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Abstract 

Proofs of program correctness tend to be 
long and tedious whereas testing, though useful 
in detecting errors, usually does not guarantee 
correctness. This paper introduces a technique 
whereby test data can be used in proving program 
correctness. In addition to simplifying certifi- 
cation of correctness, this method simplifies the 
process of providing specifications for a pro- 
gram. The applicability of this technique to 
procedures, recursive programs, and modular pro- 
grams is demonstrated. 
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gram testing, modular programming, recursive pro- 
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i. Introduction 

Traditionally, certification of programs 
has been attempted by "testing" programs on 
"representative" test data. The problem with 
this kind of testing was aptly pointed out by 
Dijkstra when he stated 

Progrmn testing can be used to show 
the presence of bugs, but never to 
show their absence.t 

Recently, several attempts have been made 
to provide techniques for choosing test data 
that would allow one to make meaningful con- 
clusions about the absence of bugs in a pro- 
gram as a result of test runs. 

Much research has been done in the area 
of choosing test data that exercises ~all the 
statements or paths of a program, cf. Howden 
[1974], Miller and Melton [1975]. The chief 
weakness in these techniques is that they do not 
match the choice of test data to the specifica- 
tions for the program. Therefore, if a program 
is written which fails to examine a particular 
case, this error will not be detected using test 
data determined by the program as written. The 
type of error in which one completely forgets to 
handle some special kind of input occurs quite 
often in programming. 

tDahl, Dijkstra, and Hoare, Structured Program- 
ming, p. 6. 

A new approach entails testing programs with 
symbolic as opposed to real values. Systems to 
symbolically execute programs have been implemented 
by King [1975] and Boyer, Elspas, and Levitt 
[1975]. These systems have proven very useful in 
providing information for debugging programs. How- 
ever, it is not always clear how to use all this 
information to guarantee the "absence of bugs". 

Recently, much research has been done in the 
area of providing formal proof of program correct- 
ness. London [1975] eloquently summarizes much 
of this work, and discusses many of the problems 
involved in providing a formal proof of correct- 
ness. A substantial bibliography of work in the 
field can be found in this paper. The chief dif- 
ficulty of proving a program correct is the com- 
plexity of the process. Proving a program cor- 
rect can be extremely tedious and difficult. It 
may be easier to convince oneself that a program 
works properly on the whole input domain on the 
basis of a few test cases. Information gained 
from running a program on sample test data is very 
easy to procure. The processor for the language 
automatically gives us values of given program 
variables resulting from the input of sample test 
data. A special case in which the use of test 
data will often save us work in proving a program 
correct occurs when we are proving a program cor- 
rect using structural induction, cf. Burstall 
[1969]. The basis can always be proven by running 
the program on the basis "test data". Boyer and 
Moore [1975] also discuss how one can obtain valu- 
able information about a LISP program by running 
the program. 

The use of test data has an additional great 
advantage. Goodenough and Gerhart [197S] point 
out that a so-called "proof" of program correct- 
ness may not in fact guarantee that a program 
actually does what we want it to do. Of course, 
one may argue that in this case one did not think 
carefully enough about the specifications for the 
program's correctness. There are certain in- 
stances, however, where the specifications for a 
program are intuitively clear, yet where it is in 
fact quite easy to make a mistake in precisely 
stating these specifications. The specification 
problem is discussed in depth by Liskov and Zilles 
[1975]. In this paper, we use the example of the 
calendar. We are all quite familiar with how a 
calendar works, yet in formalizing these notions, 
it it quite easy to make errors. This is espe- 
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cially easy when specifying the behavior of a cal- 
endar at month boundaries. 

One must realize at this point that "proving" 
a program correct is only worthwhile in that the 
specifications for a program somehow provide us 
additional assurance that a program is doing what 
we want it to do, above and beyond the program it- 
self. One can always, in fact, say that a pro- 
gram is "correct" by using a program as its own 
specifications. In order that we assure ourselves 
that a program in fact behaves correctly at cer- 
tain boundary points, or anomalies, it may be 
extremely helpful to include in our specifica- 
tions the specific behavior that our program 
should obey at these points. One might then be 
able to specify how the program should behave on 
the whole input domain as a function of its speci- 
fications for this test data. 

We wish to formalize these informal tech- 
niques whereby one generalizes from specific test 
cases to a large domain. In this paper, we will 
suggest a technique whereby information gained 
from testing a program can be used in helping to 
prove program correctness. Viewed conversely, we 
might view the process of choosing test data for 
a program as being guided by a pursuit of infor- 
mation useful in helping us prove our program 
correct. 

We wish to provide techniques which will 
allow us to make statements about a large, pos- 
sibly infinite set of inputs on the basis of some 
small set of inputs. Goodenough and Gerhart 
[1975] divide the input domain into a set of 
classes, and then prove that for each of these 
classes, if some single member of this class gives 
a correct answer on testing, then every member 
of that class will produce the correct answer. 
Sintzoff [1972] also uses valuation to verify 
certain properties of programs. Henderson [1975] 
validates programs by testing its components in 
an environment provided by a finite state ma- 
chine. 

In this paper, we will divide the input do- 
main into classes in order to prove inductive 
assertions at given points in the program, rather 
than to attempt the more ambitious tasks of 
dividing the input domain into equivalence 
classes based simply on output specifications. 
We wish to execute sections of a program as 
they are being developed, rather than to go to 
great pains to find test data that will exer- 
cise all statements or paths of a program that 
has been already written. 

Note that the techniques we shall discuss 
will provide a formal means of proving program 
correctness. They might be viewed as a special 
proof technique that may be useful in many cir- 
cumstances. They will be shown to be of particu- 
lar value in large, modularized programs, cf. 
Parnas [1972]. 

Before continuing, it seems necessary to dis- 
cuss some of the things that testing in fact can- 
not accomplish.' It has often been stated that 
testing has an advantage over proving program cor- 
rectness in that it detects run-time errors, such 

as out-of-bounds array references, which could not 
be detected using proof techniques. This is mis- 
leading since one can and should show that all 
array references are in bounds as part of a proof 
of program correctness. A further argument for 
testing as opposed to proving correctness goes as 
follows. In proving program correctness, one 
might forget entirely that an array reference may 
be out of bounds. Testing the program might detect 
this error. The weakness of this approach is that 
if we are lucky enough to choose appropriate test 
data, the error will show up during the test run. 
However, the test data that we choose may not 
detect this error. It may, in fact, require a 
great deal of computation to find the particular 
test data that will cause an error. If we have 
gathered enough information to calculate test 
data that will guarantee that all references to 
arrays are in bounds, then it might have been 
easier to formally prove this property. 

The paper is divided into four sections. 
Section 2 will give the formalism that will be 
used. Section 3 illustrates the use of this model 
with examples. In Section 4, conclusions are 
drawn and suggestions are made for further re- 
s e a r c h .  

2. The Model 

We shall begin this section with the model 
that we will use to prove programs correct using 
test data. We will then provide two theorems 
that will be useful in generalizing test data 
from specific data to larger classes of data. 

In order to allow for the use of test data 
in proving program correctness, we must introduce 
the notion of distributed correctness. According 
to the model of Floyd [1967], in order to prove 
a program correct, one must show that for input 
that meets the input criteria, that after running 
the program, the output variables must satisfy the 
output predicates. We see that all the specifi- 
cations for the program are provided at the point 
of termination of execution. In order to use test 
data to its fullest advantage, we must allow the 
prover to use as data the value of any variable in 
the program at any point in the execution of the 
program. In order to check that the value of this 
variable is correct at this point, we must be able 
to set criteria that the program should obey for 
the given test data at any point in the program. 

The use of distributed correctness will buy 
us much more than allowing us to use test data to 
prove a program correct. It will in addition 
allow us to greatly reduce the size of assertions 
throughout the program. 

Now, rather than carrying a complicated predi- 
cate through the programs, until it is used in 
the output predicate, we simply carry with us the 
fact that in some given respect, the program is 
correct. One need now only show that this cor- 
rectness is maintained at any point at which we 
need to use it to prove further facts about the 
program. 

Consider for example a compiler which is 
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driven by a precedence parser. Part of the pro- 
gram consists of initializing the tables of this 
parser. An output specification for the program 
would have to have as one of the disjuncts the 
specifications for each of the entries in the 
table. It would be necessary essentially to 
repeat the part of the program that initializes 
the table• Even if there are errors in the 
table, this process is useless, since the person 
proving the program is likely to make exactly the 
same error in the specifications as in the pro- 
gram itself. We see here that we have provided 
no additional assurance that our program is cor- 
rect. Rather than stating as part of the out- 
put predicate the entries of the table, one would 
only specify as part of the output predicate that 
the tables were in fact correct. One could then 
certify that the table was correct at the point 
in the program immediately after the table had 
been created. One would then need only prove 
that the table was not changed after its creation, 
to assure that the correctness of the table was 
maintained to satisfy the output predicate. 

We now describe the assertions that we shall 
use in proving a program correct using test data. 
These assertions will be assigned to arcs of the 
program flow graph, as in Floyd [1967]. Each 
assertion consists of three parts, namely 

(i) Test data assertion 
(2) Generalization assertion 

and (3) Synthesized assertion. 

The test data assertion gives the values 
that some given variable should have at a given 
arc of the flow graph based on a given value of 
that variable entering that arc. The generaliza- 
tion assertion will be some assertion which gen- 
eralizes from the value produced by the program 
for some given test value to a larger domain. 
That is, it will be an assertion that states "If 
a program behaves a certain way on some given 
test data, perturbing the input data in a given 
fashion perturbs the output in a given fashion." 

For a synthesized assertion to hold, we must 
show that both the test data and generalization 
assertions are satisfiedand that the test data 
assertion and generalization assertion imply the 
synthesized assertion. Note that the proof 
that the test data assertion and generalization 
assertion imply the synthesized assertion can be 
done before testing the program. 

We now give a very simple example of what 
we have in mind. 

Example 2.1.. Consider the program 

IF X>0 THEN Y:=i ELSE Y:=0 

Synthesized Assertion. 

if x>0 then y=l 
if x<0 then y=0 

Test Data Assertion 

if x=l, y=l 
if x=0, y=0 

Verification of Test Data Assertion 

This can be verified by running the program. 

Generalization Assertion 
Let f(x) be the value of y after executing 

the program with input variable x. For x > 0, 
f(x) = f(1). For x < O, f(x) = f(0). 

Proof. This follows immediately from the 
fact that 1 > 0 and 0 < 0, and the semantics of 
an IF-THEN-ELSE statement. 

We now wish to prove our synthesized asser- 
tion using the test data assertion and the gener- 
alzation assertion. 

Proof of Synthesized Assertion. Let x > 0. 
Then f(x) = f(1) = I. Let x < 0. Then f(x) = 
f ( o )  = o .  - [ ]  

This example is for illustrative purposes 
only. A simple proof that the synthesized asser- 
tion was satisfied could in fact be given without 
using test data. 

We now provide two theorems that will be use- 
ful in proving a synthesized assertion, based on 
a test data assertion and a generalization asser- 
tion. These theorems are in no way meant to be a 
comprehensive set. They have been chosen in that 
they represent two different ways in which one 
can generalize from test data. The first theorem 
shows how one can generalize from test data when 
the output values can be divided by predicates 
into equivalence classes in which the values are 
identical• 

Definition 2.1. Let Qi,Q ...... Q be predi- 
n 

cates on domain D, f a partial function on D. 
We say that f is totally determined by Qi,Q2,"', 

Qn if 
f(x) = k I whenever ~Ql(X),~Q2(x),..., 

~Qn- 1 (x),  ~Qn (x) 
= k 2 whenever ~Qi(x),~Q2(x ) ..... 

~Ore- 1 (x), Qn (x) 
= k 3 whenever ~Ol(X),~Q2(x) ..... 

Qn- 1 (x) ,~ Qn (x) 

= k2nwhenever Qi(x),Q2(x) ..... 

Qn- i (x) ,  Qn (x). 

This is a binary ordering. 

Example 2.2. Let D be the integers. Let 
Q1 be the predicate, x > 0. Let Q~ be the pre- 
dicate, x is even. Define f as foIlows. 

f(x) = 0 whenever x > 0, x is even. 

= 1 whenever x > O, x is odd• 

= 2 whefi~ver x ~ 0, x is even. 

= 3 whenever x ~ 0, x is odd. 

Then f is totally determined by x > 0, x is even. 

The following theorem shows how we can pick 
representative values from our domain to deter- 
mine the value of our function over the entire 
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domain. 

Theorem 2•1. Let f and g be two partial 
functions on doamin D, both of which are totally 
determined by predicates Qi,Q2 ..... Qn on D. Let 

~Ql(X),~Q2(x) . . . . .  ~Qn_l(X),-qn(X) = Pl(X) 

~Ql(X),~Q2(x) . . . . .  ~Qn_l(X),O.n(x) = P2(x) 

Q1 (x ) ,  Q2 (x) . . . . .  % -  1 (x ) ,  Qn (x) = P 2n (x) 

Then Pl,''''P2n divide D into a set of equiva- 

lence classes Ei,...,E2n• We now choose some set 

{x I .... ,x m} = T which consists of some represen- 

tative from each of the non-empty equivalence 

classes• Assume f(xi) = g(xi) for 1 < i < m. 

Then f(x) = g(x) for all x ~ D. 

Proof• The proof of the theorem is immedi- 
ate. - -  [] 

We now apply the theorem to our example• 

Example 2•3• Choose D, Qi, Q~, f as in 
• Z 

Example i. The non-empty equivalence classes 
are (x>0, x even), (x>0, x odd), (x<0, x even) 
and (x~0, x odd). Now we choose the set (4,3, 
-4,-3), elements from their respective equiva- 
lence classes. We see that we get (0,1,2,3) 
when f is applied to these elements. 

Let g be any other partial function defined 
on D. Suppose we know that g(4) = 0, g(3) = l, 
g(-4) = 2, g(-3) = 3 and that g is totally 
determined by Q1 and Q2" Then Theorem 1 tells 
us that f = g. 

The theorem can be applied as follows. We 
let f be the function that is actually computed 
by some program P and g the specifications for 
P. We wish to prove that f = g. In order to do 
this we must show two things, namely 

(I) the identical set of factors deter- 
mines how the program behaves and how the pro- 
gram should behave, and 

(2) the program behaves according to 
specifications on the same test data. 

Once we have shown these two facts, it will 
follow immediately from our theorem that the pro- 
gram meets its specifications. 

Theorem 2.1 is used in proving the synthe- 
sized assertion after line 4 in Example 3.2. 

Our second theorem will allow us to gener- 
alize from test data by showing that on sample 
values the program meets its specifications, and 
that perturbing the test data in a given fashion 
has the same effect on the output of the program 
as on the value demanded by the specification• 
We first need a definition. 

Definition 2.2. We say that a function 
f(x I ..... Xn,Y 1 .... ,ym ) on domain D is additive 

in x I .... ,x n, subtractive in Yl .... 'Ym if 

f(x I ..... Xn,Yl,...,y m) = (Xl+...+Xn) - (yl+...+ym) 

+k where k is come constant. 

E__xample 2•4. Let f(x,y) = x-y+l. Then f(x,y) 
is additive in x, subtractive in y. 

We get the following theorem• 

Theorem 2.2. Let f and g be functions on D 

that are additive in Xl,...,Xn, subtractive in 

YI' 'Ym' such that for some X~ o o •.. , •.. ,Xn,Y I, •.., 
0 0 0 0 0 0 0 

Ym we have f(x I .... ,Xn,Yl,...,ym) = g(x I ..... Xn, 

y~ . . . . .  ym°). Then f o r  a l l  x 1 . . . . .  Xn' Yl . . . . .  Ym 

we have f ( x  1 . . . .  ,Xn,Y 1 . . . . .  ym) = g(x  I . . . . .  Xn, 

Yl . . . . .  Ym ) " 

Proof. We have 

f(x I .... ,Xn,Y 1 ..... Ym ) = (Xl+•..+x n) - 

(yl+Y2+.• .+ym) + k , 

g(xl,...,Xn,Yl,...,ym) = (Xl+...+Xn) - 

(yl+Y2+...+ym) + I . 

Since 
O O O O O 

f(x I ..... Xn,Y 1 ..... Ym ) = g(x I ..... 
o o .,y~) , 

Xn,Y 1 , • • 

we have k = I. Therefore, 

f(x I .... ,Xn,Yl,...,ym ) = g(x I ..... 

Xn,Y 1 .... ,Ym ) • [] 

Example 2•5. Suppose in some program we have 
z = x - y + i. Let g(x,y) be some function that 
is additive in x, subtractive in y. Assume 
g(0,0) = i• Then by Theorem 2.2, f(x,y) = g(x,y) 
for all x, y. 

Again, we let f represent the function com- 
puted by P, and g the specifications. In order 
to show that P meets its specifications, we must 
show that 

(i) the function meets is specification on 
the sample test data, x, 

(2) the function computed by P, and the 
function defined by its specification are per- 
turbed in the same fashion as the value ~ is 
perturbed. 

Theorem 2.2 is used in proving the synthe- 
sized assertion after line 5 in Example 3.2. 

3. Examples 

In this section, three programs will be ver- 
ified using the techniques discussed in the pre- 
vious section• The programs that have been 
chosen can be verified using techniques that have 
been previously discussed in the literature. 
However, use of the techniques presented in this 
paper will in some cases simplify the proof, and 
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in most of the cases add to our confidence that 
the program is in fact accomplishing what it 
"should" accomplish. 

Example 3.1. Our first example is the famil- 
iar "91" function, cf. Manna et. at. [1973], a re- 
cursive function often cited in the literature. 
The function is as follows: 

F(X) = IF x > i01 THEN x-10 
ELSE F(F(x+ l l ) )  

We wish to show that the function computes the 
following values. 

for x > I01, F(x) = x - i0 

for x < i01, F(x) = 91 

where x is any integer. 

A typical proof of this theorem is similar 
to one suggested in Manna et. al. [1973] as fol- 
lows. 

Proof of Example I. We have three cases. 

Case i. x > I01. Clearly F(x) = x - I0. 

Case 2. i01 > x > 91. We wish to show that 
for 0 < x < i0, that F(101-x) = 91. 

Basis: x = 0. We have F(101-x) = F(101) = 
91 from Case i. 

Induction Stem: We assume that for some x, 
where 0 < x < i0, we have F(101-x) < 91. Then 
F(101 - (x+l)) = F(100-x). Since 0--< x, we have 
(100-x) < i01. Therefore F(100-x) =--F(F(Iii-x)). 
Now, since X < I0, we have F(iii-x) = F(lll-x-10)= 
(101-x). Therefore F(100-x) = F(101-x). But, by 
our induction hypotheses, F(101-x) = 91. 

Case 3, 91 > x. We wish to show that for 
x, x ~ 0, that F(91-x) = 91. 

Basis: x = 0. We have F(91-x) = F(91) : 91 
by Case 2. 

Induction Stem: We assume that for all x, 
0 < x < X, where X > 0, we have F(91-x) = 91. 
Now F(91-(x+l)) = F~90-x). Since x > 0, we have 
F(90-x) = F(F(101-x)). If 0 < x < 15, we have 
F(101-x) = 91 by Case i. Therefore F(F(101-x)) = 
F(91). By Case 2, F(91) = 91. If x > I0, we have 
F(101-x) = F(91-(x-10)), where (x-10)--> 0. There- 
fore by our induction hypothesis, F(91-(x-10)) = 
91. Thus F(F(101-x)) = F(91) = 91, by Case 2.0 

We now give a proof of the correctness of 
this program using the techniques of Section 2. 

Synthesized Assertion: For x >.i01, F(x) = 
x - I0, for x < I01, F(x) : 91 where x is any 
integer. 

Test Data Assertion. For all x such that 
91 < x < 101, we have F(x) = 91. 

Verification of Test Data Assertion. We 
simply run our program with the values 91,92 ..... 
lO1 for x. We see that in each case, the program 
behavior meets the specifications of our test 

data assertion. 

We can now generalize from these results to 
the domain of integers {I I I ~ I01}. 

Generalization Assertion. For any i, i < i0, 

we have f(i) = f(kJ(x) " for some k > 1 and some x 

such that 91 < x < I01. 

Proof. By induction on (101 - i) DIV ii 
(where DIV represents integer division of the 
first argument by the second). 

Basis: (101-i) DIV Ii = 0. In this case 
91 < i < i01, and the result is clearly true. 

Induction Step: We assume that our proved 
assertion is true for (101-i) DIV ii = j, for 
some j > 0. Now choose 1 such that (i01-/) 
DIV Ii = j + i. Since j > 0, clearly 1 < 91. We 
have 

( i 0 1  - ( t + l l )  + 11) DIV i i  = j + l  

Therefore, (i01 - (/+ii)) DIV ii = j. It follows 
from our induction hypothesis that 

f(/+ll) = f(k)(x) for some k > l, 91 < x < 101. 

But we know that f(/) = f(f(/+ll). Therefore 
f(/) = f(k+l)(x), and our Generalization Assertion 
holds. 

We are now ready to prove our Synthesized 
Assertion. 

Proof of Synthesized Assertion. It follows 
directly from the program that for x > i01, 
F(x) = x - i0. It follows directly from our 
test data assertion and generalization assertion 
that for x < I01, we have F(x) = 91. [] 

We see that our proof is substantially 
shorter than the first proof, and more intuitive. 

Notice how the use of test data alone is 
insufficient to guarantee the correctness of the 
program. The technique suggested by some of 
breaking the input domain into classes on which 
the program gives the same value produces an 
infinite number of such classes, since a differ- 
ent result is produced for each x such that 
x > i01. 

Exampl e 3.2. For our second example, we 
choose a program which computes the number of days 
by which one date follows another date in some 
given calendar year. This particular program was 
chosen on several grounds. Although the notion 
of the number of days between two days is easily 
understood, axiomatization of this concept is 
quite difficult. Once we have provided an axio- 
matization for the correct numbers of days be- 
tween two days, it is difficult to be sure that we 
have in fact chosen the correct axiomatization. 
It is particularly easy for the axiomatization to 
specify answers that are off by one or two days in 
certain cases. 

Since the calendar program involves setting 
up a table, the notion of distributed correctness 
will allow us to greatly simplify our assertions, 
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by allowing us to merely specify that the table is 
correct. 

Comment. The following procedure takes as 
input two dates in a given year, where a date is a 
pair (DAY,MONTH). We assume that both dates are 
legitimate dates for the year in question, and 
that the first date does not occur after the sec- 
ond date. The program computes the number of days 
by which the second date follows the first date. 

PROCEDURE CALENDAR(DAYi,DAY2,MONTHi,MONTH2, 
YEAR); 

BEGIN 

(i) IF MONTH2=MONTHi THEN DAYS = DAY2 - DAY1 

COMMENT IF THE DATES ARE IN THE SAME 

MONTH, WE CAN COMPUTE THE NUMBER OF DAYS 

BETWEEN THEM IMMEDIATELY; 

ELSE 

BEGIN 

DAYSIN(1) :=31; DAYSIN(3) :=31; 
DAYSIN(4) :=30; 

DAYSIN(5) :=31; DAYSIN(6) :=30; 
DAYSIN (7) :=31; 

DAYSIN(8) :=31; DAYSIN(9) :=30; 
DAYSIN(10) :=31; 

(2) DAYSIN(ii) :=30; DAYSIN(12) :=31; 

(3) IF ((YEAR MOD 4) ~ 0) OR ((YEAR MOD 
i00) = 0 AND (YEAR MOD 400) # '0") 

THEN DAYSIN(2) :=28 

ELSE DAYSIN(2) :=29; 

COMMENT SET DAYSIN(2) ACCORDING TO 
WHETHER OR NOT YEAR IS A LEAP YEAR; 

(4) DAYS :=DAY2 + DAYSIN(MONTHI) - DAYi; 

COMMENT THIS GIVES (THE CORRECT NUM- 
BER OF DAYS - DAYS IN COMPLETE INTER- 
VENING MONTHS); 

(5) FOR I = MONTH + i TO MONTH2 - I DO 

DAYS :=DAYSIN(I) + DAYS; 

COMMENT ADD IN THE DAYS IN COMPLETE 
INTERVENING MONTHS; 

END 

(6) PRINT (DAYS) 

END 

We now wish to verify the correctness of 
our procedure. 

Line i. We wish to prove the following synthe- 
sized assertion. 

Synthesized Assertion. For any two dates, 
DAYS gives the correct number of days by which the 
second date follows the first date, assuming that 
MONTH1 = MONTH2. 

It might at'first appear that our use of test 
data in this instance is unnecessary. One might 
argue that our synthesized assertion could easily 

be argued to hold directly from the semantics of 
the statement DAYS :=DAY2 - DAY1. 

Suppose, however, that we had really wished 
to compute the number of days between the two 
dates, including the first and last days. It 
would be very easy to err in the specifications 
for such a program, and on this basis argue that 
DAYS correctly computed this different quantity. 
This error, however, would be immediately detected 
by a choice of very simple test data. 

We now use the formalism of our technique to 
show that in fact DAYS is correctly computed to 
meet the specification of this program. We begin 
by providing the test data assertion. 

Test Data Assertion. For DAY1 = 15, DAY2 = 
15, we should have DAYS = 0 after execution of 
this statement. 

Our choice of the value 15 in particular was 
random. We could have chosen any other possible 
day of the month. However, it was important that 
DAY1 and DAY2 were chosen to be very close to- 
gether. This allows us to easily state what the 
answer should be for the test data. Note that 
test data is useless unless it is simple to check 
whether or not the value produced by the program 
on the test data is correct. If, in fact, one has 
to run the program to check what the value of the 
test data should be, then we have gained nothing 
by testing the program. 

Verification of Test Data Assertion. To 
verify the test data assertion, we now run the 
program from the point directly before where 
statement (I) lies, with DAY1 = 15, DAY2 = 15, 
and MONTH1 = MONTH2 = i. After executing state- 
ment (i), we check the value of DAYS. In this 
case, since the program is correct, we find that 
we have the correct value of DAYS, namely O. No- 
tice that since this statement is only executed 
once, the value 0 will be produced for the given 
test data on every pass through this arc on the 
flow graph. 

We now need to be able to generalize from 
this particular test data to any two particular 
days in the month. Our use of the generalization 
assertion will make it clear why we chose DAY1 = 
DAY2. Our generalization assertion states that 
increasing DAY2 increases DAYS in a certain fash- 
ion, increasing DAY1 decreases DAYS in a certain 
fashion. 

Generalization Assertion. DAYS is additive 
in DAY2, subtractive in DAY1. 

Verification of Generalization Assertion. We 
see in our program that DAYS = DAY2 - DAY1. 

We now finally come to the point at which we 
prove the synthesized assertion. Note that the 
test data assertion and generalization assertion 
were verified, the test data assertion by use of 
test data, the generalizaed assertion logically. 
The synthesized assertion must be shown to logi- 
cally follow from the test data assertion and 
generalization assertion. 
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Proof of Synthesized Assertion. The proof 
follows directly from the test data assertion, the 
generalization assertion, and Theorem 2.2. [] 

Note how we have made use of the notion of 
distributive correctness here, by concluding that 
DAYS is "correct" under certain conditions. 

We now continue with out verification of the 
program. 

Line 2. 

This statement provides us with an example 
where the test data information provides all the 
information that is necessary to assure us that 
this "table" of the number of days in all of the 
months but February is correct. The program in a 
sense provides its own documentation in creating 
this table. It would certainly be valueless to 
add the values in this table as one of the dis- 
juncts in the output assertion of this program. 
We therefore have 

Test Data Assertion, Synthesized Assertion. 
DAYSIN(I) is correct for I = i, 3 < I < 12. 

One might object and say that the value of 
DAYSIN(I) for some I might still be incorrect. 
This, of course, is true and the values inserted 
in the table should be carefully checked. How- 
ever, the point still remains that the specifi- 
cations of a program can never be guaranteed to 
correspond with what was "meant" to be done. 

Line 3. 

We wish to show that line (3) correctly com- 
putes DAYSIN(2) for any possible year. Our syn- 
thesized assertion is: 

Sjnthesized Assertion. DAYSIN(2) is cor- 
rect. 

Again, this could be shown by comparing some 
predicate that specified what the program was 
supposed to compute, with the predicate actually 
computed by the program. Again, the problem here 
is that these two predicates will probably be 
identical, and both could well be wrong. How- 
ever, if we allow ourselves the use of test data, 
we can check out the values produced on certain 
test data by looking them up, perhaps in an al- 
manac. We will then be able to generalize from 
the specific years used as test data to all 
years. 

Test Data Assertion. Our technique for 
choosing test data in this example is similar to 
the technique used in Goodenough and Gerhart 
[1975], The major difference is that in this 
example, we are dividing the domain into classes 
locally. This is extremely crucial, since the 
number of test cases may grow exponentially in 
the number of factors we are considering. By def- 
inition, dividing our input into classes locally, 
the number of cases will be kept low. 

Our model is the limited entry decision ta- 
ble. Notice that not all of the combinations of 
predicates can be satisfied. We choose one sam- 

ple test data from each of the combinations of 
predicates that can be satisifed. Our particular 
choice of test data should be motivated chiefly 
by simplicity of certifying the correctness of the 
value of the result. Our choice of test data in 
this example is given in Table 3.1. 

Table 3.1 

Predicate 

YEAR MOD 4 # 0 / 

YEAR MOD 100 = 0 / / 

YEAR MOD 400 # 0 ~ / / 

Test Data 7 200 800 8 

Correct Values 28 28 29 29 

/ indicates that the given predicate is satisfied. 

Verification of Test Data Assertion. We now 
run the statement on this sample test data, and 
find that the correct answers are generated. 

We now wish to generalize from our test data. 

Generalization Assertion. DAYSIN is totally 
determined by the predicates YEAR MOD 4 = 0, YEAR 
MOD I00 = 0, and YEAR MOD 400 # 0. 

Verification of Generalization Assertion. 
From the program, it is clear that DAYSIN is 
totally determined by the predicates 

YEAR MOD 4 # 0, YEAR MOD i00 = 0, and 
YEAR MOD 400 # 0. 

Notice that if we failed to consider some 
case, we could still end up with a correctness 
"proof" of a program that did not do what we 
wanted. We have, however, gained the following 
advantages over a traditional correctness proof. 
First of all, we will catch an error resulting 
from failingto combine the predicates correctly. 
Secondly, we are examining the predicates that 
must be considered at the point in the program 
where these are to be considered, rather than at 
the output arc. 

Finally, we prove our synthesized assertion. 

Proof of Synthesized Assertion. The proof 
follows directly from the test data assertion, 
the generalization assertion, and Theorem 2.1. [] 

Line 4: Synthesized Assertion. 
DAYS = (# of days by which second date 

follows first date) 
(# of days in complete intervening 
months). 

At this point, we wish to show that our pro- 
gram behaves properly over month boundaries. It 
is very simple here to make a mistake that will 
give answers that will be off by one or even two 
days, both in the program and in its specifica- 
tions. We choose two days that are very close 
together, yet in different months so that the 
answer produced can easily be cerified. In this 
particular example, symbolic execution may be 
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very helpful. We wish to show that the program 
gives us a 1 if DAYI = DAYSIN(1). The simplest 
way to do this is to symbolically execute the 
program with DAYSIN(I) as the symbolic value of 
DAY1. Otherwise, we would have to execute the 
program with all possible values of DAYSIN(I) 
for 1 < I < ii. We have the following 

Test Data Assertion. Let DAY1 = DAYSIN(I), 
MONTH(1) = I, DAY2 = i. Then DAYS = i. 

Verification of Test Data Assertion. We 
run the statement on the given symbolic test 
data, and we find that DAYS = 1 after execution. 

We now wish to generalize from this specific 
test data. Our generalization assertion is 

Generalization Assertion. DAYS is additive 
in DAY2, subtractive in DAY1. 

Verification of Generalization Assertion. 
The assertion follows from the fact that DAYS = 
DAY2 + DAYSIN(MONTH) - DAY1, and that 
DAYSIN(MONTHI) is independent of DAY2 and DAYI. 

Finally, we must prove our synthesized 
assertion. 

Proof of Synthesized Assertion. "The proof 
follows immediately from the test data assertion, 
the generalization assertion, and Theorem 2.2. [] 

Line 5. 
The fifth line computes the number of days 

in intervening months, and adds it to the value 
of DAYS that had been computed, giving us the 
number of days by which the second date follows 
the first. 

Synthesized Assertion. DAYS = number of 
days by which the second date follows the first. 

The proof of this assertion is greatly 
simplified by our use of distributed correct- 
ness. 

Proof. The lower and upper bounds of the 
FOR loop are MONTH2+1 and MONTH1-1. These are 
clearly the first and last complete intervening 
months. By the correctness of DAYSIN(I) for 
1 < I < 12, proven after line 4, we know that 
this statement adds to DAYS the correct number 
of days in intervening months. Therefore after 
execution of line 5, we have 

DAYS = number of days by which second 
date follows first date 
- days in complete intervening 

month 
+ days in complete intervening 

months. 

Therefore 

DAYS = number of days by which second date 
follows first date. [] 

Line 6. 
Synthesized Assertion. The program prints 

the correct value of DAYS. 

Proof. If MONTH1 = MONTH2, then the program 
prints the correct value of DAYS. If MONTH1 # 
MONTH2, then the program prints the correct value 
of DAYS. [] 

Note that in this example, the proof follows 
directly from other assertions, and no test data 
information is really necessary or even desirable. 

Example 3.3. Our third and final example due 
to Parnas is reproduced from Robinson and Levitt 
[1975]. Similar examples can be found in Parnas 
[1972] and Hoare [1972]. It is reproduced below 
in Table 3.2. 

In this example, it is demonstrated that our 
testing techniques can be extremely useful in 
verifying large programs. The example we use em- 
ploys Parnas modules, cf. Parnas [1972], to factor 
the program into pieces that can be verified. We 
shall show that our testing techniques can be used 
to show the correctness of the behavior of each of 
these modules. 

Table 3.2 

Register Module Specification 

(Quotes signify value before application of func- 
tion.) 

integer V-Function: LENGTH 
Comment: Retu~is the number of occupied 

positions in the register. 
Initial value: LENGTH = 0 
Exceptions: none 

integer V-Function: CHAR (integer i) 
Comment: Returns the value of the i th 

element of the register. 
Initial value: Vi(CHAR(i) = undefined) 
Exceptions: I OUT OF BOUNDS: 

i < 0 ~ i>LENGTH 
0-Function: INSERT (integer i,j) 

Comment: Inserts the value j after posi- 
tion i, moving subsequent 
values one position higher. 

Exceptions: I OUT OF BOUNDS: 
i < 0 ~ i > LENGTH 
J OUT OF BOUNDS: 
j < 0 V j > 255 
TOO LONG: LENGTH > 1000 

Effects: LENGTH--= 'LENGTH' + 1 
Vk (i < k < 'LENGTH' + i) 
[CHAR(k) = if k < i then 
'CHAR'(k) 

else if k = i+l then j 
else 'CHAR'(k-i)] 

0-Function: DELETE (integer i) th 
Comment: De-i~ ~he i element of the 

register, moving the subsequent 
values to fill in the gap. 

Exceptions: I OUT OF BOUNDS: 
i < 0 ~ i>LENGTH 
UNDERFLOW: LENGTH = 0 

Effects: LENGTH = 'LENGTH' - 1 
Vk (i < k < 'LENGTH' - I) 
[CHAR(k) = if k < i then 
'CHAR' (k) 

else 'CHAR'(k+i)] 
CHAR('LENGTH') = undefined 

2 1 6  



Once the 0 and V functions have been written, 
testing is ideal for checking whether or not they 
behave properly with respect to exception condi- 
tions. However, for this example, we concern our- 
selves mainly with the behavior of the module as 
a whole. 

Robinson and Levitt [1975] cite four invari- 
ants that can be proven about the register module, 
which they state are quite useful in shortening 
proof of programs that call the module. These in- 
variants are 

(i) 0 < LENGTH < i000 
(2) vi~0 < i < LENGTH DDEFINED(CHAR(i))). 
(3) Vi(DEFINED(CHAR(i))D0<CHAR(i) S 255). 
(4) DEFINED(LENGTH). 

We shall now sketch how testing can be used to 
verify the correctness of this module. For this 
example, we will present our arguments for cor- 
rectness in a style that a programmer might wish 
to use in providing an informal argument for cor- 
rectness of his program. Only two of the four are 
proven. In both of the proofs we shall present 
both test assertions and generalization assertions. 

(i) 0 < LENGTH < 1000. 

Proof. Only the 0 functions can change the 
value of LENGTH. Therefore, we must prove that 
this invariant is preserved under the operations 
of INSERT and DELETE. We first check that 
LENGTH < i000 is an invariant. Since DELETE 
decreases' LENGTH, DELETE will cause no problems. 
For INSERT, we have LENGTH = 'LENGTH' + i. It is 
clear that if the assertion is maintained for 
LENGTH = i000, the assertion will be maintained 
for any initial value of LENGTH. We run a test 
of INSERT with LENGTH = i000, and we find that 
an exception condition is generated. Next, we 
check that LENGTII > 0 is an invariant. Since 
INSERT increases LENGTH, INSERT will cause no 
problems. For DELETE, we have LENGTH = 'LENGTH' 

i. It is clear that if the assertion is main- 
tained for LENGTH = 0, the assertion will be 
maintained for any initial value of LENGTH. We 
run a test of DELETE with LENGTH = 0, and find 
that an exception condition is generated. [] 

(3) We wish to show V i(DEFINED(CHAR(i))~ 
0<CHAR(i)<255). We examine the effect of IN- 

SERT and DELETE on this invariant. It is easy 
to show that DELETE maintains this invariant. 
To check if INSERT maintains the invariant, we 
execute calls INSERT(i,256) and INSERT(i,-1). 
We choose 256 and -i since they lie immediately 
outside the boundaries of where CHAR(i) should 
be defined. Note that i could be any value 
that we choose. We could either pick any value 
of i, and show that if the invariant is pre- 
served with some value of i, it is preserved with 
any value of i. If we had the facilities of a 
symbolic executor, we might wish to execute our 
program with the symbol 'i'. We see that INSERT 
(i,256) and INSERT(i,-1) both generate exception 
conditions. Clearly, j > 256 and j < -1 will 
generate exception conditions based on general- 
izing from our test data. 

Notice how in both instances, the boundary 
values were crucial points at which errors would 

have been very easy to make. Thus, our consider- 
ation of test data results was crucial in arguing 
the invariance of these assertions. 

4. Conclusions 

We have shown how information gained by 
testing a program may be useful in helping to 
prove the program correct. Rather than being 
antithetical to proving correctness, proper use 
of test data may in fact suggest a simple strategy 
for proving programs correct. In the way in which 
we are using testing, the process in fact does not 
run counter to the ideas of structured programming 
Rather, it becomes an integral part of the process. 
When developing a program, it is quite natural 
to conceive of the programmer considering how the 
program works on some specific examples, and 
trying to guarantee that in fact the program be- 
haves in a similar fashion on the whole input 
domain. In the case of our calendar example, it 
was simpler to specify program behavior by speci- 
fying how it should behave on test data, and 
the use of test data simplified the verification. 

The techniques described in this paper seem 
to formally model some of the informal techniques 
used by programmers in checking the correctness 
of their programs. For practical applications, 
the techniques specified in this paper might be 
short-cut. For example, one might use these 
techniques on larger chunks of code. By dealing 
with modules, we have shown how the technique 
is very flexible in terms of how large a chunk 
of code we deal with at a time. 

A great deal of work remains to be done in 
the area of using test data to prove program 
correctness. Some of the areas that should be 
considered are: 

(i) Many additional theorems could be 
proven, similar to the ones in Section 2, 
to be used in generalizing from specific 
test data to a larger domain. 

(2) It would be useful to examine tech- 
niques for automatically generating test 
data. Techniques exist for automati- 
cally generating assertions, cf. Weg- 
breit [1974], Katz and Manna [1974]. 
Similar techniques might be used to 
automatically generate test data. This 
problem is probably very difficult. 

(3) A system could be built for proving 
programs correct using test data. Such 
a potential might be built into current 
symbolic execution systems. 

(4) The methods outlined in this paper 
should be tested against large-scale 
programs to examine their efficiency in 
either proving these programs as a 
whole, or in guaranteeing effectiveness 
of sections of these programs. The 
problem of testing interaction among 
modules of a large program should be 
examined further. 
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