
ADL - - An Interface Definition Language for
Specifying and Testing Software

S r i r a m S a n k a r * and R o g e r H a y e s t

Sun Microsys tems Labora tor ies , Inc.

2550 Garc ia Avenue, UMTV29-112

M o u n t a i n View, Cal i fornia 94043-1100

A b s t r a c t

This paper describes an interface definition language
called ADL which extends OMG's CORBA inter-
face definition language with formal specification con-
structs. In addition to ADL's use in formal documen-
tation, ADL's primary use is for testing software. ADL
can be adapted for use with most programming lan-
guages.

This paper also presents an overview of a testing tech-
nology based on ADL and presents the highlights of a
test-data description language (TDD) used to describe
test-data.

1 I n t r o d u c t i o n

With the advent of large software systems, a lot of work
has gone into designing software languages in which sys-
tems may be divided into many reasonably sized com-
ponents, each of which can be dealt with more eas-
ily. This division requires a mechanism for the individ-
ual components to coexist and be developed simulta-
neously. Almost universally, this has been achieved by
splitting each component into two parts:

1. its interface - - a set of declarations of software en-
tities (such as types and operations) which are pro-
vided by this component and which may be used
by other components; and

2. its implementation - - the implementation of the
declarations in the interface.

*phone: (415)336-6230; email: srirarn.sankar@sun.com
l phone: (415)336-4237; email: roger.hayes@sun.com

Typically, the implementations are isolated from the
rest of the software system - - they may be modified
without having to rebuild the rest of the system. Most
common programming languages implement these con-
cepts in some way or the other. C provides a rudi-
mentary implementation of interfaces using header files,
C++ provides classes, and Ada provides packages.

More recently, an effort has been undertaken by OMG
called CORBA [2] (Common Object Request Broker
Architecture) where the goal is to design and imple-
ment a distributed environment within which objects
may coexist and interact with each other. These ob-
jects may be implemented in different programming
languages. The interfaces of these objects are written
out in a special language called IDL (Interface Defini-
tion Language). CORBA defines bindings from IDL to
programming languages such as C and C++ - - hence
interfaces written in IDL may be implemented in C or
C++. Bindings for many other programming languages
are forthcoming.

The main problem with these interfaces is that they
provide too little information about the components
they describe. For example, the interface of a function
usually only describes its parameter and result type
profile. It would be nice to be able to describe other
important properties of components. For this purpose
(among others), a new family of languages called speci-
fication languages [5] have been designed. Specification
languages may be used to describe the relevant aspects
of the behavior of software components without having
to overcommit an implementation. Examples of speci-
fication languages are Anna [6], Larch [3], and Z [7].

We, at the PrimaVera group at Sun Microsystems Lab-
oratories, Inc., have been working on specification tech-
niques for the past eight years. Our focus has been to
apply formal specification techniques to software test-
ing. We have concentrated our efforts to developing

ACM SIGPLAN Notices, Volume 29, No. 8, August 1994, IDL Workshop

13

testing tools for use with IDL interfaces. Given that
the IDL technology can be made to work with any pro-
gramming language for which bindings have been de-
fined, our testing technology can also be made to work
with any of these programming languages.

Pilot implementations of our test system have been un-
dertaken, and we have had significant results from these
experiments. An example of an anomaly discovered by
our testing tools was the way in which the w z i t e sys-
tem call updated the last modification t ime of a file.
On a particular version of the UNIX operating system,
performing a write with a 0 byte data value changed the
modification t ime on local files, but did not in the case
of remote files. The anomaly had not been detected ear-
lier, even though standard rigorous testing schemes had
been applied on this system call. The reason we were
able to detect this was due to the systematic nature of
developing the specifications and test-data descriptions.

After several years of internal development and deploy-
ment, we decided to make our work externally avail-
able. The PrimaVera technology was submitted in re-
sponse to a request for proposals for automated test-
ing technology issued by X/Open, and was selected
for a joint research project sponsored by a research
grant from Information-Technology Promotion Agency,
Japan (IPA), a governmental organization under Min-
istry of International Trade and Industry (MITI).

C o n t e n t o f t h i s p a p e r . This paper describes the
specification language we have developed as part of
our testing technology. This language, ADL (Assertion
Definition Language), enhances IDL with constructs for
behavior description of interface constituents. Given
that programmers will usually be most comfortable
writing specifications in a syntax familiar to them (i. e.,
a syntax similar to the programming language they
use), ADL has been designed as a language framework
providing high-level specification concepts. These con-
cepts may be specialized for any programming language
by rendering them in a syntax similar to that program-
ming language. In this paper, the ADL specialization
for ANSI C is used in examples 1.

The highlights of ADL are listed in Section 1.1. A more
detailed description with examples is provided in Sec-
tion 2. Finally, Section 3 describes ongoing research
activity in the language design.

In addition to ADL, this paper also presents an
overview of our testing technology in Section 1.2. Full

1 Readers familiar wi th IDL may realize tha t we have made
mino r modif icat ions to the under ly ing IDL syntax in the special-
ization process. However, we do ma in t a in a m app i ng to IDL.

details of the testing technology is the subject of a fu-
ture paper.

More information on the PrimaVera ADL project is
available in [8] and [9].

1 .1 A D L

ADL is a language designed for formal specification of
software components. Its interface definition constructs
are borrowed from IDL and provides mechanisms for
defining types, objects, and operations. In addition,
ADL defines a set of general-purpose specification con-
cepts applicable for the specification of software written
in most programming languages. Some of the key fea-
tures of ADL are listed below:

* ADL is a language framework that provides a set of
high-level specification concepts. These concepts
may be specialized for use with a programming
language by rendering them into a syntax similar
to that of the programming language.

* All ADL specifications are post-conditions on op-
erations (or functions) of software components.
Therefore, ADL specifications are constraints on
the program state at the time of termination of
operation evaluations.

* ADL specifications are written as separate units - -
i.e., they are not embedded in the program. The
ADL specification writer defines a binding between
the specifications and the functions in the program
to provide the necessary association.

• ADL specifications may be partial. Tha t is, the
complete details of the function do not have to be
written in ADL. Typically, ADL specifications are
augmented with informal natural language docu-
mentation.

• ADL provides specialized constructs for the spec-
ification of errors. Most specifications written as
natural language documents (such as UNIX man
pages) describe error situations separately. ADL's
error specification constructs allow a formal spec-
ification to be organized in a similar manner.

• ADL constructs are designed to allow translation
of formal specifications into natural language doc-
uments. ADL's constructs are at a high-level of ab-
straction and permit a specification writer to write
specifications very similar to the way they would
do it in a natural language, hence the translation
process is straightforward.

14

• ADL is well-suited for the purpose of testing soft-
ware components. Difficult to evaluate constructs
such as quantifiers have been excluded from the
language for the t ime being.

1 . 2 A D L T e s t i n g T e c h n o l o g y

To perform software testing, we need: (1) a piece of
software to test; (2) a description of what this software
does; and (3) a set of test-data on which to test the
software.

In our case, the piece of software is any ANSI C pro-
gram, and the description of what this software does is
the ADL specification of this program.

For the third component, we have implemented one
method for generating test-data. Test-data is de-
scribed symbolically in a special test-data description
language (TDD). This method is specifically for use
with unit testing. We have future plans to develop sim-
ilar schemes for other kinds of testing (such as sequence
testing).

When using TDD, the program under test is run with
many different test inputs in a systematic manner. Cor-
rect behavior is determined by examining the results of
the program or function in terms of the specification de-
scribing its behavior. Correct execution of the program
on these test inputs increases the level of confidence in
the program.

The TDD language offers the test designer a formal and
structured framework for describing test-data. TDD
provides a structure for characterizing and document-
ing the data used in testing. Through the use of TDD's
syntax, test-data becomes the subject of a design pro-
cess. The important features of TDD are listed below:

• Data is characterized in an abstract and system-
atic way. By using a formal system for notating
the description of test data, we focus on the test
designer's intention rather than on the details of
generating a particular instance of test input data.

• Test data is generated without prejudice. By iso-
lating the description of test data from its realiza-
tion, we explore what might otherwise have been
blind spots. TDD encodes the designer's insight
into formal descriptions, which are decompositions
of the properties of the data. These descriptions
are recombined into test cases. This ensures that
all combinations of properties are tested; with-
out the decomposition/recomposition process, it is

very easy to omit an important test because it does
not occur in an imagined scenario of use.

Input is characterized independently of any par-
ticular implementation. TDD describes the input
data from the point of view of a user of the tested
software component. A TDD description may be
constructed with insight into implementations, but
its correctness does not depend on a particular im-
plementation. This means that a TDD test suite
is portable across implementations.

Iteration over the test cases is systematic and thor-
ough. The regularity of the process allows for bet-
ter statistics. The regularity also helps reduce the
incidence of errors missed due to oversight.

Data manufacture is isolated. The messy task
of generating actual test values is encapsulated
in well-defined functions. These functions, that
translate symbolic descriptions into actual values,
can be used in manually written tests as well as in
ADL-generated tests.

Complete details of the TDD language may be obtained
from [9].

2 The A D L Language

ADL is a language framework designed for the formal
specification and testing of software components. ADL
defines a set of general-purpose specification concepts
applicable for the specification of software written in
most programming languages. ADL excludes specifi-
cation concepts that, although useful, are difficult to
implement using state of the art technology.

The concepts of the ADL language framework may be
specialized for use with a programming language by
rendering these concepts into a syntax similar to that
of the programming language. This syntax may then be
augmented with constructs from the programming lan-
guage, such as its expression syntax. This approach of
defining a language framework that may be specialized
for use with any language has been used successfully in
other projects, e.g., Larch [3] and Rapide [1].

The ADL language framework has been specialized for
use with the C programming language. We intend to
specialize ADL for use with C + + and Ada shortly.
For the purposes of this paper, ADL will be described
through its specialization for the C programming lan-
guage.

15

Figure 1: The Possible Outcomes of an Operation Evaluation

Other important aspects of ADL are described below.

• Post-condition specifications.
All ADL specifications are post-conditions on op-
erations (or functions) of software components.
Therefore, an ADL specification is a constraint on
the program state at the time of termination of
operation evaluation. This constraint may be con-
tingent on pre-operation program state by use of
the call-state operator.

This is an example of ADL's client orientation. An
ADL specification does not give conditions under
which the function must be called, but instead tells
what will happen if it is called.

• Non-intrusive.
ADL specifications are written as separate units - -
i.e., they are not embedded in the program (e.g.,
as in Anna). The ADL specification writer de-
fines a binding between the specifications and the
functions in the program to provide the necessary
association. This binding provides sufficient in-
formation for the ADL testing tools to generate
frameworks to test these functions.

This approach is non-intrusive to the extent that
the functions being specified need not be recom-
piled for testing purposes. Hence, the ADL testing
technology may be applied to precompiled code,
including code such as operating systems, that
by their very nature cannot be recompiled and
reloaded in a straightforward manner.

• Constructs for specification of errors.

Figure 1 illustrates the possible outcomes of an op-
eration evaluation. The outcomes can be divided
into two categories - - expected and unexpected. Ex-
pected outcomes (the white portion of Figure 1)
are those that are included in the documented be-
havior of the function, while unexpected outcomes
(the grey portion of Figure 1) are outcomes that
are not supposed to happen (e.g., (2-t-2) evaluating
to 5).

Our research has shown that it is convenient to di-
vide the expected outcomes of an operation into
normal and exception outcomes. This division
is usually subjective, but some general guidelines
may be laid down. For example the outcome of
(2-4-2) evaluating to 4 is usually considered a nor-
mal outcome, while the outcome of (128 -4-128) be-
ing an overflow is usually considered an exception
outcome.

ADL provides constructs to separate the handling
of normal and exception outcomes of an operation,
and to specify against unexpected outcomes.

Simple natural language mapping.
One of the mandates of the ADL project has been
to develop a capability to transform a specifica-
tion written in ADL into an equivalent natural
language representation. This problem is, in gen-
eral, untractable. However, ADL's constructs are
at a high-level of abstraction and permit a spec-
ification writer to write specifications very simi-
lar to the way they would do it in a natural lan-
guage. The error specification mechanisms dis-
cussed earlier are an example of these high-level

16

constructs. The task of translating ADL specifica-
tions into equivalent natural language documents
(e.g., UNIX man pages) becomes quite simple if
the specification writer adheres to these high-level
constructs while writing ADL specifications.

Enables testing.
The fact that the ADL design emphasizes appli-
cability to testing of software components has al-
ready been mentioned. We reiterate this in the
context of the other features such as the specifica-
tion being non-intrusive, and being from a client's
point of view. Furthermore, specification con-
structs such as quantifiers and algebraic specifica-
tions have been omit ted from the current version
of ADL. We have plans to explore the introduction
of these constructs in the future.

2 . 1 A D L C o n s t r u c t s

The constructs provided by the ADL framework are
described in this section. Some of these constructs are
illustrated through examples in Section 2.2.

An ADL specification is made up of a set of modules 2.
Each module encapsulates a set of constituents that
describe the entities in the C program that are being
specified. Modules may also refer to each other's con-
stituents by importing constituents from one module to
another.

A constituent of a module may be one of the following:

• Type constituent.
A type constituent defines a type and gives it a
name. Its syntax is identical to C type definitions.

* Object constituent.
An object constituent introduces an object 3 and
associates it with a type. Its syntax is similar to
that of a C object declaration. Objects introduced
by object definitions are bound to C objects with
the same type.

o Function constituent.
A function constituent introduces a function and
specifies its parameter and result types. Its syntax

2We are describing the specialization of ADL to C in this
paper . In this specialization, an interface in C which is a header
file is modeled as a module in ADL. We have reserved the keyword
"interface" for use with C + + classes in a for thcoming extension
of this ADL specialization.

3The word "object" is used here in the same sense as in C.

is similar to that of a C function declaration. Func-
tions introduced by function definitions are bound
to C functions that have the same parameter and
result types.

Function constituents may contain semantic descrip-
tions. A semantic description describes the behavior
of the C function that is mapped to its function con-
stituent. The semantic description constrains the pro-
gram state at the end of calls to this C function. A
semantic description has two components:

• Bindings.
Bindings are associations between expressions and
names. These names may be used subsequently as
a short form for their associated expressions.

• Assertions.
An assertion is a boolean expression that must be
true whenever control returns from the function
constrained by the semantic description.

It is often useful to make use of existing specification
concepts while writing assertions. Sometimes these
concepts may already exist as part of a module. How-
ever, there will be situations where these concepts are
missing. In such situations, missing, but necessary,
specification concepts can be declared as auxiliary def-
initions. Auxiliary definitions are simply ADL decla-
rations that are visible only within bindings and asser-
tions.

P r e d e f i n e d A D L o p e r a t o r s a n d f u n c t i o n s . Some
of ADL's primitives for use in semantic descriptions are
described below:

• Call-state operator.
The call-state operator ("@") takes one argument
and evaluates it at the time of call to the function
being specified.

• normal and exception.
normal and exception are predefined names that
may be bound to boolean expressions that charac-
terize the normal and exception outcomes respec-
tively (see Figure 1).

• Implication operators.
ADL provides the standard logical implication and
equivalence operators. It also provides a exception
operator (< :>) , that characterizes error situations
by listing the conditions that cause the function to

17

have an exception outcome and relates them to the
error conditions that take place. This operator is
used to characterize the exception outcomes of the
function being specified.

• n o r m a l l y .

This is a function tha t characterizes the normal
outcomes of the function being specified. It takes
a list of boolean parameters tha t must all be true
on any normal outcome.

2 . 2 A D L E x a m p l e s

This section provides two examples of an ADL spec-
ification of a bank module. The first example de-
fines three operations b a l a n c e , d e p o s i t , and wi thdraw
within a module. These functions map to C functions
with similar names and signatures. The specifications
writ ten in ADL describe the intended behavior of these
C functions. The ADL specification is shown in Fig-
ure 2.

The bank specification of Figure 2 contains 7 con-
stituents:

1. e r rno : This is an object constituent. It is defined
to be of type i n t . This maps to the s tandard C
global variable e r rno .

2. NEG_AMT: This is also an object constituent. It
describes a part icular value tha t e r r n o can take.
This maps to a C integer constant.

3. INS_FUND: Just as NEG_AMT, this describes another
value tha t e r r n o can take and maps to a C integer
constant.

4. acct . .no: This is a type constituent. This defines
a c c t no as another name for i n t .

5. b a l a n c e : This is a function constituent. It de-
scribes a function tha t takes a parameter a c c t
of type a c c t _ n o and returns a value of type i n t .
b a l a n c e maps to a C function with the same name,
and same paramete r and return types.

6. d e p o s i t : This is another function constituent. It
takes two parameters and has a semantic descrip-
tion associated with it. Just as in the case of
b a l a n c e , this too maps to a C function with the
same name, and same parameter and return types.

7. withdraw: This is another function constituent
with a more detailed semantic description.

S e m a n t i c D e s c r i p t i o n s :

The semantic description of deposit contains two as-
sertions. The first assertion contains the call-state op-
erator "@". The call-state operator evaluates its argu-
ment (in this case b a l a n c e (a c c t)) in the state at the
t ime the function is called. This assertion states that
the balance of account a c c t (i.e., b a l a n c e (a c c t)) after
the call to d e p o s i t is equal to the sum of the balance
before the call and the amount deposited (i.e., amt).

The second assertion about d e p o s i t contains the re-
served word r e t u r n . This is used to refer to the value
returned by the function (in this case d e p o s i t) . This
assertion states tha t the value returned by d e p o s i t is
the new balance of account a c c t .

The semantic description of wi thdraw contains four
bindings (the first four lines) and then a list of asser-
tions. The bindings bind expressions to names. Use of
these names in subsequent expressions then refer to the
bound expressions.

The first two bindings bind expressions to the spe-
cial names exception and normal. The bindings
to these names together with their use in specifica-
tions characterize the normal and exception outcomes
of withdraw, e x c e p t i o n is bound to the expression
(r e t u r n = = --1), while normal is bound to the ex-
pression ! e x c e p t i o n , (i.e., ! (r e t u r n = = - 1)) . In
addition to providing a binding for e x c e p t i o n and
normal , these bindings also define the meanings of the
exception operator < : > and the function no rma l ly .
These are described in the following paragraphs.

The next two bindings provide short forms for the
expressions (e r r n o = = NEG_AMT) and (e r r n o
INS_FUND).

The first assertion about withdraw contains the excep-
tion operator < :> . The exception operator character-
izes error situations by listing the conditions that cause
the function to have an exception outcome and relat-
ing them to the error conditions that result. More
specifically, the exception operator states tha t if i t s
left operand is true, then the function will have an ex-
ception outcome (i.e., e x c e p t i o n will be true), and if
the function has an exception outcome and the right
operand is true, then the left operand must be true.
The intent is that the left operand defines the only pro-
gram state that can cause the part icular exception out-
come defined by the right operand, without prohibit ing
another independent exception outcome.

This particular assertion states that if arat is less than
0 when wi thdraw is called, the function will have an

18

module bank {

int errno;
int NEG_AMT, INS_FUND;

typedef int acct no;

int balance(acct_no acct);

int deposit(acct_no acct, int amt)
semantics {

balance(acct) == ~balance(acot)+ ~t,
return == balance(acct)

};

};

int withdraw(acct_no acct, int amt)
semantics {

exception := (return== --I),
normal := !exception,
negative_amount := (errno== NEGAMT),
insufficient_funds := (errno == INS_FUND),
~(amt < 0) <:> negative_amount,
~(amt >balance(acct)) <:> insufficient_funds,
exception ----> unchanged(balance(acct)).
normally (

balance(acct) == ~balance(acct)--amt,
return = = balance(acct)

)
};

Figure 2: The Bank Module in ADL

module bank {

auxiliary {
int balance(acct no acct);

}

int deposit(acct no acct,int amt)

int withdraw(acct no acct,int amt)

};

Figure 3: Au~liary Definitions in ADL

19

exception outcome (the function will return the value
-1) . Also if the function has an exception outcome and
nega t ive_amount is true (e r r n o = = NEG_AMT), then
amt had to be less than 0 when withdraw was called.

Similarly, the second assertion about withdraw states
that if amt is greater than the balance of account a c c t

when withdraw is called, then the function will have
an exception outcome. Also, if the function has an
exception outcome and i n s u f f i c i e n t funds is true,
then amt has to be greater than the balance of account
a c c t when wi thdraw was called.

The third assertion about wi thdraw contains a prede-
fined function called unchanged. This function returns
true if its argument has the same value after the call
as before the call. This assertion therefore states that
if wi thdraw has an exception outcome, the balance of
account a c c t will not change.

The fourth assertion about withdraw uses the prede-
fined function normal ly , n o r m a l l y takes an arbitrary
number of boolean parameters and returns true if all its
parameters are true whenever normal is true. There-
fore, on a normal return from the function being spec-
ified, all the parameters of n o r m a l l y must be true.

This particular assertion states that on a normal return
from withdraw (i. e., the function does not return - 1) ,
the balance in account a c c t is decremented by afar, and
the function returns the new account balance.

The second example illustrates the use of auxiliary def-
initions. Suppose the bank module did not define the
function ba lance . Then it would not be possible to
write assertions for deposit and withdraw in the style
of the previous example, since these assertions make use
of the notion of ba l ance . In this case, b a l a n c e may be
introduced as an auxiliary definition. Figure 3 shows
the bank module with the function b a l a n c e introduced
as an auxiliary definition. The auxiliary definition must
be bound to a C test function with the same parameter
and result types as b a l a n c e for testing to be possible.

We are also refining the language definition to incor-
porate better and more state of the art specification
features while keeping in mind that ADL has to remain
simple for use by the typical programmer.

One example of a refinement we are considering is in
the partial specification of types. Currently, ADL re-
quires a specification to fully define the types it uses
- - therefore, in the specification of a stack, the type
of the stack data structure has to be completely de-
fined. A straightforward solution to this problem is to
implement opaque types, such as Ada's private types.
We are also considering the use of partial type specifi-
cations through subtyping very similar to the schemes
used in Rapide [1, 4].

Another area of ongoing research is in applying ADL
technology to other forms of testing than unit testing.
Some approaches being considered are randomized test-
ing, sequence testing, and concurrent testing. Each of
these methods will have its own test specification lan-
guage similar to TDD.

Finally, research is currently underway to develop
methods for translating ADL specifications into nat-
ural language documents.

A c k n o w l e d g e m e n t s

All members of the PrimaVera group has contributed to
the work described in this paper. We have also received
valuable comments and suggestions from our funders at
X/Open Co Ltd and IPA, Japan and from other people
within Sun Microsystems Laboratories.

The original work on ADL was done by Sun Microsys-
tems Laboratories, Inc. This has now been extended in
collaboration with X/Open Co Ltd with funding from
the Information-Technology Promotion Agency (IPA),
Japan. All results are being made publicly available
and open industry review is invited.

3 C o n c l u s i o n s a n d F u t u r e W o r k

We are currently revising the ADL language to make its
definition as a language framework more formal. When
this phase is over, ADL will be defined as a set of high-
level specification concepts such as the call-state oper-
ator and the error specification constructs, with well-
defined schemes for specializations to programming lan-
guages.

R e f e r e n c e s

[1] Frank Belz and David C. Luckham. A new approach
to prototyping Ada-based hardware/software sys-
tems. In Proceedings of the ACM Tri-Ada Confer-
ence, Baltimore, December 1990. ACM Press.

[2] Digital Equipment Corporation, Hewlett-Packard
Company, HyperDesk Corporation, NCR Corpora-
tion, Object Design, Inc., and SunSoft, Inc. The

20

Common Object Request Broker: Architecture and
Specification, omg document number 91.12.1 edi-
tion, December 1991. Revision 1.1.

[3] J. V. Guttag, J. J. Horning, and J. M. Wing. The
Larch family of specification languages. IEEE Soft-
ware, 2(5):24-36, September 1985.

[4] Dinesh Katiyar and Sriram Sankar. Completely
bounded quantification is decidable. In Proceedings
of the ACM SIGPLAN Workshop on ML and its
Applications, pages 68-77, San Francisco, Califor-
nia, June 1992.

[5] B. Liskov and S. Zilles. Specification techniques for
data abstraction. IEEE Transactions on Software
Engineering, SE-1(1):7-19, March 1975.

[6] David C. Luckham, Friedrich W. von Henke, Bernd
Krieg-Briickner, and Olaf Owe. ANNA, A Language
for Annotating Ada Programs, volume 260 of Lec-
ture Notes in Computer Science. Springer-Verlag,
1987.

[7] J. M. Spivey. Understanding Z, A Specification Lan-
guage and its Formal Semantics. Cambridge Unver-
sity Press, 1988. Tracts in Theorectical Computer
Science, Volume 3.

[8] Sun Microsystems Inc., U.S.A., and Information-
Technology Promotion Agency, Japan. ADL
Language Reference Manual, document number
MITI/0002/D/0.1 edition, August 1993.

[9] Sun Microsystems Inc., U.S.A., and Information-
Technology Promotion Agency, Japan. ADL
Translator Design Specification, document number
MITI/0001/D/0.1 edition, August 1993.

21

