correspondence between infinite paths
that start at an initial node of T$ and fulfill all assur-
ances of A that they make, and infinite paths in a struc-
ture that start at a state at which Ad is true; hence,
we have:

Lemma 4 Ad + ACE is valid iff T$ does not contain
a bad path.

Consider the subgraph of T$, call it T, that is in-
duced by AND nodes in H& and those OR nodes whose

predecessors is one of these AND nodes. Note that none
of the AND nodes in T is in 7 U Hz (because assertions
in C that could have caused this were dropped from C).
Using Proposition 2 and the fact that AU CJJ satisfies
the euclidean syntactic constraint, we prove in the full
paper:

Lemma 5 T$ has a bad path iff T has a strongly con-
nected component that has more than one vertex and
such that, for all assurances A((Vv) U (Vq)) of A that
occur in the labels of vertices of the component, an ele-
ment of q is a vertex in the component.

Hence, the problem reduces to determining if there
exists a strongly connected component of T with more
than one vertex that is “self-fulfilling”, i.e., for each
assurance A((VV) U (Vq)) of A labelling some one of
its vertices, some, and, hence, all, vertices in it satisfy
EF(V9); the inference Ad + ACE is invalid if there is,
and, otherwise, it is valid. So we have:

Theorem 2 The validity of inference problem for
SCTL is solvable in deterministic time O(n2). It is also
P-hard.

Proof: Clearly, TA and TALC can be constructed and
pruned in time quadratic in the lengths of Ad and A(dU
C) respectively. Ti and TL,, can be constructed from
TA and TA”C in time linear in the sizes of TA and TA”C
respectively and can be checked for equality in time
linear in their sizes. Ti can be constructed from Ti in
time linear in the length of Ad. For each assurance in C,
the subgraph T of Ti described above can be extracted
from T$ in time linear in the size of T:. Finally, the
strongly connected components of T can be computed
in time linear in the size of T, and all of them which
have more than one vertex can be checked for the self-
fulfilling property in time proportional to the size of T.
Since there are no more assurances in C than the length
of AC, it follows that the complexity of the decision
procedure is O(n’). The proof of P-hardness will be
presented in the full paper. cl

Example 3 If the set ,4 of antecedents contains the
assertions in Fig. 1, and the set C of consequences is
{AG(u =$ AFT) 1 u E {R, V}), A(dUC) is unsatisfiable
as all nodes of the tableau of Fig. 3 (which is the pruned
tableau of Ad) are deleted (because there is no DAG
satisfying AF T rooted at V or R). So the inference
Ad j AC is not valid. On the other hand, if the set C of
consequences is {AG(u =k AF V) 1 u E {R, T, W}}, the
pruned tableau (and the subgraph of states reachable
from the initial state) of A(d U C) is the same as that
of Ad (Fig. 3) and, by inspection, does not contain
an infinite path along which the eventuality AF V is
pending forever because every infinite path in it goes
through V infinitely often. Hence the inference is valid.

q

172

5 Handling Compositional Assertions

SCTL, as developed, allows the expression of assertions
that a concurrent system must satisfy. In practice, as-
sertions are expressed compositionally, i.e., in terms of
the processes of the concurrent system. We outline the
kinds of assertions processes are permitted and show
how to convert them to SCTL assertions for the concur-
rent system, using interleaving to model parallelism. In
particular, we show that if processes satisfy a condition
we term history-freedom, the SCTL assertions automat-
ically satisfy the euclidean syntactic constraint. In the
full paper, we shall demonstrate how the satisfiability
and validity of inference procedures for SCTL can be ap-
plied to two practical problems. (Remark: We do not
express fairness conditions here, but our techniques can
be extended to do so using those developed in [CVWSS]
and [EL861 .)

5.1 Process Assertions

Each process is specified by a set of temporal assertions
that express the invariants the process satisfies and the
state transitions of the process’ flow graph. The in-
terpretation of states and transitions in the flow graph
may vary depending on the application. For the synthe-
sis problem, for example, the flow graph represents the
process’ synchronization skeleton, each state of which
models a terminating computation, and the transitions
of which represent permitted sequences of terminating
computations. In this case, the process assertions serve
as specifications. For the validity of inference problem,
the states may take on their traditional meaning of a
process’ state and the assertions express known facts
about the program being verified.

The assertions of process i arc composed from a set
Ci of atomic propositions, which has one proposition
for each state in process i’s flow graph; intuitively, this
proposition holds when process i is in that state. Hence,
the propositions of Ci may justifiably be assumed to be
exhaustive and mutually exclusive. The assertions of
process i must have the restricted syntax of one of the
following types:

A.

B.

C.

Q, where & E Ci. This specifies process i’s initial
state. There must be exactly one assertion of this
kind for each process. We assume that all states
in the process’ flow graph arc reachable from its
initial state.

AG(Q + AF(V7)), where Q E Ci and 7 C Ci.
This asserts that whenever process i visits state
Q, it incurs an obligation to visit some state of 7
in the future.

AG(Q a A((V0) U (VT))), where & E 8, 0 C_ Ci
and 7 C Ujiri Cj . Every other element of 0 should

D.

E.

also have an ensures assertion with the same ss-
surance as the consequent and with it as the an-
tecedent. This collection of assertions forces pro-
cess i to remain in the states of 6 until one of the
other processes has moved to a desired state (the
states in 7); hence, synchronizations among pro-
cesses can be expressed.

AG(Q 3 AXi A (AEXiP)), where Q E Ci,

p C cx c Ci, and EXiP 2’ {EXi b 1 b E p). Ex-
actly one assertion of this kind is required for each
antecedent Q E Ci. AXif means “f holds at the
next instant of time along all those paths starting
with a transition of process i” and EXif means
“there is an immediate successor at which f holds
reachable by one step of process 2’. This assertion
specifies the successors of state Q: process i picks
a successor from Q, and, each time it is in state Q,
it can move to any state of p irrespective of the
states of other processes. Note that the set /3 and,
hence, EXip, could be empty.

AG(Q * Vifi(EXiQ)), where Q E Ci. This a~-
serts that each time process i is in state Q, there
must be a successor that leaves it in state Q. (This
does not necessarily imply that process i may re-
main in state Q forever.)

Additionally, we require that every process be
history-free. A process is history-free ifF for every state
s of the process and every path p from its initial state to
s, the set of eventualities incurred along p but which re-
main unfulf-dled at s is the same, irrespective of the path
p. The concept of history-freedom for non-terminating
processes is merely an extension of the concept of a state
of classical terminating processes. The current state of
a terminating process completely determines its set of
possible behaviours. For non-terminating processes, the
behaviour is additionally restricted by the set of even-
tualities it is obliged to fulfill; by ensuring that this set
is ‘dependent solely on its current state, rather than on
the path followed to it, we can ensure that the set of
bchaviours of a history-free process is completely de-
termined by the state it is in, just as for terminating
processes.

If a process is history-free, a canonical set of ssser-
tions, in which each unfuhllled eventuality at each state
of the process appears in a leads-to assertion with the
state as the antecedent and the eventuality as the con-
sequent, can be computed as is shown in the proof (pre-
sented in the full paper) of the following theorem; we
shall call such an augmented set of assertions a complete
set. In the sequel, we shall assume that each process is
specified completely in this manner.

Theorem 3 Given a set of process assertions of the
hinds A-E above, determining if it is history-free is in
deterministic time O(n’).

173

Example 4 Consider the classical two process mutual
exclusion problem. The synchronization skeletons of the
processes are shown in Fig. 5. The letters N, 2’ and
C are mnemonics for ‘non-critical region”, “trying re-
gion”, and “critical region” respectively. The subscripts
indicate the process numbers. The specifications on pro
cess i are:

1. Ni, the initial state.

2. AG(Ni 3 AXi x A EXi x). Whenever process i
moves out of its non-critical region, it moves into
its trying region and it can always do so irrespec-
tive of the state of the other process.

3. AG(Ti * AXi Ci). Whenever process i moves out
of its trying region, it transits to its critical region.

4. AG(Ci 3 AXi Ni AEXi Ni). Process i can always
move into its non-critical region from its critical
region irrespective of the state of the other process.

5. AG(Ti =s- AF Ci). Process i will eventually get to
its critical region if it visits its trying region.

6. AG(Ni + EXj Ni), where j = 2 if i = 1 and 1
otherwise. Whenever process i is in its non-critical
region, there is a successor state in which process
j has moved.

Note that both processes are history-free: the only un-
fulfilled eventuality is AF Ci in state Ti and it is unful-
filled each time process i is in state Tie Hence the above
sets of specifications are complete. 0

It is evident from the above example that if the flow
graph of a process is tree-shaped (with the root being
the initial state and the only cycles being caused by
edges from the “leaves” to the root) and all eventuali-
ties incurred at each node are fulfilled along each path
from that node to a leaf, the process is history-free. A
surprisingly large class of processes that are “interest-
ing,’ in practice satisfy this sufficiency condition.

5.2 System Assertions

In addition to process assertions, it is often necessary
to ensure that the system1 as a whole satisfies certain
safety properties. For example, in the mutual exclusion
problem, both processes should not be allowed to enter
their critical regions at the same time. So we allow
assertions of the kind:

F. AG(l(Q1 A Qx A . . I, A Q,,,)), where each Qi c

UFcl Cj and at most one of the Qi’s is in any one
Cj,

For example, AG(-(Cl A C-J)) expresses mutual exclu-
sion of two processes.

5.3 Converting Compositional Assertions to
Global Ones

Finally, we show how to convert the compositional as-
sertions to assertions for the concurrent system. We do
so using the mutual exclusion example here; in the full
paper, we give an algorithm to do this. However, the
main properties of the conversion are expressed in the
following theorem which is also proved in the full paper:

Theorem 4 For any fixed set of k history-free pro-
cesses whose assertions are complete and of the types
A-F above, the set of equivalent global assertions (using
interleaving of process transitions to model parallelism)
for the entire concurrent system is a set of SCTL as-
sertions (specifically, it satisfies the euclidean syntactic
constraint). Moreover, the global assertions can be com-
puted in time polynomial in the length of the process as-
sertions, with the degree of the polynomial being linear
in k.

Example 5 Consider again the two process mutual ex-
clusion problem presented in the previous example. The
set C of atomic propositions for the global system is
{JhNz, NlT2, NlG, TlNz,TlTz,ZG, ClN2, Cl%, GG
Intuitively, the proposition NlT2, say, is true when pro-
cess 1 is in state Ni and process 2 is in state T2, and
similarly for the other propositions. The global asser-
tions are displayed in Fig. 6. The initial state assertion
is got from the process initial state assertions, and the
invariance assertion is obtained from Z and the sys-
tem assertions. The eventualities are obtained in the
obvious fashion: if process 1 is in Tl, irrespective of
the state of process 2, it should be possible for it to
get to Ci and process 2 can be in any state then. Fi-
nally, each successor assertion of a k-process concurrent
system has (k + 2) components. Let process i be in
state Pi when the concurrent system is in state R, and
let the successor assertion of process i for state Pi be
AG(Pi 3 AXi(Vai) A (AEXi&)). Consider the SUC-

cessor assertion of the concurrent system for state R.
Its y component is obtained by allowing one process to
move at a time: the states to which process i may move
are those in oi excluding those states it is forbidden to
move to because of assertions of type C of which Pi is
the antecedent. If there is no assertion of type E with
Pi as antecedent, 0i is just r. Otherwise, the 0i com-
ponent ensures process i can remain in state Pi, so it
has each state in 7 in which process i is in state Pi.
The 6 component accounts for the A(EXi@i) conjuncts
in the successor assertions of processes: it ensures that
process i can move to any state specified in pi irrespec-
tive of the states of the other processes. Note that, as

before, EX b dsf {EX d 1 d E 6). 0

174

5.4 Applications to Program Synthesis and
Program Verification

In the full paper, we shall complete the example of the
synthesis of the two process mutual exclusion problem
presented above. (The remaining steps are similar to
the procedure used in [EC82].) For now, it follows from
the above that the fragment of CTL actually used in
[EC821 to synthesize solutions to synchronization prob-
lems involving 2 processes is in time 0(n4). In gen-
eral, for any fixed number Ic of processes, it is in time
O(n2k). So it is feasible to use this method for small,
fixed k. For a way to overcome the exponential blow-up
in the number of processes incurred by the state exple
sion problem, see [AE89].

We shall also illustrate how the validity of inference
problem can be used to verify concurrent programs, us-
ing the example program from [OL82] which implements
mutual exclusion of two processes by allowing one pro-
cess to have priority over the other. To do this, we
use the linear fime version of SCTL so that the algo-
rithm may consider only the process-fair execution se-
quences, and show that all such execution sequences
satisfy the two livenesa properties proved for this exam-
ple in [OL82].

Appendix: CTL Syntax and Semantics

Let C be an underlying alphabet of atomic propositions
P, &, etc. The set of CTL (Computation Tree Logic)
formulae is generated by the following rules:

Sl. Each atomic proposition P is a formula.

S2. If p, q are formulae then so are p A q and up.

S3. Iafpd y;; formulae then so are A(p W q), E(p W q),
.

A formula of CTL is interpreted with respect to a
structure M = (S, R, L) where S is a set of states, R is
a binary relation on S that is total (so each state has at
least one successor), and L is a labelling which assigns to
each state a set of atomic propositions, those intended
to be true at the state. A fullpath 2 = SO, ~1, ~2, . . . in M
is an infinite sequence of states such that (si, si+l) E R
for each i. We write M, s b p to mean that “formulap is
true at state s in structure M” . When h4 is understood,
we write only s b p. We define b by induction on
formula structure:

Sl. SO k P iff P ia an element of L(Q).

S2. SO k p A q iff SO + p and SO b q.
so + yp iff it is not the case that so /= p.

S3. so /= A(p U q) iff for all fullpaths so, ~1, ~2, . . . in
M,3izOsuchthatsi+qandVj,O< j<i,sj +

P-
so~$?(pUq)iRforsomefullpathso,s~,s~,...in
M,ZIizOsuchthatsi bqandVj,Os j<i,sj b

P-
so + EXp iff there exists an R-successor t of so
such that t /= p.

The formulae p and q are said to be equivalent iff they
are both true or both false at all states of all structures.

The other propositional connectives are defined as
abbreviations in the usual way. The other basic modal-
ities of CTL are also defined as abbreviations: AFq ab-
breviates A(true U q), EFq abbreviates E(true U q),
AGq abbreviates -EF-q, EGq abbreviates -AF-q,
and AXq abbreviates 4X-q.

Acknowledgement & Hibtorical Remarks: This
paper had been germinating for many years. When
we saw the proof lattices in [OL82], and the closely
related proof diagrams used by Manna & Pnueli (cf.
[MP82], [MP83]), it was obvious to us that there was
an efficient decision procedure implicit in their informal
proof methods. These lattices resembled the tableau
used in the CTL decision procedure of @ZmSl], [EC82],
and [EH82]. In the mid 1980’s, we gave a talk at MCC
on the synthesis method where Mike Evangelist gave the
most forceful arguments we had ever heard against the
utility of exponential time decision procedures such as
the one used for CTL. Yet, we knew that the synthesis
method based on the CTL decision procedure worked
efficiently in practice. This started us thinking.

References

[Ab80]

[AE89]

[BHP~~]

[CVWSS]

[Em8 l]

Abrahamson, K., Decidability and Expres-
siveness of Logics of Processes, Ph.D. Thesis,
Univ. of Washington, 1980.

Attie, P.C., E.A. Emerson, Synthesis of Con-
current Systems With Many Similar Sequen-
tial Processes, appears in this conference
proceedings, 1989.

Ben-Ari, M., J.Y. Halpern, A. Pnueli, Finite
Models for Deterministic Propositional Dy-
namic Logic, Proc. 8th Annual International
Colloquium on Automata, Languages and
Programming, LNCS# 115 Springer-Verlag,
pp. 249-263, 1981.

Courcoubetis C., M.Y. Vardi, P. Wolper,
Reasoning about Fair Concurrent Programs,
Proc. of the 18th Annual ACM Symp. on
Theory of Computing, Berkeley, pp. 283-
294, 1986.

Emerson, E.A., Branching Time Temporal
Logic and the Design of Correct Concurrent

175

[Em851

[Em881

[EC821

[EH82]

[EJ88]

[EL851

[EL861

[ES841

[ES871

[FL791

[HV86]

[MP82]

Programs, Ph.D. Thesis, Harvard Univer-
sity, 1981.

Emerson, E.A., Automata, Tableaux, and
Temporal Log&, Proc. Conf. on Logics
of Programs, Brooklyn, R. Parikh, editor,
Springer-LNCS#193, pp. 79-88, 1985.

Emerson, E.A., ‘Temporal and Modal Logic,
manuscript, to appear in the Handbook
of Theoretical Computer Science, J. van
Leeuwen, editor, North-Holland.

Emerson, E.A., E.M. Clarke, Using Branch-
ing Time Logic to Synthesize Synchroniza-
tion Skeletons, Science of Computer Pro-
gramming, vol. 2, pp. 241-266, 1982.

Emerson, E.A., J.Y. Halpern, Decision Pro-
cedures and Expressiveness in the Temporal
Logic of Branching Time, Proc. of the 14th
Annual ACM Symp. on Theory of Comput-
ing, San Francisco, pp. 169-180, 1982.

Emerson, E.A., C.S. Jutla, The Complexity
of Tree Automata and Logics of Programs,
29th Annual Symp. on Foundations of Com-
puter Science, White Plains, pp. 328-337,
1988.

Emerson, E-A., C.L. Lei, Modalities for
Model Checking: Branching Time Logic
Strikes Back, Proc. 12th Annual ACM
Symp. on Principles of Progr amming Lan-
guages, New Orleans, pp. 84-96, 1985.

Emerson, E.A., CL. Lei, Temporal Reason-
ing under Generalized Fairness Constraints,
3rd Annual Symp. on Theoretical Aspects
of Computer Science, LNCS#210, Springer-
Verlag, pp. 21-36, 1986.

Emerson, E.A., A.P. S&la, Deciding Full
Branching Time Logic, Information and
Control, vol. 61, no. 3, pp. 175-201, 1984.

Emerson, E-A., T.H. Sadler, A Temporal
Logic Decidable in Polynomial Time, unpub-
lished manuscript, Sept. 1987.

Fischer, M.J., R.E. Ladner, Propositional
Dynamic Logic of Regular Programs, Jour-
nal of Computer and System Sciences, vol.
18, pp. 194-211, 1979.

Halpern, J.Y., M. Vardi, The Complexity
of Reasoning about Knowledge and Time,
Proc. of the 18th Annual ACM Symp. on
Theory of Computing, Berkeley, pp. 304-
315, 1986.

Manna, Z., A. Pnueli, Verification of Con-
current Progra.ms: A Temporal Proof Sys-
tem, Proc. 4&h School on Advanced Pre
gramming, Amsterdam, Holland, June 1982.

[MP83]

[MW84]

[OLSZ]

[Pn77]

ba

[S t82]

w371

W851

[VW841

[VWSS]

Manna, Z., A. Pnueli, How to Cook a Proof
System for Your Pet Language, Proc. 10th
Annual ACM Symp. on Principles of Prc;c
gramming Languages, Austin, pp. 141-154,
1983.

Manna, Z., P. Wolper, Synthesis of Com-
municating Processes from Temporal Logic
Specifications, ACM Transactions on Pro-
gramming Languages and Systems, vol. 6,
no. 1, pp. 68-93, 1984.

Owicki, S., L. Lamport, Proving Liveness
Properties of Concurrent Programs, ACM
llansac tions on Programming Languages
and Systems, vol. 4, no. 3, pp. 455-495,
1982.

Pnueli, A., The Temporal Logic of Pro-
grams, 18th Annual Symp. on Foundations
of Computer Science, Providence, pp. 46-57,
1977.

Sadler, T.H., Toward an Efficient Decision
Procedure For Temporal Logics, M.S. The-
sis (completed under the supervision of
Prof. E.A. Emerson), CS Dept, UT-Austin,
Dec. 1987.

Streett, R.S., Propositional Dynamic Logic
of Looping and Converse is Elementarily De-
cidable, Information and Control, vol. 54,
pp. 121-141, 1982,

Vardi, M., Verification of Concurrent Pro
grams: The Automata-Theoretic Frame-
work, Proc. 2nd Annual Symp. on Logic
in Computer Science, Ithaca, pp. 167-178,
1987.

Vardi, M., L. Stockmeyer, Improved Upper
and Lower Bounds for Modal Logics of Pro-
grams, Proc. of the 17th Annual ACMSymp.
on Theory of Computing, Providence, pp.
240-251, 1985.

Vardi M., P. Wolper, Automata Theoretic
Techniques for Modal Logics of Programs,
Proc. of the 16th Annual ACM Symp. on
Theory of Computing, Washington D-C., pp.
446-456, 1984.

Vardi, M., P. Wolper, An Automata
Theoretic Approach to Automatic Program
Verification, Proc. Symp. on Logic in Com-
pu ter Science, Cambridge, pp. 332-345,
1986.

176

1. svw
2. AG(v{P, R, S, T, V, W})
3. AG(P=+AX(QVRVS)AEX(&VR)AEX S)
4. AG(Q + AX(R v T) A EX T)
5. AG(R+AX(TVV)hEX ThEX V)
6. AG(S =~AX(PVWVV)AEXPAEX(WVV))
7. AG(T=+AX VAEX V)
8. AG(V =+ AX R/I EX R)
9. AG(W+ AX T A EX T)

10. AG(R =s AF(Q V V))
11. AG(T aAAF(QV V))
12. AG(V e- AF(Q V V))
13. AG(S =$ AF R)
14. AG(T a AF R)
15. AG(V + AF R)
16. AG(W* AF R)
17. AG(P a AF R)
18. AG(Q a AF R)

Figure 1: Set of assertions for Example 1

T .+ w

I,

R V

Figure 2: The tableau for the assertions of Example 1 Figure 3: The pruned tableau for Example 1

Figure 4: A model for the assertions of Example 1

177

Figure 5: Synchronization skeletons for Examples 4 and 5

1. N1N2. This is the system’s initial state.

2. AG(Ra AF(ClN2VClT2 V CICZ)) for R E {TII?~,TIT~,TIC~}. P recess 1 must eventually get to its critical
region from its trying region.

3. AG(R+AF(NlC2 VTIC~VCIC~))~~~ RE {NIT~,TIT~,CIT~}. P recess 2 must eventually get to its critical
region from its trying region.

4. AG(v{N~N~,N,T~,N~C~,T~N~,T~T~,T~C~,C~N~,C~T~}). The systemmay be in any state other than CrC2.

The successor assertions have the form

AG(R =$ AX(V7) A (,A EX6) A EX(V&) A EX(VO2))

They are summarized in the following table:

Nr T2
GN2

NI C2

TlT2

GT,

T1C2

Cl c2

Figure 6: Global assertions for the mutual exclusion problem (Example 5)

178

