
The Semantics of Local Storage, or What Makes the Free-List Free?*
(Preliminary Report)

Joseph Y. Halpern, IBM Research, San .lose
Albert R. Meyer, Laboratory for Computer Science, MIT

B. A. Trakhtenbrot, Dept. of Computer Science, Tel Aviv ~lniv.

Abstract. Denotational semantics for an ALGOL-
like language with finite-mode procedures, blocks
with local storage, and sharing (aliasing} is given
by translating programs into an appropriately typed
X-calculus. Procedures are entirely ezplained at
a purely functional level - independent of the'
interpretation of program constructs - by con-
tinuous models for X-calculus. However, the
usual (cpo) models are not adequate to model lo-
cal storage allocation for blocks because storage
overflow presents an apparent discontinuity. New
domains of store models are offered to solve this
problem.

1. The Problem of Free Locations. ALGOL-like
languages obey a "stack discipline" in which lo-
cal storage for blocks is allocated from the top
of a memory stack on block entry. For object-
oriented languages like LISP or CLU requiring
heap storage, new locations (aka program vari-
ables) are usually allocated from a linked list of
free locations.

* This research was supported in part by NSF Grants
MCS80-10707, MCS-8304498, and ,~ grant to the M I T Lab.
for Compu te r Science from the IBM Corporat ion.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distr ibuted for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date tppcar, and notice is given that copying is by
permission of the Anoeiation for Computing Machinery. To copy
otherwise, o r to republish, requires a fee and/or specific permiuion.

© 1983 ACM 0-89791-125-3/84/001/0245 $00.75

In both cases, there is a simple idea behind

local variables in blocks: execution of a block

begin new z in Body end causes allocation of a

"new" storage location denoted by the identifier

z which is used in the body of the block. In

ALGOL-like languages obeying stack discipline,

the location is moreover deallocated upon exit

from the block. Understood in this way, stack dim

cipline is a language design principle - encourag-

ing modularity in program construction - rather

than an implementation technique for efficient

storage management. It is better called the local

storage discipline to avoid misunderstanding, and
we do so henceforth.

There is a problem in explaining this ap-
parently simple idea behind local storage, namely,
what is a "new" location? The mathemati-
cal models of storage allocation which appear
in the denotational semantics literature [Milne
and Strachey 76; Stoy 77; Gordon 79] do not
adequately address this problem; instead they
directly reflect the bookkeeping mechanisms used
in implementations. Thus, new storage allocation
is typically modeled denotationally by enriching
the notion of stores to include with each location
an indication of whether the location is "active".
Execution, starting on some store, of a block with
local storage involves selccting the first "free" (i.
e., not marked "active"} location of the store as
the one to be allocated.

The problem with this approach is that the
locations designated by the store as free may al.
ready be accessible from the body of the block,

245

and so may not in fact be free. For example, let

z be an identifier of location (aka reference) type,

and let p be an identifier of parameterless pure

procedure type. Then, the block

begin new z in

z :-'- O; p;

i fcont(z) - - 0 then skip else diverge fl

end

ought to be equivalent to skip since the "new"
location allocated for x should not be affected
by the call to p. But if p happens to denote
the program which assigns a nonzero value to
some location l, and this block is executed on
a store in which location l happens to be desig-
nated as the first free location, then the block
will diverge. Validity of the expected properties
of blocks thus hinges on hypotheses about how
the locations designated as active by the store re-
late to the locations which really are active, and
we are in any case still left with the problem of
explaining what a free location "really" is.

The semantics using activity marks does be-
have properly on programs without calls to global
(undeclared) procedure identifiers. For example,
the block above will behave like skip in any pro-
gram context in which the global identifier p is
declared (in a declaration which itself does not
contain global procedures). In this case, execution
of the overall program will correctly update the
free list so that the locations affected by p will be
marked as active by block execution time. This
can be proved by induction on the length of com-
putation of programs without procedure globals.
However, this observation leaves several matters
unresolved:

(1) Suppose we add some new command to the
language - say one which initializes some special
portion of the store? This enriches the possible
ways p might be declared, requiring reverification
of the allocation mechanism for the richer class
of p's. (In fact, this enrichment invalidates the
mechanism unless all locations in the special por-
tion of the store are permanently marked active).

(2) More generally, suppose p is a call to a pro-

gram written in another language - say a system

program in machine language? Allocation from

the free list will not be safe.

(3) The simple reasoning that goes with the

idea that "new" storage is allocated at block entry

must be replaced by reasoning about the details

of particular allocation mechanisms.

We address these problems by explaining

semantically when a location is active or free with

respect to a procedure. In general, we define how

a set of locations cover8 a procedure of finite type,

by induction on types. The locations outside the

cover of a procedure are the free ones for it. The

desired semantical explanation of new storage al-

location is then simply that any location free for

the block body is to be allocated - no other details

of the allocation mechanism need be considered.

An amusing technical problem must be faced

with this approach. Some kind of continuity

condition is normally required of the functions

defining the semantics of procedures in order to

ensure that the fixed-points necessary to explain

recursive definitions exist. Unfortunately, in the

usual formulations the operation of allocating and

later de-allocating "new" storage turns out not to
be continuous, essentially because of the theoreti-

cal possibility of running out of storage - even if

we assume there are an infinite number of loca-

tions in memory! For example, suppose ~r is a

store to store mapping whose only cover is the set

of all locations - Ir might be the denotation of a

procedure which "sweeps" memory searching for

an untagged location. Now ~ can be expressed as

the limit of a sequence of approximating mappings

~r~ which only sweep the first i locations. Since

storage is infinite but a finite number of locations

cover ~r~, there is always a location free to allocate

for a block whose body behaves like Ir~. On the

other hand, allocating new storage for Ir yields

an overflowed error, viz., allocating local storage

and taking limits do not commute as required by

the definition of continuity. (The discontinuity of

new storage allocation was noted in [Milne and

246

Strachey, 76], with a reference to further discus-
sion in Milne's thesis.)

In general, objects with "large" covers force
us to face the discontinuity of storage overflow.
We would like to rule out such objects, especially
in view of the fact that definable objects, viz.,
objects which are the denotations of phrases in
ALGOL-like languages, can be proved to depend
on only finitely many locations. However, once
we have mappings (like ~r~) which depend on only
finitely many locations, the usual requirement
that semantical domains be complete partial or-
ders (cpo's) which are closed under taking least
upper bounds of all increasing chains forces us to
admit programs (like lr) with infinite covers [Stoy
77; Scott 81, 82]. Difficulties of this sort have
led [Reynolds, 81] and [Oles, 83] to consider more
sophisticated functor categories as domains of in-
terpretation. For further discussion see [Meyer,
83; Trakhtenbrot, Halpern and Meyer, 83].

Our solution is to relax the requirement that
domains be closed under all (increasing) limits.
We require closure only under certain "algebraic"
limits sufficient to ensure that domains will obey
the fixed-point and other properties required for
program semantics. This theory of algebraically~
closed partial orders is less well known than the
cpo theory, but has been developed extensively
[Nivat, 75; Guessarian 81; Guessarian 82; Gal-
lier, 1983; Courcelle, 1983]. In this framework,
we give a general definition of the notion of cover-
ing, and define afore models: systems of algebrai-
cally closed partial orders containing only ele-
ments with proper covers but including enough
elements to interpret all the programming con-
structs of ALGOL-like languages.

Store models justify all the intended properties
of new-declarations. For example, in store models
the block mentioned above with global call to p
is indeed equivalent to skip in all environments.
Another illustrative equivalence is:

begin new x in

if z ---- Y then Cmdz else Cmd= fl end -----

y : - - cont(y); Cmd=.

(The "useless" assignment to 9 appears in case ~/

denotes the divergent (1) location.)

2. ALGOL-like Languages. The focus of our
proof-theoretic studies has been on the family
of idealized ALGOL-like languages. We review
several of the principles which characterize this
class of languages [cf. Reynolds, 81; Meyer, 83;
Trakhtenbrot, Halpern, and Meyer, 83; Halpern,
83]:

(1) Commands, which alter the store but do
not return values, are distinguished from ezprea-
8ion8, which return values but have no side-effects.

(2) Calling is by-name. (Calls by-value, etc.,
are treated as syntactic sugar.)

(3) Higher-order procedures of all finite types
(in ALGOL 68 jargon, modes) are allowed.

(4) The local storage discipline is an explicit
aspect of the semantics.

In this section we sketch a few of the features
of an illustrative ALGOL-like language we call
PROG.

Types in PROG. The distinction between locations
and storable values - in our semantics they be-

have as disjoint domains - is one of several struc-

tural restrictions on ALGOL-like languages im-

plied by local storage discipline. For example,

it is well-known that locations (and likewise pro-

cedures) cannot be storable without restriction,

since otherwise locations allocated inside a block

might be accessible after exit from the block via

the stored objects.

For simplicity, we consider storable values of
only one type. The two basic types - storable
values and locations -- are abbreviated int and Ioc,

respectively. PROG syntax mandates an ezplicit
type distinction between locations and storable

values (also called "left" and aright" values of

expressions), using the token cont for explicit

dereferencing. Thus, cont(z ~°=) denotes the ele-

ment of type int which is the contents of z, and as-

signment commands take the form LocE :---- IntE
where LocE is a location-valued expression and
IntE is an int-valued expression.

247

Equality tests in PROG can only be between
elements of basic type. We do allow explicit
equality testing between locations, "z Ioc = ymoe,,,
in addition to the usual test of equality between
storable values, "a -" f(cont(yloe)) ". Expressions
which evaluate to locations are allowed, as in the
"conditional variable" expression on the lefthand
side of the assignment command

ira = f (c o n t (y)) t h e n y rise z fi :~--- a .

The other primitive types are prog, intexp,
and loeexp. The domain prog is the domain of
program meanings, namely, mappings from stores
to sets of stores. (PROG has a nondeterministic
choice construct. Since we do not attempt to dis-
tinguish "failing" from diverging, nondeterminism
is adequately modeled with mappings to sets as
opposed to the more complex power-domains of
[Plotkin, 76,82; Smyth, 78].) The other two
"expression" types are the denotations of expres-
sions whose evaluation yields basic values, viz.,
the elements of intexp (locexp) are functions from
stores to int (loc), i.e., "thunks" in ALGOL jargon.

Blocks and Binding in PROG. Procedures of all
higher finite types formed from the five primitive
types may be declared, passed as parameters, and
returned as values.

Procedure identifiers are bound in PROG via
procedure declarations occurring at the head of a
procedure block, e.g.,

proc p(z) ¢= DeclBody do BlockBodT/end.

Identifiers of basic type are bound by either let-
declarations or new-declarations at the head of
basic blocks of the form

let z mat be IsLE in Cmd tel,
le t ylo¢ be LocE in Cmd tel,

begin new 7/I°e in Cmd end.

The let-declaration causes the evaluation of the
expression IntR in the declaration-time store
and causes identifier z to denote the result of
the evaluation. (A call-by-value of the form
p(BasE) can be simulated by the basic block

let n be Base in p(n) tel.) Basic and procedure
declarations have quite different scopes and mean-
ing, as will be revealed below.

3. Syntax-Preserving Translation to X-Calculus.
We formalize the assignment of semantics to pro-
grams in two steps:

(1) a purely syntactic translation from PROG
to a fully-typed X-calculus enriched with a letree-
construct as in [Damm and Fehr, 1980; Datum,
1982; of. Landis, 65], and

(2) assignment of semantics to the k-calculus
in a standard referentially transparent way
[Barendregt, 81; Meyer, 82].

Our X-calculus is chosen so that its constants
correspond to program constructors, its binding
operations, letrec and X, correspond to program
declarations and procedure abstraction, and its
types are the same as those of the programming
language. In fact, the abstract syntax, viz., parse
tree, of the translation of a program is actually
identical to that of the program; the translation
serves mainly to make the variable binding con-
ventions of PROG explicit.

Procedure blocks are translated using letree,
so for example,
Tr(pro¢ p(z) ¢== DeclBod~/ do BlockBody end) --'d,t

ietree p --- kz.Tr(DeclBod~/) in Tr(BlockBody) .
This recursive declaration of p binds occurrences
of p in both the declaration and the block bodies.
Procedure declarations in this way inherit the
static seoping rules of X-calculus.

Basic blocks are handled with constants and
X's, e.g.,

Tr(let z Int be IsLE in Cmd tel) --de/

Dint (Xz.Tr(Cmd)) (Tr(IntE))

where Dint is a constant of type (int --, prog) --.
intexp --. prog. Note that the binding effect of the
block on z int is reflected in the binding effect of
kz on Tr(Cmd), namely, the declaration binds z
in Cmd, but does not bind z in ISLE, in contrast
to the case for procedure declarations. Similarly,

Tr(begin new z in Cmd end) --'de/

New(kz.Tr(Cmd))

248

where New is a special constant of type (loc --,
prog) --, prog. The semantics of New will be
defined so that Cmd runs in an environment in
which z is bound to some location outside a cover
of Cmd. The contents of this new location are
initialized to some standard value denoted by the
constant a0 at the beginning of the computation
of Cmd and restored to their original value at the
end.

Other commands and expressions are trans-
lated directly by introducing suitable constants
(but no binding operators), e. g.,

Tr(ifTerra~ --- Term~
then Terra~ else Term~ t) ----4,1

(If..# (Tr(Term?)) (Tr(Tervn~))
(Tr(Term~)) (Tr(Term~})),

Tr(cont(LocE)) =d,! (Cont{Vr(LocE))),

Tr(Cmd return IntE) -- ~ !
(Return(Tr(Cmd))Tr(Ir~tE})),

Tr(LocE :-~ IntE) --~1
(Update (Tr(LocE)) (Tr(IntE))),

Tr(Cmds; Cmd2) "-~!
, ,(8eq(Tr(Cmdl))(Tr(Cmda))),

etc.

The principal consequence of this syntax-
preserving translation is that all the properties of
procedure declarations in ALGOL-like languages
such as renaming rules associated with static
scope, declaration denesting rules, and expan-
sions of recursive declarations, can be recog-
nized as direct consequences of the correspond-
ing purely functional properties of the ietree-X-
calculus - which have nothing at all to do with
side-effects. Before elaborating this point, we
review the properties of the letrec-calculus.

4. Typed Lambda Calculus. Let T be a set of
primitive type symbols, C be a set of typed con-
stants, and X be a set of typed variables.

Type ezpresaiona are defined inductively: the
primitive type symbols are type expressions, and
if a, ~ are type expressions, then so are ~ ~ ~ and

a X 8. With each type expression ~ we associate
a (possibly empty) set of constants Ca, disjoint
from C# for ~ ~ 8. With each c~ we also associate
an infinite set of variables Xa, disjoint from Xp
for a ~ /~ . We use the notation z a when we wish
to emphasize x E X=. By definition, C = U=C=
and X -- U , X a .

We define L a, the terms of letree-k-calculus of
type a, by induction.

(1) CoUXo c_ L o.
(2) Application: If u E L ~-'/j, v E L ~, then

(u E LP.
(3) Abstraction: If z E Xa, u E L p, then

)~x.u E L a-*p.

(4) Block with mutual procedure declarations:
If z~ E X a~', uj E L a~, j -- 1, . . . ,k , x i all
distinct, and v E L D then

(letrec z l --- ul and. . , and zt = u~ in v) E L p.

We say z~ is declared in this block with declaration
body us, and v is the block body.

Free and bound occurrences of variables are
defined as usual [Hindley, Lercher and Seldin,
1972; Stoy, 1977; Barendregt, 1081]. Note we are
allowing recursion here: the variables zj may oc-
cur in u, as well as v. In particular, "letree z~"
binds all free occurrences of zj in u l , . . . , u~, v.

As usual, we omit parentheses in compound
applications with association to the left being un-
derstood. In contrast, the operation --, associates
to the right in compound type expressions. Thus
uvw abbreviates ((u v)w) while ~ --. fl -~ ~ ab-
breviates (a --. (fl ~ ~)). We let [v/x]u denote
the result of substituting the term v for free oc-
currences of x in u subject to the usual provisos
about renaming bound variables in u to avoid cap-
ture of free variables in v [Stoy, 1977, Def. 5.7;
Barendregt, 198i, Appendix C].

A term u is in normal form ifffor every applica-
tion (Ul u2) which is a subterm of u, the operator
Ul is neither an abstraction nor a block. The fol-
lowing result is well-known for typed X-calculus
(cf.[Barendregt, 1981, Appendix C]), and extends
directly to include letrec.

249

Normal Form: Every term u is effectively
transformable using (cf. §5) a,/%conversion, dec-
laration distributivity and the replacement rule
to a normal form N F (u) which is unique up to
~-conversion.

5. Cartesian Closed Models. For any sets
D x , . . . , D , , let D, X . . . × D , be the set of all
ordered n-tuples (d , , . . . , d ,) of elements d~ 6 D~.
Let tupleD~ , v . : D , --* . . . --* D , ~ (D, X
• ." X D,) be defined by:

tuple d , . . . d , - - (dl, . . . , dn),

and l e t p r o j ~ D, : (D1 X . . . X Dn) -* D , be
projection on the i th coordinate.

A Cartesian Closed type-frame consists of a
family of sets { D~ } Called domains or types, one
for each type expression a, such that
(1) D~._.~ consists of some nonempty family of
functions from Do to Dp and Daxp -- Da X D~,
and

(2) there are dements Sa,~,~ 6

D(~.--,(~-,~))_,(Ca..,~)_., (a~)) , and Ka,~ 6
Da-*0s-~a) for every a,/~, 7 such that

Sc~,p,~dod, d~ - - (dodu)(d, dz),

Ka ,pdsd4 - - ds.

(3) tupleDo, Do, 6 Da,-....-.a.-.(o,x...xa.),
and similarly pr02~)o ' ...Do. 6 D(c,, x ... ×o.)~a,-

An environment for a type-frame D is a
mapping e : X --. D -- [.JoDa which
respects types, i. e., e(z °) 6 Do. Given
an environment e, let e[d/z] denote the en-
vironment which differs from e only at z, and
(e[d/x])(z) = d. Let e [d l / p l , . . . , d J , + l / p t + l]

abbreviate e[d, / p , , . . . , d~/Pklld~ + x l p t + ,]. (We
define the "patch", fib~a], of any function f :
A --*]3, at a 6 A, by b 6 B similarly.) Let Envv
be the set of all environments for D.

A Cartesian closed model consists of a Car-
tesian closed type frame together with an in-
terpretation of the constants, i. e., a map-
ping [[~0 : C --* D which respects types.
The model is standard iff the constant symbols
S~,~s,~ 6 C(~_.(~_.~))_.((~_.~)_,(~_.~)) and K~,~ 6

Ca-.(#-~) are interpreted as the corresponding .S
and K functions, and similarly for the constants
tuple and proj ~. Let L, C L be the usual typed
k-calculus (without letrec). The justification for
this peculiar definition is that for any Cartesian
closed model D, there exists a unique mapping
a liD : L1 --* EnVD --* D which respects types such
that

(a) a d d s = eBo,
(b) = e(x),
(c) a(v) De = (b,O e)(avl d.
(d) for all d 6 D o , (OXza.u~De)d ---

~U~DCeld/z]).

A fixed-point frame is a Cartesian closed frame
such that there is an element Yo 6 D(a-.~)-.a
such that

Y ! = / (Y f)

for all f 6 Do-,a and all type expressions a. A
fixed-point model is a model whose type frame is a
fixed-point frame; it is standard iff the constants
above have the standard interpretation and the
constant symbols Ya 6 C(a-.a}--,a are interpreted
as fixed point operators Ya.

Let k(z l , . . . , x,) .u abbreviate

kz.([Cproj I z) l x ,] . . . [(p ro j " z)/x,]u)

for z not free in u.
For any Cartesian closed fixed-point model D,

there exists a unique mapping a ~D : L --* EnvD -*
D which respects types, satisfies (a-d) above, and
such that

(e) ~letree P] -- u, a n d . . . a n d P . - - u . in vide

=de! ~ V] D (e [d l / p l , . . . , d n / P n])

where (d l , . . . , dn) =

~(Y X(pl , • • • p n) . t u p l e ul'.. un)]De.

Terms u and v are equivalent for some model
D, written u ~ D v, iff ~U]D = aViD. If)~ is a
class of models, u and v are N-equivalent iff u =--D

v for all models D 6 Y,t.
We abbreviate a mutual procedure declaration

of the form (letre¢ p , = ul and . . . and p , ---

250

u . in v) by (letrec Dec in v), where Dec --~
{ p l = u l , . . . , p , = u ,) .

The following fundamental inference rule
verifies the referential transparency of L. It is
sound in any Cartesian closed model when we
merely regard letrec Dec in v as an abbreviation
for (X{pl,..., p,).v)(c (k{pt, . . .p,) . tuple u l ' " u,))
without assuming any facts (such as fixed-point
properties) about the constant c.

Replacement Rule. If u ----- v and 102 is the result
of literally replacing (without renaming bound
variables) an occurrence of u by v in wl, then
101 !--- 102.

The following equivalences hold in any Car-
tesian closed model.
Variable renaming, viz., wconversion:

(i) Xx.u -- XY.IY/xlu ,

where y is not free in u, and

(ii) (letrec { p -- body) 0 Dec in u) =

(letrec { q = [q/p]body) U [q/p]Dec in [q/p]u) ,

where q is not free in u, body, or Dec, and is not
declared in Dec.

Evaluation by substitution, via., fl-conversion:

(xx.u),J -_-

Declaration distributivit~

(letree Dec in uv) =

(letree Dec in u)(letrec Dec in ~).

Declaration elimination:

(letre¢ Dec in u) ---- u

providing no variable declared by Dec is free in u.
Variable binding commutativity:

kz.(letrec Dec in u) ---- (ietrec Dec in Xz.u),

providing z is neither free nor declared in Dec.
Eztensionality, via., 17-conversion:

xx . (u z) ffi u

providing u fi L a ' 'p for some types ai ft.
Normal Form: u ~ NF(u).

The fixed-point property justifies declaration-
expanding transformations.
Declaration ezpanaion:

(letrec {p = body) k) Dec in [p/q]v)

(letrec {p = body) U Dec in [body/q]v).

6. Algebraically Closed Models. Cartesian closed
fixed-point models are still too general even to jus-
tify routine transformations of declarations. To
establish soundness of such transformations, it is
necessary that the fixed point operators be chosen
consistently with the structure of the type frame;
for example, designated fixed-points should be
preserved under isomorphisms induced by reas-
sociating Cartesian products. Frames whose types
have some order structure which ensures the ex-
istence of least fixed-points can provide a har-
monious system of fixed-point operators. One
well-known least fixed-point frame is the frame
of complete partial orders (cpo's) with continuous
functions. However, we need more general classes
of least fixed-point frames we call algebraicallll
closed frames.

If D and E are partially ordered, then a func-
tion f : D - . E is monotone iff dx ~ da implies
f (d,) if_. f(d2). If a subset Z _ D has a least
upper bound, L.J z, then f : D --. E is continuous
along Z iff it is monotone and f([.] Z) = [..J{ f(z)]

An algebraically closed (ael) type frame is a
Cartesian closed type frame { Da) such that
(1) each primitive domain D is partially ordered
with least element .LD,
(2) function and product domains of higher type
are partially ordered by the inherited point-wise
and eoordinatewise partial orders,
(3) for all types a and functions f E Da- .a , the
least upper bound]J~ fk(_L) exists, where f°(z) ffi
z and yk+l(z) -- f(f~(z)) (sequences of this form

1 , f (I) , f(f(.L)), .. are called algebraic),
(4) for all types a, every function in Da-,p is con-
tinuous along every algebraic sequence of elements
in Da,

251

(5) for all types a, the least fixed point operators
Y~ defined by Ya(f) -- I I ~ f k (/ v °) are in
D(a-~a)-.o~.

An (ac 0 model is a fixed point model with an
acl type frame; it is standard iff the constants S, K,
tuple, proj i have the standard interpretation, the
constants Ya are interpreted as the corresponding
least fixed-point operators Ya, and for all primitive
a, the constants diverge a E Ca are interpreted as
-I-Do. We let diverge a - ' ° abbreviate kzP.diverge °
and handle/~ × a similarly so that in standard acl
models, [ldivergeaB -- ±D° for all ~.

The following equivalences connect fixed-
points between distinct domains and hence depend
on choosing fixed-points harmoniously, viz.,
choosing least fixed-points. We refer to properties
like these which are valid for all acl models as acl
properties.
Declaration collection:

(letrec Dec in (letrec Dec' in u)) -----

(letrec Dec U Dec' in u)

providing none of the variables declared in Dec'
occurs free or has a distinct declaration in Dec.
E=plicit parameterization:
(letrec { p - - body } U Dee in u) =
(letree { q = kx.[qz/p]body } t.J [qz/p]Dec in [qx/plu)
providing q does not appear in u, Dec, or body,
and p is not declared in Dec.
Declaration denestin9:
(letrec { p = letrec Dec in body } U Dec' in u) -~

(letrec { p -- body } (.J Dec U Dec ~ in u)
providing none of the variables declared in Dec is
free in u or Dec' or declared in Dec ~, and p is not
declared in Dec or Dec ~.

A term u E L is denested iff neither the body
of any variable declaration nor the body of any
block in u contains a declaration. Every term
can be effectively transformed into an equivalent
denested term using the equivalences above.

The following general induction principle is a
basis for induction rules about programs. A predi-
cate P on a domain Do in an acl frame is acl.
inclusive iff (Vi > 0. p (f (O(/))) =~ p(y(f)) for

all f 6 D.__...

Fixed-point Induction: Let Da be a domain in an
ael frame, P be an inclusive predicate on Da and

f E Da-,a. If

P(-LD°) A Vd E D. (P(d) =* P(f(d))),

then P(Y(f)) holds.
The equivalances and rules for k-terms im-

mediately yield rules for PROG phrases; we indi-
cate a few. Let E (possibly primed or subscripted)
represent a finite system of mutual PROG proce-
dure declarations; procedure blocks of the form
proc E do ProcT end will be abbreviated as E I
ProcT where ProcT is a procedure term.
Declaration distributivity in PROG:

(E l (ProcT1ProcT2)) =

(E I Procrl)(E i ProcT),
(E I ProcTPrOS;ProcT p~s) ~_

((E I ProcTP'°g);(E I ProcTp'offi)),

etc.

Note that declaration distributivity depends
crucially on the fact that E denotes a set of
procedure declarations, whose meaning is neces-
sarily store-independent. So the declaration
distributivity rule is valid despite the possible
side-effects on the store between evaluations of
different copies of E. In contrast, distributivity
fails for basic declarations because the value
bound to an identifier by a basic declaration
depends on the store "at declaration time". This
contrast was reflected in the use of constants in
translating basic blocks, compared to the letree
construct used to translate procedure blocks.
Variable binding commutativity in PROG:

(E I let z ,= Base in ProcT pros tel)
let z ¢= Base in (E I Pr°cTpros) tel ,

(E I begin new y in ProcT pros end) -----

begin new y in (E I ProcTPr°S) end

providing z, 1/do not occur free in E.

Fixed-Point Induction for Approximation in
PROG: Let p be an identifier and ProcT a PROG
term, both of the same type, such that p is not
free in ProcT2. Then

252

[diverge/p]ProcT1 E ProcT2 ,
ProcTl if_ ProcT21- [ProcT/p]ProcT1 if_ ProcT2

proc p ¢:: ProcT do ProcTl end ~ ProcT2

7. The Equivalence of Fixed-Point and Com-
putational Semantics. The most fundamental acl
property is that every term in L can be under-
stood as a limit of finite letrec-free terms (in
normal form if desired) which approximate the
given term. These finite approximations are Ob-
tained by repeatedly "unwinding" the letrec dec-
larations using the declaration expansion rule.
This provides an effective computational rule for
simulating the effects of letrec's and the cor-
responding procedure declarations in PROG. It
also shows that two procedures which expand to
the same infinite declaration-free procedures are
equivalent in all acl models for PROG, indepen-
dent of the meaning of any PROG constructs.

The original ALGOL 60 report [Naur, et. al.,
1963] gave a "copy-rule" semantics for the lan-
guage. The copy-rule can be understood as par-
ticular computational strategy for generating the
infinite expansion of a command. Another acl
property is that fixed-point and copy-rule seman-
tics {appropriately extended to letrec-terms and
FROG commands with free variables) assign the
same meanings to terms [cf., Damm 82]. This
confirms that our choice of denotational "fixed-
point" semantics is consistent with the usual
operational understanding based on the copy-rule.
For the development here, however, we have no
need of these facts, and so we omit further ex-
planation.

Thus procedure declarations of ALGOL-like
languages are entirely explained by acl semantics
for L. On this basis we assert that the typed)~-
calculus is the true mathematical syntax for these
languages. For example, several of the language
design principles of [Tennent, 81] can be recog-
nized as proposing that syntactic restrictions of
programs to subsets of L be removed.

8. Store Semantics of FROG. Particular instances
of ALGOL-like languages are determined by their
types and the interpretations of their constants.

Properties related to stores and side-effects appear
only at this level. We now specify the domains
and constants which determine FROG.

Store Frames: Given an infinite set Loc [of loca-
tions) and a set Int (of storable values) we define
the domains

DI.~ =d, /Loc U { l i , ~ }, Di,t = d , / Int U {-Lint)

to be the fiat epo's.
For sets A, B, let A B =d , / the set of all total

functions from B to A. For the other primitive
domains, we select some subset, Store C_ 1at z'*c.
Store must be closed under finite patching. (Note
that no store maps a location to l in t . There
is no need to introduce such "partial" stores in
modeling the behavior of sequential languages like
PROG.) Then

Dintexp _~ (Dint)St°rel DIocexp ___ (DIoc) St°re,
Dpros C (fl(Store)) 8tor'.

Here P(Store) denotes the power-set of stores
{ordered by containment), so elements of Dpr.s
correspond to nondeterministic mappings between
stores.

A Store model is any standard acl model with
the above five primitive types such that there are
elements in the domains of the frame which in-
terpret the constants required in the translation
of PROG to L as specified below. These constants
are: If, Mkexp, Cont, Update, diverge, Ifprog, Secb
Choice, Return, Dint, Dloc, and New.

The constant Ifa,a for basic types a, fl has type
--. c~ --, ~ --./~ --./~. A store model interprets

If so that

~If ~ d a~-~a /_J_p if da - - ~ or d2 -" -La,
,,,#11% 2 a3-4 = d3 if dl - - d2 ~ -J-,

(d4 otherwise.

Any first order function f of type 5 = int ~ --.
int can be coerced into a mapping Mkezp(f) tak-
ing as arguments functions from stores to int.
Namely, the coercer Mke=p6:

A4kexp6 f6 (~ntexp --intexp , . . . , a k s - - f(dl(8),...,dk(a))

: 253

for any store s. The constant Mkexp~ of type
--, (intexp --, . . . --, intexp) is interpreted as

Mkexp~.
The constant Cont of type locexp --) intexp is

defined in store models so that

'C°nt] d'°e'xPs = (~ J ~)) otherwise, if d(,) ~ -[4o,,

For assignments, the constant Update of type
iocexp --, intexp --* pros:

~Update~d~ °eexpdintexp8 .__

(~ ,[d~(s)/dl(S)]} if d~(s),d~(s) ~ _l_
otherwise.

For conditional commands, Ifprog of type
~-exp --. ~-exp -* prog - . pros --. pros:

~Ifprogo ~ d~ ".xp d~ "ezp d~ r ° s d p r ° s S --'~

/ ~ if d~(s)-- .J~ or d~(s)--- _[.~,
ds(s) if d~(s) - - d~(s) # _1_,

(d4(s) otherwise.

Command constructors Choice, Seq of type
pros ~ pros --* pros:

~Seq~dPr°Sd~r°ss = V { d~(s~) [s ~ E ds(s) },
~Choice~d~P~°sd~r°ss = dz(s)U d~(,).

For let blocks, Dint of type (int ~ pros)
intexp -,. pros:

~Dint~ d~ nt -" pros d~nt.fp a :

{ (dl (d2(s)))(a) if d:~(s) # J-I.t,
otherwise.

We translate basic blocks with declarations of
location type similarly, using a correspond-
ing combinator Dioc. (The simpler definition
which omits the "otherwise" clause seems to
imply unavoidable implementation inefficiencies
and (presumably for that reason) does not cor-
respond to the behavior of actual languages.)

Return of type pros --, intexp --, intexp:

~Returu]d~ d~ s "-- d2(dl s).

The semantics of the constant New of type
(loc - . pros) --* pros is handled in the next sec-
tion.

9. Domains for the Local Storage Discipline
To explain the semantics of New, we must

define the notion of covering. For primitive types
this is fairly straightforward.

Let L be a subset of Loc. Two stores s, t agre~
on L, written s --t. t, iff Y/ E L. 8(1) = t(0.
Similarly, two sets S, T C_. P(Stores) agree on L
if there is a bijection f : 8 -* T such that Vs E
S. s - - , / (s) .

For each primitive type a, define the unary
predicate Access~ on Da by the rules belogl. If
AccessL(d) holds, we say that d accesses onll/ the
locations in L. Note that AceessL(d) will imply
AceessLUL' (d).

(1) Aecess~oe(l) iff l E LU { -LIoe },
(2) Ac- , s~ , t (d) - - true,
(3) AecessLp,os(~r) iff Vs, t E Store.(s "-L t =~

~(,) =~ ~(t)) A (t ~ ~(s) = , = L o o - , t),
(4) AccessLntexp(7 ") iff Ys, t E Store. s = / . t =~

1.0) = 1.(t),
(5) AccesS[o~,=p(a) iff Vs, t E Store. s --L t =~

~(s) = o (0 ~ L U { ± , .) .

For higher-type objects, we also need a notion
of uniformity with respect to "new" locations.

Definit ion. Let ~ : Lo¢ --. Loc be a per-
mutation; extend ~ to Dloe so that ~(_[.) ----- .L.
Let ~Store : Store --, Store be the permutation
defined by the rule

~sto, . (s) : s o ~ - 1

where o denotes functional composition, and let
/~p(Store) : P(Store) ~ })(Store) be the permuta-
tion defined by applying ~Sto,e elementwiso. For
each primitive type ~, define a permutation/~a :
Da --, Da by the rules:

(1) ~lo~ - - #,
(2) , , . t (~ ") = d ,

- - 1 0) ~,- , (~) = ~,cs ,o . ,) o ~ o ~ s , . , . ,
(4) ~intexp(1.) " - " 1" 0 ~$tor. '

--1 (5) ~ioeexp(O) - - . l oco O' o ~Stor,"

Note that (~-1)o = (pa) -1 , so the notation
~ -1 is unambiguous.

254

We now proceed to define the unary predicates
Access~ on Do and the permutations #o : Do --.
Da for higher-order ~ by induction on types.

Definition. At higher types define

Access _. (/) ier
L' Vd E Dp, L' C_ Loc.Accessp (d) =~ Access~ uL' (f(d)) ,

Access~×.l(dl, d2) iff (Access~(dt) ^ Access~(d2)),
~#.~(f) -- lz.t o f o I ~ t ,

=

A permutation ~ : Loc ---, Loc fizes L iff #(1) = l
for all l E L. Define the unary predicate Unif~
on Do by the rule:

Unify(d) iff V/~ fixing L.l~,.(d)= d.

If Unify(d) holds, we say that d is uniform off L.

We henceforth omit subscripts c~ when they
are clear from context.

Definition. A set L C Loc cover8 an element
d iff AccessL(d) A UnifL(d).

Note that for primitive types, AccessZ'(d) iff L
covers d. Some key properties of covering are
(1) if L covers d, then L t.J L I covers d,
(2) if L covers f'~--,D, d ~, then L covers (f d),
(3) if L covers all d E Z __. Do and U Z exists,
then L covers LJ Z,
(4) The functions K, S, Y, tuple, proj ' have empty
covers.

These facts immediately imply that for any
environment e and term u E L, the element ~u~e
is covered by a union of covers for [c~ and e(z) for
all the constants e and free variables z in u.

It not hard to show that all the constants other
than New are continuous and have empt~/covers.
To ensure that New is interpretable, we impose a
further condition on store models:

Covering Restriction: Every element has a finite
cover.

Definition. A function Select : Dloe~pros "-~
Loc will be called a selection function iff Vp E
Dioe.~pros:lcover L of p. Select(p) f~ L. (Selection

functions exist because of the covering restric-
tion.) For each selection function Select, let
]Vewsetece : Dloc--.pros ~ Dpros be defined by

N e W s d e c t p " -

~Tr(let z int ¢= cont(y) in y : = a0; p(y); y : = z tel)~e,

where e(~) = Select(p), e(p) = p.

Lemma. Let Select1, Select2 be selection func-
tions. Then

(a) Newsetectl = Newsegecta,
(b) Newsetectl is continuous along algebraic

sequences and has an empty cover.

It follows that if we take any selection function
Select, then Newsete~t unambiguously determines
a meaning for New in store models - which we
require to be in D(Ioe-*pros)--*prog.

To demonstrate rigorously that the theory of
PFtOG is consistent, we must show that store
models exist. Let Loc be uncountable. An w-
cpo model [Meseguer 78; Plotkin 82] with the
five store-model base types (and with higher func-
tion domains consisting of all w-continuous func-
tions) is an also an acl model which satisfies
all the conditions for store models - including
the existence of an w-continuous function which
behaves like ~New~ on elements with countable
covers - except for the covering restriction. For
each domain of the w-cpo model, we take the
subdomain of those elements which have a finite
cover. Using the method of logical relations of
[Plotkin, 80;Statman, 82] these subdomains can
be taken together to form an acl frame which can
be demonstrated to be a store model.

We can further justify our store model seman-
tics by demonstrating that it coincides with
familiar operational semantics based either on
stack implementations or on copy-rule semantics
in which new declarations are explained through
renaming of local identifiers (cf. [Langmaaek and
Olderog, 80; Olderog, 82]).

11. Reasoning about Covers. Because all the
PROG constants have empty covers, a cover for
(the meaning of) any PROG phrase is easily

255

characterized: take the union of covers for the

free procedure and location identifiers. In par-

ticular, if the phrase has no global calls - so the

only free identifiers are of location type - then a

cover is available by inspection: the union of the

(denotations of) the free location variables in the

phrase. This follows because a cover for any loca-

tion I E Loc is the singleton {l}. (In general, a
minimal cover of a command is strictly smaller
than the covers of its free identifiers, e.g., z : ~
cont(z) has an empty cover.)

These observations are the basis for a variety
of axioms for program correctness suggested in
[Meyer, 83; Trakhtenbrot, Halpern, and Meyer,
83; Halpern, 83].

CHtique of PROG.
PROG fails as an example of satisfactory lan-

guage design in many ways, even with respect to
the limited set of features it is intended to model,
For example,

(1) there are no Boolean types,
(2) there is no while command or other struc-

tured control statement,
(3) only one identifier at a time can be declared

in a basic declaration,
(4) there are no let blocks of basic expression

type.
(5) Conditionals are not uniformly available at

all types [cf. Reynolds, 1981a l.
However, these pragmatic features are all in-

essential for our purposes since they can be
simulated at the level of uninterpreted program
schemes by commands already in PROG, i. e.,
each of the constants corresponding to these con-
structs is directly X-definable in terms of the con-
stants already introduced. Therefore they raise
no semantical or proof-theoretical issues beyond
those already treated.

An important feature in actual ALGOL-like
languages but missing from PROG is that loca-
tions can be storable subject to restrictions
(as in ALGOL 68) to ensure local storage dis-
cipline is preserved. Another extension improv-
ing uniformity involves introducing ~-exp types

for a other than int and Ioc (with a correspond-
!ng block let z a be ProcT a'exp in ProcT/~'exp tel).
Other significant language features compatible
with ALGOL-like principles but omitted from
PROG include exit control, arrays and user-
defined data-types, own-variables, polymorphism,
implicit coercion (overloading) and concurrency.
These will have to be the subject of future studies.

References

H. P. Barendregt, The Lambda Calculus: Its Syn-
tax and Semantics, Studies in Logic 103, North
Holland, 1981.

B. Courcelle, Fundamental properties of infinite
trees, Theoretical Computer Science 25, 1983, 95-
170.

W. Datum, The IO- and OI-hierarchies, Theoreti-
cal Computer Science 20, 1982, 95-207.

W. Datum and E. Fehr, A schematological ap-
proach to the procedure concept of ALGOL-like
languages, Proc. 5ieme colloque sur lea arbres en
algebre et en programmation, Lille, 1980, 130-134.

J. De Bakker, Mathematical Theory of Program
Correctness, Prentice-Hall International, 1980,
505pp.

J. H. Gallier, n-Rational algebras, Parts I and II,
Technical Report, Dept. of Computer and Infor-
mation Sciences, Univ. of Pennsylvania, Philadel-
phia, 1983, 55pp. and 65pp.

M. J. C. Gordon, The Denotational Description o.f
Programming Languages, Springer, 1979.

I. Guessarian, Algebraic Semantics, Lecture Notel
in Computer Science 99, Springer, 1981, 158pp.

I. Guessarian, Survey on some classes of
interpretations and some their applications,
Laboratoire Informatique Theorique et Program-
mation, 82-46, Univ. Paris 7, 1982.

J. Y. Halpern, A good Hoare axiom system for an
ALGOL-like language, ACIVl Syrup. on Principles
of Programming Languages, 1983 (this volume).

256

R. Hindley, B. Lercher, and J. Seldin, Intro-
duction to Combinatory Logic, London Math.
Soc. Lecture Note Series 7, Cambridge University
Press, 1972.

J. Lambek, From X-calculus to Cartesian closed
categories, To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, J. P. Sel-
din and J. R. Hindley, eds., Academic Press, 1980,
375-402.

P. J. Landin, A correspondence between ALGOL
60 and Church's lambda notation, Comm. ACM
8, 1965, 89-101 and 158-165.

H. Langmaack and E. R. Olderog, Present-day
Hoare-like systems, 7thlnt'l. Coll. Automata,
Languages, and Programming, Lecture Notes in
Computer Science 85, Springer, 1980, 363-373.

J. Meseguer, Completions, factorizations and
colimits of w-posets, Coll. Math. Soc. Janos
Bolyai 26. Math. Logic in Computer Science, Sal-
gotarjan, Hungary, 1978, 509-545.

A. R. Meyer, What is a model of the X-calculus?
Information and Control 52, 1982, 87-122.

R. E. Milne and C. Strachey, A Theory of Pro-
gramming Language Semantics, 2 Vols., Chapman
and Hall, 1976.

P. Naur et al., Revised report on the algorithmic
language ALGOL 60, Computer J. 5, 1963, 349-
367.

M. Nivat, On the interpretation of recursive
polyadic program schemes, Symposia Mathe.
matica, 15, Academic Press, 1975, 255-281.

E. R. Olderog, Sound and complete Hoare-like
calculi based on copy rules, Acta Informatica 16,
1981, 161-197.

F. J. Oles, Type algebras, functor categories, and
block structure, Computer Science Dept, Aarhus
Univ. DAIMI PB-156, Denmark, Jan. 1983.

G. D. Plotkin, A powerdomain construction,
SIAM J. Comp. 5, 1976, 452-487, 1976.

G. D. Plotkin, Lambda-definability in the full type
hierarchy, in To H. B. Curry: Essays on Com-
binatory Logic, Lambda Calculus and Formalism,

J. P. Seldin and J. R. Hindley, eds., Academic
Press, 1980, 363-373.

G. D. Plotkin, A Powerdomain for countable non-
determinism, 9 t~ Int'l. Coll. Automata, Lan-
guages, and Programming, Lecture Notes in Com-
puter Science 140, Springer, 1982, 412-428.

J. C. Reynolds, The essence of ALGOL, Interna.
tional Symposium on Algorithmic Languages, de
Bakker and van Vliet, eds., North Holland, 1981a,
345-372.

J. C. Reynolds, The Craft of ProgramminwPren-
tice Hall International Series in Computer Science,
1981b, 434pp.

J. C. Reynolds, Idealized ALGOL and its
specification logic, Syracuse University, Technical
Report 1-81, 1981c.

D. S. Scott, Lectures on a Mathematical Theory
of Computation, Technical Monograph PRG-19,
Oxford Univ. Computing Lab., 1981.

D. S. Scott, Domains for Denotational Semantics,
9 th Int'l. Conf. Automata, Languages, and Pro-
gramming, Lecture Notes in Computer Science
140, Springer, 1982, 577-613; to appear, Informa-
tion and ControL

M. B. Smyth, Powerdomains, J. Computer and
System Sciences 16, 1978, 23-36.

R. Statman, Logical relations and the typed
lambda-calculus, to appear, 1982.

J. E. Stoy, Denotational Semantics: The Scott.
Strachey Approach to Programming Language
Theory, MIT Press, Cambridge, Massachusetts,
1977.

R. D. Tennent, Principles of Programming Lan-
guages, Prentice-Hall International Series, 1981,
271pp.

B. A. Trakhtenbrot, J. Y. Halpern, and A. R.
Meyer, From denotational to operational and
axiomatic semantics: an overview: Proc. Logics
of Programs, Carnegie-Mellon Univ., Pittsburgh,
1983, to appear, Lecture Notes in Computer
Science, D. Kozen and E. Clarke, eds., Springer,
1983.

257

