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A b s t r a c t  

This paper describes an interface definition language 
called ADL which extends OMG's CORBA inter- 
face definition language with formal specification con- 
structs. In addition to ADL's use in formal documen- 
tation, ADL's primary use is for testing software. ADL 
can be adapted for use with most programming lan- 
guages. 

This paper also presents an overview of a testing tech- 
nology based on ADL and presents the highlights of a 
test-data description language (TDD) used to describe 
test-data. 

1 I n t r o d u c t i o n  

With the advent of large software systems, a lot of work 
has gone into designing software languages in which sys- 
tems may be divided into many reasonably sized com- 
ponents, each of which can be dealt with more eas- 
ily. This division requires a mechanism for the individ- 
ual components to coexist and be developed simulta- 
neously. Almost universally, this has been achieved by 
splitting each component into two parts: 

1. its interface - -  a set of declarations of software en- 
tities (such as types and operations) which are pro- 
vided by this component and which may be used 
by other components; and 

2. its implementation - -  the implementation of the 
declarations in the interface. 
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Typically, the implementations are isolated from the 
rest of the software system - -  they may be modified 
without having to rebuild the rest of the system. Most 
common programming languages implement these con- 
cepts in some way or the other. C provides a rudi- 
mentary implementation of interfaces using header files, 
C++ provides classes, and Ada provides packages. 

More recently, an effort has been undertaken by OMG 
called CORBA [2] (Common Object Request Broker 
Architecture) where the goal is to design and imple- 
ment a distributed environment within which objects 
may coexist and interact with each other. These ob- 
jects may be implemented in different programming 
languages. The interfaces of these objects are written 
out in a special language called IDL (Interface Defini- 
tion Language). CORBA defines bindings from IDL to 
programming languages such as C and C++  - -  hence 
interfaces written in IDL may be implemented in C or 
C++. Bindings for many other programming languages 
are forthcoming. 

The main problem with these interfaces is that they 
provide too little information about the components 
they describe. For example, the interface of a function 
usually only describes its parameter and result type 
profile. It would be nice to be able to describe other 
important properties of components. For this purpose 
(among others), a new family of languages called speci- 
fication languages [5] have been designed. Specification 
languages may be used to describe the relevant aspects 
of the behavior of software components without having 
to overcommit an implementation. Examples of speci- 
fication languages are Anna [6], Larch [3], and Z [7]. 

We, at the PrimaVera group at Sun Microsystems Lab- 
oratories, Inc., have been working on specification tech- 
niques for the past eight years. Our focus has been to 
apply formal specification techniques to software test- 
ing. We have concentrated our efforts to developing 
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testing tools for use with IDL interfaces. Given that  
the IDL technology can be made to work with any pro- 
gramming language for which bindings have been de- 
fined, our testing technology can also be made to work 
with any of these programming languages. 

Pilot implementations of our test system have been un- 
dertaken, and we have had significant results from these 
experiments. An example of an anomaly discovered by 
our testing tools was the way in which the w z i t e  sys- 
tem call updated the last modification t ime of a file. 
On a particular version of the UNIX operating system, 
performing a write with a 0 byte data  value changed the 
modification t ime on local files, but  did not in the case 
of remote files. The anomaly had not been detected ear- 
lier, even though standard rigorous testing schemes had 
been applied on this system call. The reason we were 
able to detect this was due to the systematic nature of 
developing the specifications and test-data descriptions. 

After several years of internal development and deploy- 
ment, we decided to make our work externally avail- 
able. The PrimaVera technology was submitted in re- 
sponse to a request for proposals for automated test- 
ing technology issued by X/Open,  and was selected 
for a joint research project sponsored by a research 
grant from Information-Technology Promotion Agency, 
Japan (IPA), a governmental organization under Min- 
istry of International Trade and Industry (MITI). 

C o n t e n t  o f  t h i s  p a p e r .  This paper describes the 
specification language we have developed as part  of 
our testing technology. This language, ADL (Assertion 
Definition Language), enhances IDL with constructs for 
behavior description of interface constituents. Given 
that  programmers will usually be most comfortable 
writing specifications in a syntax familiar to them (i. e., 
a syntax similar to the programming language they 
use), ADL has been designed as a language framework 
providing high-level specification concepts. These con- 
cepts may be specialized for any programming language 
by rendering them in a syntax similar to that  program- 
ming language. In this paper, the ADL specialization 
for ANSI C is used in examples 1. 

The highlights of ADL are listed in Section 1.1. A more 
detailed description with examples is provided in Sec- 
tion 2. Finally, Section 3 describes ongoing research 
activity in the language design. 

In addition to ADL, this paper also presents an 
overview of our testing technology in Section 1.2. Full 

1 Readers  familiar  wi th  IDL may  realize tha t  we have made  
mino r  modif icat ions to the under ly ing  IDL syntax  in the special- 
ization process.  However, we do ma in t a in  a m app i ng  to IDL. 

details of the testing technology is the subject of a fu- 
ture paper. 

More information on the PrimaVera ADL project is 
available in [8] and [9]. 

1 .1  A D L  

ADL is a language designed for formal specification of 
software components. Its interface definition constructs 
are borrowed from IDL and provides mechanisms for 
defining types, objects, and operations. In addition, 
ADL defines a set of general-purpose specification con- 
cepts applicable for the specification of software written 
in most programming languages. Some of the key fea- 
tures of ADL are listed below: 

* ADL is a language framework that  provides a set of 
high-level specification concepts. These concepts 
may be specialized for use with a programming 
language by rendering them into a syntax similar 
to that of the programming language. 

* All ADL specifications are post-conditions on op- 
erations (or functions) of software components. 
Therefore, ADL specifications are constraints on 
the program state at the time of termination of 
operation evaluations. 

* ADL specifications are written as separate units - -  
i.e., they are not embedded in the program. The 
ADL specification writer defines a binding between 
the specifications and the functions in the program 
to provide the necessary association. 

• ADL specifications may be partial. Tha t  is, the 
complete details of the function do not have to be 
written in ADL. Typically, ADL specifications are 
augmented with informal natural  language docu- 
mentation.  

• ADL provides specialized constructs for the spec- 
ification of errors. Most specifications written as 
natural language documents (such as UNIX man 
pages) describe error situations separately. ADL's 
error specification constructs allow a formal spec- 
ification to be organized in a similar manner.  

• ADL constructs are designed to allow translation 
of formal specifications into natural  language doc- 
uments. ADL's constructs are at a high-level of ab- 
straction and permit  a specification writer to write 
specifications very similar to the way they would 
do it in a natural  language, hence the translation 
process is straightforward. 
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• ADL is well-suited for the purpose of testing soft- 
ware components. Difficult to evaluate constructs 
such as quantifiers have been excluded from the 
language for the t ime being. 

1 . 2  A D L  T e s t i n g  T e c h n o l o g y  

To perform software testing, we need: (1) a piece of 
software to test; (2) a description of what this software 
does; and (3) a set of test-data on which to test the 
software. 

In our case, the piece of software is any ANSI C pro- 
gram, and the description of what this software does is 
the ADL specification of this program. 

For the third component,  we have implemented one 
method for generating test-data. Test-data is de- 
scribed symbolically in a special test-data description 
language (TDD). This method is specifically for use 
with unit testing. We have future plans to develop sim- 
ilar schemes for other kinds of testing (such as sequence 
testing). 

When using TDD, the program under test is run with 
many different test inputs in a systematic manner. Cor- 
rect behavior is determined by examining the results of 
the program or function in terms of the specification de- 
scribing its behavior. Correct execution of the program 
on these test inputs increases the level of confidence in 
the program. 

The TDD language offers the test designer a formal and 
structured framework for describing test-data. TDD 
provides a structure for characterizing and document- 
ing the data  used in testing. Through the use of TDD's  
syntax, test-data becomes the subject of a design pro- 
cess. The important  features of TDD are listed below: 

• Data  is characterized in an abstract and system- 
atic way. By using a formal system for notating 
the description of test data, we focus on the test 
designer's intention rather than on the details of 
generating a particular instance of test input data. 

• Test data  is generated without prejudice. By iso- 
lating the description of test data  from its realiza- 
tion, we explore what might otherwise have been 
blind spots. TDD encodes the designer's insight 
into formal descriptions, which are decompositions 
of the properties of the data. These descriptions 
are recombined into test cases. This ensures that 
all combinations of properties are tested; with- 
out the decomposition/recomposition process, it is 

very easy to omit an important  test because it does 
not occur in an imagined scenario of use. 

Input is characterized independently of any par- 
ticular implementation. TDD describes the input 
data  from the point of view of a user of the tested 
software component.  A TDD description may be 
constructed with insight into implementations, but 
its correctness does not depend on a particular im- 
plementation. This means that  a TDD test suite 
is portable across implementations. 

Iteration over the test cases is systematic and thor- 
ough. The regularity of the process allows for bet- 
ter statistics. The regularity also helps reduce the 
incidence of errors missed due to oversight. 

Data manufacture is isolated. The messy task 
of generating actual test values is encapsulated 
in well-defined functions. These functions, that 
translate symbolic descriptions into actual values, 
can be used in manually written tests as well as in 
ADL-generated tests. 

Complete details of the TDD language may be obtained 
from [9]. 

2 The  A D L  Language  

ADL is a language framework designed for the formal 
specification and testing of software components. ADL 
defines a set of general-purpose specification concepts 
applicable for the specification of software written in 
most programming languages. ADL excludes specifi- 
cation concepts that,  although useful, are difficult to 
implement using state of the art technology. 

The concepts of the ADL language framework may be 
specialized for use with a programming language by 
rendering these concepts into a syntax similar to that  
of the programming language. This syntax may then be 
augmented with constructs from the programming lan- 
guage, such as its expression syntax. This approach of 
defining a language framework that  may be specialized 
for use with any language has been used successfully in 
other projects, e.g., Larch [3] and Rapide [1]. 

The ADL language framework has been specialized for 
use with the C programming language. We intend to 
specialize ADL for use with C + +  and Ada shortly. 
For the purposes of this paper, ADL will be described 
through its specialization for the C programming lan- 
guage. 
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Figure 1: The Possible Outcomes of an Operation Evaluation 

Other important  aspects of ADL are described below. 

• Post-condition specifications. 
All ADL specifications are post-conditions on op- 
erations (or functions) of software components. 
Therefore, an ADL specification is a constraint on 
the program state at the time of termination of 
operation evaluation. This constraint may be con- 
tingent on pre-operation program state by use of 
the call-state operator.  

This is an example of ADL's client orientation. An 
ADL specification does not give conditions under 
which the function must be called, but instead tells 
what will happen if it is called. 

• Non-intrusive. 
ADL specifications are written as separate units - -  
i.e., they are not embedded in the program (e.g., 
as in Anna). The ADL specification writer de- 
fines a binding between the specifications and the 
functions in the program to provide the necessary 
association. This binding provides sufficient in- 
formation for the ADL testing tools to generate 
frameworks to test these functions. 

This approach is non-intrusive to the extent that  
the functions being specified need not be recom- 
piled for testing purposes. Hence, the ADL testing 
technology may be applied to precompiled code, 
including code such as operating systems, that  
by their very nature cannot be recompiled and 
reloaded in a straightforward manner. 

• Constructs for specification of errors. 

Figure 1 illustrates the possible outcomes of an op- 
eration evaluation. The outcomes can be divided 
into two categories - -  expected and unexpected. Ex- 
pected outcomes (the white portion of Figure 1) 
are those that  are included in the documented be- 
havior of the function, while unexpected outcomes 
(the grey portion of Figure 1) are outcomes that  
are not supposed to happen (e.g., (2-t-2) evaluating 
to 5). 

Our research has shown that  it is convenient to di- 
vide the expected outcomes of an operation into 
normal and exception outcomes. This division 
is usually subjective, but some general guidelines 
may be laid down. For example the outcome of 
(2-4-2) evaluating to 4 is usually considered a nor- 
mal outcome, while the outcome of (128 -4-128) be- 
ing an overflow is usually considered an exception 
outcome. 

ADL provides constructs to separate the handling 
of normal and exception outcomes of an operation, 
and to specify against unexpected outcomes. 

Simple natural language mapping. 
One of the mandates of the ADL project has been 
to develop a capability to transform a specifica- 
tion written in ADL into an equivalent natural  
language representation. This problem is, in gen- 
eral, untractable. However, ADL's constructs are 
at a high-level of abstraction and permit  a spec- 
ification writer to write specifications very simi- 
lar to the way they would do it in a natural  lan- 
guage. The error specification mechanisms dis- 
cussed earlier are an example of these high-level 
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constructs. The task of translating ADL specifica- 
tions into equivalent natural  language documents 
(e.g., UNIX man pages) becomes quite simple if 
the specification writer adheres to these high-level 
constructs while writing ADL specifications. 

Enables testing. 
The fact that  the ADL design emphasizes appli- 
cability to testing of software components has al- 
ready been mentioned. We reiterate this in the 
context of the other features such as the specifica- 
tion being non-intrusive, and being from a client's 
point of view. Furthermore, specification con- 
structs such as quantifiers and algebraic specifica- 
tions have been omit ted from the current version 
of ADL. We have plans to explore the introduction 
of these constructs in the future. 

2 . 1  A D L  C o n s t r u c t s  

The constructs provided by the ADL framework are 
described in this section. Some of these constructs are 
illustrated through examples in Section 2.2. 

An ADL specification is made up of a set of modules 2. 
Each module encapsulates a set of constituents that 
describe the entities in the C program that  are being 
specified. Modules may also refer to each other's con- 
stituents by importing constituents from one module to 
another. 

A constituent of a module may be one of the following: 

• Type constituent. 
A type constituent defines a type and gives it a 
name. Its syntax is identical to C type definitions. 

* Object constituent. 
An object constituent introduces an object 3 and 
associates it with a type. Its syntax is similar to 
that  of a C object declaration. Objects introduced 
by object definitions are bound to C objects with 
the same type. 

o Function constituent. 
A function constituent introduces a function and 
specifies its parameter  and result types. Its syntax 

2We are describing the specialization of ADL to C in this 
paper .  In this specialization, an  interface in C which is a header  
file is modeled as a module  in ADL. We have reserved the keyword 
"interface" for use with C + +  classes in a for thcoming extension 
of this ADL specialization. 

3The word "object" is used here in the same sense as in C. 

is similar to that  of a C function declaration. Func- 
tions introduced by function definitions are bound 
to C functions that  have the same parameter and 
result types. 

Function constituents may contain semantic descrip- 
tions. A semantic description describes the behavior 
of the C function that  is mapped to its function con- 
stituent. The semantic description constrains the pro- 
gram state at the end of calls to this C function. A 
semantic description has two components: 

• Bindings. 
Bindings are associations between expressions and 
names. These names may be used subsequently as 
a short form for their associated expressions. 

• Assertions. 
An assertion is a boolean expression that  must be 
true whenever control returns from the function 
constrained by the semantic description. 

It is often useful to make use of existing specification 
concepts while writing assertions. Sometimes these 
concepts may already exist as part of a module. How- 
ever, there will be situations where these concepts are 
missing. In such situations, missing, but necessary, 
specification concepts can be declared as auxiliary def- 
initions. Auxiliary definitions are simply ADL decla- 
rations that  are visible only within bindings and asser- 
tions. 

P r e d e f i n e d  A D L  o p e r a t o r s  a n d  f u n c t i o n s .  Some 
of ADL's primitives for use in semantic descriptions are 
described below: 

• Call-state operator. 
The call-state operator ("@") takes one argument 
and evaluates it at the time of call to the function 
being specified. 

• normal and exception. 
normal and exception are predefined names that  
may be bound to boolean expressions that  charac- 
terize the normal and exception outcomes respec- 
tively (see Figure 1). 

• Implication operators. 
ADL provides the standard logical implication and 
equivalence operators. It also provides a exception 
operator (< :>) ,  that  characterizes error situations 
by listing the conditions that  cause the function to 
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have an exception outcome and relates them to the 
error conditions that  take place. This operator  is 
used to characterize the exception outcomes of the 
function being specified. 

• n o r m a l l y .  

This is a function tha t  characterizes the normal  
outcomes of the function being specified. It  takes 
a list of boolean parameters  tha t  must  all be true 
on any normal  outcome. 

2 . 2  A D L  E x a m p l e s  

This section provides two examples of an ADL spec- 
ification of a bank module. The  first example de- 
fines three operations b a l a n c e ,  d e p o s i t ,  and wi thdraw 
within a module.  These functions map  to C functions 
with similar names and signatures. The specifications 
writ ten in ADL describe the intended behavior of these 
C functions. The ADL specification is shown in Fig- 
ure 2. 

The bank specification of Figure 2 contains 7 con- 
stituents: 

1. e r rno :  This  is an object constituent. It  is defined 
to be of type i n t .  This  maps  to the s tandard C 
global variable e r rno .  

2. NEG_AMT: This  is also an object constituent. It  
describes a part icular  value tha t  e r r n o  can take. 
This maps  to a C integer constant. 

3. INS_FUND: Just  as NEG_AMT, this describes another 
value tha t  e r r n o  can take and maps  to a C integer 
constant.  

4. acct . .no:  This is a type constituent. This defines 
a c c t  no as another  name for i n t .  

5. b a l a n c e :  This is a function constituent. It  de- 
scribes a function tha t  takes a parameter  a c c t  
of type a c c t _ n o  and returns a value of type i n t .  
b a l a n c e  maps  to a C function with the same name, 
and same paramete r  and return types. 

6. d e p o s i t :  This is another  function constituent. It  
takes two parameters  and has a semantic descrip- 
tion associated with it. Just  as in the case of 
b a l a n c e ,  this too maps  to a C function with the 
same name, and same parameter  and return types. 

7. withdraw: This  is another  function constituent 
with a more detailed semantic description. 

S e m a n t i c  D e s c r i p t i o n s :  

The semantic description of deposit contains two as- 
sertions. The first assertion contains the call-state op- 
erator "@". The call-state operator  evaluates its argu- 
ment  (in this case b a l a n c e ( a c c t ) )  in the state at the 
t ime the function is called. This  assertion states that  
the balance of account a c c t  (i.e., b a l a n c e ( a c c t ) )  after 
the call to d e p o s i t  is equal to the sum of the balance 
before the call and the amount  deposited (i.e., amt). 

The second assertion about  d e p o s i t  contains the re- 
served word r e t u r n .  This  is used to refer to the value 
returned by the function (in this case d e p o s i t ) .  This 
assertion states tha t  the value returned by d e p o s i t  is 
the new balance of account a c c t .  

The semantic description of wi thdraw contains four 
bindings (the first four lines) and then a list of asser- 
tions. The bindings bind expressions to names. Use of 
these names in subsequent expressions then refer to the 
bound expressions. 

The first two bindings bind expressions to the spe- 
cial names exception and normal. The bindings 
to these names together with their use in specifica- 
tions characterize the normal  and exception outcomes 
of withdraw,  e x c e p t i o n  is bound to the expression 
( r e t u r n  = =  --1), while normal  is bound to the ex- 
pression ! e x c e p t i o n ,  (i.e., ! ( r e t u r n  = =  - 1 ) ) .  In 
addition to providing a binding for e x c e p t i o n  and 
normal ,  these bindings also define the meanings of the 
exception operator  < : >  and the function no rma l ly .  
These are described in the following paragraphs.  

The next two bindings provide short forms for the 
expressions ( e r r n o  = =  NEG_AMT) and ( e r r n o  
INS_FUND). 

The first assertion about  withdraw contains the excep- 
tion operator  < :> .  The exception operator  character- 
izes error situations by listing the conditions that  cause 
the function to have an exception outcome and relat- 
ing them to the error conditions that  result. More 
specifically, the exception operator  states tha t  if i t s  
left operand is true, then the function will have an ex- 
ception outcome (i.e., e x c e p t i o n  will be true), and if 
the function has an exception outcome and the right 
operand is true, then the left operand must  be true. 
The intent is that  the left operand defines the only pro- 
gram state that  can cause the part icular  exception out- 
come defined by the right operand, without  prohibit ing 
another independent exception outcome. 

This particular assertion states that  if arat is less than 
0 when wi thdraw is called, the function will have an 
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module bank { 

int errno; 
int NEG_AMT, INS_FUND; 

typedef int acct no; 

int balance(acct_no acct); 

int deposit(acct_no acct, int amt) 
semantics { 

balance(acct) == ~balance(acot)+ ~t, 
return == balance(acct) 

}; 

}; 

int withdraw(acct_no acct, int amt) 
semantics { 

exception := (return== --I), 
normal := !exception, 
negative_amount := (errno== NEGAMT), 
insufficient_funds := (errno == INS_FUND), 
~(amt < 0) <:> negative_amount, 
~(amt >balance(acct)) <:> insufficient_funds, 
exception ----> unchanged(balance(acct)). 
normally ( 

balance(acct) == ~balance(acct)--amt, 
return = =  balance(acct) 

) 
}; 

Figure 2: The Bank Module in ADL 

module bank { 

auxiliary { 
int balance(acct no acct); 

} 

int deposit(acct no acct,int amt) 

int withdraw(acct no acct,int amt) 

}; 

Figure 3: Au~liary Definitions in ADL 
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exception outcome (the function will return the value 
-1 ) .  Also if the function has an exception outcome and 
nega t ive_amount  is true ( e r r n o  = =  NEG_AMT), then 
amt had to be less than 0 when withdraw was called. 

Similarly, the second assertion about  withdraw states 
that  if amt is greater than the balance of account a c c t  

when withdraw is called, then the function will have 
an exception outcome. Also, if the function has an 
exception outcome and i n s u f f i c i e n t  funds  is true, 
then amt has to be greater than the balance of account 
a c c t  when wi thdraw was called. 

The third assertion about  wi thdraw contains a prede- 
fined function called unchanged. This function returns 
true if its argument has the same value after the call 
as before the call. This assertion therefore states that  
if wi thdraw has an exception outcome, the balance of 
account a c c t  will not change. 

The fourth assertion about  withdraw uses the prede- 
fined function normal ly ,  n o r m a l l y  takes an arbitrary 
number of boolean parameters and returns true if all its 
parameters are true whenever normal  is true. There- 
fore, on a normal return from the function being spec- 
ified, all the parameters of n o r m a l l y  must be true. 

This particular assertion states that  on a normal return 
from withdraw (i. e., the function does not return - 1 ) ,  
the balance in account a c c t  is decremented by afar, and 
the function returns the new account balance. 

The second example illustrates the use of auxiliary def- 
initions. Suppose the bank module did not define the 
function ba lance .  Then it would not be possible to 
write assertions for deposit and withdraw in the style 
of the previous example, since these assertions make use 
of the notion of ba l ance .  In this case, b a l a n c e  may be 
introduced as an auxiliary definition. Figure 3 shows 
the bank module with the function b a l a n c e  introduced 
as an auxiliary definition. The auxiliary definition must 
be bound to a C test function with the same parameter  
and result types as b a l a n c e  for testing to be possible. 

We are also refining the language definition to incor- 
porate better  and more state of the art specification 
features while keeping in mind that  ADL has to remain 
simple for use by the typical programmer.  

One example of a refinement we are considering is in 
the partial specification of types. Currently, ADL re- 
quires a specification to fully define the types it uses 
- -  therefore, in the specification of a stack, the type 
of the stack data  structure has to be completely de- 
fined. A straightforward solution to this problem is to 
implement opaque types, such as Ada's private types. 
We are also considering the use of partial type specifi- 
cations through subtyping very similar to the schemes 
used in Rapide [1, 4]. 

Another area of ongoing research is in applying ADL 
technology to other forms of testing than unit testing. 
Some approaches being considered are randomized test- 
ing, sequence testing, and concurrent testing. Each of 
these methods will have its own test specification lan- 
guage similar to TDD. 

Finally, research is currently underway to develop 
methods for translating ADL specifications into nat- 
ural language documents. 
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the work described in this paper. We have also received 
valuable comments and suggestions from our funders at 
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The original work on ADL was done by Sun Microsys- 
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3 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We are currently revising the ADL language to make its 
definition as a language framework more formal. When 
this phase is over, ADL will be defined as a set of high- 
level specification concepts such as the call-state oper- 
ator and the error specification constructs, with well- 
defined schemes for specializations to programming lan- 
guages. 
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