THE INFLUENCE OF PRODUCTIONS ON DERIVATIONS AND PARSING
{Extended Abstract)

Benton L. Leong and Detlef Wotschke

Computer Science Department
The Pennsylvania State University
University Park, PA. 16802

ABSTRACT

The concept of grammar forms [4,5] provides
evidence that there seems to be no way to base the
definitions of many grammar types used in parsing
and compiling solely on the concept of productions.

Strict interpretations, as introduced in [3,5],
of unambiguous or LR(k) grammar forms generate un-
ambiguous or LR{k) Tlanguages, respectively. This
is not true in the LL(k) case.

It is decidable whether a strict interpreta-
tion of an unambiguous grammar form is unambiguous.
For any two compatible strict interpretations G1
and G2 of an unambiguous grammar form it is de-
cidable whether L(G;)< L(GZ), L(G])n L(G2)= 2,
finite, or infinite.

For every grammar form F] there exists a
grammar form F2 such that the grammatical family
of F1 under unrestricted interoretations is
equal to the grammatical family of F2 under

strict interpretations.

I. INTRODUCTION

The definitions of most grammar types that are
used for parsing and compiling depend on the con-
cept of a derivation. For example, the definition
of an LR(k) grammar depends on rightmost deriva-
tions, while the definition of an LL(k) grammar

depends on Teftmost derivations. On the other hand,

the definition of a linear context-free grammar, for
instance, depends solely on the concept of a produc-
tion. We will show in section II that the concept
of grammar forms ([4], [5]) provides evidence that
there seems to be no way to base the definitions of
many grammar types used in parsing and compiling
solely on the concept of productions instead of
derivations.

Bertsch has shown in [3] that so-called strict
interpretations [3,5] of unampiguous grammar forms
require essentially the same parsing time, up to a
multiplicative constant c, as the underiying unam-
biguous grammar form. One of the conditions, which
is quite restrictive and essential for the proof,
is missing in the definition of a strict interpreta-
tion in [3]. So the question arises: how restric-
ted are strict interpretations. We will prove in
section III that strict interpretations of unambig-
uous or LR(k) grammar forms generate unambiguous
or LR(k) Tlanguages, respectively. This is not so
in the LL case. It is decidable whether a strict
interpretation of an unambiguous grammar form is un-
ambiguous. For any two "compatible" strict interpre-
tations G] and 62 of an unambiguous grammar form
it is decidable whether L(G1)S L(Gz) and whether
L(G1) nL(Gz) is empty, finite, or infinite.

In section IV we will compare grammar forms with

strict and unrestricted interpretations. Specifi-
cally we will show that for every grammar form F1
there exists a grammar form F2 such that the gram-
matical family of F] under unrestricted interpre-
tations is equal to the grammatical family of F2
under strict interpretations. There are cases
where F2 has to be ambiguous although F] is un-

ambiguous .

A few open problems will be Tisted in section

I1. THE INFLUENCE OF PRODUCTIONS ON DERI-
VATIONS

For many years a considerable amount of time
and effort has been spent defining and investigating
grammars which are useful as models for programming
languages. Among these grammars are, to name only
a few, LR(k) grammars, LL(k) grammars, bounded-
context grammars, {m,n) precedence grammars, simple
precedence grammars (cf.‘[l] as a survey reference).
Although all these models differ quite significant-
ly from each other in their definitions as well as
in their parsing techniques, almost all of them
,have one thing in common: their definitions rely
heavily on the concept of a derivation. We omit
quoting the definitions of LR(k)-, LL(k)-, simple
precedence grammars, etc. But clearly part of the
definition of an LR(k) grammar is the underlying
rightmost derivation. Similarly the definition of
an LL(k) grammar depends on the underlying left-
most derivation. As a consequence, testing a
grammar for LR(k)-ness, LL(k)-ness (for a given k)
involves more, at least in the general case, than a
mere checking of whether each production in the
given production table is of a certain form. In
many instances, testing a grammar for LR{k)-ness or

LL(k)-ness (for a given k) requires quite an in-

volved computation.

There are, of course, other ways to define
grammars in general, and specific types of context-
free grammars in particular. For example, it is
extremely easyhto define and understand the notion
of a Tinear context-free grammar. Likewise, it is
a trivial task to test whether a given grammar is a
Tinear context-free grammar, a regular grammar, a
context-free grammar, etc.

The immediate question comes up whether it is
really necessary to define LR(k) grammars, LL(k)
grammars, etc. in terms of derivations rather than
just productions. 1In other words, do there or do
there not exist methods to define LR(k)-, LL{k)-,
simple pretedence grammars, etc. by merely placing
certain restrictions on the production type allowed.
This question is extremely important since restric-
tions on productions are generally easier to under-
stand than restrictions on derivations. Many proofs
(e.g., the equivalence of deterministic pushdown
automata and LR(1) grammars) would hopefully become
simpler if the grammar definitions were based on
production types rather than on derivation types.

It was often assumed that such a "production-char-
acterization" is probably not possible, partly be-
cause of the following reason: it is undecidable,
for example, whether a given context-free grammar is
an LL(k) grammar or LR(k) grammar for any k ([11).
It is therefore impossible to find a characteriza-
tion (in terms of production-types) of LR(k)-,
LL(k) grammars etc. Otherwise, one could decide
whether or not a given grammar is LL{k) or LR(k)
for any k by simply checking each production for
"characteristic" properties, assuming, of course,
that testing for these '"characteristic" properties

is a decidable taskﬂ

However, it is decidable whether a grammér is
LR(k), LL(k) for any fixed k, and it is also de-
cidable whether a grammar is a simple precedence
grammar [1]. . So it is not at all clear whether or
not there exist characterizations of LL(k)-, LR(k)
grammars (for fixed k), or simple precedence gram-
mars in terms of productions. Before one can start
investigations of this kind one has to have a well-
defined concept of what a characterization in terms
of productions should be. Such a concept, that of
a grammar form, has been established by Cremers and

Ginsburg ([41,[51]).

Definition II.1: A (context-free) grammar form is

a 6-tuple F=(v,s,V,Z,P,S) where
1} v 1is an infinite set of abstract symbols,
2) 8 is an infinite subset of ¥ such that
y-5 is infinite, and
3) GF= (V,z,P,S), called the form grammar (of
F), is a (context-free) grammar ([6],[11])
with vev, res, and (V-z) < (v-9).
We assume throughout this paper that v and s
are fixed infinite sets satisfying (1) and (2)
above. We will only consider grammar forms which
have a context-free form grammar and will there-
fore omit the attribute "context-free" in many

instances.

Definition II.2: An interpretation of a grammar

form F={(v,s,V,%,P,$) is a 5-tuple

1= (p,VI,ZI,PI,SI), where
1) u is a substitution on V* such that

i) u(a) is a finite subset of s* for

each element a in I,

ii) u(A) is a finite subset of v-5 for
each A in V-I, and

iii) u(A)nu(B)=p for each A and B 1in
V-r if A#B,

2) PI is a subset of u(P)= u u(w), where
meP
ula~>8)={u>vjueu{a), ven(g)l,

3) SI is in u(S), and

4) ZI(VI) contains all symbols in Z(V)
which occur in PI (together with SI).

GI= (V-Zg,P SI) is called the grammar‘

I’
of 1.

A grammar form gives rise to a family of gram-
mars, which are structurally related to the form
grammar, by means of interpretations of the form
grammars.

For brevity, an interpretation I is frequent-
1y written as (u,GI). Since the productions in GI
are structurally related to the form grammar GF’
we sometimes will call GF a "master grammar."
Since Vv and § are fixed, we will use the phrase
"an interpretation of G", where G=(V,I,P,S),
rather than "an interpretation of F", where

F=(v,s,V,z,P,S).

Definition 11.3: For each grammar G, ¢{G)=

{GIII an interpretation of G} 1is called the

family of grammars {of G) and L(G)= {L(GI)IGI is

in G{G)} the grammatical family (of G). A col-

lection L of languages is a grammatical family if

L=L(G) for some grammar G.

It was shown in [4] that the linear context-
free languages, the regular languages, and the con-
text-free languages all constitute grammatical fami-
Ties. For the sake of exposition we briefly list
grammar forms for the above mentioned classes of

languages.

1) Let G be a grammar with P={S->aS,5~e}.
Then clearly L(G) 1is the family of regular
languages.

2) Let G be a grammar with P={S-aSa,S~e}.

Then L(G) is the family of all linear context-

free languages.

3) Let G be a grammar with P={S->SS5,S+a}, then
L(G) 1ds the family of all context-free langu-
ages.

The above examples demonstrate that grammar forms

are a reasonable model for production types.

Using this model of grammar forms it is very
easy to show that many classes of grammars that
possess interesting parsing properties do not form
families of grammars and that it is therefore highly
unlikely that their relevant features can be ex-
pressed in terms of productions. But first we re-

state the following theorem from [4}:

Theorem I1I.4: For each grammar G, L(G) is closed
under union, homomorphism, and intersection with
regular sets.

We can now state:

Theorem I1.5: Each of the following classes of
grammars does not form a family of grammars:
1) LL(k) grammars for arbitrary k
2) LR(k) grammars for arbitrary k
3) LL{k) grammars for arbitrary, but fixed
k
4) LR(k) grammars for arbitrary, but fixed
k
5) Strong LL(k) grammars for any given k
6) Simple LR(k) grammars for any given k
7} Strict deterministic grammars
8) Simple precedence grammars
9) Uniquely invertible extended precedence
grammars
10) Uniquely invertible weak precedence gram-
mars
11) Simple mixed strategy precedence grammars

12) Mixed strategy precedence grammars

13} (1,1) bounded right context grammars

14) Bounded right context grammars.

Proof: Consider the following two grammars G]=

(V],Z-l,P],S]) and GZ=(V2,22,P2,SZ) where

V=V, = {a,b,c,S}

1
Z] = 22= {a,b,c},
P] = {S~>aSh, S~c}, and

P2 = {S~>aSbb, S~c}.

Clearly L]=L(G])={ancbn|n20} and L=
L(G2)= {ancbznln >0}. Let G, denote the class of
all grammars of type i) (i=1,...,14) as listed in
the theorem. Thus G, s the class of all LL(k)
grammars for arbitrary k, etc. It is well known
that for i=1,...,14 the languages which can be
generated By grammars in G; are deterministic
context-free [1]. Moreover grammars G] and 62
belong to Gy for every i=1,...,14.

So let us assume that for some i, where
1<i<14, Gi is a family of grammars, i.e. there
exists a grammar G such that G(G)= G;. Hence

G1 and G, belong to ¢(G) and L(G]) and L(GZ)

2
belong to the grammatical family L(G). Since L(G)
is closed under union, it follows that L1 uL2 is

also in L(G) and hence there exists a grammar GI
which is an interpretation grammar of the grammar

G such that L]uL2=L(GI).
G(G) and thus to G- Since L] uL2 is not a

Hence GI belongs to

deterministic context-free language [7] we obtain a

contradiction. [

It is therefore reasonable to assume that for
all the above mentioned grammar types there does not
exist any natural way to define them in terms of
productions.

We would be misleading the reader if we did not

investigate the previously asked question from a

slightly different point of view: There are con-
text-free grammars which generate LL(k) languages,
but which themselves are not LL(k) grammars. Thus
the family of LL(k) grammars is a proper subset of
the family of all grammars that generate exactly the
LL{k) Tlanguages. Similar situations occur for the
other types of grammars listed above. Thus our
claim that restrictions on productions and restric-
tions on derivations have very Tittle connection
would be only partially true if one could charac-
terize, for example, all grammars that generate
LL(k) languages for a given k in terms of a pro-
duction type. However, a trivial change of the
proof of theorem II.5 shows that, even from this
modified point of view, there is only little con-
nection between productions and derivations. We

therefore 1ist as a corollary:

Corollary: Each of the following classes of lan-
guages does not constitute a grammatical family,
i.e., there is no grammar form F such that all
interpretation grammars of F generate exactly any
one of the following classes of languages:
1) LL(k) Tanguages for arbitrary k
2) LR(k)
3) LL{(k)
4) LR(k)

languages for arbitrary k
languages for any given k
languages for any given k
5) Strong LL{k) Tanguages for any given k
6) Simple LR(k) languages for any given k
7) Strict deterministic Tanguages
8) Simple precedence languages
9) Uniquely invertible extended precedence
languages
10) Uniquely invertible weak precedence lan-
guages
11) Simple mixed strategy precedence languages

12} Mixed strategy precedence languages

13) (1,1) bounded right context languages

14) Bounded right context languages.
Other classes of grammars and languages that have
interesting parsing properties are the unambiguous
grammars and languages of ambiguity degree k. The
definition of unambiguity and ambiguity of degree
k is based on the concept of derivations. Here
too, we can easily show that there seems to be no
way to "grasp" the concept of unambiguity solely in

terms of productions.

Theorem II.6: Each of the following classes of
grammars does not constitute a family of grammars:
1) Unambiguous context-free grammars
2) Ambiguous context-free grammars
3) Context-free grammars with ambiguity de-
gree <k for any given k&

4) Context-free grammars with ambiguity de-

gree =k for any given k

Proof: to 1) Assume that there is a grammar G
such G(G) equals the class of all unambiguous con-
text-free grammars. Then the grammar G=(V,Z,P,S)
has to be unambiguous since G is clearly an inter-
pretation grammar of itself. Furthermore, L(G) has
to be an infinite language, since otherwise all
grammars in ¢(G) and thus all unambiguous context-
free grammars could generéte only finite languages
which clearly is a contradiction. Hence there
exists a symbol Ae (V-I) such that S;qu;
uvAyz; uvxyz for some u,v,x,y,zez*. We define
an interpretation of G as follows:

w(a) = {a} for every oeV-{A}

u(A)={A,A'} where A'¢V.
Then GI =(Vu{A'},Z,n(P),S) 1is an interpretation
of G.

Hence GI should be an unambiguous grammar.

However GI is a grammar with an infinite degree of

k. k k+1

ambiguity. The string uv xy z has 2 leftmost

derijvations, for every k=1.

to 2) Assume that there is a grammar G
such that @G(G) equals the class of all ambiguous
grammars. Then G has to be ambiguous. It is tri-
vial to find an unambiguous interpretation of G

and thus arrive at a contradiction.

to 3 and 4) Similar to cases 1) and 2). [

The class of grammars that generate unambiguous con-
text-free languages is strictly larger than the
class of unambiguous grammars. So again we have to
address the question whether all grammars generating
unambiguous context-free languages can be character-
ized in terms of productions. The answer is again

"noll.

Theorem II.7: Each of the following families of
languages does not constitute a grammatical family:
1) Unambiguous context-free languages, and
2) inherently ambiguous context-free langu-

ages.

Proof: To 1) It is well known that there are in-
herently ambiguous context-free languages [11].
So if there exists a grammar G such that ZL(G)
equals the set of all unambiguous context-free
languages then L(G) contains all context-free
languages since L{G) is closed under homomor-
phism and since every context-free language L]
can be expressed as h(Lz) with h a homomorphism
and L2 an unambiguous qontext—free language.
Thus we obtain a contradiction.

To 2) Similar to proof of part two of

Theorem I1.6. [J

I11, THE INFLUENCE OF PRODUCTIONS ON
PARSING

In [3] Bertsch has shown that so-called strict

interpretations{3,5] of unambiguous grammar forms

can be parsed in essentially the same time (up to a
multiplicative constant ¢) as the underlying unam-
biguous form grammar. One of the conditions, which
is quite restrictive and essential for a proof in
[3] (cf. Theorem III.3), is missing in the definition
of a strict interpretation in [3]. So the following
question arises: "How restrictive are strict inter-
pretations?" We will show that grammars given by
strict interpret;tions of an unambiguous form gram-
mar generate only unambiguous languages. Similarly,
strict interpretations of an LR(k) grammar gene-
rate only LR(k) languages. This is not so in the
LL case. Finally, we will prove that it is de-
cidable for a given unambiguous grammar form whether
a strict interpretation is unambiguous or not. It
is also decidable for two "compatible" strict inter-
pretations G] and 62 of an unambiguous form
grammar whether L(G])E L(GZ)’ L(G1) =L(G2), and
whether L(G]) nL(GZ) is empty, finite, or infinite.

The formal framework used in [3] is that of
x-categories and x-functors. The reader is refer-
red to [21,[3].,[121,[13],[17], and [20] for further
details on these concepts. The definition of a
strict interpretation given in [3] is as follows:
An interpretation I =(p,VI,ZI,PI,SI) (of a grammar
form F=(v,5,V,z,P,S)) is a strict interpretation
if

u(a) is a finite subset of S where aelL.

We quote the following theorem from [3].

Theorem III.1: Let GF be the form grammar of a
context-free grammar form F. Then GI is the
grammar of a strict interpretation of F if and
only if there exists a length-preserving x-func-
tor ¢: GI<+GF.

One can immediately show that if wu(a)nu(b)#9

for two symbols a.and beZ (a case that is al-

lowed under the definition of a strict interpreta-
tion in [3]) then one cannot construct the length-
The additional
u(a) nu(b) =9

Thus we need to add this condi-

preserving x-functor ¢: GI—>GF.
condition needed is one that requires
for all a, bexX.
tion to the definition of a strict interpretation.

(Definition III.2 was also used in [5].)

Definition III.2: An interpretation I=

(u,VI,ZI,PI,SI) (of a grammar form F=(v,s,V,%,P,S))
is a strict interpretation if

1) u(a) is a finite subset of 5 Yael

length-preserving property) and

)
(

2) u(a)nu(b)=p VYa, bex
(disjoint-images property).

With this definition of a strict interpretation
Theorem III.1 holds.
We would 1ike to quote the following Theorem

from [3]:

Theorem II1I.3: Let ¢: G]-»G2 be a length-preser-

ving functor, where G] and G2 are context-free
grammars and G2 is unambiguous. Suppose there is
an algorithm which will construct a parse for
WEL(GZ) and reject th(Gz) in less than
f(lw])

algorithm which will accept we L(G]) and reject

steps. Then there is a constant ¢ and an
W L(G]) in less than cf(|w|) steps.

An obvious consequence, as stated in [3], is:

Corollary: Let GF be an unambiguous form grammar
of a grammar form F. Then strings iné L(GI) for
a strict interpretation GI of GF can be parsed
in essentially the same time (up to a multiplicative
constant ¢) as strings in L(GF).

One of the reasons for mentioning the above
facts is that strict interpretations are more re-
And as we will

stricted than one might suspect.

now show, it is the disjoint images property, and

not so much the length-preserving property, that
1imits the applicability of Theorem III.3 and its
Corollary. Most of the proofs in the remainder are
only sketched, and the interested reader is refer-

red to [14].

Theorem III.4: For every form grammar GF of a
grammar form F there exists a grammar form F
such that L(GF) is equal to the class of all lan-
guages that can be generated by grammars given by
length-preserving interpretations of F. If GF is
unambiguous then GF can be made unambiguous.

In order to show that the context-free langu-
ages can be generated by grammars given by length-
preserving interpretations of an unambiguous gram-

mar form, we state the following theorem:

Theorem II1.5: There is an unambiguous form grammar
G of a grammar form F such that L(GF) is equal
to the class of context-free languages.
The proof of Theorem III.5 uses the following
facts:
1) There is an unambiguous grammar G which gene-
rates the Dyck-language over two letters [6].
2) L(G) 4s infinite.
3) L(G) is closed under homomorphism, inverse
homomorphism, and intersection with regular sets.
4) Every context-free language L can be expressed
L3 (D) R)
homomorphisms, R a regular set, and D=L(G).

as L=h(h with h, and h, being
Combining Theorems III.4 and III.5 we obtain

the following corollary:

Corollary: There is an unambiguous form grammar GF
such that the grammars given by length-preserving
interpretations of GF generate exactly the con-
text-free languages.

Hence, the length-preserving property is not

very stringent and it does not 1imit the applicabil-
ity of Theorem III.3. However, the case is quite
different with respect to the disjoint-images pro-
perty which Timits the applicability of Theorem
I11.3.
interpretations are more "structure preserving" than

unrestricted interpretations.

Notation: Henceforth we will use the following no-
tation:
GS(GF)= {G|G s a strict interpretation of
GF}, and
s(6

F) = (L(68)[6e6°(G)]

Theorem III.6: 1If GF is an unambiguous form gram-
mar with L(GF) infinite then there are strict
interpretations of GF that are ambiguous.

However, the existence of a length-preserving
functor ¢: GI~>GF for a strict interpretation GI
of an unambiguous grammar GF tells us that, al-
though there might be many distinct leftmost deri-
vations for a string WEZL(GI), that the corre-
sponding derivation trees look the same. They
might differ only in their labels for the non-
terminal nodes. Thus one suspects that strict in-
terpretations of‘unambiguous form grammars generate
only unambiguous languages. This is proven by the

following theorem:

Theorem III.7: Let GF be an unambiguous form
grammar and let G be an arbitrary strict inter-
pretation of GF' Then there exists (effectively)
an unambiguous grammar G' such that L{G)=L(G').
The proof of Theorem III.7, which is based on
Definitions III.8 and III.10, Lemma III.9, and
Algorithm D, follows from Lemma III.17 and Lemma

ITI.12.

Definition II1.8: Let G=(V,Z,P,S) be a context-

But this also has an advantage in that strict

free grammar. Let GI= (VI,ZI,PI,SI) be a strict
interpretation grammar of G given by wu. A merge
set for Gy s M<Su(B) such that BeV-Z, and
such that (VB' e M)(vB" eVI-EI)

[(B' &M and B"eM) iff (JaeV ™)

[B'>aeP de“+ae%]L

I
Lemma III1.9: Let G=(V,Z,P,S) be a context-free
grammar. Let GI= (VI,ZI,PI,SI) be a strict inter-
pretation given by wp. If G is unambiguous but
GI is ambiguous, then there exists a merge set.for
GI'

Definition I11.10: Let GeG (G.) under wu. Then

F)
M(G) = {M|M is a merge set for G under wu}.

Algorithm D: Let Gp= (VF,ZF,PF,SF) be an unambi-
guous context-free grammar. Let
G= (V,Z,P,S)E:GS(GF) via the mapping wu.
Output: A CFG G' such that L{G')=L(G) and G'
is unambiguous.
Procedure:
1) Construct the merge sets M(G).
2) If G 1is ambiguous then, by Lemma III.9,
[(G)| =1. Thus if |M(G)|=0, et
G'=G and halt.
3) Let B=.{BX|XSM and MeM(G)} be a set
of new symbols mutually disjoint from V.
Let M={B[BeM and Mem(G)}.
Let V'=V-MuB if S¢M
or=V-MuBu{S} if SeM.
4) Let Py=P- ((MxV")u (VxVWT)).
5) Let P2={BXO->ocoBX1a]BX2a2 -

o €P
m 3

(B]. eM and a; € (V-M)™ and

BO‘*QOB]G]BZQZ P
{(vi)
B; e Xi)’ and X = {BO}}.

O<ism

6) Let Py= {BX—*aIEMs:M(G) such that

XSM and X={By|Bp >aeP,}l).

8y}

7) Let Py= {A-*aOBXIu]BXZaZ . uml
A-*aOB]a1Bza2 .. amE:P,

. R
(V1)Os jemi € (v-m)~,

(Vi) (B].eﬁ and Bisxi), and

1<izgm
A¢M}.
8) Let Pg= {S-*aOBX]u] . meaml
S-+aoB]a] v Bmam e P,

*
’

(Vi)g o4 ey € (V-M)

(Vi) o5 <pfBj €My and Bye X)),
9) Let P'=PjuPyuP,(uPg if SeM).
Let G'=(v',r,P',S) and-halt.

In the algorithm above, nonterminal symbols of G

that may be a source of ambiquity, i.e. symbols in M,
are eliminated. They are replaced by new nontermi-
nal symbols based on subsets of the merge sets. BX
generates (in P') exactly that which the nonterminal
symbols in X generate in common (in P). This

leads to the following lemma:

Lemma III.11: The grammar produced as output by

Algorithm D is unambiguous.

Lemma III.12: Let G be the input to Algorithm D

and G' be the output of the algorithm. Then

L(G) =L(G").

Corollary (to Theorem I11.7): If Gr is an unambi-

guous form grammar then LS(GF) contains only un-

ambiguous languages.

There are context-free languages that are in-

herently ambiguous. Hence we obtain:

Theorem III.13: There is no unambiguous form gram-

mar GF such that the grammars given by strict
interpretations of GF generate exactly the con-
text-free languages.

The technique used in the proof of Theorem

ITI1.7 can also be used to prove the following

theorem.

Theorem 111.14: If GF is an LR(k) form grammar
then LS(GF) contains only LR(k) 1languages.
However, a similar statement for the LL(k) case
is not true. Not only are there unambiguous LL(k)
grammars whose strict interpretation grammars can
be unambiguous and non-LL{k}, there are unambiguous
LL(k) grammars whose strict interpretations can
yield grammars which generate non-LL languages.

Summarizing the first part of this section we
can state that strict interpretations substantially
limit the applicability of Theorem III.3. However,
strict interpretations have an advantage over unre-
stricted interpretations since they are more struc-
ture preserving.

We will conclude this section with a few deci-

dability results.

Theorem IIT1.15: It is decidable whether a strict
interpretation of an unambiguous grammar form is
unambiguous.

The proof of this last theorem is based on the
observation that for a strict interpretation G in
reduced form one can establish a number k such
that G 1is ambiguous if and only if there exist
sentential forms uAv and uA'v with

|uAv| = |uA'v| <k such that A and A' are members
of the same merge set.

Theorem III.15 can be used to prove the follow-
ing decidability results for "compatible" strict

interpretations of an unambiguous grammar form.

Definition III.16: Two strict interpretations

I]= (u],v],Z],P],S]) and 12= (uz,VZ,ZZ,PZ,SZ) of
a given grammar form are compatible if
(uy(a) vny(a)) n (uy(b) vuy(b)) =9

for any two elements a, b in ZI.

Theorem II1.17: It is decidable for any two com-

patible strict interpretations G1 and 62 of an
unambiguous form grammar whether

1) L(G])S L(GZ)’

2) L(6))=L(G,),

3) L(G]) nL(Gz) is empty,

finite or infinite.

IV, COMPARISON OF STRICT INTERPRETATIONS

WITH UNRESTRICTED INTERPRETATIONS

In section III we have seen that there exists
an unambiguous form grammar GF such that L(GF)
is equal to the family of context-free languages
{Thoerem III1.3), but that there is no unambiguous
form grammar G such that LS(GF) equals the
class of context-free languages (Theorem III1.13).
So we want to investigate the question of whether
grammar forms with strict interpretation are as
"powerful" as grammar forms with unrestricted in-
terpretations if we do not consider the ambiguity
First we ob-

or unambiguity of the form grammar.

tain:

Theorem IV.1: There are grammar forms F with

form grammar G. such that there does not exist

F

any grammar form F -with form grammar GF such

that 6°(Gg) = G(Gg)-

So with respect to the interpretation gram-
mars strict interpretations are not as powerful
as unrestricted interpretations. The situation is
different though, if one looks at the classes of
languages which can be generated by the interpre-

tation grammars.

Theorem IV.2: For every form grammar GF there

exists a form grammar Gg such that Ls(Gr)=<L(GF)

V. CONCLUSION

We have seen that grammar forms with unrestric-

10

ACKNOWLEDGEMENT

ted interpretations do not provide a characteriza-
tion of many grammar types that are used in parsing.

Strict interpretations of unambiguous grammar
forms are structure preserving. They preserve un-
ambiguity and LR{k)-ness of the generated languages.
They also provide us with some interesting decid-
ability results. There is a relation between the
parsing time for the interpretation grammars and
the parsing time for the underlying unambiguous
form grammar.

Several questions arise naturally from these
observations:

1) Is there a "universal" parser for all

LL(k) languages?

2) 1Is there a "universal" parser for all
LR(k) 1languages?
3) If the answer to questions 1)} and 2) is

"no", are there "universal" parsers for

LR(k)

"reasonably" large subclasses of the
languages, LL(k) languages, and other
classes of languages?
4) Is there a master grammar which we know to
be amenable to a fast parse technique but
which generates a much larger class of
grammars which have not been suspected be-
fore of having a fast parse technique?
The results given in this paper constitute an

initial step in this direction and we encourage

further research along these lines.

The authors are grateful to S.
Ginsburg for stimulating their interest in grammar

forms.

REFERENCES
[11 Aho, Alfred V. and Jeffrey D. Ullman. The
Theory of Parsing, Translation, and Compiling,
Vol. I and II, Prentice Hall, Englewood Cliffs,

(21

[31

(41

[51]

61

7]

(8]

91

(101

(i

[12]

[13]

[14]

[15]

(161

(71

[18]

[19]

f20]

New Jersey, 1972.

Bertsch, Eberhard. "An Observation on Relative
Parsing Time," JACM, Vol. 22, No. 4, pp. 493-
498, 1975.

Bertsch, E. "Mappings between Context-Free
Derivation Systems," Lect. Notes in Comp. Sci.,
Vol. 2, pp. 278-283, 1973.

Cremers, A. B. and S. Ginsburg. "Context-Free
Grammar Forms," JCSS, Vol. 11, pp. 86-117, 1975

Cremers, A. B., S. Ginsburg, and E. H. Spanier.
"The Structure of Context-Free Grammatical
Families," submitted for publication.

Ginsburg, S. The Mathematical Theory of Con-
text-Free Languages, McGraw-Hill, New York,
T966.

Ginsburg, S. and S. A. Greibach. '"Determin-
istic Context Free Languages," Inform. and
Control, Vol. 9, No. 6, pp. 620-648, 1966.

Ginsburg, S. and M. Harrison. "Bracketed
Context-Free Languages," JCSS, Vol. 1, pp. 1-
23, 1967.

Greibach, S. "The Hardest Context-Free Lan-
guage,"” SIAM J. Computing, Vol. 2, pp. 304-
310, 1973.

Harrison, M. A. and I. M. Havel. "Strict
Detérministic Grammars," JCSS, Vol. 7, 1973.

Hopcroft, John E. and Jeffrey D. Ullman.
Formal Languages and Their Relation to Auto-
mata, Addison-Wesley, Reading, Mass., 1969.

Hotz, G. "Eindeutigkeit und Mehrdeutigkeit
Formaler Sprachen," Elektr. Inform. und

Kybernetik, 1966.

Hotz, G. "Homomorphie und Aequivalenz For-
maler Sprachen,” JSNM, Vol. 6, Birkhduser
Verlag, Basel, 1967.

Leong, B. L. and D. Wotschke. '"Productions,
Derivations, and Parsing," Tech. Rep., in
preparation.

Knuth, D. "A Characterization of Parenthe-
sis Grammars," Inform. and Control, Vol. 11,
pp. 269-289, 1967.)

McNaughton, R. "Parenthesis Grammars,"
JACM, Vol. 14, pp. 490-500, 1967.

Mitchell, B. Theory of Categories, Academic
Press, New York, 1965.

Paull, M. and M. Unger. "Structural Equiva-
lence of Context-Free Grammars," JCSS, Vol.
2, pp. 427-463, 1965.

Salomaa, A. Formal Languages, Academic Press,
New York and London, 1973.

Schnorr, C. P. "Transformational Classes of
Grammars," Inform. and Control, Vol. 14,
pp. 252-277, 1969.

11

