
Static inference of properties of
applicative programs

P r a t e e k M i s h r a and R o b e r t M.Kel le r
Depar tment of Computer Science

Univers i ty of Utah
Salt Lake City, UT 84112

Abstract
An applicative program denotes a function mapping values

from some domain to some range. Abstract interpretation of

applicative programs involves us ing the s tandard denotat ion
to describe an abstract function from a "simplified" domain to
a "simplified" range, such tha t computat ion of the abstract
function is effective and yields some information, such as type
information, about the s tandard denotation. We develop a
general f ramework for a restricted class of abstract
in terpreta t ions tha t deal with non-s t r ic t functions defined on
non-f ia t domains. As a consequence, we can develop inference
schemes for a large and useful class of functional programs,
including functions defined on streams. We describe several
practical problems and solve them us ing abstract
interpretat ion. These include inferr ing minor signatures and
relevant clauses of functions, which have ar isen out of our
work on a s t rongly- typed applicative language.

This work was supported in par t by a
Univers i ty of U t ah Research Fellowship, and
g ran t s from IBM, NSF (no. MCS-8106177), and
the Defense Advanced Research Projects
Agency, US Depar tment of Defense
(contract No. MDA903-81-C-0414) .

1. Introduction

1.1. Abstract Interpretation of applicative programs
Static inference techniques for applicative programs are of

use in developing optimized implementa t ions of applicative
languages and enhanc ing the reliability of applicative
programs by deducing aspects of the "type" of a function. The
technique of abstract interpretation 15, 6] forms the theoretical
basis for our techniques. An applicative program denotes a
function mapping values from some domain to some range.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-125-3/84/001/0235 $00.75

Abstract interpretat ion of applicative programs consists of
us ing the s tandard denotat ion to describe an abst ract function
from a simplified domain ("simplified" in tha t only par t icular
properties of interest are captured) to a simplified range. The
computat ion of the abstract function yields some information
about the s tandard denotation.

The techniques developed here can cope with a very genera l
class of f i rs t-order applicative programs: non~-strict functions
acting On non-flat domains. There is grea t uti l i ty in being
able to deal with this class, as m a n y useful applicative
programs consist of non-s t r ic t functions act ing on s t r eams (a
non-f ia t domain) 18, 12]. We formulate a set of s imple
conditions characterizing a well-formed abst ract
interpretat ion, and describe a computat ional scheme for
arr iving a t the *'abstract" denotat ion of an expression.

Static inference for applicative languages often involves
computing a description of values tha t migh t be bound to
parameters of functions, as well as a description of va lues
re turned by functions. Construct ing the description as a set of
values, as is the case for imperat ive l anguages [5] is
unsatisfactory. Non-s t r ic t functions may yield useful resu l t s
on being applied to expressions whose evaluat ion does not
terminate . Hence the description may need to take
terminat ion into account [19J. To do so consistent ly forces us
to consider sets with an order -s t ruc ture of the kind famil iar
in work on indeterminacy 121}. Fur ther , in deal ing wi th n o n -
fiat domains, as we do, the sets have a more complex order
s t ruc ture t han is the case with fiat domains, somewhat
independent of whe ther or not te rminat ion is of interest .

The s tandard denotat ion of a function definition f is wr i t ten
[[fi]:D - > R. The use of abstraction functions, which
"simplify" the domain and range of a function, are central to
our approach. Abstraction maps Absl".D -> A1 and Abs2:R
-> A2, capture aspects of the domain D and range R in
"simpler" domains A1 and A2 (for a description of
"acceptable" abstract ion maps see section 3). Clearly, A1 and
A2 should capture some characterist ic of the domain (D) and
range (R) which are of interest. We then interpret [[f]] as a
function, e i ther from A1 to A2, or from more complex domains
constructed out of A1 and A2. Depending on the s t ruc ture of
the under ly ing domains (A1 and A2), several such
interpreta t ions may be available. We describe one such
interpretat ion below; a complete discussion may be found in
Section 3.

235

The union-bused interpretation interprets Hill as a function
from the powerdomain of A1 (written PDIA11) to PDIA21.
While [191 has earlier given a similar construction for flat I

domains, a number of difficulties arise in developing such a
construction for non-fiat domains 122, 21. In this paper, we
confine our work to using a standard powerdomain

construction which is well behaved for finite A l and A2.
Many, but not all, computationally effective abstract

interpretations involve such domains. As our examples
involve only finite A I and A2 the construction yields the

necessary theoretical framework.

The following diagram summarizes the union-based

interpretation. A function [[fll: D - > R induces a relation

Riifl I from A I to A2 which in turn induces a function from
PD[A1] - > PD[A21; the function i is an embedding function

(i:j = {j}). The union-based interpretation for Ilfll is written
f[f]] "b.

Z:) EL" ~Y] >A?

A1 Rrf~J.J) A2

PDNlY- Cr [.TJ "~) PD[A2]

V a~.A1,
a Rlifl I z, V z¢ { Abs2:[{fll:x I Absl:x =a }

V AF.PDiA1],
[[fI]UD:A = { b i aR11fllb, V acA }

Figure I: Union-based interpretation

I[fubll overestimates I[f]l ub, in that:

V aE PDIAI I, [IfUbll:a D IlfllUb:a

As [IfUbll overestimates the set of values an expression might
produce, it is useful in situations where we wish to show that

certain values (e.g. error values) cannot result from the

evaluation of an expression.

We illustrate the utility of these ideas, with a number of
practical applications. We motivate and solve the problems of

inferring what we call minor signatures and relevant clauses.
These have arisen out of our work in developing a strongly

typed applicative language TFEL 114, 16) and are described in

Subsections 1.2 and 1.3. In addition, we remark that the
inference technique described in [181 can be described in our

framework. In 118 I, abstract interpretation is used to optimize

the implementation of integer valued applicative programs in

a ca l l -by-need programming language. A simple computation

allows the inference of "strict" parameters of functions - i.e.

those parameters tha t may be safely computed by ca l l -by-
value. This scheme has a simple description (a combination of

join and meet interpretations) in our framework.

1.2. Minor signatures
Example 1.2.1 displays the type integer list together with

functions first and rest defined on integer lists. The language
we use is an extended applicative language, of the form called
"equational" or "clausal", similiar to HOPE {3] or

TFEL [14, 161. Functions in such languages can be specified
via their action on prototypical terms. All functions are

strongly typed; types are specified by data equations. The
symbol "+ +" should be read as "or"; the symbol ":" s tands for
function application.

d a t a list = nil + + fby[integer # list[

dec first: list - > integer
- - first:tby[x,y[= x

dec rest: l i s t - > list
- - rest:fby[x,y] = y

Example 1.2.1

The action of [[f]] ub on any A~PD[A1], consists of taking the

union of all possible values given by applying [[f]] to the p re -

image of A in D; these values are mapped to a point in PD[A2]
by Abs2. In practice, [[f]]ub cannot be directly computed.

Instead an approximation, wri t ten [[tub]], derived from

analyzing the representation (function definition) for f is used.
As is well known [5] computation of [[fub]] is only possible if

the domain PD[A1] - > PD[A2] possesses the finite chain
property - all chains converge in a finite number of steps.

IA flat domain isone in which x ~ yimplies x = / o r x = y

The data equation defines the type list of integers. AI| data

are represented by data constructors applied to a number of
subterms, each of which represents another data item. The

type list has two constructors: nil and/by. Fby accepts terms

of type integer and list and constructs a list out of them.
Constructors form "records" of the appropriate type and arity,

components of which are recoverable by (implied) selector
functions. Functions f irst and rest are specified by equations
or clauses describing their action on prototypical terms
belonging to list.

236

The need for inferr ing minor signatures is motivated by
*d5

noting tha t fir.st and rest are partial functions. Typically, an

application of the form first:nil would generate an error at

run - t ime . Fixing our terminology, let the major signature of
a function be what is t radi t ional ly known as the s ignature (or

type) of a function. In the case of rest the major signature is

l ist->list . Given the major signature of a function, the minor

signature characterizes the action of the function on t e rms

belonging to the domain type of its major s ignature ,

indicat ing such th ings as:

1. Is the function total ? In the case of rest, given
any te rm belonging to list (the domain type),
does it yield a proper te rm belonging to list (the
range type), or does it yield an error value ?
Clearly rest is not total, as it yields an error
value when applied to nil.

2. I f the function is partial, what are the terms
belonging to its domain type for which it yields
an error value ? For rest, the only such term is
nil.

More formally, we define:

Def in i t i on 1: Given function f w i t h major s igna ture D - > D,
let P be a part i t ion of D, then the minor s igna ture of f with
respect to P is a function from P to the powerset of P
augmented with an e r ror -va lue such that:

minor signature(D:a = { b i }
iffV x~a, [[f:x]J~b i for some i

In sections tha t follow we will provide a precise description

of possible par t i t ions (via abstract ion mappings), describe an

appropriate power construction and carry out inference with

respect to a par t icular partition.

In practice, we can only compute an approximation to t he

minor signature; th is implies tha t we will certify only a subset

of all total functions to be total. Ins tead of picking out the

precise set of t e rms for which a function yields an error, we

will pick out a superse t of these terms.

The utili ty of performing such a minor s igna ture analys is

should be clear: information on the behaviour of functions is

made avai lable to the user a t compile time; some erroneous

expressions are detected before a program is run, and the

r u n - t i m e overhead of including e r ror -handle rs is reduced

accordingly. Thus , inferr ing minor s ignatures is a form of

compile- t ime detection of exceptions. In contrast, the

language ML [7] explicitly incorporates such exceptions in the

form of failures. Minor s igna tures are useful for stat ic

detection of errors, whereas failures in ML serve beth as a

m e a n s of indicating errors, and as an explicit p rogramming

technique.

=In this context, by partial function we mean a function that yields an error
on being applied to a term in its defined domain. We are not referring to the
polsibility of non--termination.

1.3. Relevant clauses
The utility of inferring re levant clauses is i l lustrated by the

following example. Consider the following definition of the

type (univariatc) Ixdynomial and the function value which

evaluates a polynomial a t the integer n.

d a t a poly =
X + + constl integerl
+ + mullpoly # polyl + + addlpoly # pely]
+ + sub[poly # polyl + + exp{poly # integer]

dec value: poly - > integer
I l l - value:lX,nl = n
121- value:lconstlpl,n] = p
13l- value:lmullx,y],n] = valuelx,nI*valuely,n]
14]-value:{addlx,yl,nl = valuelx,n] + valuely,n]
[5J- valne:{sublx,y],nl = value{x,n] - valuely,n]
[6]- value:lexp[x,mJ,n] = valuelx,n] 'm

Example 1.3.2

The function value is specified by its action on every

possible term belonging to type poly. In Example 1.3.2 we

have at tached a clause number to each clause. Frequently,

only a few clauses will be needed to determine the resul t of a

part icular application of value - - consider the expressions

ualue:/mul[X,const/3]],9] and value:[exp[X,7],9]. In the first

expression only the first three clauses, and in the second

expression the first and las t clauses, are of interest. We will

call such clauses relevant clauses. To be precise, we should

speak of relevant clauses of a function with respect to an

application of the function to a term. Determining the

re levant clauses of a function stat ical ly allows an interpreter

to reduce the number of clauses it m u s t inspect at r un - t ime ;

this is of part icular importance in combinator based (i.e.

copying) interpreters [11] and sys tems based on tree rewri t ing

[9], in which an application is effectively replaced with its

definition. Such a definition will typically involve a r u n - t i m e

case analysis for minor s ignatures . By inferring minor

s ignatures at compile t ime, the size of definit ions which m u s t

be copied is substant ia l ly reduced.

More formally, we define:

Def in i t ion 2: Given function f w i t h major s igna ture D - > D,
the relevant clauses of f w i t h respect to a part i t ion P of D, is a
function from P to the powerset of clause number s such that:

relevant clause(/):a = {ki}
iffV x~a, clause k i (for some i)
is re levant in the expression f:x.

Again, we will only be able to compute an approximation to

the re levant c lauses of a function, inferring a superset of the

re levant clauses. Inferr ing re levant clauses of a function is

related to the notion of overloading [1], in the sense tha t each

clause defining a function can be considered to be an

independent function definition (e.g. value above). In
overloading, however, an a priori s ignature of an overloaded

function is a lways available, thereby restr ic t ing the problem

237

to one of choosing a single function from a set of functions.

Inferring relevant clauses, on the other hand, involves both

computing a "signature" for each clause of the function based

on some description of terms (as described below) and, when

given an application of the function to a term, choosing the

subset of clauses which could be applicable.

1 . 4 . R e l a t e d W o r k

Abstract interpretation of imperative programs has been

formalized by [5, 6]. In their framework abstract

interpretation takes the form of modelling values of program
variables at different points in a program. As we have earlier

suggested, their construction involves power sets rather than

power domains. Consequently, unlike the domains we

consider, which are complete partial orders, the Cousots' work
with complete lattices.

Mycroft [19] pioneered the extension of abstract

interpretation to applicative programs. While he has not

addressed the problems that arise in dealing with non-fiat

domains, we owe several crucial observations to him (see

Section 3) and urge the interested reader to consult Chapter 2

of[19] for a comprehensive discussion of the abstract

interpretation problem for applicative languages.

In the remainder of this work we describe a correctness

result for the construction sketched in Figure I and apply this

result to the problems discussed above. In section 2 we

describe interpretations for data equations and function

definitions, which form the basis for arriving at the minor

signature and relevant clause of functions. Section 3 is an

outline of the correctness result and provides the necessary

machinery for abstracting the interpretations given in Section

2. In section 4 we describe solutions for the minor signature

and relevant clause problems; section 5 describes an

important example of the use of relevant clause inference.

2. Standard Interpretations
In this section we specify a denotational interpretation for

data equations and provide two denotationai interpretations
for function definitions. The first relates function definitions

to their standard denotations (i.e. namely abstract functions).
The second interprets function definitions as functions from
terms to sets of clause numbers. Building an approximation to
the first definition yields the minor signature of a function;

approximating the second definition yields the relevant

clauses of a function, We also specify a "simplified" domain
based on which we construct approximations.

We will use functions defined on the following types as
examples:

da ta integer = zero + + succlinteger]

da ta bool = true + + false

Example 2.0.3

There are two popular styles of interpreting data equations

as domains. The first, which we will call a "strict" domain,

reduces to the insistence that a value is defined (non-bottom)

only if all its sub-values are defined. This gives rise to a fiat

domain. "Lazy" domains result if we admit terms with

components that may be undefined and lead to the possibility

of "infinite objects" derived from cyclic constant definitions.

Details of these constructions may be found in [12, 4]. As we

are interested in non-fiat domains, we use the second

interpretation.

We capture error values by introducing constant bad (after

[15]) into the domain of data values. As we are modelling
non-strict functions, we cannot insist that functions be bad-
preserving - yield bad on being applied to bad. Similarly

"lazy" interpretations of data equations will generate terms

with bad embedded in them. Figure II displays the structure

of the domain of integer values, extended with bad, for both

the "lazy" and "strict" interpretations. Note that we use type

integer only to capture the essential structure of streams with
minimal development of formal machinery. We are not

suggesting that "lazy" implementations of type integer are
useful in practice.

succ[badl i succ(zero]
\ I /

\ I /
\ I /

succ[.J-]
I
I
I

bad zero
\ /

\ /
I
t
I

_E

bad zero succ [ze ro l . .
\ I /

\ I /
\ I /

\ I /
I

J_

Figure II: Lazy and strict interpretations for integers

The two interpretations for expressions and functions

definitions that we use are conventional and w e do no t

238

describe them in any detail. The first, Efun, maps expressions

and function definitions to values and functions over the TOI

(Type of Interest). Applying a function to an unexpected

a rgumen t resul ts in the value bad.

Example 2.0.4 demons t ra tes the action of Efu n, us ing

function subl defined on integers.

subl:succ[zero] = zero
subl:succ[succ[x]] = succ[subl:succ[x]]

Efun[[subl:succ[zero]]] = zero
Efunf[subl:zero]] = bad

Example 2.0.4

derived from the set of constructors {zero, succ, J_, bad}. It is

straightforward to verify that the abstraction map 4) is

acceptable in the terminology of section 3.

4): INTEGER--> Con

4):J- =-L
4):zero = zero
4):succlxl = s u c c & 4):x
4):bad = bad

succ &.L = succ

Definition of 4)

Our second interpretat ion is more interest ing. We number

each clause in a function definition with a positive integer

(1..n). The action of Ecl is to yield the clause numbers tha t

are entered dur ing execution. Operationally, this is

equivalent to each clause in a function definition re turn ing a

pair, consist ing of the computed value and the clause number .

In the following discussion we ignore the computed value, bu t

clearly it is essential in defining the interpretation. Ecl maps

expressions into sets of clause number s and interprets

functions as mapping values (drawn from the TOI) to sets of

clause numbers . Intuit ively, Ecl simulates the evaluat ion of a

function on being applied to an a rgument , collecting clause

number s as it does so. The resul t of applying a function to a

value is a set of clause number s describing the clauses

entered dur ing evaluation. The action Ecl on expressions can

be though t of as yielding a collection of sets of clause number s

each labelled by the function name and function application

from which the set is derived. In Example 2.0.5 the function

euen, (defined on integers), is mapped to a function from

integers to sets of clause numbers .

[1[-even:zero = t rue
[2]-even:succ[zero] = false
[3]- even:succ[succ[x]] = even:x

Ecl[[even]] : i n t e g e r - > PowerSet{Clause numbers]
= < <zero, { 1 } > , < socc[zero], {2) > ,

<succ[succ[zero]], {1,3}>.,.>

EcI[I even:succ[succ[succlseroH]]]
= [even, {3,2}]

Eel[[even:subl:succ[succ[zero]]]]
= [subl , {1,2}[[even, {2}]

Example 2.0.5

The part icular domain (partition) which we use as an

example is derived from the set o f the constructors (written

Con). For the type integer, augmented with bad, Con is

s u c c & bad s u c c & z e r o
\ /

SUCC
I

bad I z e r o
\ /

I
..L.

Structure of Con

The operator "&" can be thought of as a form of infix union,

with s ingleton subset s u c c & I identified with succ. This

ensures the cont inui ty of 4). 4) applied to an integer value

reveals the constructors used to construct the value. 4)

induces a map from terms and constant equations to Con in

the obvious manner .

3. Correctness
In th is section we provide an outline of the correctness

proof for the techniques described in Section 1. Definitions of

continuity, finite element , complete part ial order (c.p.o),

countably algebraic c.p.o (domain] and other domain theoretic

notions used below can be found in [22].

Theorems 4 and 5 are s tandard in domain theory [21], and

define a powerdomain construction for finite c.p.o.'s.

Definition 3: Let E be a c.p.o. A subset X of E i~ convex iff
(V x,y,z~E, x -< y -< z and x,zEX implies y~X).
Let Conu(X) = { z] z~E, x<-z<-y, x,ycX }.

Theorem 4: [Plotkin] Given a finite c.p.o D, PD[D] =
{ Conu(X)] X ~ D, X : : ~ } , PD[D[is a e.p.o with ~ defined to
be: [Egl i -Milner ordering]: a <- b iff V y~b there exists x~a
such tha t x -< y and V x~a there exists y~b such tha t x -< y.

T h e o r e m 5: For any c.p.o D, Closed Union (Conu U) is a
cont inuous function on PD[D], and the subset relat ion (~) is
cont inuous over PD[D].

We will also use the subse t relation on functions over

239

PD{D]; this is a natural "lifting" to functions~ Theorem 4

states that the union-based interpretation can be expressed

in terms of the above powerdomain construction. In stating

theorem 4, we need to place a technical restriction on the

order structure of acceptable "simplified" domains a~on the

abstraction mapping. If abstraction mapping Abe maps

domain D to A, we require the ~ order on A to to be related to

the < order on D, in that al,a2eA should be related only if

elements of D from the pre-images under Abs, are related.
The restriction on abstraction mapping states that the sets { x

I Absl:x = al }, { x I Absl:x = a 2 } must be related in a

particular way.

Definition 6: Given domains D and A, continuous, total and

onto abstraction mapping Abs:D -> A,is an an acceptable
abstraction mapping ifffor all al , a2eA, i f a I ~ a 2 then for all
finite elements xe{ r I Absl : r = all there exists
ye (s I Absl :s = a2} with x - < y, and for all finite elements
yet s [Absl :s = a2} there exists xe{ r I Absl : r = al} with x-<y.

In what follows we assume all abstraction mappings to be

acceptable. This restriction on abstraction mappings is fairly

complex, but we do not have a simpler characterization at this

time.

T h e o r e m 7: Given {[f]]:D - > R, D and R domains, acceptable
abstraction maps Abel: D - > A1, Abe2: R - > A2, A1 and A2
finite, domains, let:

[[f]]Ub:a = Conv[{Abs2:{[f]]:x IAbsl:x = a}]

then:

1. {[f]]ub is a continuous function from
A1 - > PDIA2].

2. { Abs2:[[f]l:x I Absl:x = a } ~ [[f]]ub:a

3. If {[f~], [[f2]~b:D - > R, 1|fill ~- {[f2]] then
[{fill----- [[f~l] .

4.{{fllUbn extends to [II~UB:pD[AI] -> PDIA21,
[[fJlV-:X = Cony { [[f]]'V:a I aeX }.

Proof : We outline (1) above, parts (2), (3) and ~) are
straightforward. For a I <- a 2 we need to show [[t3]--:a! -<
[[f]]U~:a 2.
From the definition of acceptable abstraction mapping we
have, for all finite e lements s~{ x I Absl:x = aj } there e~ists
r~{ y] Abel:y = a2} with s <- r and vice-versa.
Fur ther Abe2°[[f]] is a continuous function from D to A2.
Then { Abs2:[[f]]:x I Absl:x = a I } ---
{ Abs2:{{fl]:x I Abel:x = a2}, as A2 is finite.

Each f:D -> R induces a map from A1 to PDIA2] and can

further be embedded into PD{A1] -> PD[A2]. Note that

securing composition of functions is the only reason to

consider PD[A1] -> PD[A2]; indeed it can be verified that the

embedding yields a closed sub-space of PD[A1] -> PDIA2]

consisting of the "natural extension" of the function space A1

-> PD[A2]. We freely identify these interpretations in future

development.

In 7.2, for fiat domains we have the relationship {[fllUb:a =
{ Abs2:f:x I Absl:x = a }. For non-fiat domains, the

relationship is weakened to an inclusion. The well known

"convex hull" problem 12], caused by identifying sets with
their convex closures, forces us to make the weaker s ta tement
on non-f ia t domains. In pragmatic terms this implies some

extra loss of information during inference.

The union-based interpretation is useful when the set of all
possible results is of interest; two subsidiary interpretations,

the meet and join interpretations, yield upper and lower
bounds of the set of results, and are often simpler to use in

applications. The meet (or join) interpretat ions are only
available when the range (A2, in A1 - > A2) is a meet-- (or
join)--complete (closed under greatest lower bounds (least
upper bounds) of subsets of A2).

T h e o r e m 8: Given [[f]]:D - > R, D and R domains, acceptable
abstraction maps Abel: D - > A1, Abe2: R - > A2, A1 and A2
finite domains, let:

{[f]~:a = U{{Abs2:[{fl]:x I Absl:x = a}]

[[f]Im:a =~[{Abe2:[[f]]:x I Abel:x = a}]

then:

1. {[f]~,[[f]]m are continuous functions from
A1 - > A2.

2. Vze{ x I Abel:x = a }, Abe2:[[f]]:z - [[f]]m:a

3. VzE{ x I Absl:x = a }, Abs2:[{f]]:z - [[f]~:a

4. If [[f~]], [[f~]] :D - > R, .{{fill <-- [[f2]] then
[{fl]] ' ([[f2]] ') ~ [[f2]] m ([[f2]]J).

Proof : Straightforward from Theorem 7 and continuity of
meet and join over the powerdomain (p.477 {21]).

Below we present an application of the union-based and
join abstract interpretat ions for the minor signature and
relevant clause problems:

Union-bused, D = integer, R = integer,
A b s l = Abs2 = ¢ , A1 = A2 = Con

Efunl[sub1 H ub =
zero - > {bad}, eucc & zero - > {zero, succ & zero},
J_ - > W , succ - > {succ}
bad - > {bad}, succ & bad - > {succ & bad,bad}

Example 3.0.6: Minor signature of subl

For the relevant clause problem, the availability of a

complete lattice (A2 = Powereet[Clause Numbers]) with -
equal to ~ suggests that the join interpretat ion should suffice:

240

Join, D = integer, R = PowerSetlClause Numbersl,
A b s l = ~, Abs2 = identity,
A1 = Con, A2 = PowerSetlCiause Numbersl

Ecl[[even JJJ =
zero - > {1}, succ & z e r o - > {1,2,3}
i ->{}, succ ->{S}
bad -> {}, succ & bad -> {3}

Example 3.0.7: Relevant clauses of even

Theorems 7 and 8 are not helpful in actually computing

[|fl]ub/j/m, as [[f~b/j/m are defined via the standard

denotation. We need to derive [[fuWj/m i] as approximations to

[[f]]uVjsm from the function representation for f.Theorems 7

and 8 are applied "piecewise" to primitive interpreted

functions (if-then-else etc.) inducing an interpretation for

function defintions via composition and by taking fix-points.

Before doing so we need some results on function application

and composition:

Theorem 9:

1. (l [f l lUb° l lgJ] "b) D_([l f l l ° l l g] l) "b ,

2. ([[f]l" ttg]l/<- tt@t]gli,
3. ([(f]] ° [tg]]) m -> [[f]]m o [[g]l =

Proof: For (I) above, notice that [[f]]ub:[[a]]Ub :~ [[f:a]] ub. For
(2) and (3) similarly.

We write recursive function definitions as f = Elf]

interpreted as usual by the taking of fix-points with respect

to a set of primitive functions symbols { c i }. For the union-

based interpretation we have:

Theorem 10: Given a function representation f = Elf] for
function [[f][:D -> R, Abstraction maps Absl:D -> A1, Abs2:
R-> A2:

[if]tub ~ f[fub]]

where [[tab]] = lira i (EUb)i[.L]

where EUb[fJ = E [fJ <c'i/c ~> V i,

and [[c'i]J = [Ici11 ub.

Proof : From 11ci]] ~ []c'i]] and Theorem 9 we have the
relationship for finite compositions of primitive functions, and
we only need to show that the relationship holds for limits.
From En[.L] ~ (EUD)n[.L] , and the continuity of the subset
predicate we have the required relationship.

The role of two partial orders (~, -<) over the underlying
powerdomain for the union-based interpretation has beer,

remarked upon by [191. The < ordering captures
improvement during the process of i terating to the fixed
point; the ~ ordering captures lose of information due to
coarseness of the abstract interpretation.

The correctness result for [If]~ and]]film follows by an

argument similar to that used above:

T h e o r e m I I : I l t a ' l l " I I l ' l l m " I l t ' l l " I l f lJ j -- I l f iJ l

Proof : As above, using continuity o f meet and join as
relations.

The intersection-based interpretation (the dual of the
union-based interpretation) defined by [/f]/b:a = N {

{Abs2://f//:x} I Abs l : x = a } is not available in general, unless
the underlying powerdomain has a natural intersection

operation. The intersection-based interpretation is useful
when we need to show that a certain value must result from

the evaluation of an expression. It is not clear whether it is

possible to consistently extend the underlying domain to
permit such an operation.

Finally, we compare our constructions with those of 15] and

119]. We have earlier in Section 1 pointed out some specific

differences. We further note that our construction is

developed in a non-standard fashion and limited to a

restricted set of abstraction maps. Traditionally abstract

interpretations of a standard interpretation are formulated as

abstractions of the "collecting interpretation" - the natural

lifting of the standard semantics to the powerdomain (or

powerset) ofthe underlying domain (or set). Our development

of abstract interpretation is therefore fairly restrictive. The

traditional setting has the advantage that interpretations can

easily be compared (see Cousots' lattice of abstract

interpretations) and more complex abstraction maps can be

expressed.

4. S o l v i n g for M i n o r S i g n a t u r e s a n d R e l e v a n t
clauses
We discuss some pragmatic details of the minor signature

and relevant clause inference system. The system carries out

both inferences in sequence; minor signatures are inferred

first and used to drive the relevant clause inference system.

Function definitions are first mapped into an appropriate

form for solution by computation of least fixed points. For

minor signature inference, this implies non-recursive

function definitions take on functionality PD[Con] ->

PD/Con], with recursive definitions appearing as functionals

over the same space. For relevant clause inference the

functionality is Con -> PowerSet/ Clause Numbers].

The transformation is straightforward, save for leR hand

sides of clauses (called pattern predicates) which require some

pre-processing. As pointed out in Section 3 primitive

functions are simply re-interpreted over the abstract

domains. This works well for functions such as if-then--else,

but before re-interpreting clauses it is necessary to carry out

some extra pre-processing. Define the intersection set of a

pattern predicate to be those elements of Con having a pre-

image in the TO[containing elements which might match the

pattern predicate. For x in f:x = e I the intersection set is all

of Con; for Suce[x] in f:succ[x] = e I the intersection set is

{succ & zero, succ, succ & bad}. Using intersection sets we

241

produce clause definitions over Con, as shown below in

Example 4.8 for sub1:

subl:succ & zero = zero U succ & subl:(succ & zero)
subl:succ & bad = succ & subl:(succ & bad) U bad
subl:J_ = J_
sub 1:bad = bad
subl:zero = bad
sub l:succ = succ & subl:succ

U succ & sub1:j_

Example 4.8: Transformed version of Sub1

Memebers of Con, that do not belong belong to any

intersection set show up mapping to bad (except for -L) in the
re- in terpre ted clauses. Currently, the re- interpreted clauses
are solved for using a simple iterative algorithm. Example
4.9 displays the inferred minor signature for subl, computed

from the representat ion in Example 4.8:

Efun[[SublUb]] =
bad -> {bad}, succ-> {succ},
zero -> {bad}, J_ -> {_[_},
succ& zero -> {succ & sero,zero,succ},
succ & bad -> {succ & bad, bad, succ},

ub
Example 4.0.9: Efunl[subl]1

ub .
The over-es t imate of results inferred by Efun[isubl]] m

u b .

visible when compared with Efun[[sub1]] m Section 3. For
• u b .

the value succ& zero, Efun[[Subl]] ymlds { succ& zero, zero,

succ}, as opposed to {succ & zero, zero} suggested by Efun[[
sub1]]ub. Basically the inference algorithm fails to infer

termination and consequently throws in the extra value succ.

Restat ing the goals of minor signature inference discussed

in section 1 in terms of SubI: Subl is a partial function,
yielding an error when applied to zero. Error-handlers need

only be included when the minor signature suggests that bad
ub

occurs amongst the set of possible results. From Efu.[[f]]

Efunl[f~b]] we have:
* b]] : a

- If Efun[[f = { bad } for some a~Con, then for
all values x in the pre- image of a, Efu n [[f:x]] =
bad.

- If.for some x, Efun[[fix]] = bad, then badeEfu n [[
fuo]]:Abel:x The presence of bad in the set of
results can be used as a necessary condition for
the inclusion of an error handler.

- F i n a l l y , if bad does not occur in a s e t of results,
i.e. bad is absent from Efun[[fUD]]:a for some
asCon, then no error can occur for values drawn
from the pre- image of a, i.e Efun[[f:x]] < > bad
where x such tha t A b s l : x = a .

Computing relevant clauses follows the general outline
suggested above. As we are using the join interpretation, we

have Ecl[[f [~ -< Ecl[I t J }[, and will in general infer a superset
of the relevant clauses. The meet interpretation could also be
used to infer a subset (all clauses that must be utilized for a
particular application), but is not of practical interest.

Example 4.10 displays the inferred relevant clauses for

even. Note that we cannot solve the relevant-clause problem
without inferring the minor signature of functions concerned,

as at all t imes we require estimates of the values being passed

to functions and the values returned by them:

ub
Eel[[even]] =
zero -> {1}, succ&sero-> {1,2,3},
J_ ->®, succ -> {3}
bad ->0, succ& bad -> {3}

Example 4.10: Ecl[[#]]

Comparing with Eel[[even]~ in section 3, we find Ed[[even j]]
to be identical; this will not be the case in general.

Finally, we note some points where the actual inference

system differs from the theoretical basis. As noted in Section

3, using the union-based interpretation forces the

identification of subsets of Con with their convex closures.

This forces the identification of {_L, succ & zero} and {-I-, succ,

succ& zero}. We are currently investigating whether we can
avoid this identification both for non-recursive functions
(straightforward) and (use a looping t e s t) f o r recureive
definitiom.It remains to be seen if this is well-founded.

5. Relevant clause Inference in a language
Intended for concurrent execution
We describe the important role played by relevant clause

inference in optimizing the execution of the functional
language FEL [14] on a reduction--based multiproceseor [11].

In [13] a method was given whereby sequences could be stored
ei ther as Lisp dotted-pairs, as contiguous blocks (called

tuples), or as contiguous blocks representing virtual

concatenations of sequences (called concs). In other words,

the underlying representation of a given sequence might use

these constructs in any combination and to any number of

levels. An obvious reason to prefer one representat ion over
another is the accessibility/modifiability trade-off: Access of

the ith component of a dot tsd-pair representation requires
t ime linear in i, whereas access of a tuple requires constant

time; Access of a virtual concatenation is somewhere in
between, depending on ba/ance. On the other hand, since the

possibility of shared or concurrent access to sub--structures
preculdes in-place modification (a new structure must be
created), pure tuples are the most expensive to (virtually)

modify.

242

Subsequently, a set of sequence operators was provided in
FEL for performing commonly-used operations on these
generic sequences. The intention here was to relieve the
programmer from having to think about several different

versions of operators which do similar operations, and to
provide optimized implementations of these operators which

could exploit the potential for concurrent execution in an

applicative multiprecesser. For example, the generalization
of Lisp's mapcar written as II (called parallel application) is

such that f II x applies a function f component-wlse to any

sequence x.Similarly, if fs is a sequence of functions, then fs ::

x applies each f in the sequence to x, and so on. In

implementing such generic operators, the general case

demands the inclusion of a run-time test for the

representation type of the sequence at each level of recursion.

However, in many applications, only one of the

representations is actually used.

Consider the function rest as it might be defined on integer

sequences with the generic representation described above.
Example 5.11 illustrates the clauses in a format similar to

that used in TFEL:

data intlist
-~ nil + + list[integer tuplel

+ + iby[integer, intlistJ
+ + conc[intlist tuple]]

d e e r e s t : intlist - > intlist
rest:list[x| = list[t---rest:x||
rest:fby[x,y] = y
rest:cone[x| = if t----first:x = nil then

rest:conc[t---rost:x]]
else conc[rest:t--first:x,t---rest:x|

Example 5.11: integer lists

The function t--first yields the first element of a tuple;

function t--rest yields the tuple derived by removing the first

element. The constructors nil and/by are conventional; the

constructor list builds a list from an arbitrary number of
integers and is stored as a tuple, the constructor cone

(standing for concatenation) also builds a tuple of its
arguments. The extractor functions, (e.g. rest above) interpret
conc and list appropriately, effectively causing them to
possess the same functional semantics as append or list would

in Lisp.

Use of cone and list therefore yields lists that are (often)
structured as blocks rather than pairs, achieving the
objectives described above. However, this generous use of
constructors forces supporting functions (e.g. rest above) to be
be written with many clauses. In a copying reduction-based
system this implies excessive memory utilization (through

function body copying).

The relevant clause and minor signature inference scheme
described herein permits us to optimize the implementation
by excluding tests for representations which have been

inferred not to be relevant. This scheme is thus a powerful

device for freeing the programmer from detailed concerns

about representations, permitting easy change from one to

another, and allowing greater experimentation to find which
representation yields the best possibilities for concurrent

execution. An implementation in full FEL, incorporating

both minor signature inference and relevant clause inference,

is underway.

6. Conclusion
We have argued that abstract interpretation provides an

useful framework in which to develop inference schemes for

applicative languages. We have presented several practical

examples of its utility and outlined a simple correctness proof

for the abstract interpretations we use.

We are currently extending the work in several directions.

The correctness proof contained in this paper is fairly ad-hoc

(restriction to finite domains etc.) and we are in the process of

extending it[20[. We are also examining several other
inference problems that include extending[18} to list

structures in general; re-phrasing, and thereby extending to
functions, the cycle-sum test in [23] as well as describing the
aggregate update problem J l0] as an inference problem.

A prototype implementation that infers relevant clauses

and minor signatures is operational. An implementation in

full FEL is underway. Details of algorithms used and gains

due to optimization will appear in [17].

Acknowledgements
We thank Prakash Panangaden, Uday Reddy and Esther

Shilcrat for helpful discussions and in aiding the preparation

of this report.

243

References

1. United States Department of Defense. Reference manual
for the ADA programming language. United states
Department of Defense, 1982.

2. M. Broy. Fixed point theory for communication and
concurrency. Lectures at the International Summer school on
Theoretical Foundations of Programming Methodology,
July, 1981, pp..

3. Burstall R.M., MacQueen D.B. and Sanella D.T. HOPE:
An Experimental Applicative Language. 1980 LISP
Conference, 1980, pp. 136-143.

4. Cartwright R., Donahue J. The semantics of Lazy (And
Industrious) Evaluation. Symposium on Functional
Languages and LISP, August, 1982, pp. 253-264.

5. P. Cousot and R.Cousot. "Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation ofFixpeints." POPL IV (Jan
1977), 238-252.

6. P. Cousot. Semantic Foundations ofpregram analysis. In
N.Jones and N.Muchnick, Ed., Program Flow Analysis:
Theory and Applications, Prentice-Hall, 1981, pp. 303-342.

7. M. Gordon, R.Milner, L.Morris, M.Newey, C.Wadsworth.
A Metalanguage for Interactive Proof in LCF. Fifth POPL,
1978, pp. 119-130.

8. P. Henderson. Functional programming. Prentice-Hall,
1980.

9. Hoffman C.M., O'Donnell J. "Programming with
Equations." TOPLAS 4, 1 (Jan. 1982), 83-111.

10. P. Hudak. The aggregate update problem in functional
programming systems. In preparation, Yale University, 1983

11. R.M. Keller, G.Lindstrom, and S.Patil. A loosely-
coupled applicative multi-processing system. AFIPS, AFIPS,
June, 1979, pp. 613-622.

12. R.M.Keller. Semantics and Applications of Function
Graphs. Tech. Rept. UUCS-80-112, University of Utah,
Computer Science Department, 1980.

• 13. R.M. Keller. Divide and CONCer: Data structuring for
applicative multiprecessing. Prec. 1980 Lisp Conference,
August, 1980, pp. 196-202.

14. R.M.Keller. FEL Manual. University of Utah, 1983.

15. R. Kieburtz. Precise typing of data type specifications.
POPL X, Jan., 1983, pp. 109-116.

16. P. Mishra. Data Types in Applicative Languages:
Abstraction and Inference. Ph. D.propesal, May 1983

17. P. Mishra, R.M. Keller. Optimized execution of a
strongly typed applicative language. To appear, University of
Utah,1983

18. A. Mycroft. The theory and practice of transforming call-
by-need into call-by-value. In LNCS 83, LNCS 83,
Springer-Verlag, 1980, pp. 269-281.

19. A. Mycroft. Abstract Interpretation and Optimising
Transformations for Applicative Programs. Ph.D. Th.,
University of Edinburgh, December 1981.

20. P. Panangaden, P.Mishra. General pewerdomain
constructions for abstract interpretation and indeterminacy.
In preparation, University of Utah, 1983

2!. G.D.Plotkin. "A Powerdomain Construction." SIAM
J.Comput. 5, 3 (Sept. 1976), 452-480.

22. M.B.Smyth. "Power Domains." JCSS 16 (1978), 23-36.

23. W. Wadge. An Extensional treatment of Dataflow
Deadlock. In G.Kahn, Ed., Semantics of Concurrent
Computation, Springer-Verlag, 1979, pp. 285-299.

244

