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Abstract 
An applicative program denotes a function mapping  values  

from some domain  to some range.  Abstract interpretation of 

applicative programs involves us ing  the  s tandard  denotat ion 
to describe an  abstract  function from a "simplified" domain to 
a "simplified" range,  such tha t  computat ion of the  abstract  
function is effective and  yields some information,  such as type 
information,  about  the  s tandard  denotation. We develop a 
general  f ramework for a restricted class of abstract  
in terpreta t ions  tha t  deal with  non-s t r ic t  functions defined on 
non-f ia t  domains.  As a consequence, we can develop inference 
schemes for a large and useful class of functional programs,  
including functions defined on streams. We describe several  
practical problems and solve them us ing  abstract  
interpretat ion.  These include inferr ing minor signatures and 
relevant clauses of functions, which have ar isen out  of  our 
work on a s t rongly- typed applicative language.  
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1. Introduction 

1.1. Abstract Interpretation of applicative programs 
Static inference techniques  for applicative programs are of 

use in developing optimized implementa t ions  of applicative 
languages  and enhanc ing  the  reliability of applicative 
programs by deducing aspects of the  "type" of a function. The 
technique of abstract interpretation 15, 6] forms the  theoretical 
basis  for our techniques.  An applicative program denotes a 
function mapping  values  from some domain  to some range. 
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Abstract  interpretat ion of applicative programs consists  of 
us ing the s tandard  denotat ion to describe an  abst ract  function 
from a simplified domain ("simplified" in tha t  only par t icular  
properties of interest  are captured) to a simplified range.  The 
computat ion of the abstract  function yields some information 
about the  s tandard  denotation. 

The techniques developed here can cope with a very genera l  
class of f i rs t-order  applicative programs: non~-strict functions 
acting On non-flat domains. There  is grea t  uti l i ty in being 
able to deal with this  class, as m a n y  useful applicative 
programs consist of non-s t r ic t  functions act ing on s t r eams  (a 
non-f ia t  domain) 18, 12]. We formulate  a set  of  s imple 
conditions characterizing a well-formed abst ract  
interpretat ion,  and describe a computat ional  scheme for 
arr iving a t  the *'abstract" denotat ion of an  expression. 

Static inference for applicative languages  often involves 
computing a description of values  tha t  migh t  be bound to 
parameters  of functions, as well as a description of va lues  
re turned by functions. Construct ing the  description as  a set of 
values, as is the  case for imperat ive l anguages [5]  is 
unsatisfactory. Non-s t r ic t  functions may  yield useful resu l t s  
on being applied to expressions whose evaluat ion does not 
terminate .  Hence the  description may  need to take  
terminat ion into account [19J. To do so consistent ly forces us  
to consider sets  with an  order -s t ruc ture  of the  kind famil iar  
in work on indeterminacy 121}. Fur ther ,  in deal ing wi th  n o n -  
fiat domains,  as we do, the  sets  have  a more complex order 
s t ruc ture  t han  is the  case with fiat domains,  somewhat  
independent  of whe ther  or not  te rminat ion  is of interest .  

The s tandard  denotat ion of a function definition f is wr i t ten  
[[fi]:D - >  R. The use  of abstraction functions, which 
"simplify" the  domain and range of a function, are  central  to 
our approach. Abstraction maps  Absl".D -> A1 and Abs2:R 
-> A2, capture  aspects of the  domain D and range R in 
"simpler" domains  A1 and A2 (for a description of 
"acceptable" abstract ion maps  see section 3). Clearly, A1 and 
A2 should capture some characterist ic of the  domain  (D) and  
range (R) which are  of interest.  We then  interpret  [[f]] as a 
function, e i ther  from A1 to A2, or from more complex domains  
constructed out  of A1 and A2. Depending on the  s t ruc ture  of 
the  under ly ing  domains  (A1 and A2), several  such 
interpreta t ions  may  be available. We describe one such 
interpretat ion below; a complete discussion may  be found in 
Section 3. 
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The union-bused interpretation interprets Hill as a function 
from the powerdomain of A1 (written PDIA11) to PDIA21. 
While [191 has earlier given a similar construction for flat I 

domains, a number of difficulties arise in developing such a 
construction for non-fiat  domains 122, 21. In this paper, we 
confine our work to using a standard powerdomain 

construction which is well behaved for finite A l  and A2. 
Many, but not all, computationally effective abstract  

interpretations involve such domains. As our examples 
involve only finite A I  and A2 the construction yields the 

necessary theoretical framework. 

The following diagram summarizes the union-based 

interpretation. A function [[fll: D - >  R induces a relation 

Riifl I from A I  to A2 which in turn induces a function from 
PD[A1] - >  PD[A21; the function i is an embedding function 

(i:j = {j}). The union-based interpretation for Ilfll is written 
f[f]] "b. 

Z:) EL" ~Y] >A? 

A1 Rrf~J.J ) A2 

PDNlY- Cr [.TJ "~ ) PD[A2] 

V a~.A1, 
a Rlifl I z, V z¢ { Abs2:[{fll:x I Absl:x =a  } 

V AF.PDiA1], 
[[fI]UD:A = { b i aR11fllb, V acA } 

Figure I: Union-based interpretation 

I[fubll overestimates I[f]l ub, in that: 

V aE PDIAI I, [IfUbll:a D IlfllUb:a 

As [IfUbll overestimates the set of values an expression might 
produce, it is useful in situations where we wish to show that  

certain values (e.g. error values) cannot result from the 

evaluation of an expression. 

We illustrate the utility of these ideas, with a number of 
practical applications. We motivate and solve the problems of 

inferring what  we call minor signatures and relevant clauses. 
These have arisen out of our work in developing a strongly 

typed applicative language TFEL 114, 16) and are described in 

Subsections 1.2 and 1.3. In addition, we remark that  the 
inference technique described in [181 can be described in our 

framework. In 118 I, abstract  interpretation is used to optimize 

the implementation of integer valued applicative programs in 

a ca l l -by-need programming language. A simple computation 

allows the inference of "strict" parameters  of functions - i.e. 

those parameters  tha t  may be safely computed by ca l l -by-  
value. This scheme has a simple description (a combination of 

join and meet interpretations) in our framework. 

1.2. Minor signatures 
Example 1.2.1 displays the type integer list together with 

functions first and rest defined on integer lists. The language 
we use is an extended applicative language, of the form called 
"equational" or "clausal", similiar to HOPE {3] or 

TFEL [14, 161. Functions in such languages can be specified 
via their  action on prototypical terms. All functions are 

strongly typed; types are specified by data equations. The 
symbol "+  +"  should be read as "or"; the symbol ":" s tands for 
function application. 

d a t a  list = nil + + fby[integer # list[ 

dec first: list - >  integer 
- -  first:tby[x,y[ = x 

dec rest: l i s t - >  list 
- -  rest:fby[x,y] = y 

Example 1.2.1 

The action of [[f]] ub on any A~PD[A1], consists of taking the 

union of all possible values given by applying [[f]] to the p re -  

image of A in D; these values are mapped to a point in PD[A2] 
by Abs2. In practice, [[f]]ub cannot be directly computed. 

Instead an  approximation, wri t ten [[tub]], derived from 

analyzing the  representation (function definition) for f is used. 
As is well known [5] computation of [[fub]] is only possible if 

the  domain PD[A1] - >  PD[A2] possesses the finite chain 
property - all chains converge in a finite number of steps. 

IA flat domain isone in which x ~ yimplies x = / o r x  = y 

The data equation defines the  type list of integers. AI| data 

are represented by data constructors applied to a number of 
subterms, each of which represents  another data item. The 

type list has two constructors: nil and/by.  Fby accepts terms 

of type integer and list and constructs a list out of them. 
Constructors form "records" of the appropriate type and arity, 

components of which are recoverable by (implied) selector 
functions. Functions f irst  and rest are specified by equations 
or clauses describing their  action on prototypical terms 
belonging to list. 
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The need for inferr ing minor signatures is motivated by 
*d5  

noting tha t  fir.st and rest are partial functions. Typically, an  

application of the  form first:nil would generate  an error at  

run - t ime .  Fixing our terminology, let the  major signature of 
a function be what  is t radi t ional ly known as the s ignature  (or 

type) of a function. In the  case of rest the  major signature is 

l ist->list .  Given the major signature of a function, the  minor 

signature characterizes the  action of the  function on t e rms  

belonging to the  domain  type of its major s ignature ,  

indicat ing such th ings  as: 

1. Is the function total ? In the  case of rest, given 
any  te rm belonging to list (the domain type), 
does it yield a proper te rm belonging to list (the 
range  type), or does it  yield an  error value ? 
Clearly rest is not total, as  it yields an  error 
value  when applied to nil. 

2. I f  the function is partial, what are the terms 
belonging to its domain type for which it yields 
an error value ? For rest, the  only such term is 
nil. 

More formally, we define: 

Def in i t i on  1: Given function f w i t h  major s igna ture  D - >  D, 
let P be a part i t ion of D, then  the  minor  s igna ture  of f with  
respect to P is a function from P to the  powerset of P 
augmented  with an  e r ror -va lue  such that:  

minor signature(D:a = { b i } 
iffV x~a, [[f:x]J~b i for some i 

In sections tha t  follow we will provide a precise description 

of possible par t i t ions (via abstract ion mappings),  describe an  

appropriate power construction and  carry out  inference with 

respect to a par t icular  partition. 

In practice, we can only compute an approximation to t he  

minor signature; th is  implies tha t  we will certify only a subset 

of all total functions to be total. Ins tead of picking out  the  

precise set  of t e rms  for which a function yields an  error, we 

will pick out  a superse t  of these  terms.  

The utili ty of performing such a minor  s igna ture  analys is  

should be clear: information on the  behaviour  of functions is 

made avai lable to the  user  a t  compile time; some erroneous 

expressions are  detected before a program is run,  and the  

r u n - t i m e  overhead of including e r ror -handle rs  is reduced 

accordingly. Thus ,  inferr ing minor  s ignatures  is a form of 

compile- t ime detection of exceptions. In contrast,  the  

language  ML [7] explicitly incorporates such exceptions in the  

form of failures. Minor s igna tures  are useful for stat ic  

detection of errors, whereas  failures in ML serve beth as a 

m e a n s  of indicating errors, and as an  explicit p rogramming  

technique.  

=In this context, by partial function we mean a function that yields an error 
on being applied to a term in its defined domain. We are not referring to the 
polsibility of non--termination. 

1.3. Relevant clauses 
The utility of inferring re levant  clauses is i l lustrated by the  

following example. Consider the  following definition of the  

type (univariatc) Ixdynomial and the function value which 

evaluates  a polynomial a t  the  integer n. 

d a t a  poly = 
X + + constl integerl  
+ + mullpoly # polyl + + addlpoly # pely] 
+ + sub[poly # polyl + + exp{poly # integer] 

dec  value: poly - >  integer 
I l l -  value:lX,nl = n 
121- value:lconstlpl,n] = p 
13l- value:lmullx,y],n] = valuelx,nI*valuely,n] 
14]-value:{addlx,yl,nl = valuelx,n] + valuely,n] 
[5J- valne:{sublx,y],nl = value{x,n] - valuely,n] 
[6]- value:lexp[x,mJ,n] = valuelx,n] 'm 

Example 1.3.2 

The function value is specified by its action on every 

possible term belonging to type poly. In Example 1.3.2 we 

have at tached a clause number to each clause. Frequently,  

only a few clauses will be needed to determine the  resul t  of a 

part icular  application of value - -  consider the  expressions 

ualue:/mul[X,const/3]],9] and value:[exp[X,7],9]. In the  first 

expression only the  first three  clauses, and in the  second 

expression the  first and las t  clauses,  are  of interest.  We will 

call such clauses relevant clauses. To be precise, we should 

speak of relevant clauses of a function with respect to an  

application of the  function to a term.  Determining the  

re levant  clauses of a function stat ical ly allows an  interpreter  

to reduce the  number  of clauses it m u s t  inspect at  r un - t ime ;  

this  is of part icular  importance in combinator based (i.e. 

copying) interpreters  [11] and sys tems  based on tree rewri t ing 

[9], in which an  application is effectively replaced with its 

definition. Such a definition will typically involve a r u n - t i m e  

case analysis  for minor  s ignatures .  By inferring minor  

s ignatures  at  compile t ime,  the  size of definit ions which m u s t  

be copied is substant ia l ly  reduced. 

More formally, we define: 

Def in i t ion  2: Given function f w i t h  major s igna ture  D - >  D, 
the relevant clauses of f w i t h  respect to a part i t ion P of D, is a 
function from P to the  powerset of clause number s  such that:  

relevant clause(/):a = {ki} 
iffV x~a, clause k i (for some i) 
is re levant  in the  expression f:x. 

Again,  we will only be able to compute an  approximation to 

the  re levant  c lauses  of a function, inferring a superset of the  

re levant  clauses.  Inferr ing re levant  clauses of a function is 

related to the  notion of overloading [1], in the  sense tha t  each 

clause defining a function can be considered to be an  

independent  function definition (e.g. value above). In 
overloading, however,  an  a priori s ignature  of an  overloaded 

function is a lways available, thereby restr ic t ing the  problem 
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to one of choosing a single function from a set of functions. 

Inferring relevant clauses, on the other hand, involves both 

computing a "signature" for each clause of the function based 

on some description of terms (as described below) and, when 

given an application of the function to a term, choosing the 

subset of clauses which could be applicable. 

1 . 4 .  R e l a t e d  W o r k  

Abstract interpretation of imperative programs has been 

formalized by [5, 6]. In their framework abstract 

interpretation takes the form of modelling values of program 
variables at different points in a program. As we have earlier 

suggested, their construction involves power sets rather than 

power domains. Consequently, unlike the domains we 

consider, which are complete partial orders, the Cousots' work 
with complete lattices. 

Mycroft [19] pioneered the extension of abstract 

interpretation to applicative programs. While he has not 

addressed the problems that arise in dealing with non-fiat 

domains, we owe several crucial observations to him ( see 

Section 3) and urge the interested reader to consult Chapter 2 

of[19] for a comprehensive discussion of the abstract 

interpretation problem for applicative languages. 

In the remainder of this work we describe a correctness 

result for the construction sketched in Figure I and apply this 

result to the problems discussed above. In section 2 we 

describe interpretations for data equations and function 

definitions, which form the basis for arriving at the minor 

signature and relevant clause of functions. Section 3 is an 

outline of the correctness result and provides the necessary 

machinery for abstracting the interpretations given in Section 

2. In section 4 we describe solutions for the minor signature 

and relevant clause problems; section 5 describes an 

important example of the use of relevant clause inference. 

2. Standard Interpretations 
In this section we specify a denotational interpretation for 

data equations and provide two denotationai interpretations 
for function definitions. The first relates function definitions 

to their standard denotations (i.e. namely abstract functions). 
The second interprets function definitions as functions from 
terms to sets of clause numbers. Building an approximation to 
the first definition yields the minor signature of a function; 

approximating the second definition yields the relevant 

clauses of a function, We also specify a "simplified" domain 
based on which we construct approximations. 

We will use functions defined on the following types as 
examples: 

da ta  integer = zero + + succlinteger] 

da ta  bool = true + + false 

Example 2.0.3 

There are two popular styles of interpreting data equations 

as domains. The first, which we will call a "strict" domain, 

reduces to the insistence that a value is defined (non-bottom) 

only if all its sub-values are defined. This gives rise to a fiat 

domain. "Lazy" domains result if we admit terms with 

components that may be undefined and lead to the possibility 

of "infinite objects" derived from cyclic constant definitions. 

Details of these constructions may be found in [12, 4]. As we 

are interested in non-fiat domains, we use the second 

interpretation. 

We capture error values by introducing constant bad (after 

[15]) into the domain of data values. As we are modelling 
non-strict functions, we cannot insist that functions be bad- 
preserving - yield bad on being applied to bad. Similarly 

"lazy" interpretations of data equations will generate terms 

with bad embedded in them. Figure II displays the structure 

of the domain of integer values, extended with bad, for both 

the "lazy" and "strict" interpretations. Note that we use type 

integer only to capture the essential structure of streams with 
minimal development of formal machinery. We are not 

suggesting that "lazy" implementations of type integer are 
useful in practice. 

succ[badl i succ(zero]  
\ I / 

\ I / 
\ I / 

succ[.J-] 
I 
I 
I 

bad zero 
\ / 

\ /  
I 
t 
I 

_E 

bad zero succ [ze ro l  . .  
\ I / 

\ I / 
\ I / 

\ I / 
I 

J_ 

Figure II: Lazy and strict interpretations for integers 

The two interpretations for expressions and functions 

definitions that  we use are conventional and w e  do no t  
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describe them in any  detail. The first, Efun, maps  expressions 

and function definitions to values  and functions over the  TOI 

(Type of Interest). Applying a function to an  unexpected 

a rgumen t  resul ts  in the value bad. 

Example 2.0.4 demons t ra tes  the  action of Efu n, us ing  

function subl  defined on integers.  

subl:succ[zero] = zero 
subl:succ[succ[x]] = succ[subl:succ[x]] 

Efun[[ subl:succ[zero] ]] = zero 
Efunf[ subl:zero ]] = bad 

Example 2.0.4 

derived from the set of constructors {zero, succ, J_, bad}. It is 

straightforward to verify that the abstraction map 4) is 

acceptable in the terminology of section 3. 

4): INTEGER--> Con 

4):J- =-L 
4):zero = zero 
4):succlxl = s u c c  & 4):x 
4):bad = bad 

succ &.L = succ 

Definition of 4) 

Our  second interpretat ion is more interest ing.  We number  

each clause in a function definition with a positive integer 

(1..n). The action of Ecl is to yield the  clause numbers  tha t  

are entered dur ing  execution. Operationally,  this  is 

equivalent  to each clause in a function definition re turn ing  a 

pair, consist ing of the  computed value and the  clause number .  

In the  following discussion we ignore the  computed value, bu t  

clearly it is essential  in defining the  interpretation.  Ecl maps  

expressions into sets  of clause number s  and interprets  

functions as  mapping  values  (drawn from the  TOI) to sets  of 

clause numbers .  Intuit ively,  Ecl simulates the  evaluat ion of a 

function on being applied to an  a rgument ,  collecting clause 

number s  as it does so. The resul t  of applying a function to a 

value is a set  of clause number s  describing the  clauses 

entered dur ing  evaluation.  The action Ecl on expressions can 

be though t  of as  yielding a collection of sets  of clause number s  

each labelled by the  function name  and function application 

from which the  set  is derived. In Example  2.0.5 the  function 

euen, (defined on integers), is mapped to a function from 

integers  to sets  of clause numbers .  

[1[-even:zero = t rue  
[2]-even:succ[zero] = false 
[3]- even:succ[succ[x]] = even:x 

Ecl[[ even ]] : i n t e g e r - >  PowerSet{Clause numbers]  
= < <zero,  { 1 } > ,  < socc[zero], {2) > ,  

<succ[succ[zero]], {1,3}>.,.> 

EcI[I even:succ[succ[succlseroH] ]] 
= [even, {3,2}] 

Eel[[ even:subl:succ[succ[zero]] ]] 
= [subl ,  {1,2}[[even, {2}] 

Example  2.0.5 

The part icular  domain  (partition) which we use as  an  

example  is derived from the  set o f  the constructors (written 

Con). For the  type integer, augmented  with bad, Con is 

s u c c  & bad s u c c &  z e r o  
\ / 

SUCC 
I 

bad I z e r o  
\ /  

I 
..L. 

Structure  of Con 

The operator "&" can be thought  of as a form of infix union,  

with s ingleton subset  s u c c &  I identified with succ. This  

ensures  the  cont inui ty  of 4). 4) applied to an  integer value  

reveals  the  constructors used to construct  the  value. 4) 

induces a map  from terms and constant equations to Con in 

the  obvious manner .  

3. Correctness 
In th is  section we provide an  outline of the  correctness 

proof for the  techniques  described in Section 1. Definitions of 

continuity,  finite element ,  complete part ial  order (c.p.o), 

countably algebraic c.p.o (domain] and other  domain theoretic 

notions used below can be found in [22]. 

Theorems 4 and 5 are s tandard  in domain theory [21], and  

define a powerdomain construction for finite c.p.o.'s. 

Definition 3: Let E be a c.p.o. A subset  X of E i~ convex iff 
(V x,y,z~E, x -< y -< z and x,zEX implies y~X). 
Let Conu(X) = { z ] z~E, x<-z<-y, x,ycX }. 

Theorem 4: [Plotkin] Given a finite c.p.o D, PD[D] = 
{ Conu(X) ] X ~ D, X : : ~ }  , PD[D[ is a e.p.o with ~ defined to 
be: [Egl i -Milner  ordering]: a <- b iff V y~b there  exists  x~a 
such tha t  x -< y and  V x~a there  exists  y~b such tha t  x -< y. 

T h e o r e m  5: For any  c.p.o D, Closed Union (Conu U) is a 
cont inuous function on PD[D], and the  subset  relat ion (~) is 
cont inuous over PD[D]. 

We will also use  the  subse t  relation on functions over 
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PD{D]; this is a natural "lifting" to functions~ Theorem 4 

states that the union-based interpretation can be expressed 

in terms of the above powerdomain construction. In stating 

theorem 4, we need to place a technical restriction on the 

order structure of acceptable "simplified" domains a~on the 

abstraction mapping. If abstraction mapping Abe maps 

domain D to A, we require the ~ order on A to to be related to 

the < order on D, in that al,a2eA should be related only if 

elements of D from the pre-images under Abs, are related. 
The restriction on abstraction mapping states that the sets { x 

I Absl:x = al }, { x I Absl:x = a 2 } must be related in a 

particular way. 

Definition 6: Given domains D and A, continuous, total and 

onto abstraction mapping Abs:D -> A,is an an acceptable 
abstraction mapping ifffor all al ,  a2eA, i f a  I ~ a 2 then for all 
finite elements  xe{ r I Absl : r  = all there exists 
ye ( s I Absl :s  = a2} with x -  < y, and for all finite elements 
yet s [ Absl :s  = a2} there exists xe{ r I Absl : r  = al} with x-<y. 

In what  follows we assume all abstraction mappings to be 

acceptable. This restriction on abstraction mappings is fairly 

complex, but  we do not have a simpler characterization at  this 

time. 

T h e o r e m  7: Given {[f]]:D - >  R, D and R domains, acceptable 
abstraction maps Abel: D - >  A1, Abe2: R - >  A2, A1 and A2 
finite, domains, let: 

[[f]]Ub:a = Conv[{Abs2:{[f]]:x IAbsl:x = a}] 

then: 

1. {[f]]ub is a continuous function from 
A1 - >  PDIA2]. 

2. { Abs2:[[f]l:x I Absl:x = a } ~ [[f]]ub:a 

3. If {[f~], [[f2]~b:D - >  R, 1|fill ~- {[f2]] then 
[{fill----- [[f~l] . 

4.{{fllUbn extends to [II~UB:pD[AI] -> PDIA21, 
[[fJlV-:X = Cony { [[f]]'V:a I aeX }. 

Proof :  We outline (1) above, parts (2), (3) and ~ )  are 
straightforward. For a I <- a 2 we need to show [[t3]--:a! -< 
[[f]]U~:a 2. 
From the definition of acceptable abstraction mapping we 
have, for all finite e lements  s~{ x I Absl:x = aj } there e~ists 
r~{ y ] Abel:y = a2} with s <- r and vice-versa. 
Fur ther  Abe2°[[f]] is a continuous function from D to A2. 
Then { Abs2:[[f]]:x I Absl:x = a I } --- 
{ Abs2:{{fl]:x I Abel:x = a2}, as A2 is finite. 

Each f:D -> R induces a map from A1 to PDIA2] and can 

further be embedded into PD{A1] -> PD[A2]. Note that 

securing composition of functions is the only reason to 

consider PD[A1] -> PD[A2]; indeed it can be verified that the 

embedding yields a closed sub-space of PD[A1] -> PDIA2] 

consisting of the "natural extension" of the function space A1 

-> PD[A2]. We freely identify these interpretations in future 

development. 

In 7.2, for fiat domains we have the relationship {[fllUb:a = 
{ Abs2:f:x I Absl:x = a }. For non-fiat domains, the 

relationship is weakened to an inclusion. The well known 

"convex hull" problem 12], caused by identifying sets with 
their  convex closures, forces us to make the weaker s ta tement  
on non-f ia t  domains. In pragmatic terms this implies some 

extra loss of information during inference. 

The union-based interpretation is useful when the set of all 
possible results is of interest;  two subsidiary interpretations, 

the meet and join interpretations, yield upper and lower 
bounds of the set of results, and are often simpler to use in 

applications. The meet (or join) interpretat ions are only 
available when the range (A2, in A1 - >  A2) is a meet-- (or 
join)--complete (closed under greatest  lower bounds (least 
upper bounds) of subsets of A2). 

T h e o r e m  8: Given [[f]]:D - >  R, D and R domains, acceptable 
abstraction maps Abel: D - >  A1, Abe2: R - >  A2, A1 and A2 
finite domains, let: 

{[f]~:a = U{{Abs2:[{fl]:x I Absl:x = a}] 

[[f]Im:a =~[{Abe2:[[f]]:x I Abel:x = a}] 

then: 

1. {[f]~,[[f]]m are continuous functions from 
A1 - >  A2. 

2. Vze{ x I Abel:x = a }, Abe2:[[f]]:z - [[f]]m:a 

3. VzE{ x I Absl:x = a }, Abs2:[{f]]:z - [[f]~:a 

4. If [[f~]], [[f~]] :D - >  R, .{{fill <-- [[f2 ]] then 
[{fl]] ' ([[f2]] ') ~ [[f2]] m ([[f2]]J). 

Proof :  Straightforward from Theorem 7 and continuity of 
meet  and join over the powerdomain (p.477 {21]). 

Below we present  an application of the union-based and 
join abstract  interpretat ions for the  minor signature and 
relevant  clause problems: 

Union-bused, D = integer, R = integer, 
A b s l =  Abs2 = ¢ ,  A1 = A2 = Con 

Efunl[ sub1 H ub = 
zero - >  {bad}, eucc & zero - >  {zero, succ & zero}, 
J_ - >  W ,  succ - >  {succ} 
bad - >  {bad}, succ & bad - >  {succ & bad,bad} 

Example 3.0.6: Minor signature of subl 

For the  relevant  clause problem, the availability of a 

complete lattice (A2 = Powereet[Clause Numbers]) with - 
equal to ~ suggests that  the  join interpretat ion should suffice: 
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Join, D = integer, R = PowerSetlClause Numbersl, 
A b s l =  ~,  Abs2 = identity, 
A1 = Con, A2 = PowerSetlCiause Numbersl 

Ecl[[ even JJJ = 
zero - >  {1}, succ & z e r o - >  {1,2,3} 
i ->{}, succ ->{S} 
bad -> {}, succ & bad -> {3} 

Example 3.0.7: Relevant clauses of even 

Theorems 7 and 8 are not helpful in actually computing 

[|fl]ub/j/m, as [[f~b/j/m are defined via the standard 

denotation. We need to derive [[fuWj/m i] as approximations to 

[[f]]uVjsm from the function representation for f.Theorems 7 

and 8 are applied "piecewise" to primitive interpreted 

functions (if-then-else etc.) inducing an interpretation for 

function defintions via composition and by taking fix-points. 

Before doing so we need some results on function application 

and composition: 

Theorem 9: 

1. ( l [ f l lUb° l lgJ ]  "b )  D_([ l f l l  ° l l g ] l )  "b ,  

2. ([[f]l" ttg]l/<- tt@t]gli, 
3. ([(f]] ° [tg]]) m -> [[f]]m o [[g]l = 

Proof: For (I) above, notice that [[f]]ub:[[a]]Ub :~ [[f:a]] ub. For 
(2) and (3) similarly. 

We write recursive function definitions as f = Elf] 

interpreted as usual by the taking of fix-points with respect 

to a set of primitive functions symbols { c i }. For the union- 

based interpretation we have: 

Theorem 10: Given a function representation f = Elf] for 
function [[f][:D -> R, Abstraction maps Absl:D -> A1, Abs2: 
R-> A2: 

[if]tub ~ f[fub]] 

where [[tab]] = lira i (EUb)i[ .L ] 

where EUb[fJ = E [fJ <c'i/c ~> V i, 

and [[c'i]J = [Ici11 ub. 

Proof :  From 11ci]] ~ []c'i]] and Theorem 9 we have the 
relationship for finite compositions of primitive functions, and 
we only need to show that  the relationship holds for limits. 
From En[.L] ~ (EUD)n[.L] , and the continuity of the subset 
predicate we have the required relationship. 

The role of two partial orders (~, -<) over the underlying 
powerdomain for the union-based interpretation has beer, 

remarked upon by [191. The < ordering captures 
improvement during the process of i terating to the fixed 
point; the ~ ordering captures lose of information due to 
coarseness of the abstract  interpretation. 

The correctness result  for [If]~ and ]]film follows by an 

argument  similar to that  used above: 

T h e o r e m  I I :  I l t a ' l l  " I I l ' l l  m " I l t ' l l  " I l f lJ  j -- I l f iJ l  

Proof :  As above, using continuity o f  meet and join as 
relations. 

The intersection-based interpretation (the dual of the 
union-based interpretation) defined by [/f]/b:a = N { 

{Abs2://f//:x} I Abs l : x  = a } is not available in general, unless 
the underlying powerdomain has a natural intersection 

operation. The intersection-based interpretation is useful 
when we need to show that  a certain value must  result  from 

the evaluation of an expression. It is not clear whether  it is 

possible to consistently extend the underlying domain to 
permit  such an operation. 

Finally, we compare our constructions with those of 15] and 

119]. We have earlier in Section 1 pointed out some specific 

differences. We further note that our construction is 

developed in a non-standard fashion and limited to a 

restricted set of abstraction maps. Traditionally abstract 

interpretations of a standard interpretation are formulated as 

abstractions of the "collecting interpretation" - the natural 

lifting of the standard semantics to the powerdomain (or 

powerset) ofthe underlying domain (or set). Our development 

of abstract interpretation is therefore fairly restrictive. The 

traditional setting has the advantage that interpretations can 

easily be compared (see Cousots' lattice of abstract 

interpretations) and more complex abstraction maps can be 

expressed. 

4. S o l v i n g  for  M i n o r  S i g n a t u r e s  a n d  R e l e v a n t  
clauses 
We discuss some pragmatic details of the minor signature 

and relevant clause inference system. The system carries out 

both inferences in sequence; minor signatures are inferred 

first and used to drive the relevant clause inference system. 

Function definitions are first mapped into an appropriate 

form for solution by computation of least fixed points. For 

minor signature inference, this implies non-recursive 

function definitions take on functionality PD[Con] -> 

PD/Con], with recursive definitions appearing as functionals 

over the same space. For relevant clause inference the 

functionality is Con -> PowerSet/ Clause Numbers]. 

The transformation is straightforward, save for leR hand 

sides of clauses (called pattern predicates) which require some 

pre-processing. As pointed out in Section 3 primitive 

functions are simply re-interpreted over the abstract 

domains. This works well for functions such as if-then--else, 

but before re-interpreting clauses it is necessary to carry out 

some extra pre-processing. Define the intersection set of a 

pattern predicate to be those elements of Con having a pre- 

image in the TO[ containing elements which might match the 

pattern predicate. For x in f:x = e I the intersection set is all 

of Con; for Suce[x] in f:succ[x] = e I the intersection set is 

{succ & zero, succ, succ & bad}. Using intersection sets we 
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produce clause definitions over Con, as shown below in 

Example 4.8 for sub1: 

subl:succ & zero = zero U succ & subl:(succ & zero) 
subl:succ & bad = succ & subl:(succ & bad) U bad 
subl:J_ = J_ 
sub 1:bad = bad 
subl:zero = bad 
sub l:succ = succ & subl:succ 

U succ & sub1:j_ 

Example 4.8: Transformed version of Sub1 

Memebers of Con, that  do not belong belong to any 

intersection set show up mapping to bad (except for -L) in the 
re- in terpre ted  clauses. Currently,  the re- interpreted clauses 
are solved for using a simple iterative algorithm. Example 
4.9 displays the  inferred minor signature for subl, computed 

from the representat ion in Example 4.8: 

Efun[[SublUb]] = 
bad -> {bad}, succ-> {succ}, 
zero -> {bad}, J_ -> {_[_}, 
succ& zero -> {succ & sero,zero,succ}, 
succ & bad -> {succ & bad, bad, succ}, 

ub 
Example 4.0.9: Efunl[subl ]1 

ub . 
The over-es t imate  of results inferred by Efun[isubl ]] m 

u b .  

visible when compared with Efun[[ sub1 ]] m Section 3. For 
• u b  . 

the value succ& zero, Efun[[Subl ]] ymlds { succ& zero, zero, 

succ}, as opposed to {succ & zero, zero} suggested by Efun[[ 
sub1 ]]ub. Basically the inference algorithm fails to infer 

termination and consequently throws in the extra value succ. 

Restat ing the goals of minor signature inference discussed 

in section 1 in terms of SubI: Subl is a partial function, 
yielding an error when applied to zero. Error-handlers  need 

only be included when the minor signature suggests that  bad 
ub 

occurs amongst the set of possible results. From Efu.[[ f ]] 

Efunl[f~b]] we have: 
* b ] ] : a  

- If Efun[[ f = { bad } for some a~Con, then for 
all values x in the pre- image of a, Efu n [[ f:x ]] = 
bad. 

- If.for some x, Efun[[ fix ]] = bad, then badeEfu n [[ 
fuo ]]:Abel:x The presence of bad in the set of 
results  can be used as a necessary condition for 
the inclusion of an error handler. 

- F i n a l l y ,  if bad does not occur in a s e t  of results, 
i.e. bad is absent  from Efun[[fUD]]:a for some 
asCon, then  no error can occur for values drawn 
from the pre- image  of a, i.e Efun[[f:x]] < >  bad 
where x such tha t  A b s l : x  = a .  

Computing relevant clauses follows the general outline 
suggested above. As we are using the join interpretation, we 

have Ecl[[ f [~ -< Ecl[I t J }[, and will in general infer a superset 
of the relevant clauses. The meet interpretation could also be 
used to infer a subset (all clauses that  must be utilized for a 
particular application), but is not of practical interest. 

Example 4.10 displays the inferred relevant clauses for 

even. Note that  we cannot solve the relevant-clause problem 
without inferring the minor signature of functions concerned, 

as at  all t imes we require estimates of the values being passed 

to functions and the values returned by them: 

ub 
Eel[[even ]] = 
zero -> {1}, succ&sero-> {1,2,3}, 
J_ ->®, succ -> {3} 
bad ->0, succ& bad -> {3} 

Example 4.10: Ecl[[#]] 

Comparing with Eel[[ even ]~ in section 3, we find Ed[[ even j ]] 
to be identical; this will not be the case in general. 

Finally, we note some points where the actual inference 

system differs from the theoretical basis. As noted in Section 

3, using the  union-based interpretation forces the 

identification of subsets of Con with their  convex closures. 

This forces the identification of {_L, succ & zero} and {-I-, succ, 

succ& zero}. We are currently investigating whether  we can 
avoid this identification both for non-recursive functions 
(straightforward) and (use a looping t e s t ) f o r  recureive 
definitiom.It remains to be seen if this  is well-founded. 

5. Relevant clause Inference in a language 
Intended for concurrent execution 
We describe the important  role played by relevant clause 

inference in optimizing the execution of the functional 
language FEL [14] on a reduction--based multiproceseor [11]. 

In [13] a method was given whereby sequences could be stored 
ei ther  as Lisp dotted-pairs, as contiguous blocks (called 

tuples), or as contiguous blocks representing virtual 

concatenations of sequences (called concs). In other words, 

the underlying representation of a given sequence might use 

these constructs in any combination and to any number of 

levels. An obvious reason to prefer one representat ion over 
another is the  accessibility/modifiability trade-off: Access of 

the ith component of a dot tsd-pair  representation requires 
t ime linear in i, whereas access of a tuple requires constant 

time; Access of a virtual concatenation is somewhere in 
between, depending on ba/ance. On the other hand, since the 

possibility of shared or concurrent access to sub--structures 
preculdes in-place modification (a new structure must  be 
created), pure tuples are the most expensive to (virtually) 

modify. 
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Subsequently, a set of sequence operators was provided in 
FEL for performing commonly-used operations on these 
generic sequences. The intention here was to relieve the 
programmer from having to think about several different 

versions of operators which do similar operations, and to 
provide optimized implementations of these operators which 

could exploit the potential for concurrent execution in an 

applicative multiprecesser. For example, the generalization 
of Lisp's mapcar written as II (called parallel application) is 

such that f II x applies a function f component-wlse to any 

sequence x.Similarly, if fs is a sequence of functions, then fs :: 

x applies each f in the sequence to x, and so on. In 

implementing such generic operators, the general case 

demands the inclusion of a run-time test for the 

representation type of the sequence at each level of recursion. 

However, in many applications, only one of the 

representations is actually used. 

Consider the function rest as it might be defined on integer 

sequences with the generic representation described above. 
Example 5.11 illustrates the clauses in a format similar to 

that used in TFEL: 

data intlist 
-~ nil + + list[integer tuplel 

+ + iby[integer, intlistJ 
+ + conc[intlist tuple]] 

d e e  r e s t  : intlist - >  intlist 
rest:list[x| = list[t---rest:x|| 
rest:fby[x,y] = y 
rest:cone[x| = if t----first:x = nil then 

rest:conc[t---rost:x ]] 
else conc[rest:t--first:x,t---rest:x| 

Example 5.11: integer lists 

The function t--first yields the first element of a tuple; 

function t--rest yields the tuple derived by removing the first 

element. The constructors nil and/by are conventional; the 

constructor list builds a list from an arbitrary number of 
integers and is stored as a tuple, the constructor cone 

(standing for concatenation) also builds a tuple of its 
arguments. The extractor functions, (e.g. rest above) interpret 
conc and list appropriately, effectively causing them to 
possess the same functional semantics as append or list would 

in Lisp. 

Use of cone and list therefore yields lists that are (often) 
structured as blocks rather than pairs, achieving the 
objectives described above. However, this generous use of 
constructors forces supporting functions (e.g. rest above) to be 
be written with many clauses. In a copying reduction-based 
system this implies excessive memory utilization (through 

function body copying). 

The relevant clause and minor signature inference scheme 
described herein permits us to optimize the implementation 
by excluding tests for representations which have been 

inferred not to be relevant. This scheme is thus a powerful 

device for freeing the programmer from detailed concerns 

about representations, permitting easy change from one to 

another, and allowing greater experimentation to find which 
representation yields the best possibilities for concurrent 

execution. An implementation in full FEL, incorporating 

both minor signature inference and relevant clause inference, 

is underway. 

6. Conclusion 
We have argued that abstract interpretation provides an 

useful framework in which to develop inference schemes for 

applicative languages. We have presented several practical 

examples of its utility and outlined a simple correctness proof 

for the abstract interpretations we use. 

We are currently extending the work in several directions. 

The correctness proof contained in this paper is fairly ad-hoc 

(restriction to finite domains etc.) and we are in the process of 

extending it[20[. We are also examining several other 
inference problems that include extending[18} to list 

structures in general; re-phrasing, and thereby extending to 
functions, the cycle-sum test in [23] as well as describing the 
aggregate update problem J l0] as an inference problem. 

A prototype implementation that infers relevant clauses 

and minor signatures is operational. An implementation in 

full FEL is underway. Details of algorithms used and gains 

due to optimization will appear in [17]. 
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