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Abstract. Denotational semantics for an ALGOL- 
like language with finite-mode procedures, blocks 
with local storage, and sharing (aliasing} is given 
by translating programs into an appropriately typed 
X-calculus. Procedures are entirely ezplained at 
a purely functional level - independent of the' 
interpretation of program constructs - by con- 
tinuous models for X-calculus. However, the 
usual (cpo) models are not adequate to model lo- 
cal storage allocation for blocks because storage 
overflow presents an apparent discontinuity. New 
domains of store models are offered to solve this 
problem. 

1. The Problem of Free Locations. ALGOL-like 
languages obey a "stack discipline" in which lo- 
cal storage for blocks is allocated from the top 
of a memory stack on block entry. For object- 
oriented languages like LISP or CLU requiring 
heap storage, new locations (aka program vari- 
ables) are usually allocated from a linked list of 
free locations. 
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In both cases, there is a simple idea behind 

local variables in blocks: execution of a block 

begin new z in Body end causes allocation of a 

"new" storage location denoted by the identifier 

z which is used in the body of the block. In 

ALGOL-like languages obeying stack discipline, 

the location is moreover deallocated upon exit 

from the block. Understood in this way, stack dim 

cipline is a language design principle - encourag- 

ing modularity in program construction - rather 

than an implementation technique for efficient 

storage management. It is better called the local 

storage discipline to avoid misunderstanding, and 
we do so henceforth. 

There is a problem in explaining this ap- 
parently simple idea behind local storage, namely, 
what is a "new" location? The mathemati- 
cal models of storage allocation which appear 
in the denotational semantics literature [Milne 
and Strachey 76; Stoy 77; Gordon 79] do not 
adequately address this problem; instead they 
directly reflect the bookkeeping mechanisms used 
in implementations. Thus, new storage allocation 
is typically modeled denotationally by enriching 
the notion of stores to include with each location 
an indication of whether the location is "active". 
Execution, starting on some store, of a block with 
local storage involves selccting the first "free" (i. 
e., not marked "active"} location of the store as 
the one to be allocated. 

The problem with this approach is that the 
locations designated by the store as free may al. 
ready be accessible from the body of the block, 
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and so may not in fact be free. For example, let 

z be an identifier of location (aka reference) type, 

and let p be an identifier of parameterless pure 

procedure type. Then, the block 

begin new z in 

z :-'- O; p; 

i fcont(z)  - -  0 then skip else diverge fl 

end 

ought to be equivalent to skip since the "new" 
location allocated for x should not be affected 
by the call to p. But if p happens to denote 
the program which assigns a nonzero value to 
some location l, and this block is executed on 
a store in which location l happens to be desig- 
nated as the first free location, then the block 
will diverge. Validity of the expected properties 
of blocks thus hinges on hypotheses about how 
the locations designated as active by the store re- 
late to the locations which really are active, and 
we are in any case still left with the problem of 
explaining what a free location "really" is. 

The semantics using activity marks does be- 
have properly on programs without calls to global 
(undeclared) procedure identifiers. For example, 
the block above will behave like skip in any pro- 
gram context in which the global identifier p is 
declared (in a declaration which itself does not 
contain global procedures). In this case, execution 
of the overall program will correctly update the 
free list so that  the locations affected by p will be 
marked as active by block execution time. This 
can be proved by induction on the length of com- 
putation of programs without procedure globals. 
However, this observation leaves several matters 
unresolved: 

(1) Suppose we add some new command to the 
language - say one which initializes some special 
portion of the store? This enriches the possible 
ways p might be declared, requiring reverification 
of the allocation mechanism for the richer class 
of p's. (In fact, this enrichment invalidates the 
mechanism unless all locations in the special por- 
tion of the store are permanently marked active). 

(2) More generally, suppose p is a call to a pro- 

gram written in another language - say a system 

program in machine language? Allocation from 

the free list will not be safe. 

(3) The simple reasoning that goes with the 

idea that "new" storage is allocated at block entry 

must be replaced by reasoning about the details 

of particular allocation mechanisms. 

We address these problems by explaining 

semantically when a location is active or free with 

respect to a procedure. In general, we define how 

a set of locations cover8 a procedure of finite type, 

by induction on types. The locations outside the 

cover of a procedure are the free ones for it. The 

desired semantical explanation of new storage al- 

location is then simply that any location free for 

the block body is to be allocated - no other details 

of the allocation mechanism need be considered. 

An amusing technical problem must be faced 

with this approach. Some kind of continuity 

condition is normally required of the functions 

defining the semantics of procedures in order to 

ensure that the fixed-points necessary to explain 

recursive definitions exist. Unfortunately, in the 

usual formulations the operation of allocating and 

later de-allocating "new" storage turns out not to 
be continuous, essentially because of the theoreti- 

cal possibility of running out of storage - even if 

we assume there are an infinite number of loca- 

tions in memory! For example, suppose ~r is a 

store to store mapping whose only cover is the set 

of all locations - Ir might be the denotation of a 

procedure which "sweeps" memory searching for 

an untagged location. Now ~ can be expressed as 

the limit of a sequence of approximating mappings 

~r~ which only sweep the first i locations. Since 

storage is infinite but a finite number of locations 

cover ~r~, there is always a location free to allocate 

for a block whose body behaves like Ir~. On the 

other hand, allocating new storage for Ir yields 

an overflowed error, viz., allocating local storage 

and taking limits do not commute as required by 

the definition of continuity. (The discontinuity of 

new storage allocation was noted in [Milne and 
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Strachey, 76], with a reference to further discus- 
sion in Milne's thesis.) 

In general, objects with "large" covers force 
us to face the discontinuity of storage overflow. 
We would like to rule out such objects, especially 
in view of the fact that definable objects, viz., 
objects which are the denotations of phrases in 
ALGOL-like languages, can be proved to depend 
on only finitely many locations. However, once 
we have mappings (like ~r~) which depend on only 
finitely many locations, the usual requirement 
that semantical domains be complete partial or- 
ders (cpo's) which are closed under taking least 
upper bounds of all increasing chains forces us to 
admit programs (like lr) with infinite covers [Stoy 
77; Scott 81, 82]. Difficulties of this sort have 
led [Reynolds, 81] and [Oles, 83] to consider more 
sophisticated functor categories as domains of in- 
terpretation. For further discussion see [Meyer, 
83; Trakhtenbrot, Halpern and Meyer, 83]. 

Our solution is to relax the requirement that  
domains be closed under all (increasing) limits. 
We require closure only under certain "algebraic" 
limits sufficient to ensure that domains will obey 
the fixed-point and other properties required for 
program semantics. This theory of algebraically~ 
closed partial orders is less well known than the 
cpo theory, but has been developed extensively 
[Nivat, 75; Guessarian 81; Guessarian 82; Gal- 
lier, 1983; Courcelle, 1983]. In this framework, 
we give a general definition of the notion of cover- 
ing, and define afore models: systems of algebrai- 
cally closed partial orders containing only ele- 
ments with proper covers but including enough 
elements to interpret all the programming con- 
structs of ALGOL-like languages. 

Store models justify all the intended properties 
of new-declarations. For example, in store models 
the block mentioned above with global call to p 
is indeed equivalent to skip in all environments. 
Another illustrative equivalence is: 

begin new x in 

if z ---- Y then Cmdz else Cmd= fl end ----- 

y : - -  cont(y); Cmd=. 

(The "useless" assignment to 9 appears in case ~/ 

denotes the divergent (1)  location.) 

2. ALGOL-like Languages. The focus of our 
proof-theoretic studies has been on the family 
of idealized ALGOL-like languages. We review 
several of the principles which characterize this 
class of languages [cf. Reynolds, 81; Meyer, 83; 
Trakhtenbrot, Halpern, and Meyer, 83; Halpern, 
83]: 

(1) Commands, which alter the store but do 
not return values, are distinguished from ezprea- 
8ion8, which return values but have no side-effects. 

(2) Calling is by-name. (Calls by-value, etc., 
are treated as syntactic sugar.) 

(3) Higher-order procedures of all finite types 
(in ALGOL 68 jargon, modes) are allowed. 

(4) The local storage discipline is an explicit 
aspect of the semantics. 

In this section we sketch a few of the features 
of an illustrative ALGOL-like language we call 
PROG. 

Types in PROG. The distinction between locations 
and storable values - in our semantics they be- 

have as disjoint domains - is one of several struc- 

tural restrictions on ALGOL-like languages im- 

plied by local storage discipline. For example, 

it is well-known that locations (and likewise pro- 

cedures) cannot be storable without restriction, 

since otherwise locations allocated inside a block 

might be accessible after exit from the block via 

the stored objects. 

For simplicity, we consider storable values of 
only one type. The two basic types - storable 
values and locations -- are abbreviated int and Ioc, 

respectively. PROG syntax mandates an ezplicit 
type distinction between locations and storable 

values (also called "left" and aright" values of 

expressions), using the token cont for explicit 

dereferencing. Thus, cont(z ~°=) denotes the ele- 

ment of type int which is the contents of z, and as- 

signment commands take the form LocE :---- IntE 
where LocE is a location-valued expression and 
IntE is an int-valued expression. 
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Equality tests in PROG can only be between 
elements of basic type. We do allow explicit 
equality testing between locations, "z Ioc = ymoe,,, 
in addition to the usual test of equality between 
storable values, "a -" f(cont(yloe)) ". Expressions 
which evaluate to locations are allowed, as in the 
"conditional variable" expression on the lefthand 
side of the assignment command 

ira = f ( c o n t ( y ) )  t h e n  y rise z fi :~--- a .  

The other primitive types are prog, intexp, 
and loeexp. The domain prog is the domain of 
program meanings, namely, mappings from stores 
to sets of stores. (PROG has a nondeterministic 
choice construct. Since we do not attempt to dis- 
tinguish "failing" from diverging, nondeterminism 
is adequately modeled with mappings to sets as 
opposed to the more complex power-domains of 
[Plotkin, 76,82; Smyth, 78].) The other two 
"expression" types are the denotations of expres- 
sions whose evaluation yields basic values, viz., 
the elements of intexp (locexp) are functions from 
stores to int (loc), i.e., "thunks" in ALGOL jargon. 

Blocks  and Binding in PROG. Procedures of all 
higher finite types formed from the five primitive 
types may be declared, passed as parameters, and 
returned as values. 

Procedure identifiers are bound in PROG via 
procedure declarations occurring at the head of a 
procedure block, e.g., 

proc p(z) ¢= DeclBody do BlockBodT/end. 

Identifiers of basic type are bound by either let- 
declarations or new-declarations at the head of 
basic blocks of the form 

let z mat be IsLE in Cmd tel, 
le t  ylo¢ be LocE in Cmd tel, 

begin new 7/I°e in Cmd end. 

The let-declaration causes the evaluation of the 
expression IntR in the declaration-time store 
and causes identifier z to denote the result of 
the evaluation. (A call-by-value of the form 
p(BasE) can be simulated by the basic block 

let n be Base in p(n) tel.) Basic and procedure 
declarations have quite different scopes and mean- 
ing, as will be revealed below. 

3. Syntax-Preserving Translation to X-Calculus. 
We formalize the assignment of semantics to pro- 
grams in two steps: 

(1) a purely syntactic translation from PROG 
to a fully-typed X-calculus enriched with a letree- 
construct as in [Damm and Fehr, 1980; Datum, 
1982; of. Landis, 65], and 

(2) assignment of semantics to the k-calculus 
in a standard referentially transparent way 
[Barendregt, 81; Meyer, 82]. 

Our X-calculus is chosen so that its constants 
correspond to program constructors, its binding 
operations, letrec and X, correspond to program 
declarations and procedure abstraction, and its 
types are the same as those of the programming 
language. In fact, the abstract syntax, viz., parse 
tree, of the translation of a program is actually 
identical to that of the program; the translation 
serves mainly to make the variable binding con- 
ventions of PROG explicit. 

Procedure blocks are translated using letree, 
so for example, 
Tr(pro¢ p(z) ¢== DeclBod~/ do BlockBody end) --'d,t 

ietree p --- kz.Tr( DeclBod~/) in Tr( BlockBody) . 
This recursive declaration of p binds occurrences 
of p in both the declaration and the block bodies. 
Procedure declarations in this way inherit the 
static seoping rules of X-calculus. 

Basic blocks are handled with constants and 
X's, e.g., 

Tr(let z Int be IsLE in Cmd tel) --de/ 

Dint (Xz.Tr(Cmd)) (Tr(IntE)) 

where Dint is a constant of type (int --, prog) --. 
intexp --. prog. Note that the binding effect of the 
block on z int is reflected in the binding effect of 
kz on Tr(Cmd), namely, the declaration binds z 
in Cmd, but does not bind z in ISLE, in contrast 
to the case for procedure declarations. Similarly, 

Tr(begin new z in Cmd end) --'de/ 

New(kz.Tr(Cmd)) 
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where New is a special constant of type (loc --, 
prog) --, prog. The semantics of New will be 
defined so that Cmd runs in an environment in 
which z is bound to some location outside a cover 
of Cmd. The contents of this new location are 
initialized to some standard value denoted by the 
constant a0 at the beginning of the computation 
of Cmd and restored to their original value at the 
end. 

Other commands and expressions are trans- 
lated directly by introducing suitable constants 
(but no binding operators), e. g., 

Tr(ifTerra~ --- Term~ 
then Terra~ else Term~ t)  ----4,1 

(If..# (Tr(Term?)) (Tr(Tervn~)) 
(Tr(Term~)) (Tr(Term~})), 

Tr(cont(LocE)) =d,! (Cont{Vr(LocE))), 

Tr( Cmd return IntE) -- ~ ! 
(Return(Tr(Cmd))Tr(Ir~tE})), 

Tr(LocE :-~ IntE) --~1 
(Update (Tr(LocE)) (Tr(IntE))), 

Tr(Cmds; Cmd2) "-~!  
, ,(8eq(Tr(Cmdl))(Tr(Cmda))), 

etc. 

The principal consequence of this syntax- 
preserving translation is that all the properties of 
procedure declarations in ALGOL-like languages 
such as renaming rules associated with static 
scope, declaration denesting rules, and expan- 
sions of recursive declarations, can be recog- 
nized as direct consequences of the correspond- 
ing purely functional properties of the ietree-X- 
calculus - which have nothing at all to do with 
side-effects. Before elaborating this point, we 
review the properties of the letrec-calculus. 

4. Typed Lambda Calculus. Let T be a set of 
primitive type symbols, C be a set of typed con- 
stants, and X be a set of typed variables. 

Type ezpresaiona are defined inductively: the 
primitive type symbols are type expressions, and 
if a, ~ are type expressions, then so are ~ ~ ~ and 

a X 8. With each type expression ~ we associate 
a (possibly empty) set of constants Ca, disjoint 
from C# for ~ ~ 8. With each c~ we also associate 
an infinite set of variables Xa,  disjoint from Xp 
for a ~ /~ .  We use the notation z a when we wish 
to emphasize x E X=. By definition, C = U=C= 
and X --  U , X a .  

We define L a, the terms of letree-k-calculus of 
type a, by induction. 

(1) CoUXo c_ L o. 
(2) Application: If u E L ~-'/j, v E L ~, then 

(u E LP. 
(3) Abstraction: If z E Xa,  u E L p, then 

)~x.u E L a-*p. 

(4) Block with mutual procedure declarations: 
If z~ E X a~', uj E L a~, j -- 1, . . . ,k ,  x i all 
distinct, and v E L D then 

(letrec z l  --- ul and. . ,  and zt  = u~ in v) E L p. 

We say z~ is declared in this block with declaration 
body us, and v is the block body. 

Free and bound occurrences of variables are 
defined as usual [Hindley, Lercher and Seldin, 
1972; Stoy, 1977; Barendregt, 1081]. Note we are 
allowing recursion here: the variables zj  may oc- 
cur in u, as well as v. In particular, "letree z~" 
binds all free occurrences of zj  in u l , . . . ,  u~, v. 

As usual, we omit parentheses in compound 
applications with association to the left being un- 
derstood. In contrast, the operation --, associates 
to the right in compound type expressions. Thus 
uvw abbreviates ((u v)w) while ~ --. fl -~ ~ ab- 
breviates (a --. (fl ~ ~)). We let [v/x]u denote 
the result of substituting the term v for free oc- 
currences of x in u subject to the usual provisos 
about renaming bound variables in u to avoid cap- 
ture of free variables in v [Stoy, 1977, Def. 5.7; 
Barendregt, 198i, Appendix C]. 

A term u is in normal form ifffor every applica- 
tion (Ul u2) which is a subterm of u, the operator 
Ul is neither an abstraction nor a block. The fol- 
lowing result is well-known for typed X-calculus 
(cf.[Barendregt, 1981, Appendix C]), and extends 
directly to include letrec. 
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Normal Form: Every term u is effectively 
transformable using (cf. §5) a,/%conversion, dec- 
laration distributivity and the replacement rule 
to a normal form N F ( u )  which is unique up to 
~-conversion. 

5. Cartesian Closed Models. For any sets 
D x , . . . , D , ,  let D,  X . . .  × D ,  be the set of all 
ordered n-tuples ( d , , . . . ,  d , )  of elements d~ 6 D~. 
Let tupleD~ .... , v .  : D ,  --* . . .  --* D ,  ~ (D,  X 
• ." X D, )  be defined by: 

tuple d , .  . . d ,  - -  (dl, . . . , dn), 

and l e t p r o j ~  ..... D,  : (D1 X . . .  X Dn)  -* D ,  be 
projection on the i th coordinate. 

A Cartesian Closed type-frame consists of a 
family of sets { D~ } Called domains or types, one 
for each type expression a, such that 
(1) D~._.~ consists of some nonempty family of 
functions from Do to Dp and Daxp -- Da X D~, 
and 

(2) there are dements Sa,~,~ 6 

D(~.--,(~-,~))_,(Ca..,~)_., (a~) ) ,  and Ka,~ 6 
Da-*0s-~a) for every a,/~, 7 such that 

Sc~,p,~dod, d~ - -  (dodu)( d, dz), 

Ka ,pdsd4  - -  ds. 

(3) tupleDo, ..... Do, 6 Da,-....-.a.-.(o,x...xa.), 
and similarly pr02~)o ' ...Do. 6 D(c,, x ... ×o.)~a,- 

An environment  for a type-frame D is a 
mapping e : X --. D --  [.JoDa which 
respects types, i. e., e(z °) 6 Do. Given 
an environment e, let e[d/z] denote the en- 
vironment which differs from e only at z, and 
(e[d/x])(z) = d. Let e [ d l / p l , . . . , d J , + l / p t + l ]  

abbreviate e[d, / p , ,  . . . , d~/Pklld~ + x l p t +  ,]. (We 
define the "patch", fib~a], of any function f : 
A --* ]3, at a 6 A, by b 6 B similarly.) Let Envv 
be the set of all environments for D. 

A Cartesian closed model consists of a Car- 
tesian closed type  frame together with an in- 
terpretation of the constants, i. e., a map- 
ping [[~0 : C --* D which respects types. 
The model is standard iff the constant symbols 
S~,~s,~ 6 C(~_.(~_.~))_.((~_.~)_,(~_.~)) and K~,~ 6 

Ca-.(#-~) are interpreted as the corresponding .S 
and K functions, and similarly for the constants 
tuple and proj ~. Let L, C L be the usual typed 
k-calculus (without letrec). The justification for 
this peculiar definition is that for any Cartesian 
closed model D, there exists a unique mapping 
a liD : L1 --* EnVD --* D which respects types such 
that 

(a) a d d s  =  eBo, 
(b) = e(x), 
(c) a( v) De = (b,O e)(avl d. 
(d) for all d 6 D o ,  (OXza.u~De)d --- 

~U~DCeld/z]). 

A fixed-point frame is a Cartesian closed frame 
such that there is an element Yo 6 D(a-.~)-.a 
such that  

Y ! = / ( Y f )  

for all f 6 Do-,a and all type expressions a. A 
fixed-point model is a model whose type frame is a 
fixed-point frame; it is standard iff the constants 
above have the standard interpretation and the 
constant symbols Ya 6 C(a-.a}--,a are interpreted 
as fixed point operators Ya. 

Let k(z l , . . . ,  x,) .u abbreviate 

kz.([Cproj I z ) l x , ] . . . [ (p ro j "  z)/x,]u)  

for z not free in u. 
For any Cartesian closed fixed-point model D, 

there exists a unique mapping a ~D : L --* EnvD -* 
D which respects types, satisfies (a-d) above, and 
such that 

(e) ~letree P] --  u,  a n d . . . a n d  P .  - -  u .  in  vide  

=de!  ~ V ] D ( e [ d l / p l , . . . , d n / P n ] )  

where (d l , . . . ,  dn) = 

~(Y X(pl ,  • • • p n ) . t u p l e  ul'.. un)]De. 

Terms u and v are equivalent for some model 
D, written u ~ D  v, iff ~U]D = aViD. If )~ is a 
class of models, u and v are N-equivalent  iff u =--D 

v for all models D 6 Y,t. 
We abbreviate a mutual procedure declaration 

of the form ( letre¢ p ,  = ul and . . .  and p ,  --- 
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u .  in v) by (letrec Dec in v), where Dec --~ 
{ p l  = u l , . . . , p ,  = u , ) .  

The following fundamental inference rule 
verifies the referential transparency of L. It is 
sound in any Cartesian closed model when we 
merely regard letrec Dec in v as an abbreviation 
for (X{pl,..., p,).v)(c (k{pt, . . .p,) . tuple u l ' "  u,)) 
without assuming any facts (such as fixed-point 
properties) about the constant c. 

Replacement Rule. If u ----- v and 102 is the result 
of literally replacing (without renaming bound 
variables) an occurrence of u by v in wl, then 
101 !--- 102. 

The following equivalences hold in any Car- 
tesian closed model. 
Variable renaming, viz., wconversion: 

(i) Xx.u --  XY.IY/xlu , 

where y is not free in u, and 

(ii) (letrec { p --  body ) 0 Dec in u) = 

(letrec { q = [q/p]body ) U [q/p]Dec in [q/p]u) , 

where q is not free in u, body, or Dec, and is not 
declared in Dec. 

Evaluation by substitution, via., fl-conversion: 

(xx.u),J -_- 

Declaration distributivit~ 

( letree Dec in uv) = 

( letree Dec in u)( letrec Dec in ~). 

Declaration elimination: 

(letre¢ Dec in u) ---- u 

providing no variable declared by Dec is free in u. 
Variable binding commutativity: 

kz.(letrec Dec in u) ---- (ietrec Dec in Xz.u ), 

providing z is neither free nor declared in Dec. 
Eztensionality, via., 17-conversion: 

xx . (u  z)  ffi u 

providing u fi L a ' 'p  for some types ai ft. 
Normal Form: u ~ NF(u). 

The fixed-point property justifies declaration- 
expanding transformations. 
Declaration ezpanaion: 

(letrec {p = body ) k) Dec in [p/q]v) 

(letrec {p = body) U Dec in [body/q]v). 

6. Algebraically Closed Models. Cartesian closed 
fixed-point models are still too general even to jus- 
tify routine transformations of declarations. To 
establish soundness of such transformations, it is 
necessary that the fixed point operators be chosen 
consistently with the structure of the type frame; 
for example, designated fixed-points should be 
preserved under isomorphisms induced by reas- 
sociating Cartesian products. Frames whose types 
have some order structure which ensures the ex- 
istence of least fixed-points can provide a har- 
monious system of fixed-point operators. One 
well-known least fixed-point frame is the frame 
of complete partial orders (cpo's) with continuous 
functions. However, we need more general classes 
of least fixed-point frames we call algebraicallll 
closed frames. 

If D and E are partially ordered, then a func- 
tion f : D - .  E is monotone iff dx ~ da implies 
f (d,)  if_. f(d2). If a subset Z _ D has a least 
upper bound, L.J z,  then f : D --. E is continuous 
along Z iff it is monotone and f([.] Z) = [..J{ f(z) ] 

An algebraically closed (ael) type frame is a 
Cartesian closed type frame { Da ) such that  
(1) each primitive domain D is partially ordered 
with least element .LD, 
(2) function and product domains of higher type 
are partially ordered by the inherited point-wise 
and eoordinatewise partial orders, 
(3) for all types a and functions f E Da- .a ,  the 
least upper bound ]J~ fk(_L) exists, where f°(z)  ffi 
z and yk+l(z)  --  f( f~(z))  (sequences of this form 

1 ,  f ( I ) ,  f(f(.L)), .. are called algebraic), 
(4) for all types a, every function in Da-,p is con- 
tinuous along every algebraic sequence of elements 
in Da, 
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(5) for all types a, the least fixed point operators 
Y~ defined by Ya(f) --  I I ~ f k ( / v ° )  are in 
D(a-~a)-.o~. 

An (ac 0 model is a fixed point model with an 
acl type frame; it is standard iff the constants S, K, 
tuple, proj i have the standard interpretation, the 
constants Ya are interpreted as the corresponding 
least fixed-point operators Ya, and for all primitive 
a, the constants diverge a E Ca are interpreted as 
-I-Do. We let diverge a - ' °  abbreviate kzP.diverge ° 
and handle/~ × a similarly so that  in standard acl 
models, [ldivergeaB --  ±D° for all ~. 

The following equivalences connect fixed- 
points between distinct domains and hence depend 
on choosing fixed-points harmoniously, viz., 
choosing least fixed-points. We refer to properties 
like these which are valid for all acl models as acl 
properties. 
Declaration collection: 

(letrec Dec in (letrec Dec' in u)) ----- 

(letrec Dec U Dec' in u) 

providing none of the variables declared in Dec' 
occurs free or has a distinct declaration in Dec. 
E=plicit parameterization: 
(letrec { p - -  body } U Dee in u) = 
(letree { q = kx.[qz/p]body } t.J [qz/p]Dec in [qx/plu) 
providing q does not appear in u, Dec, or body, 
and p is not declared in Dec. 
Declaration denestin9: 
(letrec { p = letrec Dec in body } U Dec' in u) -~ 

(letrec { p --  body } (.J Dec U Dec ~ in u) 
providing none of the variables declared in Dec is 
free in u or Dec' or declared in Dec ~, and p is not 
declared in Dec or Dec ~. 

A term u E L is denested iff neither the body 
of any variable declaration nor the body of any 
block in u contains a declaration. Every term 
can be effectively transformed into an equivalent 
denested term using the equivalences above. 

The following general induction principle is a 
basis for induction rules about programs. A predi- 
cate P on a domain Do in an acl frame is acl. 
inclusive iff (Vi > 0. p ( f (O( / ) ) )  =~ p(y(f))  for 

all f 6 D.__... 

Fixed-point Induction: Let Da be a domain in an 
ael frame, P be an inclusive predicate on Da and 

f E Da-,a. If 

P(-LD°) A Vd E D. (P(d) =* P(f(d))), 

then P(Y(f)) holds. 
The equivalances and rules for k-terms im- 

mediately yield rules for PROG phrases; we indi- 
cate a few. Let E (possibly primed or subscripted) 
represent a finite system of mutual PROG proce- 
dure declarations; procedure blocks of the form 
proc E do ProcT end will be abbreviated as E I 
ProcT where ProcT is a procedure term. 
Declaration distributivity in PROG: 

(E l (ProcT1ProcT2)) = 

(E I Procrl)(E i ProcT ), 
(E I ProcTPrOS;ProcT p~s) ~_ 

((E I ProcTP'°g);(E I ProcTp'offi)), 

etc. 

Note that  declaration distributivity depends 
crucially on the fact that E denotes a set of 
procedure declarations, whose meaning is neces- 
sarily store-independent. So the declaration 
distributivity rule is valid despite the possible 
side-effects on the store between evaluations of 
different copies of E. In contrast, distributivity 
fails for basic declarations because the value 
bound to an identifier by a basic declaration 
depends on the store "at declaration time". This 
contrast was reflected in the use of constants in 
translating basic blocks, compared to the letree 
construct used to translate procedure blocks. 
Variable binding commutativity in PROG: 

(E I let z ,= Base in ProcT pros tel ) 
let z ¢= Base in (E I Pr°cTpros) tel ,  

(E I begin new y in ProcT pros end) ----- 

begin new y in (E I ProcTPr°S) end 

providing z, 1/do not occur free in E.  

Fixed-Point Induction for Approximation in 
PROG: Let p be an identifier and ProcT a PROG 
term, both of the same type, such that p is not 
free in ProcT2. Then 
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[diverge/p]ProcT1 E ProcT2 , 
ProcTl if_ ProcT21- [ProcT/p]ProcT1 if_ ProcT2 

proc p ¢:: ProcT do ProcTl end ~ ProcT2 

7. The Equivalence of Fixed-Point and Com- 
putational Semantics. The most fundamental acl 
property is that every term in L can be under- 
stood as a limit of finite letrec-free terms (in 
normal form if desired) which approximate the 
given term. These finite approximations are Ob- 
tained by repeatedly "unwinding" the letrec dec- 
larations using the declaration expansion rule. 
This provides an effective computational rule for 
simulating the effects of letrec's and the cor- 
responding procedure declarations in PROG. It 
also shows that two procedures which expand to 
the same infinite declaration-free procedures are 
equivalent in all acl models for PROG, indepen- 
dent of the meaning of any PROG constructs. 

The original ALGOL 60 report [Naur, et. al., 
1963] gave a "copy-rule" semantics for the lan- 
guage. The copy-rule can be understood as par- 
ticular computational strategy for generating the 
infinite expansion of a command. Another acl 
property is that fixed-point and copy-rule seman- 
tics {appropriately extended to letrec-terms and 
FROG commands with free variables) assign the 
same meanings to terms [cf., Damm 82]. This 
confirms that our choice of denotational "fixed- 
point" semantics is consistent with the usual 
operational understanding based on the copy-rule. 
For the development here, however, we have no 
need of these facts, and so we omit further ex- 
planation. 

Thus procedure declarations of ALGOL-like 
languages are entirely explained by acl semantics 
for L. On this basis we assert that the typed )~- 
calculus is the true mathematical syntax for these 
languages. For example, several of the language 
design principles of [Tennent, 81] can be recog- 
nized as proposing that syntactic restrictions of 
programs to subsets of L be removed. 

8. Store Semantics of FROG. Particular instances 
of ALGOL-like languages are determined by their 
types and the interpretations of their constants. 

Properties related to stores and side-effects appear 
only at this level. We now specify the domains 
and constants which determine FROG. 

Store Frames: Given an infinite set Loc [of loca- 
tions) and a set Int (of storable values) we define 
the domains 

DI.~ =d, /Loc  U { l i , ~  }, Di,t = d , /  Int U {-Lint ) 

to be the fiat epo's. 
For sets A, B, let A B =d , /  the set of all total 

functions from B to A. For the other primitive 
domains, we select some subset, Store C_ 1at z'*c. 
Store must be closed under finite patching. (Note 
that no store maps a location to l in t .  There 
is no need to introduce such "partial" stores in 
modeling the behavior of sequential languages like 
PROG.) Then 

Dintexp _~ (Dint)St°rel DIocexp ___ (DIoc) St°re, 
Dpros C (fl(Store)) 8tor'. 

Here P(Store) denotes the power-set of stores 
{ordered by containment), so elements of Dpr.s 
correspond to nondeterministic mappings between 
stores. 

A Store model is any standard acl model with 
the above five primitive types such that there are 
elements in the domains of the frame which in- 
terpret the constants required in the translation 
of PROG to L as specified below. These constants 
are: If, Mkexp, Cont, Update, diverge, Ifprog, Secb 
Choice, Return, Dint, Dloc, and New. 

The constant Ifa,a for basic types a, fl has type 
--. c~ --, ~ --./~ --./~. A store model interprets 

If so that 

~If ~ d  a~-~a /_J_p if da - -  ~ or d2 -" -La, 
,,,#11% 2 a3-4 = d3 if  dl - -  d2 ~ -J-, 

( d4 otherwise. 

Any first order function f of type 5 = int ~ --. 
int can be coerced into a mapping Mkezp(f) tak- 
ing as arguments functions from stores to int. 
Namely, the coercer Mke=p6: 

A4kexp6 f6 (~ntexp --intexp , . . . , a  k s - -  f(dl(8),...,dk(a)) 
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for any store s. The constant Mkexp~ of type 
--, (intexp --, . . .  --, intexp) is interpreted as 

Mkexp~. 
The constant Cont of type locexp --) intexp is 

defined in store models so that  

'C°nt]  d'°e'xPs = ( ~ J ~ ) )  otherwise, if d(,) ~ -[4o,, 

For assignments, the constant Update of type 
iocexp --, intexp --* pros: 

~Update~d~ °eexpdintexp8 .__ 

(~ ,[d~(s)/dl(S)]} if d~(s),d~(s) ~ _l_ 
otherwise. 

For conditional commands, Ifprog of type 
~-exp --. ~-exp -* prog - .  pros --. pros: 

~Ifprogo ~ d~ ".xp d~ "ezp d~  r ° s d  p r ° s  S --'~ 

/ ~ if d~(s)--  .J~ or d~(s)--- _[.~, 
ds(s) if d~(s) - -  d~(s) # _1_, 

(d4(s)  otherwise. 

Command constructors Choice, Seq of type 
pros ~ pros --* pros: 

~Seq~dPr°Sd~r°ss = V {  d~(s~) [ s ~ E ds(s) }, 
~Choice~d~P~°sd~r°ss = dz(s)U d~(,). 

For let blocks, Dint of type (int ~ pros) 
intexp -,. pros: 

~Dint~ d~ nt -" pros d~nt.fp a : 

{ (dl (d2(s)))(a) if d:~(s) # J-I.t, 
otherwise. 

We translate basic blocks with declarations of 
location type similarly, using a correspond- 
ing combinator Dioc. (The simpler definition 
which omits the "otherwise" clause seems to 
imply unavoidable implementation inefficiencies 
and (presumably for that reason) does not cor- 
respond to the behavior of actual languages.) 

Return of type pros --, intexp --, intexp: 

~Returu]d~ d~ s "-- d2(dl s). 

The semantics of the constant New of type 
(loc - .  pros) --* pros is handled in the next sec- 
tion. 

9. Domains for the Local Storage Discipline 
To explain the semantics of New, we must 

define the notion of covering. For primitive types 
this is fairly straightforward. 

Let L be a subset of Loc. Two stores s, t agre~ 
on L, written s --t. t, iff Y/ E L. 8(1) = t(0. 
Similarly, two sets S, T C_. P(Stores) agree on L 
if there is a bijection f : 8 -* T such that Vs E 
S. s - - , / ( s ) .  

For each primitive type a, define the unary 
predicate Access~ on Da by the rules belogl. If 
AccessL(d) holds, we say that d accesses onll/ the 
locations in L. Note that AceessL(d) will imply 
AceessLUL' (d). 

(1) Aecess~oe(l ) iff l E LU { -LIoe }, 
(2) Ac- , s~ , t (d)  - -  true,  
(3) AecessLp,os(~r) iff Vs, t E Store.(s "-L t =~ 

~(,) =~  ~(t)) A (t ~ ~(s) = ,  = L o o - ,  t),  
(4) AccessLntexp(7 ") iff Ys, t E Store. s = / .  t =~ 

1.0) = 1.(t), 
(5) AccesS[o~,=p(a ) iff Vs, t E Store. s --L t =~ 

~(s) = o (0  ~ L U { ± , . ) .  

For higher-type objects, we also need a notion 
of uniformity with respect to "new" locations. 

Definit ion.  Let  ~ : Lo¢ --. Loc be a per- 
mutation; extend ~ to Dloe so that ~(_[.) ----- .L. 
Let ~Store : Store --, Store be the permutation 
defined by the rule 

~sto, . (s)  : s o ~ - 1  

where o denotes functional composition, and let 
/~p(Store) : P(Store) ~ })(Store) be the permuta- 
tion defined by applying ~Sto,e elementwiso. For 
each primitive type ~, define a permutation/~a : 
Da --, Da by the rules: 

(1) ~lo~ - -  #, 
(2) , , . t ( ~ " )  = d ,  

- - 1  0) ~,- , (~)  = ~,cs ,o . , )  o ~ o ~ s , . , . ,  
(4) ~intexp(1.) " - "  1" 0 ~$tor.  ' 

--1 (5) ~ioeexp(O) - -  . l oco  O' o ~Stor," 

Note that (~-1)o = (pa) -1 ,  so the notation 
~ -1  is unambiguous. 
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We now proceed to define the unary predicates 
Access~ on Do and the permutations #o : Do --. 
Da for higher-order ~ by induction on types. 

Definition. At higher types define 

Access _. (/) ier 
L' Vd E Dp, L' C_ Loc.Accessp (d) =~ Access~ uL' (f(d)) , 

Access~×.l(dl, d2) iff (Access~(dt) ^ Access~(d2)), 
~#.~( f )  --  lz.t o f o I ~  t , 

= 

A permutation ~ : Loc ---, Loc fizes L iff #(1) = l 
for all l E L. Define the unary predicate Unif~ 
on Do by the rule: 

Unify(d) iff V/~ fixing L.l~,.(d)= d. 

If Unify(d) holds, we say that d is uniform off L. 

We henceforth omit subscripts c~ when they 
are clear from context. 

Definition. A set L C Loc cover8 an element 
d iff AccessL(d) A UnifL(d). 

Note that for primitive types, AccessZ'(d) iff L 
covers d. Some key properties of covering are 
(1) if L covers d, then L t.J L I covers d, 
(2) if L covers f'~--,D, d ~, then L covers (f  d), 
(3) if L covers all d E Z __. Do and U Z exists, 
then L covers LJ Z, 
(4) The functions K, S, Y, tuple, proj '  have empty 
covers. 

These facts immediately imply that for any 
environment e and term u E L, the element ~u~e 
is covered by a union of covers for [c~ and e(z) for 
all the constants e and free variables z in u. 

It not hard to show that all the constants other 
than New are continuous and have empt~/covers. 
To ensure that New is interpretable, we impose a 
further condition on store models: 

Covering Restriction: Every element has a finite 
cover. 

Definition. A function Select : Dloe~pros "-~ 
Loc will be called a selection function iff Vp E 
Dioe.~pros:lcover L of p. Select(p) f~ L. (Selection 

functions exist because of the covering restric- 
tion.) For each selection function Select, let 
]Vewsetece : Dloc--.pros ~ Dpros be defined by 

N e W s d e c t  p " -  

~Tr(let z int ¢= cont(y) in y : =  a0; p(y); y : =  z tel)~e, 

where e(~) = Select(p), e(p) = p. 

Lemma. Let Select1, Select2 be selection func- 
tions. Then 

(a) Newsetectl = Newsegecta, 
(b) Newsetectl is continuous along algebraic 

sequences and has an empty cover. 

It follows that if we take any selection function 
Select, then Newsete~t unambiguously determines 
a meaning for New in store models - which we 
require to be in D(Ioe-*pros)--*prog. 

To demonstrate rigorously that the theory of 
PFtOG is consistent, we must show that  store 
models exist. Let Loc be uncountable. An w- 
cpo model [Meseguer 78; Plotkin 82] with the 
five store-model base types (and with higher func- 
tion domains consisting of all w-continuous func- 
tions) is an also an acl model which satisfies 
all the conditions for store models - including 
the existence of an w-continuous function which 
behaves like ~New~ on elements with countable 
covers - except for the covering restriction. For 
each domain of the w-cpo model, we take the 
subdomain of those elements which have a finite 
cover. Using the method of logical relations of 
[Plotkin, 80;Statman, 82] these subdomains can 
be taken together to form an acl frame which can 
be demonstrated to be a store model. 

We can further justify our store model seman- 
tics by demonstrating that it coincides with 
familiar operational semantics based either on 
stack implementations or on copy-rule semantics 
in which new declarations are explained through 
renaming of local identifiers (cf. [Langmaaek and 
Olderog, 80; Olderog, 82]). 

11. Reasoning about Covers. Because all the 
PROG constants have empty covers, a cover for 
(the meaning of) any PROG phrase is easily 
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characterized: take the union of covers for the 

free procedure and location identifiers. In par- 

ticular, if the phrase has no global calls - so the 

only free identifiers are of location type - then a 

cover is available by inspection: the union of the 

(denotations of) the free location variables in the 

phrase. This follows because a cover for any loca- 

tion I E Loc is the singleton {l}. (In general, a 
minimal cover of a command is strictly smaller 
than the covers of its free identifiers, e.g., z : ~  
cont(z) has an empty cover.) 

These observations are the basis for a variety 
of axioms for program correctness suggested in 
[Meyer, 83; Trakhtenbrot, Halpern, and Meyer, 
83; Halpern, 83]. 

CHtique of PROG. 
PROG fails as an example of satisfactory lan- 

guage design in many ways, even with respect to 
the limited set of features it is intended to model, 
For example, 

(1) there are no Boolean types, 
(2) there is no while command or other struc- 

tured control statement, 
(3) only one identifier at a time can be declared 

in a basic declaration, 
(4) there are no let blocks of basic expression 

type. 
(5) Conditionals are not uniformly available at 

all types [cf. Reynolds, 1981a l. 
However, these pragmatic features are all in- 

essential for our purposes since they can be 
simulated at the level of uninterpreted program 
schemes by commands already in PROG, i. e., 
each of the constants corresponding to these con- 
structs is directly X-definable in terms of the con- 
stants already introduced. Therefore they raise 
no semantical or proof-theoretical issues beyond 
those already treated. 

An important feature in actual ALGOL-like 
languages but missing from PROG is that loca- 
tions can be storable subject to restrictions 
(as in ALGOL 68) to ensure local storage dis- 
cipline is preserved. Another extension improv- 
ing uniformity involves introducing ~-exp types 

for a other than int and Ioc (with a correspond- 
!ng block let z a be ProcT a'exp in ProcT/~'exp tel). 
Other significant language features compatible 
with ALGOL-like principles but omitted from 
PROG include exit control, arrays and user- 
defined data-types, own-variables, polymorphism, 
implicit coercion (overloading) and concurrency. 
These will have to be the subject of future studies. 
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