
TEST DATA AS AN AID IN PROVING PROGRAM CORRECTNESS

Matthew Geller
Department of Computer and Communication Sciences

The University of Michigan
Ann Arbor, Michigan

Abstract

Proofs of program correctness tend to be
long and tedious whereas testing, though useful
in detecting errors, usually does not guarantee
correctness. This paper introduces a technique
whereby test data can be used in proving program
correctness. In addition to simplifying certifi-
cation of correctness, this method simplifies the
process of providing specifications for a pro-
gram. The applicability of this technique to
procedures, recursive programs, and modular pro-
grams is demonstrated.

Keywords and Phrases: program verification, pro-
gram testing, modular programming, recursive pro-
grams, inductive assertions.

CR Categories: 4.22, 4.6, 5.24

i. Introduction

Traditionally, certification of programs
has been attempted by "testing" programs on
"representative" test data. The problem with
this kind of testing was aptly pointed out by
Dijkstra when he stated

Progrmn testing can be used to show
the presence of bugs, but never to
show their absence.t

Recently, several attempts have been made
to provide techniques for choosing test data
that would allow one to make meaningful con-
clusions about the absence of bugs in a pro-
gram as a result of test runs.

Much research has been done in the area
of choosing test data that exercises ~all the
statements or paths of a program, cf. Howden
[1974], Miller and Melton [1975]. The chief
weakness in these techniques is that they do not
match the choice of test data to the specifica-
tions for the program. Therefore, if a program
is written which fails to examine a particular
case, this error will not be detected using test
data determined by the program as written. The
type of error in which one completely forgets to
handle some special kind of input occurs quite
often in programming.

tDahl, Dijkstra, and Hoare, Structured Program-
ming, p. 6.

A new approach entails testing programs with
symbolic as opposed to real values. Systems to
symbolically execute programs have been implemented
by King [1975] and Boyer, Elspas, and Levitt
[1975]. These systems have proven very useful in
providing information for debugging programs. How-
ever, it is not always clear how to use all this
information to guarantee the "absence of bugs".

Recently, much research has been done in the
area of providing formal proof of program correct-
ness. London [1975] eloquently summarizes much
of this work, and discusses many of the problems
involved in providing a formal proof of correct-
ness. A substantial bibliography of work in the
field can be found in this paper. The chief dif-
ficulty of proving a program correct is the com-
plexity of the process. Proving a program cor-
rect can be extremely tedious and difficult. It
may be easier to convince oneself that a program
works properly on the whole input domain on the
basis of a few test cases. Information gained
from running a program on sample test data is very
easy to procure. The processor for the language
automatically gives us values of given program
variables resulting from the input of sample test
data. A special case in which the use of test
data will often save us work in proving a program
correct occurs when we are proving a program cor-
rect using structural induction, cf. Burstall
[1969]. The basis can always be proven by running
the program on the basis "test data". Boyer and
Moore [1975] also discuss how one can obtain valu-
able information about a LISP program by running
the program.

The use of test data has an additional great
advantage. Goodenough and Gerhart [197S] point
out that a so-called "proof" of program correct-
ness may not in fact guarantee that a program
actually does what we want it to do. Of course,
one may argue that in this case one did not think
carefully enough about the specifications for the
program's correctness. There are certain in-
stances, however, where the specifications for a
program are intuitively clear, yet where it is in
fact quite easy to make a mistake in precisely
stating these specifications. The specification
problem is discussed in depth by Liskov and Zilles
[1975]. In this paper, we use the example of the
calendar. We are all quite familiar with how a
calendar works, yet in formalizing these notions,
it it quite easy to make errors. This is espe-

209

cially easy when specifying the behavior of a cal-
endar at month boundaries.

One must realize at this point that "proving"
a program correct is only worthwhile in that the
specifications for a program somehow provide us
additional assurance that a program is doing what
we want it to do, above and beyond the program it-
self. One can always, in fact, say that a pro-
gram is "correct" by using a program as its own
specifications. In order that we assure ourselves
that a program in fact behaves correctly at cer-
tain boundary points, or anomalies, it may be
extremely helpful to include in our specifica-
tions the specific behavior that our program
should obey at these points. One might then be
able to specify how the program should behave on
the whole input domain as a function of its speci-
fications for this test data.

We wish to formalize these informal tech-
niques whereby one generalizes from specific test
cases to a large domain. In this paper, we will
suggest a technique whereby information gained
from testing a program can be used in helping to
prove program correctness. Viewed conversely, we
might view the process of choosing test data for
a program as being guided by a pursuit of infor-
mation useful in helping us prove our program
correct.

We wish to provide techniques which will
allow us to make statements about a large, pos-
sibly infinite set of inputs on the basis of some
small set of inputs. Goodenough and Gerhart
[1975] divide the input domain into a set of
classes, and then prove that for each of these
classes, if some single member of this class gives
a correct answer on testing, then every member
of that class will produce the correct answer.
Sintzoff [1972] also uses valuation to verify
certain properties of programs. Henderson [1975]
validates programs by testing its components in
an environment provided by a finite state ma-
chine.

In this paper, we will divide the input do-
main into classes in order to prove inductive
assertions at given points in the program, rather
than to attempt the more ambitious tasks of
dividing the input domain into equivalence
classes based simply on output specifications.
We wish to execute sections of a program as
they are being developed, rather than to go to
great pains to find test data that will exer-
cise all statements or paths of a program that
has been already written.

Note that the techniques we shall discuss
will provide a formal means of proving program
correctness. They might be viewed as a special
proof technique that may be useful in many cir-
cumstances. They will be shown to be of particu-
lar value in large, modularized programs, cf.
Parnas [1972].

Before continuing, it seems necessary to dis-
cuss some of the things that testing in fact can-
not accomplish.' It has often been stated that
testing has an advantage over proving program cor-
rectness in that it detects run-time errors, such

as out-of-bounds array references, which could not
be detected using proof techniques. This is mis-
leading since one can and should show that all
array references are in bounds as part of a proof
of program correctness. A further argument for
testing as opposed to proving correctness goes as
follows. In proving program correctness, one
might forget entirely that an array reference may
be out of bounds. Testing the program might detect
this error. The weakness of this approach is that
if we are lucky enough to choose appropriate test
data, the error will show up during the test run.
However, the test data that we choose may not
detect this error. It may, in fact, require a
great deal of computation to find the particular
test data that will cause an error. If we have
gathered enough information to calculate test
data that will guarantee that all references to
arrays are in bounds, then it might have been
easier to formally prove this property.

The paper is divided into four sections.
Section 2 will give the formalism that will be
used. Section 3 illustrates the use of this model
with examples. In Section 4, conclusions are
drawn and suggestions are made for further re-
s e a r c h .

2. The Model

We shall begin this section with the model
that we will use to prove programs correct using
test data. We will then provide two theorems
that will be useful in generalizing test data
from specific data to larger classes of data.

In order to allow for the use of test data
in proving program correctness, we must introduce
the notion of distributed correctness. According
to the model of Floyd [1967], in order to prove
a program correct, one must show that for input
that meets the input criteria, that after running
the program, the output variables must satisfy the
output predicates. We see that all the specifi-
cations for the program are provided at the point
of termination of execution. In order to use test
data to its fullest advantage, we must allow the
prover to use as data the value of any variable in
the program at any point in the execution of the
program. In order to check that the value of this
variable is correct at this point, we must be able
to set criteria that the program should obey for
the given test data at any point in the program.

The use of distributed correctness will buy
us much more than allowing us to use test data to
prove a program correct. It will in addition
allow us to greatly reduce the size of assertions
throughout the program.

Now, rather than carrying a complicated predi-
cate through the programs, until it is used in
the output predicate, we simply carry with us the
fact that in some given respect, the program is
correct. One need now only show that this cor-
rectness is maintained at any point at which we
need to use it to prove further facts about the
program.

Consider for example a compiler which is

210

driven by a precedence parser. Part of the pro-
gram consists of initializing the tables of this
parser. An output specification for the program
would have to have as one of the disjuncts the
specifications for each of the entries in the
table. It would be necessary essentially to
repeat the part of the program that initializes
the table• Even if there are errors in the
table, this process is useless, since the person
proving the program is likely to make exactly the
same error in the specifications as in the pro-
gram itself. We see here that we have provided
no additional assurance that our program is cor-
rect. Rather than stating as part of the out-
put predicate the entries of the table, one would
only specify as part of the output predicate that
the tables were in fact correct. One could then
certify that the table was correct at the point
in the program immediately after the table had
been created. One would then need only prove
that the table was not changed after its creation,
to assure that the correctness of the table was
maintained to satisfy the output predicate.

We now describe the assertions that we shall
use in proving a program correct using test data.
These assertions will be assigned to arcs of the
program flow graph, as in Floyd [1967]. Each
assertion consists of three parts, namely

(i) Test data assertion
(2) Generalization assertion

and (3) Synthesized assertion.

The test data assertion gives the values
that some given variable should have at a given
arc of the flow graph based on a given value of
that variable entering that arc. The generaliza-
tion assertion will be some assertion which gen-
eralizes from the value produced by the program
for some given test value to a larger domain.
That is, it will be an assertion that states "If
a program behaves a certain way on some given
test data, perturbing the input data in a given
fashion perturbs the output in a given fashion."

For a synthesized assertion to hold, we must
show that both the test data and generalization
assertions are satisfiedand that the test data
assertion and generalization assertion imply the
synthesized assertion. Note that the proof
that the test data assertion and generalization
assertion imply the synthesized assertion can be
done before testing the program.

We now give a very simple example of what
we have in mind.

Example 2.1.. Consider the program

IF X>0 THEN Y:=i ELSE Y:=0

Synthesized Assertion.

if x>0 then y=l
if x<0 then y=0

Test Data Assertion

if x=l, y=l
if x=0, y=0

Verification of Test Data Assertion

This can be verified by running the program.

Generalization Assertion
Let f(x) be the value of y after executing

the program with input variable x. For x > 0,
f(x) = f(1). For x < O, f(x) = f(0).

Proof. This follows immediately from the
fact that 1 > 0 and 0 < 0, and the semantics of
an IF-THEN-ELSE statement.

We now wish to prove our synthesized asser-
tion using the test data assertion and the gener-
alzation assertion.

Proof of Synthesized Assertion. Let x > 0.
Then f(x) = f(1) = I. Let x < 0. Then f(x) =
f (o) = o . - []

This example is for illustrative purposes
only. A simple proof that the synthesized asser-
tion was satisfied could in fact be given without
using test data.

We now provide two theorems that will be use-
ful in proving a synthesized assertion, based on
a test data assertion and a generalization asser-
tion. These theorems are in no way meant to be a
comprehensive set. They have been chosen in that
they represent two different ways in which one
can generalize from test data. The first theorem
shows how one can generalize from test data when
the output values can be divided by predicates
into equivalence classes in which the values are
identical•

Definition 2.1. Let Qi,Q Q be predi-
n

cates on domain D, f a partial function on D.
We say that f is totally determined by Qi,Q2,"',

Qn if
f(x) = k I whenever ~Ql(X),~Q2(x),...,

~Qn- 1 (x), ~Qn (x)
= k 2 whenever ~Qi(x),~Q2(x)

~Ore- 1 (x), Qn (x)
= k 3 whenever ~Ol(X),~Q2(x)

Qn- 1 (x) ,~ Qn (x)

= k2nwhenever Qi(x),Q2(x)

Qn- i (x) , Qn (x).

This is a binary ordering.

Example 2.2. Let D be the integers. Let
Q1 be the predicate, x > 0. Let Q~ be the pre-
dicate, x is even. Define f as foIlows.

f(x) = 0 whenever x > 0, x is even.

= 1 whenever x > O, x is odd•

= 2 whefi~ver x ~ 0, x is even.

= 3 whenever x ~ 0, x is odd.

Then f is totally determined by x > 0, x is even.

The following theorem shows how we can pick
representative values from our domain to deter-
mine the value of our function over the entire

211

domain.

Theorem 2•1. Let f and g be two partial
functions on doamin D, both of which are totally
determined by predicates Qi,Q2 Qn on D. Let

~Ql(X),~Q2(x) ~Qn_l(X),-qn(X) = Pl(X)

~Ql(X),~Q2(x) ~Qn_l(X),O.n(x) = P2(x)

Q1 (x) , Q2 (x) % - 1 (x) , Qn (x) = P 2n (x)

Then Pl,''''P2n divide D into a set of equiva-

lence classes Ei,...,E2n• We now choose some set

{x I ,x m} = T which consists of some represen-

tative from each of the non-empty equivalence

classes• Assume f(xi) = g(xi) for 1 < i < m.

Then f(x) = g(x) for all x ~ D.

Proof• The proof of the theorem is immedi-
ate. - - []

We now apply the theorem to our example•

Example 2•3• Choose D, Qi, Q~, f as in
• Z

Example i. The non-empty equivalence classes
are (x>0, x even), (x>0, x odd), (x<0, x even)
and (x~0, x odd). Now we choose the set (4,3,
-4,-3), elements from their respective equiva-
lence classes. We see that we get (0,1,2,3)
when f is applied to these elements.

Let g be any other partial function defined
on D. Suppose we know that g(4) = 0, g(3) = l,
g(-4) = 2, g(-3) = 3 and that g is totally
determined by Q1 and Q2" Then Theorem 1 tells
us that f = g.

The theorem can be applied as follows. We
let f be the function that is actually computed
by some program P and g the specifications for
P. We wish to prove that f = g. In order to do
this we must show two things, namely

(I) the identical set of factors deter-
mines how the program behaves and how the pro-
gram should behave, and

(2) the program behaves according to
specifications on the same test data.

Once we have shown these two facts, it will
follow immediately from our theorem that the pro-
gram meets its specifications.

Theorem 2.1 is used in proving the synthe-
sized assertion after line 4 in Example 3.2.

Our second theorem will allow us to gener-
alize from test data by showing that on sample
values the program meets its specifications, and
that perturbing the test data in a given fashion
has the same effect on the output of the program
as on the value demanded by the specification•
We first need a definition.

Definition 2.2. We say that a function
f(x I Xn,Y 1 ,ym) on domain D is additive

in x I ,x n, subtractive in Yl 'Ym if

f(x I Xn,Yl,...,y m) = (Xl+...+Xn) - (yl+...+ym)

+k where k is come constant.

E__xample 2•4. Let f(x,y) = x-y+l. Then f(x,y)
is additive in x, subtractive in y.

We get the following theorem•

Theorem 2.2. Let f and g be functions on D

that are additive in Xl,...,Xn, subtractive in

YI' 'Ym' such that for some X~ o o •.. , •.. ,Xn,Y I, •..,
0 0 0 0 0 0 0

Ym we have f(x I ,Xn,Yl,...,ym) = g(x I Xn,

y~ ym°). Then f o r a l l x 1 Xn' Yl Ym

we have f (x 1 ,Xn,Y 1 ym) = g(x I Xn,

Yl Ym) "

Proof. We have

f(x I ,Xn,Y 1 Ym) = (Xl+•..+x n) -

(yl+Y2+.• .+ym) + k ,

g(xl,...,Xn,Yl,...,ym) = (Xl+...+Xn) -

(yl+Y2+...+ym) + I .

Since
O O O O O

f(x I Xn,Y 1 Ym) = g(x I
o o .,y~) ,

Xn,Y 1 , • •

we have k = I. Therefore,

f(x I ,Xn,Yl,...,ym) = g(x I

Xn,Y 1 ,Ym) • []

Example 2•5. Suppose in some program we have
z = x - y + i. Let g(x,y) be some function that
is additive in x, subtractive in y. Assume
g(0,0) = i• Then by Theorem 2.2, f(x,y) = g(x,y)
for all x, y.

Again, we let f represent the function com-
puted by P, and g the specifications. In order
to show that P meets its specifications, we must
show that

(i) the function meets is specification on
the sample test data, x,

(2) the function computed by P, and the
function defined by its specification are per-
turbed in the same fashion as the value ~ is
perturbed.

Theorem 2.2 is used in proving the synthe-
sized assertion after line 5 in Example 3.2.

3. Examples

In this section, three programs will be ver-
ified using the techniques discussed in the pre-
vious section• The programs that have been
chosen can be verified using techniques that have
been previously discussed in the literature.
However, use of the techniques presented in this
paper will in some cases simplify the proof, and

212

in most of the cases add to our confidence that
the program is in fact accomplishing what it
"should" accomplish.

Example 3.1. Our first example is the famil-
iar "91" function, cf. Manna et. at. [1973], a re-
cursive function often cited in the literature.
The function is as follows:

F(X) = IF x > i01 THEN x-10
ELSE F(F(x+ l l))

We wish to show that the function computes the
following values.

for x > I01, F(x) = x - i0

for x < i01, F(x) = 91

where x is any integer.

A typical proof of this theorem is similar
to one suggested in Manna et. al. [1973] as fol-
lows.

Proof of Example I. We have three cases.

Case i. x > I01. Clearly F(x) = x - I0.

Case 2. i01 > x > 91. We wish to show that
for 0 < x < i0, that F(101-x) = 91.

Basis: x = 0. We have F(101-x) = F(101) =
91 from Case i.

Induction Stem: We assume that for some x,
where 0 < x < i0, we have F(101-x) < 91. Then
F(101 - (x+l)) = F(100-x). Since 0--< x, we have
(100-x) < i01. Therefore F(100-x) =--F(F(Iii-x)).
Now, since X < I0, we have F(iii-x) = F(lll-x-10)=
(101-x). Therefore F(100-x) = F(101-x). But, by
our induction hypotheses, F(101-x) = 91.

Case 3, 91 > x. We wish to show that for
x, x ~ 0, that F(91-x) = 91.

Basis: x = 0. We have F(91-x) = F(91) : 91
by Case 2.

Induction Stem: We assume that for all x,
0 < x < X, where X > 0, we have F(91-x) = 91.
Now F(91-(x+l)) = F~90-x). Since x > 0, we have
F(90-x) = F(F(101-x)). If 0 < x < 15, we have
F(101-x) = 91 by Case i. Therefore F(F(101-x)) =
F(91). By Case 2, F(91) = 91. If x > I0, we have
F(101-x) = F(91-(x-10)), where (x-10)--> 0. There-
fore by our induction hypothesis, F(91-(x-10)) =
91. Thus F(F(101-x)) = F(91) = 91, by Case 2.0

We now give a proof of the correctness of
this program using the techniques of Section 2.

Synthesized Assertion: For x >.i01, F(x) =
x - I0, for x < I01, F(x) : 91 where x is any
integer.

Test Data Assertion. For all x such that
91 < x < 101, we have F(x) = 91.

Verification of Test Data Assertion. We
simply run our program with the values 91,92
lO1 for x. We see that in each case, the program
behavior meets the specifications of our test

data assertion.

We can now generalize from these results to
the domain of integers {I I I ~ I01}.

Generalization Assertion. For any i, i < i0,

we have f(i) = f(kJ(x) " for some k > 1 and some x

such that 91 < x < I01.

Proof. By induction on (101 - i) DIV ii
(where DIV represents integer division of the
first argument by the second).

Basis: (101-i) DIV Ii = 0. In this case
91 < i < i01, and the result is clearly true.

Induction Step: We assume that our proved
assertion is true for (101-i) DIV ii = j, for
some j > 0. Now choose 1 such that (i01-/)
DIV Ii = j + i. Since j > 0, clearly 1 < 91. We
have

(i 0 1 - (t + l l) + 11) DIV i i = j + l

Therefore, (i01 - (/+ii)) DIV ii = j. It follows
from our induction hypothesis that

f(/+ll) = f(k)(x) for some k > l, 91 < x < 101.

But we know that f(/) = f(f(/+ll). Therefore
f(/) = f(k+l)(x), and our Generalization Assertion
holds.

We are now ready to prove our Synthesized
Assertion.

Proof of Synthesized Assertion. It follows
directly from the program that for x > i01,
F(x) = x - i0. It follows directly from our
test data assertion and generalization assertion
that for x < I01, we have F(x) = 91. []

We see that our proof is substantially
shorter than the first proof, and more intuitive.

Notice how the use of test data alone is
insufficient to guarantee the correctness of the
program. The technique suggested by some of
breaking the input domain into classes on which
the program gives the same value produces an
infinite number of such classes, since a differ-
ent result is produced for each x such that
x > i01.

Exampl e 3.2. For our second example, we
choose a program which computes the number of days
by which one date follows another date in some
given calendar year. This particular program was
chosen on several grounds. Although the notion
of the number of days between two days is easily
understood, axiomatization of this concept is
quite difficult. Once we have provided an axio-
matization for the correct numbers of days be-
tween two days, it is difficult to be sure that we
have in fact chosen the correct axiomatization.
It is particularly easy for the axiomatization to
specify answers that are off by one or two days in
certain cases.

Since the calendar program involves setting
up a table, the notion of distributed correctness
will allow us to greatly simplify our assertions,

213

by allowing us to merely specify that the table is
correct.

Comment. The following procedure takes as
input two dates in a given year, where a date is a
pair (DAY,MONTH). We assume that both dates are
legitimate dates for the year in question, and
that the first date does not occur after the sec-
ond date. The program computes the number of days
by which the second date follows the first date.

PROCEDURE CALENDAR(DAYi,DAY2,MONTHi,MONTH2,
YEAR);

BEGIN

(i) IF MONTH2=MONTHi THEN DAYS = DAY2 - DAY1

COMMENT IF THE DATES ARE IN THE SAME

MONTH, WE CAN COMPUTE THE NUMBER OF DAYS

BETWEEN THEM IMMEDIATELY;

ELSE

BEGIN

DAYSIN(1) :=31; DAYSIN(3) :=31;
DAYSIN(4) :=30;

DAYSIN(5) :=31; DAYSIN(6) :=30;
DAYSIN (7) :=31;

DAYSIN(8) :=31; DAYSIN(9) :=30;
DAYSIN(10) :=31;

(2) DAYSIN(ii) :=30; DAYSIN(12) :=31;

(3) IF ((YEAR MOD 4) ~ 0) OR ((YEAR MOD
i00) = 0 AND (YEAR MOD 400) # '0")

THEN DAYSIN(2) :=28

ELSE DAYSIN(2) :=29;

COMMENT SET DAYSIN(2) ACCORDING TO
WHETHER OR NOT YEAR IS A LEAP YEAR;

(4) DAYS :=DAY2 + DAYSIN(MONTHI) - DAYi;

COMMENT THIS GIVES (THE CORRECT NUM-
BER OF DAYS - DAYS IN COMPLETE INTER-
VENING MONTHS);

(5) FOR I = MONTH + i TO MONTH2 - I DO

DAYS :=DAYSIN(I) + DAYS;

COMMENT ADD IN THE DAYS IN COMPLETE
INTERVENING MONTHS;

END

(6) PRINT (DAYS)

END

We now wish to verify the correctness of
our procedure.

Line i. We wish to prove the following synthe-
sized assertion.

Synthesized Assertion. For any two dates,
DAYS gives the correct number of days by which the
second date follows the first date, assuming that
MONTH1 = MONTH2.

It might at'first appear that our use of test
data in this instance is unnecessary. One might
argue that our synthesized assertion could easily

be argued to hold directly from the semantics of
the statement DAYS :=DAY2 - DAY1.

Suppose, however, that we had really wished
to compute the number of days between the two
dates, including the first and last days. It
would be very easy to err in the specifications
for such a program, and on this basis argue that
DAYS correctly computed this different quantity.
This error, however, would be immediately detected
by a choice of very simple test data.

We now use the formalism of our technique to
show that in fact DAYS is correctly computed to
meet the specification of this program. We begin
by providing the test data assertion.

Test Data Assertion. For DAY1 = 15, DAY2 =
15, we should have DAYS = 0 after execution of
this statement.

Our choice of the value 15 in particular was
random. We could have chosen any other possible
day of the month. However, it was important that
DAY1 and DAY2 were chosen to be very close to-
gether. This allows us to easily state what the
answer should be for the test data. Note that
test data is useless unless it is simple to check
whether or not the value produced by the program
on the test data is correct. If, in fact, one has
to run the program to check what the value of the
test data should be, then we have gained nothing
by testing the program.

Verification of Test Data Assertion. To
verify the test data assertion, we now run the
program from the point directly before where
statement (I) lies, with DAY1 = 15, DAY2 = 15,
and MONTH1 = MONTH2 = i. After executing state-
ment (i), we check the value of DAYS. In this
case, since the program is correct, we find that
we have the correct value of DAYS, namely O. No-
tice that since this statement is only executed
once, the value 0 will be produced for the given
test data on every pass through this arc on the
flow graph.

We now need to be able to generalize from
this particular test data to any two particular
days in the month. Our use of the generalization
assertion will make it clear why we chose DAY1 =
DAY2. Our generalization assertion states that
increasing DAY2 increases DAYS in a certain fash-
ion, increasing DAY1 decreases DAYS in a certain
fashion.

Generalization Assertion. DAYS is additive
in DAY2, subtractive in DAY1.

Verification of Generalization Assertion. We
see in our program that DAYS = DAY2 - DAY1.

We now finally come to the point at which we
prove the synthesized assertion. Note that the
test data assertion and generalization assertion
were verified, the test data assertion by use of
test data, the generalizaed assertion logically.
The synthesized assertion must be shown to logi-
cally follow from the test data assertion and
generalization assertion.

214

Proof of Synthesized Assertion. The proof
follows directly from the test data assertion, the
generalization assertion, and Theorem 2.2. []

Note how we have made use of the notion of
distributive correctness here, by concluding that
DAYS is "correct" under certain conditions.

We now continue with out verification of the
program.

Line 2.

This statement provides us with an example
where the test data information provides all the
information that is necessary to assure us that
this "table" of the number of days in all of the
months but February is correct. The program in a
sense provides its own documentation in creating
this table. It would certainly be valueless to
add the values in this table as one of the dis-
juncts in the output assertion of this program.
We therefore have

Test Data Assertion, Synthesized Assertion.
DAYSIN(I) is correct for I = i, 3 < I < 12.

One might object and say that the value of
DAYSIN(I) for some I might still be incorrect.
This, of course, is true and the values inserted
in the table should be carefully checked. How-
ever, the point still remains that the specifi-
cations of a program can never be guaranteed to
correspond with what was "meant" to be done.

Line 3.

We wish to show that line (3) correctly com-
putes DAYSIN(2) for any possible year. Our syn-
thesized assertion is:

Sjnthesized Assertion. DAYSIN(2) is cor-
rect.

Again, this could be shown by comparing some
predicate that specified what the program was
supposed to compute, with the predicate actually
computed by the program. Again, the problem here
is that these two predicates will probably be
identical, and both could well be wrong. How-
ever, if we allow ourselves the use of test data,
we can check out the values produced on certain
test data by looking them up, perhaps in an al-
manac. We will then be able to generalize from
the specific years used as test data to all
years.

Test Data Assertion. Our technique for
choosing test data in this example is similar to
the technique used in Goodenough and Gerhart
[1975], The major difference is that in this
example, we are dividing the domain into classes
locally. This is extremely crucial, since the
number of test cases may grow exponentially in
the number of factors we are considering. By def-
inition, dividing our input into classes locally,
the number of cases will be kept low.

Our model is the limited entry decision ta-
ble. Notice that not all of the combinations of
predicates can be satisfied. We choose one sam-

ple test data from each of the combinations of
predicates that can be satisifed. Our particular
choice of test data should be motivated chiefly
by simplicity of certifying the correctness of the
value of the result. Our choice of test data in
this example is given in Table 3.1.

Table 3.1

Predicate

YEAR MOD 4 # 0 /

YEAR MOD 100 = 0 / /

YEAR MOD 400 # 0 ~ / /

Test Data 7 200 800 8

Correct Values 28 28 29 29

/ indicates that the given predicate is satisfied.

Verification of Test Data Assertion. We now
run the statement on this sample test data, and
find that the correct answers are generated.

We now wish to generalize from our test data.

Generalization Assertion. DAYSIN is totally
determined by the predicates YEAR MOD 4 = 0, YEAR
MOD I00 = 0, and YEAR MOD 400 # 0.

Verification of Generalization Assertion.
From the program, it is clear that DAYSIN is
totally determined by the predicates

YEAR MOD 4 # 0, YEAR MOD i00 = 0, and
YEAR MOD 400 # 0.

Notice that if we failed to consider some
case, we could still end up with a correctness
"proof" of a program that did not do what we
wanted. We have, however, gained the following
advantages over a traditional correctness proof.
First of all, we will catch an error resulting
from failingto combine the predicates correctly.
Secondly, we are examining the predicates that
must be considered at the point in the program
where these are to be considered, rather than at
the output arc.

Finally, we prove our synthesized assertion.

Proof of Synthesized Assertion. The proof
follows directly from the test data assertion,
the generalization assertion, and Theorem 2.1. []

Line 4: Synthesized Assertion.
DAYS = (# of days by which second date

follows first date)
(# of days in complete intervening
months).

At this point, we wish to show that our pro-
gram behaves properly over month boundaries. It
is very simple here to make a mistake that will
give answers that will be off by one or even two
days, both in the program and in its specifica-
tions. We choose two days that are very close
together, yet in different months so that the
answer produced can easily be cerified. In this
particular example, symbolic execution may be

215

very helpful. We wish to show that the program
gives us a 1 if DAYI = DAYSIN(1). The simplest
way to do this is to symbolically execute the
program with DAYSIN(I) as the symbolic value of
DAY1. Otherwise, we would have to execute the
program with all possible values of DAYSIN(I)
for 1 < I < ii. We have the following

Test Data Assertion. Let DAY1 = DAYSIN(I),
MONTH(1) = I, DAY2 = i. Then DAYS = i.

Verification of Test Data Assertion. We
run the statement on the given symbolic test
data, and we find that DAYS = 1 after execution.

We now wish to generalize from this specific
test data. Our generalization assertion is

Generalization Assertion. DAYS is additive
in DAY2, subtractive in DAY1.

Verification of Generalization Assertion.
The assertion follows from the fact that DAYS =
DAY2 + DAYSIN(MONTH) - DAY1, and that
DAYSIN(MONTHI) is independent of DAY2 and DAYI.

Finally, we must prove our synthesized
assertion.

Proof of Synthesized Assertion. "The proof
follows immediately from the test data assertion,
the generalization assertion, and Theorem 2.2. []

Line 5.
The fifth line computes the number of days

in intervening months, and adds it to the value
of DAYS that had been computed, giving us the
number of days by which the second date follows
the first.

Synthesized Assertion. DAYS = number of
days by which the second date follows the first.

The proof of this assertion is greatly
simplified by our use of distributed correct-
ness.

Proof. The lower and upper bounds of the
FOR loop are MONTH2+1 and MONTH1-1. These are
clearly the first and last complete intervening
months. By the correctness of DAYSIN(I) for
1 < I < 12, proven after line 4, we know that
this statement adds to DAYS the correct number
of days in intervening months. Therefore after
execution of line 5, we have

DAYS = number of days by which second
date follows first date
- days in complete intervening

month
+ days in complete intervening

months.

Therefore

DAYS = number of days by which second date
follows first date. []

Line 6.
Synthesized Assertion. The program prints

the correct value of DAYS.

Proof. If MONTH1 = MONTH2, then the program
prints the correct value of DAYS. If MONTH1 #
MONTH2, then the program prints the correct value
of DAYS. []

Note that in this example, the proof follows
directly from other assertions, and no test data
information is really necessary or even desirable.

Example 3.3. Our third and final example due
to Parnas is reproduced from Robinson and Levitt
[1975]. Similar examples can be found in Parnas
[1972] and Hoare [1972]. It is reproduced below
in Table 3.2.

In this example, it is demonstrated that our
testing techniques can be extremely useful in
verifying large programs. The example we use em-
ploys Parnas modules, cf. Parnas [1972], to factor
the program into pieces that can be verified. We
shall show that our testing techniques can be used
to show the correctness of the behavior of each of
these modules.

Table 3.2

Register Module Specification

(Quotes signify value before application of func-
tion.)

integer V-Function: LENGTH
Comment: Retu~is the number of occupied

positions in the register.
Initial value: LENGTH = 0
Exceptions: none

integer V-Function: CHAR (integer i)
Comment: Returns the value of the i th

element of the register.
Initial value: Vi(CHAR(i) = undefined)
Exceptions: I OUT OF BOUNDS:

i < 0 ~ i>LENGTH
0-Function: INSERT (integer i,j)

Comment: Inserts the value j after posi-
tion i, moving subsequent
values one position higher.

Exceptions: I OUT OF BOUNDS:
i < 0 ~ i > LENGTH
J OUT OF BOUNDS:
j < 0 V j > 255
TOO LONG: LENGTH > 1000

Effects: LENGTH--= 'LENGTH' + 1
Vk (i < k < 'LENGTH' + i)
[CHAR(k) = if k < i then
'CHAR'(k)

else if k = i+l then j
else 'CHAR'(k-i)]

0-Function: DELETE (integer i) th
Comment: De-i~ ~he i element of the

register, moving the subsequent
values to fill in the gap.

Exceptions: I OUT OF BOUNDS:
i < 0 ~ i>LENGTH
UNDERFLOW: LENGTH = 0

Effects: LENGTH = 'LENGTH' - 1
Vk (i < k < 'LENGTH' - I)
[CHAR(k) = if k < i then
'CHAR' (k)

else 'CHAR'(k+i)]
CHAR('LENGTH') = undefined

2 1 6

Once the 0 and V functions have been written,
testing is ideal for checking whether or not they
behave properly with respect to exception condi-
tions. However, for this example, we concern our-
selves mainly with the behavior of the module as
a whole.

Robinson and Levitt [1975] cite four invari-
ants that can be proven about the register module,
which they state are quite useful in shortening
proof of programs that call the module. These in-
variants are

(i) 0 < LENGTH < i000
(2) vi~0 < i < LENGTH DDEFINED(CHAR(i))).
(3) Vi(DEFINED(CHAR(i))D0<CHAR(i) S 255).
(4) DEFINED(LENGTH).

We shall now sketch how testing can be used to
verify the correctness of this module. For this
example, we will present our arguments for cor-
rectness in a style that a programmer might wish
to use in providing an informal argument for cor-
rectness of his program. Only two of the four are
proven. In both of the proofs we shall present
both test assertions and generalization assertions.

(i) 0 < LENGTH < 1000.

Proof. Only the 0 functions can change the
value of LENGTH. Therefore, we must prove that
this invariant is preserved under the operations
of INSERT and DELETE. We first check that
LENGTH < i000 is an invariant. Since DELETE
decreases' LENGTH, DELETE will cause no problems.
For INSERT, we have LENGTH = 'LENGTH' + i. It is
clear that if the assertion is maintained for
LENGTH = i000, the assertion will be maintained
for any initial value of LENGTH. We run a test
of INSERT with LENGTH = i000, and we find that
an exception condition is generated. Next, we
check that LENGTII > 0 is an invariant. Since
INSERT increases LENGTH, INSERT will cause no
problems. For DELETE, we have LENGTH = 'LENGTH'

i. It is clear that if the assertion is main-
tained for LENGTH = 0, the assertion will be
maintained for any initial value of LENGTH. We
run a test of DELETE with LENGTH = 0, and find
that an exception condition is generated. []

(3) We wish to show V i(DEFINED(CHAR(i))~
0<CHAR(i)<255). We examine the effect of IN-

SERT and DELETE on this invariant. It is easy
to show that DELETE maintains this invariant.
To check if INSERT maintains the invariant, we
execute calls INSERT(i,256) and INSERT(i,-1).
We choose 256 and -i since they lie immediately
outside the boundaries of where CHAR(i) should
be defined. Note that i could be any value
that we choose. We could either pick any value
of i, and show that if the invariant is pre-
served with some value of i, it is preserved with
any value of i. If we had the facilities of a
symbolic executor, we might wish to execute our
program with the symbol 'i'. We see that INSERT
(i,256) and INSERT(i,-1) both generate exception
conditions. Clearly, j > 256 and j < -1 will
generate exception conditions based on general-
izing from our test data.

Notice how in both instances, the boundary
values were crucial points at which errors would

have been very easy to make. Thus, our consider-
ation of test data results was crucial in arguing
the invariance of these assertions.

4. Conclusions

We have shown how information gained by
testing a program may be useful in helping to
prove the program correct. Rather than being
antithetical to proving correctness, proper use
of test data may in fact suggest a simple strategy
for proving programs correct. In the way in which
we are using testing, the process in fact does not
run counter to the ideas of structured programming
Rather, it becomes an integral part of the process.
When developing a program, it is quite natural
to conceive of the programmer considering how the
program works on some specific examples, and
trying to guarantee that in fact the program be-
haves in a similar fashion on the whole input
domain. In the case of our calendar example, it
was simpler to specify program behavior by speci-
fying how it should behave on test data, and
the use of test data simplified the verification.

The techniques described in this paper seem
to formally model some of the informal techniques
used by programmers in checking the correctness
of their programs. For practical applications,
the techniques specified in this paper might be
short-cut. For example, one might use these
techniques on larger chunks of code. By dealing
with modules, we have shown how the technique
is very flexible in terms of how large a chunk
of code we deal with at a time.

A great deal of work remains to be done in
the area of using test data to prove program
correctness. Some of the areas that should be
considered are:

(i) Many additional theorems could be
proven, similar to the ones in Section 2,
to be used in generalizing from specific
test data to a larger domain.

(2) It would be useful to examine tech-
niques for automatically generating test
data. Techniques exist for automati-
cally generating assertions, cf. Weg-
breit [1974], Katz and Manna [1974].
Similar techniques might be used to
automatically generate test data. This
problem is probably very difficult.

(3) A system could be built for proving
programs correct using test data. Such
a potential might be built into current
symbolic execution systems.

(4) The methods outlined in this paper
should be tested against large-scale
programs to examine their efficiency in
either proving these programs as a
whole, or in guaranteeing effectiveness
of sections of these programs. The
problem of testing interaction among
modules of a large program should be
examined further.

Acknowledgments

I would like to acknowledge Susan L. Graham
and many graduate students of the Computer Science

217

Division at UC Berkeley, including Jeffrey Barth,
Steven Glanville, Larry Ruzzo, Mark Wegman and
Amiram Yehudai for their helpful suggestions.

Bibliography

i. Boyer, R.S., Elspas, B. and Levitt, K.
SELECT - A formal system for testing and de-
bugging programs by symbolic execution. Pro-
ceeding s of International Conference on Reli-
able Software (1975) pp. 234-245.

2. Boyer, R.S. and Moore, J.L. Proving theorems
about LISP functions. Journal of the Associ-
ation for Computing Machinery. Vol. 22 (Jan-
uary 1975) pp. 129-144.

3. Burstall, R.M. Proving properties of pro-
grams by structural induction. Com~uter
Journal, Vol. 12 (1969) pp. 41-48.

4. Dahl, O.J., Dijkstra, E.W. and Hoare, C.A.R.
Structured Programming. Academic Press,
London and New York, 1972.

5. Floyd, R.W. Assigning meanings to programs.
Proceedings of a Symposium in Applie d Math-
~matics, Vol. 19 (J.T. Schwartz, ed.), Amer-
ican Mathematics Sogiety (1967) pp. 19-32.

6. Goodenough, J.B. and Gerhart, S.L. Toward
a theory of test data selection. Proceedings
of International Conference on Reliable Soft-
ware (1975) pp. 493-510.

7. Henderson, P. Finite state modelling in pro-
gram development. Proceedings of the Inter-
national Conference on Reliable Software
(1975) pp. 221-227.

8. Hoare, C.A.R. Proof of correctness of data
representations. Acta Informatica, Vol. i,
Fasc. 4 (1972) pp. 271-281.

9. Howden, W.E. Methodology for the generation
of program test data. University of Califor-
nia, Irvine, 1974.

10. Katz, S.M. and Manna, Z. Logical analysis
of programs. The Weizmann Institute of Sci-
ence, 1974.

ii. King, J.C. A new approach to program test-
ing. proceedings of International Confer-
ence on Reliable Software (1975) pp. 228-
233.

12. Liskov, B.H. and Zi'lles, S.N. Specifica-
tion techniques for data abstractions. IEEE
Transactions in Software Engineering, Vol. I,
No. i, (March 1975) pp. 7-19.

13. London, R.L. A view of program verification.
Proceedings of International Conference on
Reliable Software (1975) pp. 534-545.

14. Manna, Z., Ness, S. and Vuillemin, J. Induc-
tive methods for proving properties of pro-
grams. Communications of the ACM 16, 8 (Au-
gust 1973) pp. 491-502.

15. Miller, E.F. Jr. and Melton, R.A. Automated
generation of testcase datasets. Proceed-
ings of International Conference on Reliable
Software (1975) pp. 51-58.

16. Parnas, D.L. A technique for software module
specification with examples. Communications
of the ACM 15, 5 (May 1972) pp. 330-336.

17. Robinson, L. and Levitt, K. Proof techniques
for hierarchically structured programs.
Stanford Research Institute, Menlo Park, CA
(1975).

18. Sintzoff, M. Calculating properties of pro-
grams by valuations on specific models. Pro-
ceedings of ACM Conference on Proving Asser-
tions About Programs (January 1972) pp. 2'03-
207.

19. Wegbreit, B. The synthesis of loop predi-
cates. Communications of the ACM 16, 2
(February 1974) pp. 102-112.

218

