
Extended Alias Type System using Separating Implication

Toshiyuki Maeda Haruki Sato Akinori Yonezawa
The University of Tokyo

{tosh,haruki,yonezawa}@yl.is.s.u-tokyo.ac.jp

Abstract
Although explicit memory management is necessary to implement
low-level software such as operating systems and language run-
time systems, it is prohibited by conventional strictly typed pro-
gramming languages because it violates the type preservation of
memory regions, a property that ensures the type safety of pro-
grams. The alias type system allows explicit memory management
without the loss of type safety by statically tracking pointers and
their aliases. However, it suffers from limitations in handling recur-
sive data structures because it requires complete information about
the pointer aliases. In this paper, we propose an extension of the
alias type system using separating implications, which are derived
from separation logic. Separating implications enable us to handle
recursive data structures with incomplete aliasing information by
assuming aliasing relations in a part of memory. The proposed type
system is capable of expressing tail-recursive operations on recur-
sive data structures. For example, we can implement a FIFO queue
with constant-time operations; this cannot be achieved using the
original alias type system.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Security, Theory, Verification

Keywords Type system, Alias types, Separating implications, Ex-
plicit memory management

1. Introduction
Strictly typed programming languages do not allow programmers
to explicitly manage memory regions. Therefore, low-level soft-
ware such as operating systems and language runtime programs
have not been written using strictly typed programming languages
because explicit memory management is necessary to implement
low-level software.

Strictly typed programming languages prohibit explicit memory
management because it conflicts with the type preservation prop-
erty, which ensures that the types of the allocated memory regions
never change during program execution.

To investigate the relation between explicit memory manage-
ment and type preservation, let us consider the following C func-
tion:

1: void reuse(int *p, int *q) {

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI’11, January 25, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0484-9/11/01. . . $10.00

2: *(int**)p = q;
3: }

The memory region that stores an integer value pointed by the
pointer p is reused to store the pointer to an integer, q (line 2).
More specifically, the type of the pointer p must be updated with
int** when the memory region is reused; thus, the type is not
preserved. In general, it is not easy to ensure type safety without
type preservation. For example, the function stated is not type-safe
if the two pointers p and q are aliased (that is, if they point to the
same memory region) because not only the type of p but also the
type of q is updated accidentally.

1.1 Alias Type System and Its Drawback
The alias type system [13, 18] enables programmers to achieve
both explicit memory management and type safety. It keeps track
of aliasing relations between pointers by separating the type of the
memory region pointed by a pointer from the type of the pointer
and by tracking aliasing relations in the memory regions with the
separated types. The function reuse is rewritten informally using
the alias type system as follows:

1: {a 7→ int} ⊗ {b 7→ int}
2: void reuse(ptr(a) p, ptr(b) q) {
3: *p = q;
4: // {a 7→ ptr(b)} ⊗ {b 7→ int}
5: }

Line 1 denotes the store type (that is, the type of memory
regions), and it implies that there are two integer values at a and
b. The types of the pointers p and q are denoted by ptr(a) and
ptr(b), respectively, as shown in line 2. The type ptr(a) implies
that it points to the address a. By combining the type of p and the
store type, we know that p is a pointer to an integer.

In the alias type system, we also know that the two pointers p
and q never point to the same memory region because the alias type
system prevents all the addresses mentioned in the store type from
aliasing each other. Thus, after reusing the memory region at a, the
store type is updated without the loss of type safety, as shown in
line 4.

A drawback of the original alias type system is its limited abil-
ity to handle recursive data structures, especially in the implemen-
tation of tail-recursive operations. To investigate this drawback, we
first explain the treatment of recursive data structures by the origi-
nal alias type system. Then, we describe the drawback.

The alias type system treats recursive data structures using exis-
tential types. For example, in the alias type system, a singly-linked
list can be expressed as

List ≡ ∃[ρ|{ρ 7→ List}].ptr(ρ)
The type stated above is an existential type; it implies that the list
is merely a pointer to the address ρ (the exact address of ρ is not
known), and another singly-linked list exists at the address ρ. The

29

alias type system prevents all the addresses mentioned in existential
types from aliasing with other addresses.

To investigate the drawback of the original alias type system in
handling recursive data structures, let us consider a program that
simply traverses a singly-linked list as follows:

1: {ρ 7→ List}
2: while (p) { // p : ptr(ρ)
3: unpack ρ with ρ1;
4: // {ρ 7→ ptr(ρ1)} ⊗ {ρ1 7→ List}
5: p = *p;
6: // p : ptr(ρ1)
7: }
Line 1 denotes the loop invariant, and it implies that there is a
singly-linked list at some address ρ. In addition, let us assume that
the type of the pointer p is ptr(ρ) (line 2). Line 3 performs the
unpack operation on the existential type List. More specifically, it
extracts the packed memory region from the existential type. Thus,
after the unpack operation, the store type consists of the extracted
memory region and the pointer to it, as shown in line 4. (It is
important to note that the packed ρ is renamed as ρ1 in order to
avoid name ambiguity.) Finally, line 5 updates the variable p, and
its type becomes ptr(ρ1) (line 6).

The drawback of the original alias type system is its inability to
loop back from line 6 to line 2. More specifically, although the loop
invariant is satisfied with the pointer p and the type of the memory
region at ρ1 by instantiating ρ with ρ1, the aliasing relations of the
original memory region at ρ must be discarded. Thus, the original
singly-linked list is not accessible after the while loop is exited.

One possible approach to overcome this drawback is to refine
the loop invariant; however, this approach is not applicable to
the original alias type system. For example, let us refine the loop
invariant as

{ρ 7→ ptr(ρ1)} ⊗ {ρ1 7→ List}
Clearly, this invariant is not satisfied for the second iteration of the
loop. Thus, for the nth iteration of the loop, the loop invariant must
be of the following form:

{ρ 7→ ptr(ρ1)} ⊗ {ρ1 7→ ptr(ρ2)} ⊗ . . .⊗ {ρn 7→ List}
However, the original alias type system is not able to express the
store type stated above because it cannot keep track of the aliasing
relations of the n pointers, where n is unknown.

1.2 Proposed Approach: Separating Implication
To overcome the drawback of the original alias type system, we
extend it using separating implications. A separating implication is
derived from separation logic [10]; it is a novel store type that is
written as

C1 ⇒ C2

It can be read as “if the memory regions that have the store type C1

are added, then the combined memory regions have the store type
C2.”

For example, using the proposed alias type system, the traversal
of a singly-linked list can be written as follows:

1: ({ρi 7→ List} ⇒ {ρ 7→ List}) ⊗ {ρi 7→ List}
2: while (p) {
3: unpack ρi with ρj;
4: p = *p;
5: reserve {ρj 7→ List} for {ρi 7→ ptr(ρj)}
6: pack ρi;
7: trans ({ρj 7→ List} ⇒ {ρi 7→ List})
8: with ({ρi 7→ List} ⇒ {ρ 7→ List});
9: // ({ρj 7→ List} ⇒ {ρ 7→ List})

10: // ⊗ {ρj 7→ List}
11: // p : ptr(ρj)
12: }
Line 1 denotes the loop invariant. The separating implication in the
loop invariant implies that if there is one singly-linked list at ρi,
there is another singly-linked list at ρ, or ρi = ρ. It is important
to note the extended alias type system allows implicit aliasing
relations between the antecedents and consequents of separating
implications, unlike the original alias type system.

In addition to the loop invariant, let us assume that the type of
the pointer p is ptr(ρ), and there exists a singly-linked list at ρ
before the while loop is entered. This assumption satisfies the loop
invariant because substituting ρi with ρ yields the following store
type, which equals {ρ 7→ List}.

({ρ 7→ List} ⇒ {ρ 7→ List})⊗ {ρ 7→ List}
After the loop is entered, the unpack operation at line 3 updates

the store type as follows:

({ρi 7→ List} ⇒ {ρ 7→ List})
⊗ {ρi 7→ ptr(ρj)} ⊗ {ρj 7→ List}

This operation is similar to that of the original alias type system.
Then, the reserve operation at line 5 introduces a new separat-

ing implication into the store type as follows:

({ρi 7→ List} ⇒ {ρ 7→ List})
⊗ ({ρj 7→ List} ⇒ ({ρi 7→ ptr(ρj)} ⊗ {ρj 7→ List}))
⊗ {ρj 7→ List}

More specifically, it reserves a singly-linked list at ρj for the mem-
ory region at ρi. Thus, the store type {ρi 7→ ptr(ρj)} is coupled
with {ρj 7→ List} under the supposition of {ρj 7→ List}.

Next, the pack operation at line 6 restores the unpacked pointer
at ρi to List as follows:

({ρi 7→ List} ⇒ {ρ 7→ List})
⊗ ({ρj 7→ List} ⇒ {ρi 7→ List})
⊗ {ρj 7→ List}

This can be regarded as the reverse of the unpack operation.
Finally, the trans operation at line 7 concatenates the two

separating implications, as shown in line 9. The final store type
and the type of the pointer p clearly satisfy the loop invariant
by instantiating ρi with ρj , without the loss of any information
about the memory regions. In addition, after the loop is exited, the
original singly-linked list at ρ can be accessed by applying the store
type {ρj 7→ List} to ({ρj 7→ List} ⇒ {ρ 7→ List}).

As shown in the example presented above, the extended alias
type system enables us to express recursive data structures and tail-
recursive operations that cannot be expressed using the original
alias type system. For example, the proposed type system enables
us to express a tail-recursive and destructive list append function
and FIFO queues with constant-time operations.

The remainder of the paper is organized as follows. The pro-
posed type system and the adopted imperative language are for-
mally described in Section 2. In order to demonstrate the expres-
siveness of the proposed type system, several example programs
are presented in Section 3. Related work is discussed in Section 4,
and finally, the paper is concluded in Section 5.

2. Proposed Type System
Before we explain the proposed type system, we explain the
adopted base language. The language is designed on the basis
of that used by the original alias type system [18]. Careful read-
ers may notice that the language does not contain explicit looping
constructs used in Section 1. Instead, the language supports recur-

30

v ::= x | i | v[c] |
fixf [∆|C, Θ](x1 : σ1, · · · , xn : σn).I |
ptr(`) | 〈v1, · · · , v2〉 | ς(v)

ς ::= pack[c1,··· ,cn|S]as∃[∆|C,Θ].τ |
roll(rec α(∆).τ)(c1,··· ,cn)

I ::= ι; I | ifpeq v = v then I1 else I2 |
v(v1, · · · , vn)

ι ::= new ρ, x, i | free v | let x = (v).i |
(v1).i := v2 | coerce(γ)

γ ::= rollrec α(∆).τ(c1,··· ,cn)(η) | unroll(η) |
pack[c1,··· ,cn|C]as∃[∆|C].τ (η) |
unpack η with ∆ | reserve C for C |
indicated C for (C ⇒ C) |
trans (C ⇒ C) with (C ⇒ C)

S ::= s · · · s
s ::= {` 7→ v} | ω |

λω : C.S (ω appears exactly once in S)
M ::= (S, I)

Figure 1. Syntax

sive functions. Loops can be represented as tail-recursive functions
(several examples are presented in Section 3).

2.1 Language Syntax
Figure 1 shows the syntax of the adopted base language.M denotes
the state of the abstract machine. The state is represented by the
store S and the instruction sequence I . The store denotes the state
of the allocated memory regions. More specifically, the store is a
set consisting of location-value pairs ({` 7→ v}), store variables
(ω), and store abstractions (λω : C.S).

The store abstraction λω : C.S denotes memory regions repre-
sented by S, which has a hole represented by ω. It is important to
note that ω appears exactly once in S. For example, the store ab-
straction λω : C.{` 7→ v}ω denotes a memory region that stores
the value v at the address `. Within the abstraction, ω is treated as
a store of the store type C; however, it is not available for mem-
ory accesses because it has no concrete mappings from locations
to values. Therefore, ` is the only accessible location of the store
abstraction.

The instruction sequence I is a sequence of instructions (ι) that
ends with a function call or pointer comparison. The instructions
consist of memory operations and coercions.

The instruction new ρ, x, i allocates a memory region of size
i, and it binds the variable x to the pointer that points to the
allocated memory region. In addition, it assigns the name ρ to
the allocated memory location. On the other hand, the instruction
free v explicitly deallocates the memory region pointed by the
pointer v. The instruction let x = (v).i loads the ith element of
the tuple pointed by v, and it binds the variable x to the loaded
value. The instruction (v1).i := v2 stores the value v2 in the ith
element of the tuple pointed by the pointer v1.

The function call v(v1, · · · , vn) executes the instruction se-
quence pointed by v with the arguments v1, · · · , vn. The pointer
comparison ifpeq is described in Section 2.2.

The coercions (γ) are pseudo operations that only manipulate
types; they have no runtime effect. They consist of operations
for existential types, recursive types, and separating implications.
Existential types are manipulated using pack and unpack. pack
creates an existential package by abstracting the type constructors
c1, · · · , cn and encapsulating the store specified by the store type
C in the package. unpack destroys an existential package and
extracts the store packed in it. Recursive types are manipulated

κ ::= Loc | Store | Small | Type |
(κ1, · · · , κn) → Type

β ::= ρ | α | ε
∆ ::= · |∆, β : κ
c ::= η | τ | C
η ::= ρ | `
Θ ::= · | Θ, η = η | Θ, η 6= η
C ::= a⊗ · · · ⊗ a
a ::= {η 7→ τ} | C ⇒ C | ε
τ ::= α | σ | 〈σ1, · · · , σn〉 |

∃[∆|C, Θ].τ | rec α(∆).τ | τ(c1, · · · , cn)
σ ::= α | int | ptr(η) |

∀[∆|C, Θ].(σ1, · · · , σn) → 0

Figure 2. Type Structure

using roll and unroll. unroll expands the recursive type of a
memory region, whereas roll folds back the expanded recursive
type. The operational semantics of the coercions used to manipulate
separating implications are explained in Section 2.2.

Figure 2 shows the type structure of the adopted language. C
is the store type that describes the shape of memory regions; it is
a set consisting of location-type pairs, implications, and store type
variables ε.

The store type {η 7→ τ} describes the store {` 7→ v} where the
type of the value v is τ . η ranges over the locations ` and location
variables ρ. τ denotes the types of the values (the small types σ,
tuple types, existential types, and recursive types). The small types
σ denotes integers and pointers.

The store type of the form C1 ⇒ C2 corresponds to the store
abstraction λω : C1.S, where the type of the store S is C2, and the
type of the store ω is C1.

Θ denotes a set of equality constraints for the locations η.
More specifically, Θ consists of equalities η1 = η2 or inequalities
η1 6= η2. In the original alias type system, the equality constraints
are unnecessary because all the locations in a store type are distin-
guished by the type system. However, in the proposed system, the
locations in the antecedent and consequent of the separating impli-
cation may be aliased. Therefore, the equality constraints are nec-
essary to access the store within store abstractions. It is important
to note that the function types and existential types are augmented
with Θ.

2.2 Operational Semantics
The small-step operational semantics of the adopted language are
shown in Figures 3, 4, and 5. They are virtually identical to those
used in the original alias type system [18], except for the handling
of stores. More specifically, we need to handle accesses to the store
abstractions. In addition, we need to provide operational semantics
for the coercions that manipulate the store abstractions. The nota-
tion A[X/x] denotes the capture-avoiding substitution of X for x
in A. X[c1, · · · , cn/∆] denotes the capture-avoiding substitution
of constructors c1, · · · , cn for the corresponding type variables of
∆.

We explain the operational semantics of memory access opera-
tions and coercions for three cases because there are three types of
stores in the adopted language.

The first and simplest case involves accessing the store of
{` 7→ v}. In this case, the memory access operations and coer-
cions merely access the value v. This is virtually identical to the
working of the original alias type system.

The second case is involves accessing the store of the store
variable ω. In this case, the access is invalid because the store
variables represent holes in the stores.

31

M 7−→P M′

(S, new ρ, x, i; I) 7−→P (S{` 7→ v}, I ′)
where ` /∈ S, v = 〈int, · · · , int〉 , and I ′ = I[`/ρ][ptr(`)/x]

(S, ifpeq ptr(`1) = ptr(`2) then I1 else I2) 7−→P (S, I)

where I =

I1 when `1 = `2
I2 when `1 6= `2

(S, v(v1, · · · , vn)) 7−→P (S, θ(I))

where
v = v′[c1, · · · , cm]
v′ = fixf [∆|C, M](x1 : σ1, · · · , xn : σn).I
θ = [c1, · · · , cm/∆][v′/f][v1, · · · , vn/x1, · · · , xn]

(S, ι; I) 7−→P (S′, θ(I))
where ι(S) 7−→ι S′, θ

Figure 3. Operational Semantics

ι(S) 7−→ι S′, θ

free ptr(`)(S{` 7→ v}) 7−→ι S, []

let x = (ptr(`)).i(S{` 7→ 〈v1, · · · , vi, · · · , vn〉}) 7−→ι S{` 7→ 〈v1, · · · , vi, · · · , vn〉}, [vi/x]
where a ≤ i ≤ n

(ptr(`)).i := v′(S{` 7→ 〈v1, · · · , vi, · · · , vn〉}) 7−→ι S{` 7→ 〈v1, · · · , v′, · · · , vn〉}, []
where a ≤ i ≤ n

coerce(γ)(S) 7−→ι S′, θ
where γ(S) 7−→γ S′, θ

ι(S(λω : C.S′)) 7−→ι S(λω : C.S′′), θ

where
·; · ` target(ι) = L
L ⊆ Dom(S′)
ι(S′) 7−→ι S′′, θ

Figure 4. Operational Semantics: Instruction

γ(S) 7−→γ S′, θ

rollτ (`)(S{` 7→ v}) 7−→γ S{` 7→ rollτ (v)}, []

unroll(`)(S{` 7→ rollτ (v)}) 7−→γ S′{` 7→ v}, []

pack[c1,··· ,cn|C,Θ]asτ (`)(S{` 7→ v}S′) 7−→γ S{` 7→ pack[c1,··· ,cn|S′]asτ (v)}, []
where Dom(S′) = Dom(C)

unpack ` with ∆(S{` 7→ pack[c1,··· ,cn|S′]as∃[∆|C,Θ].τ (v)}) 7−→γ S{` 7→ v}S′, [c1, · · · , cn/∆]

reserve C1 for C2(SS2) 7−→γ S(λω : C1.S2ω), []
where Dom(S2) = Dom(C2)

indicated C1 for C1 ⇒ C2(S(λω : C1.S
′
2)S1) 7−→γ S(S′2[S1/ω]), []

where Dom(λω : C1.S
′
2) = Dom(C1 ⇒ C2)

Dom(S1) = Dom(C1)

Figure 5. Operational Semantics: Coercions

32

The third and final case involves accessing the store abstraction
λω : C.S. The abstraction may include other stores besides ω;
hence, the store S is accessed recursively. The rule at the bottom
of Figure 4 represents recursive access to the store abstractions. In
this rule, Dom(S) denotes the accessible locations of the store S.
Dom(S) is defined as follows:

Dom(·) = ∅
Dom(s1 · · · sn) = Dom(s1)⊕ · · · ⊕Dom(sn)
Dom({` 7→ v}) = {`}
Dom(λω : C.S′) = Dom(S′)
Dom(ω) = ∅

Here, ⊕ denotes the disjoint union of sets of locations. Addition-
ally, target(ι) denotes the locations to be accessed by ι. Figure 6
shows the definition of target(ι).

Except for the memory access conditions described above,
the operational semantics of instructions and coercions are fairly
straightforward, as in the case of the original alias type system [18].
Therefore, we only explain the newly introduced instructions:
reserve, indicated, trans and ifpeq.

The coercion reserve introduces store abstractions. For exam-
ple, let us assume that the current store is

{`1 7→ 〈ptr(`2)〉}
The coercion reserve {`2 7→ τ} for {`1 7→ 〈ptr(`2)〉} translates
it as

(λω : {`2 7→ τ}.{`1 7→ 〈ptr(`2)〉}ω)

In the store type stated above, a hole ω of the store type {`2 7→ τ}
is introduced by the reserve operation.

On the other hand, the coercion indicated eliminates store
abstractions. For example, let us assume that the current store is

(λω : {`2 7→ τ}.{`1 7→ pack[|ω]asτ ′(v
′)}){`2 7→ v}

where the type of v is τ . The coercion indicated {`2 7→
τ} for {`2 7→ τ} ⇒ {`1 7→ τ ′} translates it as

{`1 7→ pack[|{`2 7→v}]asτ ′(v
′)})

It is important to note that the store variable can be instantiated,
even though it may be packed with the coercion pack, as shown
above.

The coercion operation trans is not included in Figure 5 be-
cause it can be represented by combining reserve and indicated.
More specifically, trans C1 ⇒ C2 with C2 ⇒ C3 can be rewrit-
ten as follows:

reserve C1 for (C1 ⇒ C2)⊗ (C2 ⇒ C3);
indicated C1 for C1 ⇒ C2;
indicated C2 for C2 ⇒ C3

For example, if we apply the coercions stated above to the store
(λω1 : C1.S2) (λω2 : C2.S3), they translate it as

(λω′1 : C1.S3[(S2[ω
′
1/ω1])/ω2])

The instruction sequence ifpeq v1 = v2 then I1 else I2 com-
pares the two given pointers (v1 and v2). If v1 = v2, ifpeq exe-
cutes I1; otherwise, it executes I2. ifpeq is essential for accessing
locations in store abstractions because it can recover the aliasing
relations in the store abstractions that may be disregarded by the
proposed type system. More specifically, it introduces the equality
constraints Θ, as describe in Section 2.2.1.

2.2.1 Typing Rules
The important typing rules of the proposed type system are shown
in Figures 7, 8, and 9; they are based on those of the original alias
type system [18]. The proposed type system provides type safety
by ensuring that the following theorem holds:

∆; Γ ` target(ι) = η

ι = free v | let = (v). | (v). :=
∆; Γ ` v : ptr(η)

∆; Γ ` target(ι) = {η}

γ = roll (η) | unroll(η) | pack as (η) | unpack η with
∆; Γ ` target(coerce(γ)) = {η}

γ = reserve for | indicated for
∆; Γ ` target(coerce(γ)) = {}

Figure 6. Target Location of Instruction

THEOREM 1 (Type Soundness). If ` M, there exists M′, where
M 7−→∗

P M′ and ` M′.

Well-formedness of the states of the abstract machine is defined
as follows:

DEFINITION 1. ` (S, I) iff

1. There are no duplicate locations in S, including the packed
stores.

2. There exists a store type C such that · ` S : C
3. ·; C; · ` I

Well-formedness of the stores is defined as follows:
Σ ` s1 : a1 · · · Σ ` sn : an

Σ ` s1 · · · sn : a1 ⊗ · · · ⊗ an

Σ ` v : τ
Σ ` {` 7→ v} : {` 7→ τ} Σ ` ω : Σ(ω)

Σ, ω : {η 7→ τ} ` S2 : C2

Σ ` λω : {η 7→ τ}.S2 : {η 7→ τ} ⇒ C2

·; · ` v : τ
Σ ` v : τ

·; · ` τ = (rec α(∆).τ ′)(c1, · · · .cn) : Type
Σ ` v : τ ′[rec α(∆).τ ′/α][c1, · · · , cn/∆]

Σ ` rollτ (v) : τ

∆ = β1 : κ1, · · · , βn : κn · ` ci : κi

·; · ` Θ[c1, · · · , cn/∆]
Σ ` S : C[c1, · · · , cn/∆] ·; · ` v : τ [c1, · · · , cn/∆]

Σ ` pack[c1,··· ,cn|S]as∃[∆|C,Θ].τ (v) : τ

Here, Σ denotes an environment for store variables. It is important
to note here that store variables (ω) do not affect disjointness
of locations in S because store variables denote holes in S, not
locations. In addition, instantiation of store variables preserves the
disjointness because each store variable appears exactly once in S.

As shown above, the separating implication C1 ⇒ C2 corre-
sponds to the store abstraction λω : C1.S2. It is important to note
that the store type of the store variable within the store abstrac-
tion must be of the form {η 7→ τ}. This limitation can be re-
laxed; however, it is sufficient to describe tail-recursive operations
on recursive data structures. The reason why separating implica-
tions (C1 ⇒ C2) are not allowed is that, in the proposed language,
store applications cannot be represented as the store constructs, un-
like store abstractions. The reason why store type variables (ε) are
not allowed is that, although the proposed type system keeps track
of equality constraints for locations (Θ), it does not consider inclu-
sion relations between locations and store type variables.

The typing rules for memory accesses are shown in Figure 8.
Let us consider the typing rule for the instruction let x = (v).i.
Two possible rules can be applied on the basis of its target location.

33

∆; C; Θ; Γ ` ι =⇒ ∆′; C′; Θ′; Γ′

∆;Γ ` v : ptr(η) ∆;Θ ` C = C′ ⊗ {η 7→ 〈σ1, · · · , σi, · · · , σn〉} : Store
∆; C; Θ; Γ ` let x = (v).i =⇒ ∆; C; Θ; Γ, x : σi

„
1 ≤ i ≤ n
x /∈ Dom(Γ)

«

∆;Γ ` v1 : ptr(η) ∆; Γ ` v2 : σ ∆;Θ ` C = C′ ⊗ {η 7→ 〈σ1, · · · , σi, · · · , σn〉} : Store
∆; C; Θ; Γ ` (v1).i := v2 =⇒ ∆; C′ ⊗ {η 7→ 〈σ1, · · · , σ, · · · , σn〉}; Θ; Γ

`
1 ≤ i ≤ n

´

∆;Θ ` τ = (rec α(∆′).τ ′)(c1, · · · , cn) : Type ∆;Θ ` C = C′ ⊗ {η 7→ τ ′[rec α(∆′).τ ′/α][c1, · · · , cn/∆′]} : Store
∆; C; Θ; Γ;` coerce(rollτ (η)) =⇒ ∆; C′ ⊗ {η 7→ τ}; Θ; Γ

∆;Θ ` C = C′ ⊗ {η 7→ τ} : Store ∆;Θ ` τ = (rec α(∆′).τ ′)(c1, · · · , cn) : Type
∆; C; Θ; Γ;` coerce(unroll(η)) =⇒ ∆; C′ ⊗ {η 7→ τ ′[rec α(∆′).τ ′/α][c1, · · · , cn/∆′]}; Θ; Γ

∆′ = β1 : κ1, · · · , βn : κn · ` ci : κi (for 1 ≤ i ≤ n) ∆;Θ ` Θ′[c1, · · · , cn/∆′]
∆;Θ ` C = C′′ ⊗ {η 7→ τ [c1, · · · , cn/∆′]} ⊗ C′[c1, · · · , cn/∆′] : Store

∆; C; Θ; Γ ` coerce(pack[c1,··· ,cn|C′[c1,··· ,cn/∆′],Θ′[c1,··· ,cn/∆′]]as∃[∆′|C′,Θ′].τ (η)) =⇒ ∆; C′′ ⊗ {η 7→ ∃[∆′|C′, Θ′].τ}; Θ; Γ

∆;Θ ` C = C′′ ⊗ {η 7→ ∃[∆′|C′, Θ′].τ} : Store
∆; C; Θ; Γ ` coerce(unpack η with ∆′) =⇒ ∆, ∆′; C′′ ⊗ {η 7→ τ} ⊗ C′; ΘΘ′; Γ

∆;Θ ` C = C′ ⊗ C2 : Store
∆; C; Θ; Γ ` coerce(reserve {η 7→ τ} for C2) =⇒ ∆; C′ ⊗ ({η 7→ τ} ⇒ C2 ⊗ {η 7→ τ});Θ; Γ

∆;Θ ` C = C′ ⊗ C1 ⊗ (C1 ⇒ C2) : Store
∆; C; Θ; Γ ` coerce(indicated C1 for (C1 ⇒ C2)) =⇒ ∆; C′ ⊗ C2; Θ; Γ

∆′ ≡ ∆, ρ : Loc C′ ≡ C ⊗ {ρ 7→
iz }| {

〈int, · · · , int〉} Γ′ ≡ Γ, x : ptr(ρ)
∆; C; Θ; Γ ` new x, ρ, i =⇒ ∆′; C′; Θ; Γ′

„
ρ /∈ Dom(∆)
x /∈ Dom(Γ)

«

∆;Γ ` v : ptr(η) ∆;Θ ` C = C′ ⊗ {η 7→ τ} : Store
∆; C; Θ; Γ;` free v =⇒ ∆; C′; Θ; Γ

∆;Θ ` C = C′ ⊗ (C1 ⇒ C2) ∆; Γ ` target(ι) = L ∀η ∈ L.∃η′ ∈ DomΘ(C1 ⇒ C2).Θ ` η = η′

∆; C2; Θ; Γ ` ι =⇒ ∆′; C′2; Θ
′; Γ′

∆; C; Θ; Γ ` ι =⇒ ∆′; C′ ⊗ (C1 ⇒ C′2);Θ
′; Γ′

Figure 8. Typing Rules for Instructions

∆; C; Θ; Γ ` I

∆; C; Θ; Γ ` ι =⇒ ∆′; C′; Θ′; Γ′ ∆′; C′; Θ′; Γ′ ` I
∆; C; Θ; Γ ` ι; I

∆;Γ ` v1 : ptr(η1) ∆; Γ ` v2 : ptr(η2) ∆; C; Θ, (η1 = η2); Γ ` I1 ∆; C; Θ, (η1 6= η2); Γ ` I2

∆; C; Θ; Γ ` ifpeq v1 = v2 then I1 else I2

∆;Γ ` v : ∀[·|C′, Θ′].(σ1, · · · , σn) → 0 ∆;Θ ` C = C′ : Store
∆;Θ ` Θ′ ∆;Γ ` v1 : σ1 · · · ∆;Γ ` vn : σn

∆; C; Θ; Γ ` v(v1, · · · , vn)

Figure 9. Typing Rules for Instruction Sequences

34

∆;Γ ` v : τ

∆; Γ ` x : Γ(x) ∆; Γ ` i : int

∆, ∆′; C′; Θ′; f : σf , x1 : σ1, · · · , xn : σn ` I
(where store type variables do not appear in
antecedents of separating implications in C′)

∆;Γ ` fixf [∆′|C′, Θ′](x1 : σ1, · · · , xn : σn).I : σf

(σf = ∀[∆′|C′, Θ′].(σ1, · · · , σn) → 0)

∆; Γ ` v : ∀[β : κ, ∆′|C′, Θ′].(σ1, · · · , σn) → 0
∆ ` c : κ

∆;Γ ` v[c] : (∀[∆′|C′, Θ′].(σ1, · · · , σn) → 0)[c/β]

Figure 7. Typing Rules for Values

If the target location is contained in a separating implication,
the last rule of Figure 8 is applied. This rule states that we can tem-
porarily discard the antecedent of the separating implication if the
target location is accessible according to the separating implica-
tion. More specifically, this rule checks whether the target location
is contained in the domain of the store type C1 ⇒ C2 under the
equality constraints Θ. Then, it checks the instruction with the store
type C2. Finally, it checks the rest of the instruction sequence with
the updated store type C1 ⇒ C′2. DomΘ(C) is defined as follows:

DomΘ(·) = ∅
DomΘ(a1 ⊗ · · ·) = DomΘ(a1)⊕ · · ·
DomΘ({η 7→ τ}) = {η}
DomΘ(C1 ⇒ C2) = {η ∈ DomΘ(C2)|

∀η′ ∈ DomΘ(C1).Θ ` η 6= η′}
DomΘ(ε) = ∅
If the target location is not contained in a separating implication,

the second rule of Figure 8 is applied. It checks whether the pointer
v points to a tuple by examining the store type. Then, it checks
whether the size of the tuple satisfies the access offset i. Finally, it
binds the variable x to the type of the ith element of the tuple, and
it checks the rest of the instruction sequence.

The typing rule for the instruction (v1).i := v2 governs the
strong update, that is, it changes the types of the memory regions.
It first checks whether there exists a tuple at the location η by
examining the current store type; it also checks whether the size
of the tuple satisfies the specified access offset i. Then, it updates
the type of the ith element of the tuple with the type of v2, and
it checks the rest of the instruction sequence with the updated
tuple type. This strong update is safe because the proposed type
system prevents the location η from aliasing with other locations in
the store type. Strictly speaking, the proposed type system allows
locations in the consequent of a separating implication to be aliased
with locations in its antecedent. The aliasing relations in separating
implications are handled using the last rule of Figure 8, as described
above.

The typing rules for roll and unroll govern recursive types.
The rule for roll first unrolls the given recursive type (recα(∆′).τ ′)
with the given type constructors (c1, · · · , cn). Then, it checks
whether the location η holds the unrolled type. Finally, it updates
the type at the location η with the given type τ , and it checks the
rest of the instruction sequence with the updated store type. The
rule for unroll first checks whether the location η holds a recur-
sive type. Then, it unrolls the recursive type and updates the type of
the location η with the unrolled type. Finally, it checks the rest of
the instruction sequence with the updated store type. It is important

to note that the last rule of Figure 8 can be used before applying
these rules, as in the case of memory accesses,

The typing rules for pack and unpack govern existential types.
As in the case of the typing rules for recursive types, the last rule of
Figure 8 can be used before applying these rules. The rule for pack
first instantiates the packed type τ with the given type constructors
(c1, · · · , cn), and it checks whether the location η holds the instan-
tiated type. Next, it checks whether the current store type contains
the store type to be packed. In addition, it checks whether the equal-
ity constraints specified in the given existential type are satisfied
by the current equality constraints (∆;Θ ` Θ′[c1, · · · , cn/∆′]).
Then, it updates the type of the location η with the existential type,
and it removes the packed store from the current store type. Finally,
it checks the rest of the instruction sequence with the updated store
type. The rule for unpack first checks whether the location η holds
an existential type. Next, it extracts the packed store type (C′) by
unpacking the existential type, and it adds the store type to the cur-
rent store type. Finally, it checks the rest of the instruction sequence
with the extended store type. It is important to note that the equality
constraints are also extended with the packed equality constraints
(Θ′).

The typing rules for reserve and indicated govern separat-
ing implications. The rule for reserve is the introduction rule of
the separating implication. It basically checks nothing; however, it
states that the antecedent of the implication to be introduced must
be of the form of {η 7→ τ}. The reason for this limitation is the
same as explained in Section 2.2.1. Then, it checks the subsequent
instruction sequence with the introduced separating implication.
The rule for indicated is the elimination rule of the separating
implication. It checks whether the antecedent of the given implica-
tion equals the given store type. Then, it extracts the consequent of
the implication, and it checks the subsequent instruction sequence
with the extracted store type.

The typing rules for new and free govern explicit memory al-
location and deallocation. The rule for new first extends the cur-
rent store type with the store type that corresponds to the allocated
memory region. Then, it checks the rest of the instruction sequence
with the extended store type. The rule for free first checks whether
the given pointer points to the valid memory region by examining
the current store type. Then, it removes the store type that corre-
sponds to the memory region to be freed, and it checks the rest of
the instruction sequence with the updated store type.

The equality constraints Θ are introduced by the typing rule
for ifpeq, as shown in Figure 9. The rule first checks whether
both the variables v1 and v2 are pointers. Then, it checks the
instruction sequences I1 and I2 under the condition that v1 = v2

and v1 6= v2, respectively. For example, let us consider a store of
the type {ρ1 7→ τ} ⇒ {ρ2 7→ τ}. The proposed type system does
not keep track of aliasing relations between ρ1 and ρ2; therefore,
we need to explicitly check the aliasing relations by using ifpeq.
At first glance, this approach may seem superfluous; however,
it is essential and well suited to typical programming styles, as
described in Section 3.

The typing rule for function calls is the last rule of Figure 9. It
checks whether the type of the value v is the instruction type and
whether the types of the values v1, · · · , vn are the types specified
in the instruction type. It also checks whether the store type and
equality constraints specified in the instruction type are satisfied by
the current store type and equality constraints.

3. Examples
In this section, we present several examples in order to demonstrate
the expressiveness of the proposed type system. The obvious coer-
cions are omitted for brevity.

35

1 : fix append[ρh, ρp, ρx, ρy, ε|
2 : ({`0 7→ List} ⇒
3 : ({ρp 7→ List} ⇒ {ρh 7→ List})
4 : ⊗{ρp 7→ 〈ptr(ρx)〉} ⊗ {ρx 7→ List})
5 : ⊗({`0 7→ List} ⇒ {ρy 7→ List})⊗ ε,
6 : `0 6= ρp]
7 : (h : ptr(ρh), p : ptr(ρp), y : ptr(ρy), cont : τc[ρh, ε]).
8 : let x = (p).1;
9 : ifpeq x = ptr(`0) then

10 : (p).1 := y;
11 : last coercions;
12 : cont(h);
13 : else
14 : unpack ρx with ρxs;
15 : reserve {ρx 7→ List} for {ρp 7→ 〈ptr(ρx)〉};
16 : pack[ρx|{ρx 7→List}]asList(ρp);
17 : trans {ρx 7→ List} ⇒ {ρp 7→ List} with
18 : {ρp 7→ List} ⇒ {ρh 7→ List};
19 : append[ρh, ρx, ρxs, ρy, ε](h, x, y, cont);
where
20 : List ≡ ∃[ρ|{ρ 7→ List}]. 〈ptr(ρ)〉
21 : τc[ρ, ε] ≡ ∀[|{`0 7→ List} ⇒
22 : {ρ 7→ List} ⊗ ε].(a : ptr(ρ)) → 0
23 : last coercions ≡
24 : reserve {`0 7→ List} for Call;
25 : indicated {`0 7→ List} for
26 : {`0 7→ List} ⇒
27 : ({ρp 7→ List} ⇒ {ρh 7→ List})
28 : ⊗{ρp 7→ 〈ptr(ρy)〉} ⊗ {`0 7→ List};
29 : indicated {`0 7→ List} for
30 : {`0 7→ List} ⇒ {ρy 7→ List};
31 : pack[ρy|{ρy 7→List}]asList(ρp);

32 : indicated {ρp 7→ List} for
33 : {ρp 7→ List} ⇒ {ρh 7→ List};

Figure 10. Tail-Recursive Append

3.1 List Append
Figure 10 shows a destructive and tail-recursive append function
for null-terminated lists. It takes four arguments (shown in line 7).
The argument h is a pointer to one list, and the argument y is a
pointer to the other list that is destructively appended to the end
of the first list. The argument p is a pointer to an element of the
first list, and it is incremented each time the function is recursively
called. The variable cont is a continuation.

As shown in line 5, the type of the lists is basically denoted by
{`0 7→ List} ⇒ {ρy 7→ List}. The implication implies that the list
at the location ρy is null-terminated. More specifically, the list can
be accessed if the location ρy is not equal to `0, as described in the
typing rules of Section 2.2.1. Here, we assume that the location
`0 denotes the null pointer, that is, `0 is never available during
program execution. It is important to note that this representation of
null-terminated lists is more intuitive than that of the original alias
type system, which uses the variant types [18].

The function first loads the pointer to the next element in the first
list by using p (line 8), and it binds the variable x to it. If the pointer
x is null, that is, if the end of the first list is reached, the second list
is appended to the end of the first list by storing the pointer y in the
last element (line 10). Then, the store type is adjusted via several
coercion operations (line 11). After the coercion reserve (line 24),
the entire store type is translated as follows (Call denotes the entire

store type here):

{`0 7→ List} ⇒
{`0 7→ List} ⊗ ({`0 7→ List} ⇒
({ρp 7→ List} ⇒ {ρh 7→ List})
⊗{ρp 7→ 〈ptr(ρy)〉} ⊗ {`0 7→ List})
⊗({`0 7→ List} ⇒ {ρy 7→ List})⊗ ε

Then, the coercion indicated is performed (line 25), and the store
type is translated as follows:

{`0 7→ List} ⇒
({ρp 7→ List} ⇒ {ρh 7→ List})
⊗{ρp 7→ 〈ptr(ρy)〉} ⊗ {`0 7→ List}
⊗({`0 7→ List} ⇒ {ρy 7→ List})⊗ ε

Next, the coercion indicated is performed again (line 29), and
the store type is translated as follows:

{`0 7→ List} ⇒
({ρp 7→ List} ⇒ {ρh 7→ List})
⊗{ρp 7→ 〈ptr(ρy)〉} ⊗ {ρy 7→ List} ⊗ ε

Now, the location ρp is packed (line 31), and the store type is
translated as follows:

{`0 7→ List} ⇒
({ρp 7→ List} ⇒ {ρh 7→ List})
⊗{ρp 7→ List} ⊗ ε

Next, the coercion indicated is performed (line 32), and the store
type is translated as follows:

{`0 7→ List} ⇒ {ρh 7→ List} ⊗ ε

Finally, the function returns the appended list (line 12).
If the pointer x is not null, the sublist of the first list pointed by

x is unpacked (line 14). Then, the entire store type is translated as
follows:

({`0 7→ List} ⇒
({ρp 7→ List} ⇒ {ρh 7→ List})
⊗{ρp 7→ 〈ptr(ρx)〉} ⊗ {ρx 7→ 〈ptr(ρxs)〉} ⊗ {ρxs 7→ List})
⊗({`0 7→ List} ⇒ {ρy 7→ List})⊗ ε

Next, the store type {ρx 7→ List} is reserved for {ρp 7→ 〈ptr(ρx)〉},
and the location ρp is packed to List (lines 15 and 16, respectively).
Then, the store type is translated as follows:

({`0 7→ List} ⇒
({ρp 7→ List} ⇒ {ρh 7→ List})
⊗({ρx 7→ List} ⇒ {ρp 7→ List})
⊗{ρx 7→ 〈ptr(ρxs)〉} ⊗ {ρxs 7→ List})
⊗({`0 7→ List} ⇒ {ρy 7→ List})⊗ ε

Next, the trans operation (lines 17 and 18) is performed, and the
entire store type is finally translated as follows:

({`0 7→ List} ⇒
({ρx 7→ List} ⇒ {ρh 7→ List})
⊗{ρx 7→ 〈ptr(ρxs)〉} ⊗ {ρxs 7→ List})
⊗({`0 7→ List} ⇒ {ρy 7→ List})⊗ ε

Finally, the function calls itself tail-recursively (line 19). The tail-
recursive call passes the type check because the entire store type
satisfies the precondition of the append function by instantiating ρp

with ρx and ρx with ρxs. In addition, its equality constraint is also
satisfied because ρx 6= `0, as derived from the ifpeq operation
(line 9).

It is important to note here that the destructive list append
function presented in this section is fully tail-recursive, unlike the
one presented in [18]. As stated in [18], the list append function
of [18] is not fully tail-recursive because each time the function
calls itself recursively, it creates a new continuation by wrapping

36

the passed continuation with several type coercions. Although the
coercions can be erased at compilation time (as indicated in [18]),
they cannot be omitted in the original alias type system.

At first glance, it seems to be possible to make the list append
function of [18] fully tail-recursive, for example, by introducing an
additional pointer that always points to the head of the original list.
However, this is not the case in the original alias type system be-
cause it prohibits aliasing of locations in store types entirely. More
specifically, a recursive data structure with two (or more) pointers
that may point to the different elements cannot be implemented in
a straightforward way.

For example, let us consider a list and a pair of pointers. In
addition, let us also consider that the first pointer of the pair always
points to the head of the list, and the second pointer points to one
of the elements in the list. First, assume that both the pointers point
to the head of the list as follows:

{ρp 7→ 〈ptr(ρh), ptr(ρh)〉} ⊗ {ρh 7→ List}
Next, let us consider to make the second pointer point to the second
element of the list. In order to obtain the location of the second
element of the list, it is necessary to unpack the location ρh. Then,
the store type is updated as follows:

{ρp 7→ 〈ptr(ρh), ptr(ρ′h)〉}
⊗{ρh 7→ 〈ptr(ρh′)〉} ⊗ {ρh′ 7→ List}

At this point, although the pointer to the first element of the list is
not modified, the store type forgets that the pointer points to the
list. In order to revert the type of the location ρh, it is necessary to
pack the location ρh. Then, the store type is translated as follows:

{ρp 7→ 〈ptr(ρh), ptr(ρ′h)〉} ⊗ {ρh 7→ List}
Now, the store type remembers that the first pointer of the pair
points to the first element of the list. However, the store type forgets
that the second pointer points to the second element of the list.

On the other hand, in the proposed type system, the list and the
pair of the pointers can be concisely represented using a separating
implication as follows:

{ρp 7→ 〈ptr(ρh), ptr(ρ′h)〉}
⊗({ρh′ 7→ List} ⇒ {ρh 7→ List})⊗ {ρ′h 7→ List}

3.2 FIFO Queue
An implementation of a FIFO queue is shown in Figures 11 and 12.
Both the functions enqueue and dequeue are constant-time func-
tions. In these functions, we use the following type abbreviations:

List ≡ ∃[ρ|{ρ 7→ List}]. 〈int, ptr(ρ)〉
τc[ε] ≡ ∀[ρq, ρh|({ρq 7→ List} ⇒ {ρh 7→ List})⊗

{ρq 7→ 〈S(0), ptr(ρh)〉} ⊗ ε].
(r : int, q : ptr(ρq)) → 0

The type List denotes singly-linked lists of integers, and the type τc

denotes the type of the continuations of the functions.
The queue is represented by the store type ({ρq 7→ List} ⇒

{ρh 7→ List}) ⊗ {ρq 7→ 〈S(0), ptr(ρh)〉}. In the store type, ρq

denotes the tail of the queue, and it contains the pointer to ρh, the
head of the queue. If ρq = ρh, the queue is empty. It is important to
note that if ρq = ρh, the implication in the store type is equivalent
to {ρq 7→ List} ⇒ {ρq 7→ List}, which denotes an empty store.

The enqueue function is shown in Figure 11. It takes three ar-
guments (line 4). The argument q is a queue to be manipulated, and
the argument x is an integer value to be enqueued. The argument
cont is a continuation of the function. The function first binds the
variable h to the head of the queue (line 5). Next, it allocates a new
tuple, and it binds the variable n to the pointer to the tuple (line
6). It also initializes the second field of the tuple with the pointer
to the head of the queue (line 8). Then, it concatenates the allo-

1 : fix enqueue[ρh, ρq, ε|
2 : ({ρq 7→ List} ⇒ {ρh 7→ List})⊗
3 : {ρq 7→ 〈S(0), ptr(ρh)〉} ⊗ ε]
4 : (q : ptr(ρq), x : int, cont : τc[ε]).
5 : let h = (q).2;
6 : new ρn, n, 2;
7 : (n).1 := 0;
8 : (n).2 := h;
9 : (q).1 := x;

10 : (q).2 := n;
11 : reserve {ρn 7→ List} for {ρq 7→ 〈int, ρn〉};
12 : pack[ρn|{ρn 7→List}]asList(ρq);
13 : trans {ρn 7→ List} ⇒ {ρq 7→ List} with
14 : {ρq 7→ List} ⇒ {ρh 7→ List};
15 : cont[ρn, ρh](0, n)

Figure 11. Enqueue

cated tuple to the tail of the queue (lines 9 and 10). Next, it reserves
{ρn 7→ List} for {ρq 7→ 〈int, ρn〉} (line 11). Then, the entire store
type is updated as follows:

({ρq 7→ List} ⇒ {ρh 7→ List})⊗
({ρn 7→ List} ⇒ {ρq 7→ 〈int, ptr(ρn)〉} ⊗ {ρn 7→ List})⊗
{ρn 7→ 〈S(0), ptr(ρh)〉} ⊗ ε

Next, it packs the tuple at the location ρq (line 12), and the store
type is translated as follows:

({ρq 7→ List} ⇒ {ρh 7→ List})⊗
({ρn 7→ List} ⇒ {ρq 7→ List})⊗
{ρn 7→ 〈S(0), ptr(ρh)〉} ⊗ ε

Then, it concatenates the two separating implications via trans
(lines 13 and 14) as follows:

({ρn 7→ List} ⇒ {ρh 7→ List})⊗
{ρn 7→ 〈S(0), ptr(ρh)〉} ⊗ ε

Finally, the function returns the updated queue (line 14) by instan-
tiating ρq with ρn.

The dequeue function is shown in Figure 12. It takes two argu-
ments (line 4). The argument q is a queue to be manipulated, and
the argument cont is a continuation of the function. The function
first binds the variable h to the head of the queue (line 5). Next, it
checks whether the queue is empty (line 6). If the queue is empty,
it returns the integer value −1 (line 7). Otherwise, it unpacks the
first element of the queue (line 9). Then, the entire store type is
translated as follows:

({ρq 7→ List} ⇒ {ρh 7→ 〈int, ptr(ρn)〉} ⊗ {ρn 7→ List})⊗
{ρq 7→ 〈S(0), ptr(ρh)〉} ⊗ ε

It is important to note that unpacking is possible because of the
last rule of Figure 8, described in Section 2.2.1. Next, it binds
the variable r to the stored integer (line 10) and the variable n
to the pointer to the next element (line 11). Then, it unlinks and
deallocates the first element (lines 12 and 13), and the entire store
type is translated as follows:

({ρq 7→ List} ⇒ {ρn 7→ List})⊗
{ρq 7→ 〈S(0), ptr(ρn)〉} ⊗ ε

Finally, the function returns the stored integer and the updated
queue (line 14) by instantiating ρh with ρn.

3.3 Deletion from a Binary Search Tree
An implementation of deletion from a binary search tree is shown
in Figures 13, 14, 15, 16, and 17. The main function (delete bst)

37

1 : fix dequeue[ρh, ρq, ε|
2 : ({ρq 7→ List} ⇒ {ρh 7→ List})⊗
3 : {ρq 7→ 〈S(0), ptr(ρh)〉} ⊗ ε]
4 : (q : ptr(ρq), cont : τc[ε]).
5 : let h = (q).2;
6 : ifpeq q = h then
7 : cont[ρq, ρh](−1, q);
8 : else
9 : unpack ρh with ρn;

10 : let r = (h).1;
11 : let n = (h).2;
12 : (q).2 := n;
13 : free h;
14 : cont[ρq, ρn](r, q)

Figure 12. Dequeue

is shown in Figure 13. The auxiliary functions (delete aux ,
delete aux left , and delete aux right) used in delete bst are
shown in Figures 14, 15, and 16, respectively. The search max
function that finds the maximum value from a binary search tree is
shown in Figure 17.

The delete bst function takes five arguments (shown in lines 6
and 7). The argument h is a pointer to the root node of a binary
search tree, and the argument p is a pointer to a node that is to be
examined in the binary search tree. The argument p′ is a pointer
to the parent node of the node pointed by p, and the argument i
is an integer value to be deleted from the binary search tree. The
argument cont is a continuation.

As shown in lines 33 and 34, the type of the binary search trees
is defined using a variant type. The first element of the variant type
denotes leaf nodes, and the second element denotes intermediate
nodes. An intermediate node consists of three elements. The first
element denotes an integer value stored in the node. The second
and third elements denote left and right subtrees, respectively. It
is important to note that, although variant types are not handled
in the proposed language presented in Section 2, it should be
straightforward to extend it with variant types, in the same way
as in [18].

The store type of lines 2 to 5 specifies the precondition of the
function in the same way as in Sections 3.1 and 3.2, except for the
location ρp′ . As shown in lines 3 and 4, the type of the value at
the location ρp′ is denoted as a variant type. This is because there
are two cases how the node pointed by p is reached from its parent
node pointed by p′: its left child and its right subtree. The variant
type is utilized in order to handle the two cases uniformly by the
single function delete bst .

The function delete bst first examines the node pointed by p
whether it is a leaf node or an intermediate node (line 8). If the
node is a leaf, the location ρp′ is packed (line 10), and the store
type is translated as follows:

({ρp′ 7→ Tree} ⇒ {ρh 7→ Tree})⊗ {ρp′ 7→ Tree} ⊗ ε

Next, the coercion indicated is performed (lines 11 and 12), and
the store type is translated as follows:

{ρh 7→ Tree} ⊗ ε

Finally, the function returns the binary search tree pointed by h
(line 13).

Otherwise, if the node is an intermediate node, the location
pointed by p is unpacked (line 15). Then, the entire store type is

1 : fix delete bst[ρh, ρp′ , ρp, ρq, ε|
2 : ({ρp′ 7→ Tree} ⇒ {ρh 7→ Tree})
3 : ⊗{ρp′ 7→ 〈int, ptr(ρp), ptr(ρq)〉
4 : ∪ 〈int, ptr(ρq), ptr(ρp)〉}
5 : ⊗{ρp 7→ Tree} ⊗ {ρq 7→ Tree} ⊗ ε]
6 : (h : ptr(ρh), p : ptr(ρp), p′ : ptr(ρp′),
7 : i : int, cont : τc[ρh, ε]).
8 : case p of
9 : (inl −→

10 : pack[ρp,ρq|{ρp 7→Tree}⊗{ρq 7→Tree}]asTree(ρp′);

11 : indicated {ρp′ 7→ Tree} for
12 : {ρp′ 7→ Tree} ⇒ {ρh 7→ Tree};
13 : cont(h)
14 : | inr −→
15 : unpack ρp with ρpl, ρpr;
16 : let x = (p).1;
17 : if i = x then
18 : delete aux[ρh, ρp′ , ρp, ρq, ρpl, ρpr, ε](h, p, p′, cont)
19 : else
20 : reserve {ρp 7→ Tree} for {ρq 7→ Tree}
21 : ⊗{ρp′ 7→ 〈int, ptr(ρp), ptr(ρq)〉
22 : ∪ 〈int, ptr(ρq), ptr(ρp)〉};
23 : pack[ρp,ρq|{ρp 7→Tree}⊗{ρq 7→Tree}]asTree(ρp′);

24 : trans {ρp 7→ Tree} ⇒ {ρp′ 7→ Tree} with
25 : {ρp′ 7→ Tree} ⇒ {ρh 7→ Tree};
26 : if i < x then
27 : let pl = (p).2;
28 : delete bst[ρh, ρp, ρpl, ρpr, ε](h, pl, p, i, cont)
29 : else
30 : let pr = (p).3;
31 : delete bst[ρh, ρp, ρpr, ρpl, ε](h, pr, p, i, cont)
32 :)
where
33 : Tree ≡ 〈〉 ∪ ∃[ρpl, ρpr|{ρpl 7→ Tree} ⊗ {ρpr 7→ Tree}].
34 : 〈int, ptr(ρpl), ptr(ρpr)〉
35 : τc[ρ, ε] ≡ ∀[|{ρ 7→ Tree} ⊗ ε].(a : ptr(ρ)) → 0

Figure 13. Deletion from a Binary Search Tree

translated as follows:
({ρp′ 7→ Tree} ⇒ {ρh 7→ Tree})
⊗{ρp′ 7→ 〈int, ptr(ρp), ptr(ρq)〉 ∪ 〈int, ptr(ρq), ptr(ρp)〉}
⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉} ⊗ {ρpl 7→ Tree}
⊗{ρpr 7→ Tree} ⊗ {ρq 7→ Tree} ⊗ ε

Next, the integer value stored in the node pointed by p is examined
(lines 16 and 17). If the value is equal to the value to be deleted (i),
the auxiliary function delete aux (shown in Figure 14) is called
(line 18).

Otherwise, if the value is not equal to the value to be deleted
(line 19), the coercion reserve first translates the store type as
follows (lines 20 to 22):

({ρp′ 7→ Tree} ⇒ {ρh 7→ Tree})
⊗({ρp 7→ Tree} ⇒ {ρp 7→ Tree} ⊗ {ρq 7→ Tree}
⊗{ρp′ 7→ 〈int, ptr(ρp), ptr(ρq)〉 ∪ 〈int, ptr(ρq), ptr(ρp)〉})

⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉} ⊗ {ρpl 7→ Tree}
⊗{ρpr 7→ Tree} ⊗ ε

Next, the location ρp′ is packed (line 23), and the entire store type
is translated as follows:

({ρp′ 7→ Tree} ⇒ {ρh 7→ Tree})
⊗({ρp 7→ Tree} ⇒ {ρp′ 7→ Tree})
⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉} ⊗ {ρpl 7→ Tree}
⊗{ρpr 7→ Tree} ⊗ ε

38

1 : fix delete aux [ρh, ρp′ , ρp, ρq, ρpl, ρpr, ε|
2 : ({ρp′ 7→ Tree} ⇒ {ρh 7→ Tree})
3 : ⊗{ρp′ 7→ 〈int, ptr(ρp), ptr(ρq)〉
4 : ∪ 〈int, ptr(ρq), ptr(ρp)〉}
5 : ⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉} ⊗ {ρpl 7→ Tree}
6 : ⊗{ρpr 7→ Tree} ⊗ {ρq 7→ Tree} ⊗ ε]
7 : (h : ptr(ρh), p : ptr(ρp), p′ : ptr(ρp′),
8 : cont : τc[ρh, ε]).
9 : case p′ of

10 : (inl −→
11 : delete aux left [ρh, ρp′ , ρp, ρq, ρpl, ρpr, ε]
12 : (h, p, p′, cont)
13 : | inr −→
14 : delete aux right [ρh, ρp′ , ρp, ρq, ρpl, ρpr, ε]
15 : (h, p, p′, cont)
16 :)

Figure 14. Auxiliary Function for Deletion from a Binary Search
Tree (1 of 3)

Then, the two separating implications are concatenated via trans
(lines 24 and 25) as follows:

({ρp 7→ Tree} ⇒ {ρh 7→ Tree})
⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉} ⊗ {ρpl 7→ Tree}
⊗{ρpr 7→ Tree} ⊗ ε

Finally, the function determines which subtree should be examined
next (line 26), and calls itself tail-recursively (lines 28 and 31).

The delete aux function (shown in Figure 14) does almost
nothing but call one of the two auxiliary functions (delete aux left
or delete aux right), depending on how the node pointed by p is
reached from its parent node (line 9). If it is in the left subtree of the
parent node, delete aux left is called (lines 11 and 12). Otherwise,
delete aux right is called (lines 14 and 15).

The delete aux left function (shown in Figure 15) first exam-
ines whether the left subtree of the node pointed by p is a leaf or
not (lines 8 and 10). If it is a leaf, the function stores the pointer
to the right subtree in the parent node pointed by p′ (line 12), and
frees the node pointed by p and the leaf (lines 13 and 14). Next, the
location ρp′ is packed (line 15), and the store type is translated as
follows:

({ρp′ 7→ Tree} ⇒ {ρh 7→ Tree})⊗ {ρp′ 7→ Tree} ⊗ ε

Then, the coercion indicated is performed (lines 16 and 17), and
the entire store type is translated as follows:

{ρh 7→ Tree} ⊗ ε

Finally, the function returns the binary search tree pointed by h
(line 18). It is important to note that the continuation cont is the
one passed to delete bst , that is, it directly returns to the caller of
delete bst .

If the left subtree is an intermediate node, the function examines
whether the right subtree is a leaf or not (lines 9 and 20). If the right
subtree is a leaf, the function does the same as lines 12 to 18, except
that the function stores the pointer to the left subtree in the parent
node (line 22).

Otherwise, if both of the subtrees are intermediate nodes, the
coercion reserve (line 30 and 31) first translates the entire store
type as follows:

({ρp′ 7→ Tree} ⇒ {ρh 7→ Tree})
⊗({ρp 7→ Tree} ⇒ {ρp 7→ Tree} ⊗ {ρq 7→ Tree}
⊗{ρp′ 7→ 〈int, ptr(ρp), ptr(ρq)〉})

⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉} ⊗ {ρpl 7→ Tree}
⊗{ρpr 7→ Tree} ⊗ ε

1 : fix delete aux left [ρh, ρp′ , ρp, ρq, ρpl, ρpr, ε|
2 : ({ρp′ 7→ Tree} ⇒ {ρh 7→ Tree})
3 : ⊗{ρp′ 7→ 〈int, ptr(ρp), ptr(ρq)〉}
4 : ⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉} ⊗ {ρpl 7→ Tree}
5 : ⊗{ρpr 7→ Tree} ⊗ {ρq 7→ Tree} ⊗ ε]
6 : (h : ptr(ρh), p : ptr(ρp), p′ : ptr(ρp′),
7 : cont : τc[ρh, ε]).
8 : let pl = (p).2;
9 : let pr = (p).3;

10 : case pl of
11 : (inl −→
12 : (p′).2 := pr;
13 : free p;
14 : free pl;
15 : pack[ρpr,ρq|{ρpr 7→Tree}⊗{ρq 7→Tree}]asTree(p

′);
16 : indicated {ρp′ 7→ Tree} for
17 : {ρp′ 7→ Tree} ⇒ {ρh 7→ Tree};
18 : cont(h)
19 : | inr −→
20 : case pr of
21 : (inl −→
22 : (p′).2 := pl;
23 : free p;
24 : free pr;
25 : pack[ρpl,ρq|{ρpl 7→Tree}⊗{ρq 7→Tree}]asTree(p

′);
26 : indicated {ρp′ 7→ Tree} for
27 : {ρp′ 7→ Tree} ⇒ {ρh 7→ Tree};
28 : cont(h)
29 : | inr −→
30 : reserve {ρp 7→ Tree} for {ρq 7→ Tree}
31 : ⊗{ρp′ 7→ 〈int, ptr(ρp), ptr(ρq)〉};
32 : pack[ρp,ρq|{ρp 7→Tree}⊗{ρq 7→Tree}]asTree(ρp′);

33 : trans {ρp 7→ Tree} ⇒ {ρp′ 7→ Tree} with
34 : {ρp′ 7→ Tree} ⇒ {ρh 7→ Tree};
35 : reserve {ρpl 7→ Tree} for ·;
36 : search max[ρpl, ρpl, {ρpr 7→ Tree} ⊗ ε
37 : ⊗({ρp 7→ Tree} ⇒ {ρh 7→ Tree})
38 : ⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉}]
39 : (pl, min int,
40 : fix cont′[|{ρpr 7→ Tree} ⊗ ε
41 : ({ρp 7→ Tree} ⇒ {ρh 7→ Tree})
42 : ⊗{ρp 7→ Tree} ⊗ {ρpl 7→ Tree}](m : int).
43 : (p).1 := m;
44 : delete bst[ρh, ρp, ρpl, ρpr, ε](h, pl, p, m, cont)
45 :)
46 :)
47 :)

Figure 15. Auxiliary Function for Deletion from a Binary Search
Tree (2 of 3)

39

Next, the location ρp′ is packed (line 32) as follows:

({ρp′ 7→ Tree} ⇒ {ρh 7→ Tree})
⊗({ρp 7→ Tree} ⇒ {ρp′ 7→ Tree})
⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉} ⊗ {ρpl 7→ Tree}
⊗{ρpr 7→ Tree} ⊗ ε

Then, the coercion trans (lines 33 and 34) translates the entire
store type as follows:

({ρp 7→ Tree} ⇒ {ρh 7→ Tree})
⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉} ⊗ {ρpl 7→ Tree}
⊗{ρpr 7→ Tree} ⊗ ε

Next, the coercion reserve (line 35) introduces a seemingly use-
less separating implication that is necessary to call search max
(shown in Figure 17) as follows:

({ρp 7→ Tree} ⇒ {ρh 7→ Tree})
⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉} ⊗ {ρpl 7→ Tree}
⊗{ρpr 7→ Tree} ⊗ ε
⊗({ρpl 7→ Tree} ⇒ {ρpl 7→ Tree})

Then, it calls search max in order to get the maximum value in
the left subtree (lines 36 to 45), and the value is stored in the node
pointed by p (line 43). Finally, it calls delete bst tail-recursively in
order to delete the maximum value from the left subtree (line 44).

The delete aux right function (shown in Figure 16) is almost
the same as delete aux left except for that it is used when the node
pointed by p is in the right subtree of the parent node pointed by p′.
More specifically, if one of the subtrees of the node pointed by p is
a leaf, the pointer to the other subtree is stored to the third element
of the parent node pointed by p′ (lines 12 and 22), instead of the
second element.

search max is a tail-recursive function that returns the maxi-
mum value stored in a binary search tree (shown in Figure 17). It
first examines the tree pointed by p whether the tree is a leaf or not
(line 5). If the tree is a leaf, the coercion indicated translates the
store type as follows (lines 7 and 8):

{ρh 7→ Tree} ⊗ ε

Finally, the function returns the integer value m (line 9). It is
important to note here that the second argument of the function
holds the maximum value in the tree pointed by h, excluding the
subtree pointed by p.

Otherwise, the location ρp is unpacked (line 11), and the entire
store type is translated as follows:

({ρp 7→ Tree} ⇒ {ρh 7→ Tree})
⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉}
⊗{ρpl 7→ Tree} ⊗ {ρpr 7→ Tree} ⊗ ε

Next, the coercion reserve translates the store type as follows
(lines 14 and 15):

({ρp 7→ Tree} ⇒ {ρh 7→ Tree})
⊗({ρpr 7→ Tree} ⇒ {ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉}
⊗{ρpl 7→ Tree} ⊗ {ρpr 7→ Tree})

⊗{ρpr 7→ Tree} ⊗ ε

Then, the location ρp is packed as follows (line 16):

({ρp 7→ Tree} ⇒ {ρh 7→ Tree})
⊗({ρpr 7→ Tree} ⇒ {ρp 7→ Tree})⊗ {ρpr 7→ Tree} ⊗ ε

Now, the trans operation (lines 17 and 18) is performed, and the
entire store type is finally translated as follows:

({ρpr 7→ Tree} ⇒ {ρh 7→ Tree})⊗ {ρpr 7→ Tree} ⊗ ε

Finally, the function calls itself tail-recursively (line 19) by instan-
tiating ρp with ρpr .

1 : fix delete aux right [ρh, ρp′ , ρp, ρq, ρpl, ρpr, ε|
2 : ({ρp′ 7→ Tree} ⇒ {ρh 7→ Tree})
3 : ⊗{ρp′ 7→ 〈int, ptr(ρq), ptr(ρp)〉}
4 : ⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉} ⊗ {ρpl 7→ Tree}
5 : ⊗{ρpr 7→ Tree} ⊗ {ρq 7→ Tree} ⊗ ε]
6 : (h : ptr(ρh), p : ptr(ρp), p′ : ptr(ρp′),
7 : cont : τc[ρh, ε]).
8 : let pl = (p).2;
9 : let pr = (p).3;

10 : case pl of
11 : (inl −→
12 : (p′).3 := pr;
13 : free p;
14 : free pl;
15 : pack[ρpr,ρq|{ρpr 7→Tree}⊗{ρq 7→Tree}]asTree(p

′);
16 : indicated {ρp′ 7→ Tree} for
17 : {ρp′ 7→ Tree} ⇒ {ρh 7→ Tree};
18 : cont(h)
19 : | inr −→
20 : case pr of
21 : (inl −→
22 : (p′).3 := pl;
23 : free p;
24 : free pr;
25 : pack[ρpl,ρq|{ρpl 7→Tree}⊗{ρq 7→Tree}]asTree(p

′);
26 : indicated {ρp′ 7→ Tree} for
27 : {ρp′ 7→ Tree} ⇒ {ρh 7→ Tree};
28 : cont(h)
29 : | inr −→
30 : reserve {ρp 7→ Tree} for {ρq 7→ Tree}
31 : ⊗{ρp′ 7→ 〈int, ptr(ρp), ptr(ρq)〉};
32 : pack[ρp,ρq|{ρp 7→Tree}⊗{ρq 7→Tree}]asTree(ρp′);

33 : trans {ρp 7→ Tree} ⇒ {ρp′ 7→ Tree} with
34 : {ρp′ 7→ Tree} ⇒ {ρh 7→ Tree};
35 : reserve {ρpl 7→ Tree} for ·;
36 : search max[ρpl, ρpl, {ρpr 7→ Tree} ⊗ ε
37 : ⊗({ρp 7→ Tree} ⇒ {ρh 7→ Tree})
38 : ⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉}]
39 : (pl, min int,
40 : fix cont′[|{ρpr 7→ Tree} ⊗ ε
41 : ({ρp 7→ Tree} ⇒ {ρh 7→ Tree})
42 : ⊗{ρp 7→ Tree} ⊗ {ρpl 7→ Tree}](m : int).
43 : (p).1 := m;
44 : delete bst[ρh, ρp, ρpl, ρpr, ε](h, pl, p, m, cont)
45 :)
46 :)
47 :)

Figure 16. Auxiliary Function for Deletion from a Binary Search
Tree (3 of 3)

40

1 : fix search max [ρh, ρp, ε|
2 : ({ρp 7→ Tree} ⇒ {ρh 7→ Tree})
3 : ⊗{ρp 7→ Tree} ⊗ ε]
4 : (p : ptr(ρp), m : int, cont : τ ′c[ρh, ε]).
5 : case p of
6 : (inl −→
7 : indicated {ρp 7→ Tree} for
8 : {ρp 7→ Tree} ⇒ {ρh 7→ Tree};
9 : cont(m)

10 : | inr −→
11 : unpack ρp with ρpl, ρpr;
12 : let x = (p).1;
13 : let pr = (p).3;
14 : reserve {ρpr 7→ Tree} for {ρpl 7→ Tree}
15 : ⊗{ρp 7→ 〈int, ptr(ρpl), ptr(ρpr)〉};
16 : pack[ρpl,ρpr|{ρpl 7→Tree}⊗{ρpr 7→Tree}]asTree(ρp);

17 : trans {ρpr 7→ Tree} ⇒ {ρp 7→ Tree} with
18 : {ρp 7→ Tree} ⇒ {ρh 7→ Tree};
19 : search max [ρh, ρpr, ε](pr, x, cont)
20 :)
where
21 : τ ′c[ρ, ε] ≡ ∀[|{ρ 7→ Tree} ⊗ ε].(m : int) → 0

Figure 17. Search Maximum Value from a Binary Search Tree

It is important to note that, in a strict sense, the implementation
of deletion from a binary search tree shown in this section is not
fully tail-recursive because it creates a continuation as an argument
for search max in delete aux left and delete aux right . How-
ever, the implementation only takes constant space regardless of the
size of a binary search tree because search max is tail-recursive
and does not call any other function except for the continuation.

4. Related Work
Linear types [16, 17] are type systems based on linear logic. They
statically detect values that are used exactly once, and they deallo-
cate their memory regions immediately after they are used. Linear
types have two drawbacks from the view point of explicit mem-
ory management. First, many common data structures using pointer
aliasing cannot be expressed using linear type systems because they
effectively prohibit pointer aliasing of linear values, unlike alias
type systems. Quasi-linear types [6] relax this limitation by taking
the order of evaluation into consideration. Second, although they
achieve explicit memory deallocation, explicit memory reuse is not
allowed because they do not support the strong updating of mem-
ory regions, unlike alias type systems. One advantage of linear type
systems is their ability to infer types. On the other hand, alias type
systems currently require type annotations by programmers.

Region-based memory management [5, 14, 15] is another ap-
proach to memory management, which does not rely on garbage
collection. Region-based memory management involves the divi-
sion of memory allocations into groups called regions and the static
management of pointers among them. By adopting the region-
based memory management technique described in [5], program-
mers can reclaim regions explicitly; however, such a technique does
not provide type inferencing mechanisms, as in the case of alias
type systems. Region-base memory management has two draw-
backs. First, the memory management unit is coarse, as compared
to that of linear and alias type systems. Therefore, the ability to
explicitly manage memory is limited. Second, it does not support
explicit memory reuse, as in the case of linear type systems.

Shape analysis [11, 12] involves the extraction of shape invari-
ants, that is, approximated structures built with memory regions

and pointers among them. Although shape analysis can be used to
explicitly deallocate memory regions [4], it is sometimes inade-
quate for explicit memory management because it does not deter-
mine whether memory regions can be explicitly reused. In addition,
effective shape analysis approaches [3, 7] suffer from limitations in
handling generic recursive data structures. This is because the de-
tection of aliasing relations in programs is undecidable [9]. On the
other hand, the proposed type system handles recursive data struc-
tures efficiently and precisely at the cost of coercions and type an-
notations by programmers. The workload of the programmers can
be reduced by incorporating shape analysis.

Separation logic [10] is an extension of Hoare logic, which per-
mits reasoning for low-level imperative programs that use shared
mutable data structures. It is a substructural logic that can describe
heap-allocated memory regions and pointers among them. It is
known that the concept of the separating conjunction in separation
logic is closely related to the original alias type system [10, 18].
The present study is the first elucidation of the application of sep-
arating implications to the alias type system; moreover, we have
demonstrated its effectiveness. Separation logic is more expressive
than the proposed type system; however, it requires manual proofs
that are relatively complex, as opposed to the insertion of coercions
in the proposed type system. Although decision procedures for re-
stricted separation logic have been investigated [1, 2, 8], they do
not handle separating implications.

5. Conclusion
In this paper, we proposed an extension of the alias type system [18]
using separating implications, which are derived from separation
logic [10]. The original alias type system allows programmers to
write explicit memory management code by tracking aliasing re-
lations in memory regions. However, it suffers from limitations in
expressing tail-recursive operations on recursive data structures be-
cause it requires complete information about the aliasing relations.
In the proposed type system, the separating implications relax the
limitations by allowing implicit pointer aliases between the an-
tecedents and the consequents of the implications. Further, we pre-
sented examples to demonstrate the expressiveness of the proposed
type system. The proposed type system enables us to describe a
tail-recursive and destructive list append function, a FIFO queue
with constant-time operations, and an implementation of deletion
from a binary search tree that only takes constant space.

Acknowledgments
This work has been partially supported by CREST of JST (Japan
Science and Technology Agency).

References
[1] J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of

separation logic. In Proc. of FSTTCS 2004, pages 97–109, 2004.

[2] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with
separation logic. In Proc. of APLAS 2005, pages 52–68, 2005.

[3] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn,
T. Wies, and H. Yang. Shape analysis for composite data structures.
In Proc. of CAV 2007, pages 178–192, 2007.

[4] S. Cherem and R. Rugina. Compile-time deallocation of individual
objects. In Proc. of ISMM 2006, pages 138–149, 2006.

[5] K. Crary, D. Walker, and J. G. Morrisett. Typed memory management
in a calculus of capabilities. In Proc. of POPL 1999, pages 262–275,
1999.

[6] N. Kobayashi. Quasi-linear types. In Proc. of POPL 1999, pages 29–
42, 1999.

41

[7] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer pro-
grams using grammar-based shape analysis. In Proc. of ESOP 2005,
pages 124–140, 2005.

[8] H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated verifi-
cation of shape and size properties via separation logic. In Proc. of
VMCAI 2007, pages 251–266, 2007.

[9] G. Ramalingam. The undecidability of aliasing. ACM Transactions
on Programming Languages and Systems, 16(5):1467–1471, 1994.

[10] J. C. Reynolds. Separation logic: a logic for shared mutable data
structures. In Proc. of LICS 2002, pages 55–74, 2002.

[11] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems
in languages with destructive updating. ACM Transactions on Pro-
gramming Languages and Systems, 20(1):1–50, January 1998.

[12] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3–valued logic. In Proc. of POPL 1999, pages 105–118, 1999.

[13] F. Smith, D. Walker, and G. Morrisett. Alias types. Lecture Notes in
Computer Science, 1782:366–381, 2000.

[14] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value
lambda-calculus using a stack of regions. In Proc. of POPL 1994,
pages 188–201, 1994.

[15] M. Tofte and J.-P. Talpin. Region-based memory management. Infor-
mation and Computation, 132:109–176, 1997.

[16] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In Proc. of
FPCA 1995, pages 1–11, 1995.

[17] P. Wadler. Linear types can change the world! In Proc. of PROCOMET
1990, pages 347–359, 1990.

[18] D. Walker and G. Morrisett. Alias types for recursive data structures.
Lecture Notes in Computer Science, 2071:177–206, 2001.

42

