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Abstract
Stencils are typical building blocks for many numerical scientific
applications. Different parallelization methods exist, the choice
of a method depends on the given stencil, parallel programming
system etc. Implementing stencils in a library simplifies application
programming, allows to experiment with different parallelization
methods, and supports their automatic adaptation to a given stencil.
This paper introduces PASTHA, a prototype for a Haskell library
that allows to declaratively describe stencil-based problems and
calculate them in parallel. The description is flexible enough to
cover all 2D stencils we are aware of. Implementation is based on
task queues and strict evaluation. We report on experiments with a
Gauß-Seidel stencil, where we achieved speedups of up to 4 on six
cores, and with global and local sequence scoring from the Haskell
bioinformatics library bio. For local scoring, the running time was
reduced by a factor of 55, which is partially due to PASTHA.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Languages, Performance

1. Introduction
Stencils are building-blocks for numerical scientific applications.
A stencil is a pattern to describe the calculation of matrix elements
by defining the relative positions of elements required for the cal-
culation. The values at these positions are used to update the value
of the current position. Stencils are used for example in the ap-
proximation of partial differential equation systems by applying
iterative numerical approximation methods such as the Jacobi or
Gauß-Seidel relaxation method.

Despite the progress in both hardware and software develop-
ment the demand for increasing processing power of stencil codes
is still prevailing. Greater processing power leads to more detailed
simulations, increases the quality of the results or reduces the time
for finishing them. Therefore improving the calculation speed of
stencil-based applications leads to a general improvement of nu-
merical applications.

The current solution to this problem is no longer limited
to increasing clock rates: instead parallelization of applications
executed on modern shared-memory multicore architectures is
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favoured. Unfortunately the increase of computing power comes
with a price: not only need the developers handle the single-
threaded correctness of their programs but have to handle for ex-
ample thread synchronization and race conditions as well at least
in the traditional explicit thread-parallelism model.

One possibility to manage the complexity while still enabling
parallelism is to hide it from the developer. Libraries are well
known to achieve this goal: Firstly, they can handle the parallel as-
pects of the execution. Secondly, they can provide (semi-)automatic
techniques to choose the most performant implementation depend-
ing on the specific problem. Thirdly, by allowing a declarative de-
scription of the problem calculation, details are abstracted. Devel-
oping a library to handle the parallel calculation for a class of prob-
lems like stencil calculation should fulfill some constraints. These
constraints should make the library useful for real-world applica-
tions:

• The provided functions of the library should be flexible enough
to be applied on different classes of problems while at the same
time the learning curve for simple examples should be small.

• The library should use the resources of modern multicore hard-
ware and provide a good speedup.

• The efficiency of the provided functions should not be signif-
icantly worse than the efficiency of existing hand-coded ver-
sions. On the other hand small decreases in computation speed
for having a more convenient development environment are a
common trade-off.

• Depending on the problem type it should assist – or even au-
tomatize – the choice for the most performant implementation.

Haskell provides a solid basis for parallel programming due to its
active research on parallel programming models and the resulting
developer-friendly parallel programming techniques. Since Haskell
supports parallelization using explicit, semi-implicit and data paral-
lel techniques, it allows to explore and compare the advantages and
disadvantages of the different approaches to parallel stencil calcu-
lation while using a common code basis and common abstractions.
As a functional language, its support for higher level abstraction
and thus declarative stencil descriptions and parallelization strate-
gies is better than in most imperative programming languages. Our
contributions are

• The definition of types in Haskell that allow to declaratively
express 2D stencil-based problems. Addressing both multiple
data matrices and arbitrary referencing of values from past
iterations is possible.

• PASTHA, the prototype of a library for parallel stencil calcu-
lations. It allows us to evaluate parallel strategies for stencil-
based calculations and to calculate stencil-based problems on
multicore architectures. Our implementation is based on task
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queues and strict evaluation by which we achieve speedups for
Gauß-Seidel-based stencils of 3 on four and 4 on six cores for
instance.

• The parallelization of the affine sequence score algorithm in
the Haskell bioinformatics library[1]. Thereby we explore the
advantages and disadvantages of the library’s current paral-
lelization strategies and provide some real-world benchmarks
and experiences. It was of special importance to us that biolib
users should be able to use the parallelization without having to
change their code too much. We were able to achieve speedups
of up to 55 on four cores. This speedup is due to strict eval-
uation, computing in the IO monad, and partially the use of
PASTHA.

Despite being a prototype implementation, PASTHA can already
be used to calculate some commonly used and declaratively de-
scribed stencils in parallel. For other stencils the user has to define
two simple functions to describe the dependency relation between
stencil elements. Due to the prototype nature of PASTHA, our de-
sign decision was aimed at perspicuity: When having the choice
between a simple, clean and possibly slower implementation and a
more complex one (for example, involving customized shared data
structures, STM etc.) we chose the simpler one.

The remainder of the paper is structured as follows. Section 2 in-
troduces a voltage diffusion simulation. This voltage diffusion sim-
ulation will serve as a guiding example throughout the paper. We
formalize the different components of a stencil-based problem in a
declarative form and present types for these components in Haskell.
Section 3 points out how to define the voltage simulation in Haskell
and initiate its parallel calculation. Section 4 explains the general
parallelization scheme for this class of problems, describes our im-
plementation in Haskell and provides benchmarks. In Section 5 we
give a short introduction to sequence scoring, demonstrate how to
transform programs for using PASTHA and provide benchmarks
comparing the original implementation of the biolib-algorithms
with the PASTHA-version. Section 6 compares this paper to re-
lated work and Section 7 concludes and describes future research
ideas.

2. A declarative model of stencil problems in
Haskell

In this section we give reasons for the usage of stencils by explain-
ing how to model the diffusion of voltage on a metal sheet and
calculate the voltage’s distribution. We generalize the introduced
terms of the example in such a way that arbitrary stencil-based
problems can be expressed. Using the defined terms we show how
to transform the definitions into Haskell types.

2.1 A voltage diffusion simulation

Our aim is to determine the resulting pattern voltages of a two-
dimensional conductive metal sheet with constant voltage applied
only at the boundaries (Figure 1). The resulting pattern is modeled
by the linear partial differential Laplace Equation

∂2v

∂2x
+

∂2v

∂2y
= 0 (1)

Since this equation can only be solved numerically we apply the
Jacobi relaxation method on a two-dimensional grid of points on
the surface of the metal sheet. Let Vi,j denote the voltage at the
grid point (i, j). Applying (1) to the grid results in the equation
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The approximation algorithm iterates successively over all internal

at boundaries
Fixed voltage

Internal point

Figure 1. A two dimensional conducting metal sheet.

// Alternative :
// while (! converged ) ...
while (steps ++ < maxSteps ) {

for (i=0; i < N; ++i)
for (j=0; j < N; ++j)

VNew[i,j] = (V[i-1,j] + V[i+1,j] +
V[i,j-1] + V[i,j+1]) / 4.0;

Copy(VNew ->V);
}

Figure 2. Code to calculate values for the voltage diffusion simu-
lation using a Jacobi-stencil.

points (i, j) evaluating Vi,j , as shown in Figure 2. This is repeated
until either a fixed number of iterations has been calculated or the
minimal difference of the same matrix element for the current and
previous iterations is smaller than a threshold value ε. The voltage
simulation already contains all typical elements of a stencil-based
problem: a data matrix with initial values, a stencil described by
references to other elements of V , a function computing the average
of the neighbour elements defined by V for each grid point, and a
convergence condition.

While the Jacobi stencil only refers to values of the previous it-
eration, there are also commonly used stencils with more advanced
dependencies (see Figure 3): The Gauß-Seidel stencil is similar to

Vi,j+1

Vi−1,j Vi−1,j

Vi,j−1 Vi,j−1

Vi,j Vi,jVi+1,j Vi+1,j

currently calculated referenced by depenedencies

Sequence scoring

Jacobi Gauß−Seidel

Vi,j+1
(k−1)

(k−1)

(k−1)

(k−1) (k−1)

(k−1)

(k)

(k)

Figure 3. Jacobi, Gauß-Seidel and sequence scoring stencils

a Jacobi stencil but its upper and left element are from the current
iteration not the previous one. The stencil we use in Section 5 to
parallelize sequence scoring is based on the wavefront stencil: an
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element depends on the values from the upper, left, and upper-left
elements that have to be calculated in the previous iteration. In this
particular case the calculation is more complicated because a total
of four data matrices is needed, all matrices having interdependen-
cies of their own.

The next section shows our approach to make PASTHA appli-
cable for many stencil-based problems by introducing a general
declarative stencil description.

2.2 A generalized declarative stencil definition

A general definition for stencil-based problems should allow the
description of common 2D stencils, and moreover needs mecha-
nisms to describe stencil problems with an arbitrary number of data
matrices and references to past iterations. The following definition
accounts for this.

A stencil-based problem is described by the dimensions and
number n of the data matrices, the initial values in the matrices,
a tuple of n (stencil, function) pairs, and a convergence condition.
This can be formalized in a 5-tuple where w, h, n ∈ N are the
dimension and number of the data matrices:

((w, h), n, init, (stencil × function)n, conv)

Note, that all data matrices need to have the same dimensions,
which is the case in all stencil problems we are aware of. Each ini-
tial value is defined through a tuple from ((W, H,N), R), where
W = [1 . . . w], H = [1 . . . h], N = [1 . . . n], that is for each
given coordinate a value is specified. To cover stencil-based prob-
lems with more than one data matrix, we need to define tuples of
(stencil, function)-pairs. Each pair defines the dependencies in
one data matrix, as well as the corresponding update function.

While it would have been more convenient for the user to de-
scribe both the dependencies and how to update elements in a sin-
gle definition, splitting the dependency definitions and calculation
functions simplifies the analysis of dependencies and thus allows a
performant parallelization.

A stencil is defined by a k-tuple of four-dimensional tuples
where each element of the list defines the dependency on another
element:

stencil = (N−, Z, Z, N)k

for an arbitrary k ∈ N. The first tuple-element describes the
referenced iteration: the current one is numbered 0, the previous
-1, and so on. The second and third elements define the horizontal
and vertical coordinates of a referenced element in the data matrix,
relative to the current position. The last element defines which of
the data matrices is referenced. The Gauß-Seidel stencil can thus
be defined by

{(0,−1, 0, 0), (−1, 1, 0, 0), (−1, 0,−1, 0), (0, 0, 1, 0)} (3)

The updated values for each element in a data matrix are calculated
by a function. It receives the values of the elements referenced by a
stencil and can perform arbitrary complex operations. Since some
functions need the coordinates of the currently calculated element,
they are a parameter:

function = (W, H) × R
k → R

The convergence condition is checked after each iteration (the data
for the check can be calculated while elements are processed); if it
is fulfilled, the calculation terminates. The first common condition
is ε-difference: if

min
i,j

|Vi,j − V −1
i,j | ≤ ε (4)

holds for a defined threshold value ε and V −1 as the data matrix
of the previous iteration, the calculation stops. The second one is
to terminate after a fixed number of iteration steps. Formally we

introduce the set

conv = {(Epsilon, R), (Steps, N)}
to distinguish between the two possibilities.

The voltage diffusion simulation can now be expressed as a
stencil-based problem by

((w, h), 1, init, (s, f), (Epsilon, ε))

with

f((x, y), l, r, b, t) =
l + r + b + t

4
and s defined by equation (3). The particular values for w, h and
init depend on the requested precision and the voltages at the
boundaries.

2.3 Describing stencils in Haskell

A generalized stencil-based problem is defined by a type Stencil-
Problem

data StencilProblem a = StencilProblem {
stencils :: [Stencil ]

, functions :: [ Function a]
, matrix :: Matrix a
, convergence :: Convergence

}

which precisely describes the components of the abstract definition.
To support more than one data matrix, both stencils and functions
are lists. In the calculation of the nth data matrix the nth stencil and
nth function of these lists are chosen for the value update. Therein

type Stencil = [(Int ,Int ,Int ,Int )]

and

type Function a = (Int , Int ) -> [a] -> a

A function receives the coordinate of the currently calculated ele-
ment and a list of values obtained by reading the data matrix values
referenced by the appropriate stencil.

To store the data matrices and all necessary past iterations, a
four-dimensional unboxed IO array is used:

type Matrix a = IOUArray (Int ,Int ,Int ,Int) a

While staying pure is naturally preferable, pure arrays do (cur-
rently!) not offer the performance achievable by IO based ones.
Since we provide functions to access arbitrary data matrices of spe-
cific iterations (see Section 3) a user can conveniently work with a
Matrix without having to have its internal representation in mind.

The convergence condition is specified by the type Conver-
gence

data Convergence = Epsilon Double | Steps Int

and defines either a ε-threshold or a maximal number of steps.
In this section we have shown how to generalize a stencil-based

problem and define the components in terms of Haskell types. The
next section exemplifies these types by applying them to the voltage
diffusion simulation and demonstrates how a parallel calculation is
initiated.

3. Using PASTHA
In this section we use the declarative definitions for stencils to
describe and calculate the voltage diffusion simulation in Haskell.
Additionally we introduce some of the helper functions.

By using the types of Section 2.3, we define and calculate the
voltage diffusion problem for a grid size of 2000 × 2000 and 10
iterations by:
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import Pastha .Types
import Pastha .Calc.TaskQueue

voltageProblem :: Int -> Int -> Int ->
IO (StencilProblem Double )

voltageProblem width height steps = do
let stencil = gaussSeidelStencil

function = \_ vals -> sum vs / 4.0
converge = Steps steps

sheet <- newMatrix 1 0 width height >>=
fillBoundaries 200.0 400.0

500.0 100.0

return $ StencilProblem [stencil ]
[function ] sheet
convergence

main = do
problem <- voltageProblem 2000 2000 10
run 4 50 50 problem

let dm = dataMatrix problem
return ()

PASTHA already defines common stencils, e.g. for Jacobi, Gauß-
Seidel, and Wavefront-based stencils. To hide the internally used
Matrix-type, convenience functions (for example generating ma-
trices with the right dimension for common stencils) are already
provided: The call to newMatrix receives the needed iteration
depth, number of data matrices, and their width and height;
fillBoundaries fills the boundaries of the data matrices with
the corresponding values.

To calculate the data matrices for the defined stencil, we import
one of the calculation modules of Pastha.Calc and call the re-
spective run-function. In addition to the problem run receives pa-
rameters which depend on the chosen module. For the TaskQueue-
based strategy they are the number of threads to use and the hor-
izontal and vertical block sizes (see Section 4.4). The function
dataMatrix is a convenience function to provide transparent ac-
cess to the values of the first data matrix. Currently a user needs to
choose both the number of threads and the block sizes. We plan to
develop mechanisms to automatically determine these parameters
in future research (see Section 7).

4. Parallel stencil calculation using PASTHA
After giving an overview of the different existing parallelization
techniques currently supported by Haskell we describe our imple-
mentation for the parallelization of common stencil calculations,
explain our design decisions, and provide benchmarks.

4.1 Parallelization in Haskell

Haskell supports three types of parallelization for multicore ar-
chitectures: semi-implicit, data-parallelism, and explicit. Semi-
implicit parallelization is characterized by the par- and pseq-
functions. These functions offer the possibility to annotate those
parts of an expression that are a potential source for parallelization
– the user does not need to handle threads, communication, and
synchronization at all. Data-parallel Haskell allows you to com-
pute independent data elements in parallel. The elements are ex-
pressed in a vectorized form and thus provide a natural source for
parallelization known as data parallelism. By hiding parallelism,
both techniques complicate reasoning and in-detail measuring of
performance.

The explicit type of parallelization supported by Haskell is char-
acterised by parallel threads and manual handling of their cre-
ation, communication, and synchronization. An arbitrary number

of threads is started using forkIO and the communication between
them is accomplished over MVars: these are thread-safe containers
for values that block a thread either when it tries to read and no
value has been stored or it tries to write and the previously stored
value has not been read yet. For many parallel scenarios this sim-
ple synchronization scheme is not sufficient: threads do not want
to send or receive single values but need to continuously exchange
data for synchronization. Channels, built on top of MVars imple-
ment a synchronized concurrent unbounded FIFO-stream for an ar-
bitrary number of values of the same type: reading of a channel
blocks if the channel is empty but writing is always possible.

For our prototype implementation of PASTHA we chose ex-
plicit threading and channels for the communication between
threads: this parallel programming model offers clear semantics,
performant synchronization and direct control over the parallel
execution at the cost of extra complexity. It also offers manual
profiling, for example by using logfiles, in the IO monad. Manual
profiling was needed because compilers have no support for par-
allel profiling. This drawback will change by the rise of a parallel
profiler in the next version of GHC [13].

4.2 How to calculate stencils in parallel

It is difficult to parallelize stencil calculations in such a way that
it still has significantly better performance than a sequential so-
lution. In a stencil-based problem elements depend on other ele-
ments’ values, hence dependencies of the order of calculation are
introduced. For our explicit parallel programming model this im-
plies that threads have to be synchronized to calculate elements in
the correct order and we will have to use data structures allowing
concurrent access.

To utilize all available threads and take advantage of modern
caches, we use the well-known block-based approach for parallel
stencil calculation, as for example described in [16]: the matrix is
divided into blocks, which are calculated in an order that satisfies
the data dependencies: Every block contains border elements which
in order to be calculated require elements of the adjacent blocks
in addition to the elements of the same block. Just like a stencil
element the block can only be calculated if all adjacent blocks
it depends on have already been processed (see Figure 4). To

Blocks with single

matrix elements

0

1

3

2

4

A

Figure 4. Block-dependency scheme of a Gauß-Seidel based sten-
cil, arrows represent dependencies. Block A can be calculated di-
rectly because it has no unfulfilled dependencies. Block 2 can be
calculated only if both Blocks 0 and 4 have been processed.

calculate the whole matrix of one iteration, the initially independent
block is calculated. By finishing the calculation, dependencies of
other blocks are fulfilled and can now be processed. This is repeated
until all blocks of the matrix have been calculated.

The convergence condition plays the second important role in
the parallelization. In a block-based parallelization the minimal ε-
difference is calculated as follows:

• For each block a local block-dependent minimal ε is calculated.
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• When a block’s calculation is finished the current (global) ε is
updated if the local one is smaller.

At the end of an iteration the global ε contains the minimum over
all local ε.

There are different ways to implement the needed synchro-
nization, varying in their general applicability, performance etc.
For a Gauß-Seidel based stencil one possibility is a Wavefront-
synchronization with blocks that can be realised as follows (see Fig-
ure 5): The matrix is divided into diagonals, whereby the blocks in

1

3

3

3

2

2

Figure 5. Diagonalization in a block-based wavefront paralleliza-
tion.

each diagonal can be calculated independently by available threads.
Finished threads wait until all blocks in the current diagonal have
been calculated before starting with the next one. The iteration is
completed when the last block in the lower-right corner has been
calculated. The synchronization differs depending on the under-
lying parallelization runtime system: Haskell uses channels and
MVars, OpenMP[6] uses barriers after each diagonal, and MPI[17]
sends messages both for synchronization and updating of border
values (cp. [16] for more information about OpenMP and MPI
Wavefront implementations).

On a more global level we can picture other, more advanced
parallelization strategies, for example strategies which are more
adapted to specific classes of stencils: a strategy only to be ap-
plied to Jacobi-based stencils needs fewer synchronizations be-
cause blocks are independent. This particular strategy typically per-
forms better but is not applicable on a broader basis. For the pro-
totype implementation of PASTHA we wanted to cover the par-
allelization of all classes of 2D-stencils, hence we developed and
implemented a much more general scheme using taskqueues. This
scheme is introduced in the next section.

4.3 Parallel stencil calculation with Taskqueues

Our implementation for a block-based parallel processing of arbi-
trary 2D-stencils is based on the scheme in Figure 6. A main thread
supervises the calculation and coordinates the worker threads that
only do the number crunching. We decided to include a main-thread
since other parallelization approaches complicate the communica-
tion about (partially) finished blocks between worker-threads and
require more advanced synchronization of data structures.

OpenTasks
Thread 1

Thread n

   Main 

ClosedTasks

Figure 6. The communication scheme between the main- and
worker threads.

For communication between the main thread and all worker
threads (task)queues are used: in general a taskqueue is a concur-
rent data structure used in parallel programming to distribute tasks
and other messages among threads. Each thread polls the queue for
new messages and can write messages back as well.

To distribute blocks among the worker threads, a channel of type
OpenTasks (called open-channel) is used:

type OpenTasks = Chan Task

To describe messages for this channel, we define a Task by

data Task =
Task Block

| Stop

Thus this Task can be either a block that can be calculated or a
message stopping the receiving thread. Each block is described by
a type Block

type Block = (Int , Int , Int , Int)

which specifies the horizontal and vertical coordinates and with this
the block’s dimension as part of the matrix.

Results are sent to the back-channel, defined by the type
ClosedTasks

type ClosedTasks = Chan Result
type Result = (Block , Successors , Double )
type Successors = [(Block , Dependencies)]
type Dependencies = [Block]

The back-channel’s messages describe which block has been fin-
ished, what other blocks can be calculated now if the dependen-
cies are fulfilled (called successors) and describes the minimal dif-
ference between iterations for the finished block to check for ε-
convergence. Note that not blocks themselves are sent back but
simply their coordinates and dimensions.

So far we have just defined what types of messages can be
sent and what types they consist of. Still missing is the order in
which unprocessed blocks can be inserted into the queue. For each
stencil two additional functions are needed. These functions de-
scribe which successive blocks can be calculated and what de-
pendencies they still have: The initialization function init ::
[Task] defines all initial blocks that can be calculated without
further dependencies, that is those blocks the parallelization can
start with. The successor function next :: (Int,Int,Int,Int)
-> Block -> Successors receives the dimensions of the matrix
and the block size as the first parameter. For a finished block it
returns the list of successors as a list of tuples; each tuple-element
contains a block that can now be calculated and a list of the remain-
ing dependencies. PASTHA currently provides those functions for
common stencils, e.g. Jacobi, Gauß-Seidel, and Wavefront-based
ones. The underlying scheme for the init- and next-function for
a Gauß-Seidel stencil is shown in Figure 4: Block A is returned by
the init-function; it does not have any dependencies and calcu-
lation can start immediately. When next is called with block 0 it
returns [(1,[3]), (2,[4])]: block 1 depends on block 0 and to
be calculated correctly also needs block 3 to already be computed.

The parallel calculation of a stencil is now done as follows: the
main thread first forks the threads. For each iteration, i.e. until all
blocks have been calculated it then

• Fills the open-channel with the blocks returned by init.

• Waits for a block on the finished-channel.

• With a finished block:

Compares and stores the minimal ε for this iteration.

Checks whether the dependencies of the successor blocks
have already been fulfilled; if so, puts them in the open-
channel, if not discards them.

We use Data.Set with a lookup-complexity of O(log n) to
both store and check for finished blocks.
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After all blocks have been calculated the minimal ε is checked.
If it is lower than the value defined by the user the calculation is
terminated by filling the open-channel with one Stop-message for
each thread. Otherwise, the next iteration begins.

Each worker-thread tries to pull messages of the open-channel,
blocking until a message is received. With a message a thread

• Checks whether Stop is received: if so it terminates. Otherwise
it has received a block.

• Calculates both the values of the matrix for the given block and
the minimal ε.

• Wraps the result into a Result, sends it back over the closed-
channel and polls the queue for the next message.

The next section provides benchmarks that show the achieved
speedups for different stencils and analyzes potential optimizations
for this approach.

4.4 Benchmarks

We tested the taskqueue-based implementation on a 2.2 GHz 8-core
AMD Opteron 875, a Linux-kernel 2.6.18, and GHC 6.10.4 to mea-
sure the speedup for the voltage simulation using the Gauß-Seidel
and for comparison a Jacobi-stencil. Additionally we describe the
effect of varying block sizes during the performance. When uti-
lizing more than four cores we sometimes had huge discrepancies
in the run time (According to [15] performance problems are en-
countered when using eight cores with GHC under Linux). There-
fore we ran each test twenty times and always report the minimum,
the maximum, and the average speedup. For our tests we used a
non-threaded sequential version (an implementation of the algo-
rithm of Figure 2) and a parallel version which used two up to
seven cores. Preliminary tests with development versions of GHC
(to avoid the performance problems mentioned above) sometimes
resulted in more speedup but were not reliable and significant and
therefore are not presented here.

The first benchmark measured the speedup for the voltage sim-
ulation on a 2000 × 2000 grid with a uniform blocksize of 50 for
ten iterations. Experiments with ε-difference came to similar re-
sults. The blocksize 50 delivered the best average speedup. The
speedups are shown in Figure 7. We receive in the best as well as in

  
1 2 3 4 5 6 7

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

Cores

Sp
ee

du
p

Best Speedup
Average 
speedup
Worst Speedup

Figure 7. Speedup of the voltage diffusion simulation for a 2000×
2000 grid, a uniform blocksize of 50 and 10 iterations

the average case speedups of up to 4 on six cores. Nevertheless the
achievable speedup is restricted by the parallel runtime overhead
for instance by the cost for synchronization and communication.

Thereupon we simulated the voltage diffusion using a Jacobi
stencil. This stencil only needs values of the previous iteration,
hence the init and next-functions are much easier to implement
and less communication about finished blocks is needed. Figure 8
shows the according speedup graph. As can be seen, the decrease
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Figure 8. Speedup of the voltage diffusion simulation using a
Jacobi stencil

in the communication pays off: since all tasks can be calculated
independently we receive better speedup. This indicates that the
implementation of the taskqueue does not provide a huge overhead;
rather it costs little when it is used only to pull out values and
discard the sent-back results.

The performance of the calculation depends on different factors,
e.g. on the specific calculation, the number of threads, the parallel
runtime system, and the block size. Figure 9 shows the relation be-
tween uniform blocksizes of various sizes and the achieved speedup
for the voltage problem using four cores. Even though the tolerance
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Figure 9. Dependency between block sizes and speedup.

for good speedups is huge (blocksizes from 40 up to 100 provide
nearly the same speedup) the user still has to run a few tests with
different block sizes to identify the block size for the best speedup.
We plan to automatize this step (see Section 7).

5. Parallelizing sequence scoring and alignment
We transformed a class of sequence analysis algorithms into our
stencil description and compared the parallel performance with the
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original sequential implementation. The sequential implementation
was taken from the Haskell bioinformatics library bio, which is a
collection of bioinformatics-related data structures, algorithms and
supporting utilities.

After a short introduction into sequence scoring algorithms
(where we leave out the biological background) we show the trans-
formation of the algorithms into a stencil-based problem and how
an existing call to a bio-library function has to be rewritten to al-
low parallel calculation. We conclude with a benchmark comparing
the sequential with our parallel implementation.

5.1 Background: Sequence scoring

One of the most common and at the same time computational
expensive problems in bioinformatics is the comparison of two
genomic sequences. A genomic sequence consists of strings of the
alphabet {A, C, G, T} of nucleotide acid bases.

Given two sequences S1 and S2 we want to determine the
similarity between the entire sequences which is called global
scoring. With an exemplary score-function c(x, y)

c(x, y) =

8><
>:

1 x = y

0 x �= y

−1 x = − or y = −
covering the cases of a match and mismatch of two sequence
elements and the case when the position is empty (denoted by the
symbol −) we are able to calculate a global score: apply c to every
two elements of S1 and S2 and sum them up. For the sequences
S1 = AAGGCA and S2 = GACGA the maximal score is 2: if
the empty symbol was at another position the score would either be
equal or less:

S1 A A G G C A
S2 G A C G - A
Score 0 1 0 1 -1 1 = 2

In the evolutionary process subsequences of acid bases were
moved, inserted or deleted. The current model only differenti-
ates between a match, mismatch or space. For better accordance
to the underlying biological model the influence of consecutive
spaces (called gaps) should be larger. This desired property can
be modelled by functions that give the first occurring gap a very
low (typically negative) score and the immediately following gaps
a score linear in their length. This class of functions is called affine
gap functions: Let go be the initial gap penalty for the first gap and
ge the penalty for the n successive ones; the class of affine gap
functions is then described by

g(n) = go + nge

With go = −10 and ge = −1 the maximal possible score for the
sequences S1 and S2 under an affine gap function is -7:

S1 A A G G C A
S2 G A C G - A
Score 0 1 0 1 -10 1 = -7

The global score is determined by examining both sequences in
their entirety. However we are often interested in the comparison of
local subsequences. Local subsequences often have more similarity
and thus a much higher score: gaps which lower the overall score
when whole sequences are considered can be excluded from the
subsequence and therefore have no influence on the score. Since
only local sections of the sequences are considered, this scoring is
called local scoring. It is determined by scoring all subsequences
of S1 against all subsequences of S2 and finding the maximal
value. The local score for our example is maximal for the two
subsequences AGG and ACG with a score of 2:

S1 |A A G| G C A
S2 G |A C G| A
Score |1 0 1| = 2.

locally important
subsequences

The next section demonstrates how the search for a global or local
score, respectively, is expressed in terms of matrices, recursive
dependencies between matrix elements, and simple functions.

5.2 Scoring as a stencil problem

To calculate the score of two sequences S1 and S2 by an affine
gap function, we define a set of recurrence relations that work on
matrices. Since the difference between global and local scoring is
only in the initialization of border elements and the determination
of the result, the calculation and therefore its parallelization is the
same; we only present the formulas for global scoring.

Let V , G, E and F be matrices with the dimension (length(S1)+
1) × (length(S2) + 1). The initial values for the matrices V , E
and F are defined by

V (i, 0) = E(i, 0) = go + ige (5)

V (0, j) = F (0, j) = go + jge (6)

The matrix G does not need initialization values. The other values
of the matrices are given by the recurrence relations

V (i, j) = max{E(i, j), V (i, j), G(i, j)} (7)

G(i, j) = V (i − 1, j − 1) + σ(S1(i), S2(j)) (8)

E(i, j) = max{E(i, j − 1), V (i, j − 1) − go} − ge (9)

F (i, j) = max{F (i − 1, j), V (i − 1, j) − go} − ge (10)

with σ as the score function between two bases and Sk(n) as
the element at position n for string k. The data dependencies are
more complex than in typical stencil-based problems with only one
stencil: G depends on values of V , both E and F on values of
V and previously calculated ones respectively and V depends on
elements from all other matrices.

An iterative implementation iterates over each point of (i, j),
typically rowwise and calculates the values of the matrices such
that implicit dependency relations are fulfilled. For example in the
order E(i, j), F (i, j), G(i, j) and finally V (i, j). After each of
the elements has been calculated the global score is the value in
V (length(S2) + 1, length(S1) + 1). To obtain the local score,
V ’s maximal value has to be found.

To use the developed parallelization strategies for stencil-based
problems, we need to transform the matrices initializations and the
recurrence relations into a stencil-based problem: stencils are im-
plicitly defined by the references to other elements in the recur-
rences, functions are defined directly through equations (7) to (10).
The initial values are filled according to equations (5) and (6). Since
one iteration is sufficient to calculate all values in V the conver-
gence condition states that after one iteration the calculation should
terminate.

5.3 Using PASTHA to score

We implemented a module Pastha.Bio which uses PASTHA to
implement parallel versions of the scoring algorithms of biolib. We
took great care to hide internal PASTHA details from the biolib-
user by providing a similar interface as the existing functions do.

We now illustrate exemplary how to transform a call to perform
local scoring from the biolib into a call to a function provided by
Pastha.Bio. To sequentially calculate the local score in the biolib
for two sequences s1 and s2 with a predefined scoring matrix
score and gap penalty of -10 for the opening gap and -1 for each
successive gap, we call Bio.Alignment.AAlign.local score:
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import Bio.Alignment .AAlign

calc =
let score = local_score score (-10,-1) s1 s2
in score

To gain the performance achievement of unboxed IO arrays and use
explicit threading, we needed to lift the computations into the IO
monad. As in the example above the local score of two sequences
can be obtained by

import Pastha .Bio.AAlign

calc = do
score <- local_score <bw> <bh >

sco (-10,-1) s1 s2
return score

and is calculated in parallel. While PASTHA can determine the
number of available cores using numCapabilites, the user needs
to provide values for the block width and height (called <bw> and
<bh> in the example; see Section 4.4).

Since all functions from Bio.Alignment.AAlign are imple-
mented in Pastha.Bio.AAlign the adaption for parallel perfor-
mance is reduced to lifting the necessary calculations into the IO
monad.

5.4 Performance

To measure the speedup, we used the same machine and test setup
as for the benchmarks described in Section 4.4. We tested both the
sequential and parallel version with a randomly generated sequence
over the alphabet {A, C, G, T} for global and local scoring. Each
test was ran for different lengths of sequences. We provide only
the speedup for sequences of length 2000 since results did not
differ a lot for other lengths. Shorter sequences were calculated
too fast using PASTHA’s implementation (leading to imprecision in
the measurement), longer ones took too much time for the original
sequential version, especially for local scoring.

Figure 10 shows the speedup for calculating the global score
of two sequences. The original sequential implementation makes
heavy use of lazy evaluation and lists to simulate arrays to save
memory but both techniques lead to poor performance for bigger
sequences because the garbage collector has to traverse through
the arrays on each call. The superlinear speedup happens because
we did not simply parallelize the sequential implementation but
also developed a new, strict, and IO-based implementation that per-
forms and scales a lot better than a non-parallelized pure version.
Surprisingly we observe a drop in the speedup when PASTHA used
more than four cores; when using six and seven cores the speedup
raised again. We are currently investigating this unusual behaviour.

Figure 11 shows the speedup for local scoring. While global
scoring only uses one specific element in the lower right corner
of the data matrix and thus profits from lazy evaluation, local
scoring needs to find the maximal value in the whole matrix, thus
every element needs to be evaluated; this is computationally very
expensive with pure arrays. PASTHA’s implementation for both
global and local scoring is nearly equivalent. Finding the maximum
value in the data matrix is therefor negligible.

Summarizing the achieved results, we think that the speedup
justifies the sacrifice of pureness in this case. It remains interesting
to see if future work (see Section 7), especially pure paralleliza-
tions, compares to this explicit parallelization.

6. Related work
Since stencil-based calculations are one of the key patterns in sci-
entific calculation[3] a lot of work has been done both to describe
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scoring.
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Figure 11. Maximal, average and minimal speedup for local scor-
ing.

them conveniently and to improve their performance using paral-
lelization. Traditional performance-demanding systems are writ-
ten in C/C++[18] and Java[14] and parallelized using OpenMP for
shared- and MPI for distributed-memory architectures. Distributed-
memory systems are especially useful for large problem instances
where thousands of cores can be utilized while multicore shared-
memory systems are nowadays found in commodity desktop sys-
tems. For example, the C++-framework Janus [10, 11] provides a
template-based system to express (among others mesh-like struc-
tures) stencil-based calculations and calculate them in parallel us-
ing MPI. It was later extended to support shared-memory paral-
lelization using OpenMP[12].

The general idea of providing a high-level framework for par-
allel stencil calculations is an active research topic: [9] describes
a parallel framework that uses different levels of parallelization
which depend on the given stencil to provide a performant paral-
lel calculation; [7] shows how a performant optimization strategy
for a stencil can be determined automatically. Both ideas are very
promising and interesting, especially with a purely declarative sten-
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cil description where (semi)automatic analysis can guide the opti-
mizations.

Another approach to parallel stencil calculation are very high-
level languages, for example Chapel[5] and Fortress[2], which pro-
vide (quasi) implicit parallelization; [4] describes how to imple-
ment stencil calculations using seemingly sequential code. Since
stencil calculations are easy to express in such high-level lan-
guages, this is an interesting alternative approach to a purely declar-
ative description, although it limits the possibilities of stencil-
dependent optimizations.

Parallelization of sequence scoring and alignment on shared-
memory architectures using a block-based waveform pattern has al-
ready been described in [8], where a nearly linear speedup has been
achieved. Unfortunately the authors do not make any statements to
the question whether their approach could be generalized to allow
the parallel computation of general stencil-based problems.

As far as we know, the idea of providing a general framework
for parallel stencil calculation has not yet been transformed to
modern functional languages.

7. Conclusion and future work
We have shown how to define general stencil-based problems in
Haskell using a declarative description and developed an example
using voltage diffusion as a basis. The definition of sequence scor-
ing algorithms from the biolib as stencil-based problems indicated
that our approach is sound. Not only can it be used to solve real-
world problems but also it delivers a superlinear speedup of up to
4.8 for four cores in the biolib example. This speedup was partially
achieved by lifting the calculations into the IO monad and using
unboxed arrays.

We developed the prototype for a library to test, implement,
and evaluate parallelization strategies for stencil-based problems.
By implementing a taskqueue-based parallelization strategy, we
demonstrated that the approach of describing stencils on a more
general basis and calculating them in parallel is working in a func-
tional context and leads to speedups of up to 4 for six cores.

The prototype implementation can already be used to parallelize
common 2D-based stencils. Nevertheless we still see room for
improvement, for example in the aspects of advanced automatisms,
adaption to specific stencils, and evaluation of other parallelization
techniques from Haskell, to mention some. We plan to

• Evaluate both semi-implicit parallelism, data parallel Haskell
and other alternatives, e.g. GPUs, in terms of performance and
usability for stencil problems.

• Generate the dependency functions for the Taskqueue automat-
ically by analyzing the stencils.

• Implement specialized parallelization strategies with limited
general applicability but better parallel performance for specific
classes of stencils and apply them automatically.

• Extend PASTHA to heuristically determine a block size that
achieves good speedup.

Moreover it remains interesting to investigate whether our defi-
nition and implementation can be applied to other existing and
new problems. For example for already implemented algorithms
in packages on Hackage which have not yet been parallelized.
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