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ABSTRACT 

The concept of  grammar forms [4,5]  provides 

evidence that  there seems to be no way to base the 

d e f i n i t i o n s  of  many grammar types used in  parsing 

and compil ing so le ly  on the concept of productions. 

S t r i c t  i n te rp re ta t i ons ,  as introduced in [3 ,5 ] ,  

of unambiguous or LR(k) grammar forms generate un- 

ambiguous or LR(k) languages, respect ive ly .  This 

is not true in the LL(k) case. 

I t  is decidable whether a s t r i c t  i n te rp re ta -  

t ion  of an unambiguous grammar form is unambiguous. 

For any two compatible s t r i c t  i n te rp re ta t i ons  G 1 

and G 2 of an unambiguous grammar form i t  is de- 

c idable whether L(Gi)_CL(G2), L(Gi )n  L(G2)=~, 

f i n i t e ,  or i n f i n i t e .  

For every grammar form F 1 there ex is ts  a 

grammar form F 2 such that  the grammatical fami ly  

of F 1 under unres t r ic ted  i n te rp re ta t i ons  is 

equal to the grammatical fami ly  of F 2 under 

s t r i c t  i n te rp re ta t i ons .  

I ,  INTRODUCTION 

The d e f i n i t i o n s  of  most grammar types that  are 

used fo r  parsing and compil ing depend on the con- 

cept of  a der iva t ion .  For example, the d e f i n i t i o n  

of an LR(k) grammar depends on r ightmost der iva- 

t ions ,  whi le  the d e f i n i t i o n  of  an LL(k) grammar 

depends on le f tmost  der iva t ions .  On the other hand, 

the d e f i n i t i o n  of  a l i near  context - f ree grammar, fo r  

instance, depends so le ly  on the concept of a produc- 

t ion .  We w i l l  show in section I I  that  the concept 

of  grammar forms ( [4 ] ,  [5 ] )  provides evidence that  

there seems to be no way to base the de f i n i t i ons  of 

many grammar types used in parsing and compil ing 

so le ly  on the concept of productions instead of  

der iva t ions .  

Bertsch has shown in [3] that  so-cal led s t r i c t  

i n te rp re ta t i ons  [3,5]  of unambiguous grammar forms 

require essen t i a l l y  the same parsing time, up to a 

m u l t i p l i c a t i v e  constant c, as the underly ing unam- 

biguous grammar form. One of the condi t ions,  which 

is qu i te  r e s t r i c t i v e  and essent ia l  for  the proof, 

is missing in the d e f i n i t i o n  of  a s t r i c t  i n te rp re ta -  

t ion  in [3] .  So the question ar ises:  how r e s t r i c -  

ted are s t r i c t  i n te rp re ta t i ons .  We w i l l  prove in 

section I I I  that  s t r i c t  i n te rp re ta t i ons  of unambig- 

uous or LR(k) grammar forms generate unambiguous 

or LR(k) languages, respect ive ly .  This is not so 

in the LL case. I t  is  decidable whether a s t r i c t  

i n te rp re ta t i on  of  an unambiguous grammar form is un- 

ambiguous. For any two "compatible" s t r i c t  in te rp re -  

ta t ions G 1 and G 2 of  an unambiguous grammar form 

i t  is  decidable whether L(G I ) ~ L ( G  2) and whether 

L(Gi) n L(G2) is empty, f i n i t e ,  or i n f i n i t e .  

In sect ion IV we w i l l  compare grammar forms with 



s t r i c t  and unres t r i c ted  i n te rp re ta t i ons .  Spec i f i -  

ca l l y  we w i l l  show that  fo r  every grammar form F 1 

there ex is ts  a grammar form F 2 such that  the gram- 

matical fami ly  of  F 1 under unres t r i c ted  in te rp re -  

ta t ions is equal to the grammatical fami ly  of  F 2 

under s t r i c t  i n te rp re ta t i ons .  There are cases 

where F 2 has to be ambiguous although F 1 is un- 

ambiguous. 

A few open problems w i l l  be l i s t ed  in  sect ion 

V. 

I I ,  THE INFLUENCE OF PRODUCTIONS ON DERI-  
VATIONS 

For many years a considerable amount of  time 

and e f f o r t  has been spent de f in ing  and i nves t i ga t i ng  

grammars which are useful as models fo r  programming 

languages. Among these grammars are, to name only 

a few, LR(k) grammars, LL(k) grammars, bounded- 

context grammars, (m,n) precedence grammars, simple 

precedence grammars (cf .  m [ I ]  as a survey reference).  

Although a l l  these models d i f f e r  qui te s i g n i f i c a n t -  

l y  from each other in t h e i r  d e f i n i t i o n s  as wel l  as 

in t h e i r  parsing techniques, almost a l l  of  them 

.have one th ing in common: t h e i r  d e f i n i t i o n s  re l y  

heav i ly  on the concept o f  a der i va t ion .  We omit 

quoting the d e f i n i t i o n s  of LR(k)-,  LL(k)- ,  simple 

precedence grammars, etc. But c l ea r l y  part  of  the 

d e f i n i t i o n  of  an LR(k) grammar is the under ly ing 

r ightmost der i va t ion .  S im i l a r l y  the d e f i n i t i o n  of 

an LL(k) grammar depends on the under ly ing l e f t -  

most der i va t ion .  As a consequence, tes t ing  a 

grammar for  LR(k)-ness, LL(k)-ness ( fo r  a given k) 

involves more, at least  in the general case, than a 

mere checking of whether each production in the 

given production table is  of a cer ta in  form. In 

many instances, tes t ing  a grammar for  LR(k)-ness or 

LL(k)-ness ( fo r  a given k) requires qu i te  an in -  

volved computation. 

There are, of course, other ways to def ine 

grammars in general, and spec i f i c  types of context-  

f ree grammars in p a r t i c u l a r .  For example, i t  is 

extremely easy to def ine and understand the not ion 

of  a l i nea r  contex t - f ree  grammar. Likewise, i t  is  

a t r i v i a l  task to tes t  whether a given grammar is a 

l i nea r  contex t - f ree  grammar, a regular  grammar, a 

contex t - f ree  grammar, etc. 

The immediate question comes up whether i t  is 

r ea l l y  necessary to def ine LR(k) grammars, LL(k) 

grammars, etc. in terms of  der iva t ions  ra ther  than 

j us t  productions. In other words, do there or do 

there not ex i s t  methods to def ine LR(k)-, LL(k)- ,  

simple precedence grammars, etc.  by merely placing 

cer ta in  r e s t r i c t i o n s  on the production type al lowed. 

This question is extremely important since r e s t r i c -  

t ions  on productions are genera l ly  easier to under- 

stand than r e s t r i c t i o n s  on der i va t ions .  Many proofs 

(e .g . ,  the equivalence of  de te rmin is t i c  pushdown 

automata and LR(1) grammars) would hopefu l l y  become 

simpler i f  the grammar d e f i n i t i o n s  were based on 

production types ra ther  than on der i va t ion  types. 

I t  was often assumed that  such a "product ion-char-  

ac te r i za t i on "  is probably not possible,  pa r t l y  be- 

cause of the fo l l ow ing  reason: i t  is  undecidable, 

fo r  example, whether a given contex t - f ree  grammar is 

an LL(k) grammar or LR(k) grammar fo r  any k ( [ l ] ) .  

I t  is  therefore impossible to f ind  a character iza-  

t ion  ( in  terms of product ion-types) o f  LR(k)-, 

LL(k) grammars etc. Otherwise, one could decide 

whether or not a given grammar is LL(k) or LR(k) 

fo r  any k by simply checking each production fo r  

" cha rac te r i s t i c "  proper t ies ,  assuming, of  course, 

that  tes t ing  fo r  these " cha rac te r i s t i c "  propert ies 

is  a decidable task. 



However, i t  is  decidable whether a grammar is 

LR(k), LL(k) for  any f i xed  k, and i t  is also de- 

cidable whether a grammar is a simple precedence 

grammar [ I ] .  So i t  is  not at a l l  c lear  whether or 

not there ex i s t  character iza t ions of  LL(k)- ,  LR(k) 

grammars ( fo r  f i xed  k) ,  or simple precedence gram- 

mars in terms of  productions. Before one can s ta r t  

inves t iga t ions  of t h i s  kind one has to have a we l l -  

defined concept of  what a charac ter iza t ion  in terms 

of productions should be. Such a concept, that  of  

a grammar form, has been establ ished by Cremers and 

Ginsburg ( [ 4 ] , [ 5 ] ) .  

De f i n i t i on  I I . I :  A (contex t - f ree)  grammar form is 

a 6- tup le  F= (V,S,V,Z,P,S) where 

I )  V is an i n f i n i t e  set of  abstract  symbols, 

2) S is an i n f i n i t e  subset of  V such that  

V-S is i n f i n i t e ,  and 

3) G F= (V,Z,P,S), ca l led the form grammar ( o f  

F), is a (contex t - f ree)  grammar ( [ 6 ] , [ 1 1 ] )  

wi th V~V, Z~S, and (V-S)~ (V-S). 

We assume throughout t h i s  paper that  V and S 

are f i xed  i n f i n i t e  sets sa t i s f y i ng  ( I )  and (2) 

above. We w i l l  only consider grammar forms which 

have a contex t - f ree form grammar and w i l l  there- 

fore omit the a t t r i b u t e  "context - f ree"  in many 

instances. 

De f i n i t i on  11.2: An i n te rp re ta t i on  of a grammar 

form F= (V,S,V,Z,P,S) is  a 5- tuple 

I=  ( ~ , V i , Z I , P i , S i ) ,  where 

I )  v is  a subs t i t u t i on  on V* such that  

i )  u(a) is  a f i n i t e  subset of S* for '  

each element a in Z, 

i i )  ~(A) is  a f i n i t e  subset of  F-S fo r  

each A in V-E, and 

i i i )  u(A] nu(B) =~ for  each A and B in 

V-Z i f  A # B, 

2) PI is a subset o f  ~(P) = u ~(~), where 
~P  

~C~+S):{u÷vlu~(~), vc~(S)}, 

3) S I is in u(S), and 

4) %i(VI) contains a l l  symbols in Z(V) 

which occur in PI ( together wi th S l ) .  

G I=  (V i ,Z i ,P i ,S  I )  is cal led the grammar 

of I .  

A grammar form gives r ise  to a fami ly  of gram- 

mars, which are s t r u c t u r a l l y  re lated to the form 

grammar, by means of i n te rp re ta t i ons  of  the form 

grammars. 

For b rev i t y ,  an i n te rp re ta t i on  I is f requent-  

l y  w r i t t en  as (u ,Gi ) .  Since the productions in G I 

are s t r u c t u r a l l y  re lated to the form grammar G F, 

we sometimes w i l l  ca l l  G F a "master grammar." 

Since V and S are f i xed ,  we w i l l  use the phrase 

"an i n te rp re ta t i on  of  G", where G = (V,Z,P,S), 

rather  than "an i n te rp re ta t i on  of F", where 

F = (V,S,V,S,P,S). 

De f i n i t i on  11.3: For each grammar G, G(G)= 

{ G i l l  an i n te rp re ta t i on  of  G} is  cal led the 

fami ly  of grammars (o f  G) and L(G) = {L(Gi)IG I is 

in G(G)} the grammatical fami ly  (of  G). A col -  

l ec t i on  L of languages is a grammatical fami ly  i f  

L=L(G) fo r  some grammar G. 

I t  was shown in [4] that  the l i nea r  context-  

free languages, the regular  languages, and the con- 

t ex t - f r ee  languages a l l  cons t i t u te  grammatical fami- 

l i e s .  For the sake of  exposi t ion we b r i e f l y  l i s t  

grammar forms for  the above mentioned classes of 

languages. 

I )  Let G be  a grammar wi th  P = {S+aS,S÷e} .  

Then c l ea r l y  L(G) is the fami ly  of  regular  

languages. 

2) Let G be a grammar with P = {S+aSa,S+e} .  

Then L(G) is  the fami ly  of  a l l  l i nea r  context -  



free languages. 

3) Let G be a grammar wi th  P= {S+SS,S÷a} ,  then 

L(G) is the fami ly  o f  a l l  contex t - f ree langu- 

ages. 

The above examples demonstrate that  grammar forms 

are a reasonable model for  production types. 

Using th i s  model of  grammar forms i t  is  very 

easy to show that  many classes of grammars that  

possess i n te res t i ng  parsing propert ies do not form 

fami l ies  of grammars and that  i t  is  therefore h igh ly  

un l i ke l y  that  t h e i r  re levant  features can be ex- 

pressed in terms of  product ions. But f i r s t  we re- 

state the fo l low ing  theorem from [4] :  

Theorem 11.4: For each grammar G, L(G) is  closed 

under union, homomorphism, and in te rsec t ion  wi th 

regular  sets. 

We can now s ta te :  

Theorem 11.5: Each of  the fo l low ing  classes of 

grammars does not form a fami ly  of grammars: 

I) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

10) 

11) 

12) 

LL(k) grammars for  a rb i t r a r y  k 

LR(k) grammars for  a r b i t r a r y  k 

LL(k) grammars fo r  a r b i t r a r y ,  but f i xed 

k 

LR(k) grammars for  a r b i t r a r y ,  but f i xed 

k 

Strong LL(k) grammars for  any given k 

Simple LR(k) grammars fo r  any given k 

S t r i c t  de te rmin is t i c  grammars 

Simple precedence grammars 

Uniquely i n v e r t i b l e  extended precedence 

grammars 

Uniquely i n v e r t i b l e  weak precedence gram- 

mars 

Simple mixed strategy precedence grammars 

Mixed strategy precedence grammars 

13) ( I , I )  bounded r i g h t  context grammars 

14) Bounded r i g h t  context grammars. 

Proof: Consider the fo l low ing  two grammars G 1 : 

(V i ,Z i ,P i ,S  I )  and G 2= (V2,%2,P2,S2) where 

V 1 =V 2= {a ,b ,c ,S}  

E l =Z 2= {a ,b ,c } ,  

P1 = {S+aSb, S + c } ,  and 

P2 = {S+aSbb, S+c } .  

Clear ly  L 1 =L(G I ) =  {ancbnlnmO} and L 2= 

: {ancb2nln~O}.  Let G i denote the class L(G 2) of  

a l l  grammars of  type i )  ( i= l  . . . . .  14) as l i s t e d  in 

the theorem. Thus G 1 is the class of  a l l  LL(k) 

grammars fo r  a r b i t r a r y  k, etc.  I t  is wel l  known 

that  fo r  i= l  . . . . .  14 the languages which can be 

generated "by grammars in G i are de te rm in is t i c  

contex t - f ree  [ I ] .  Moreover grammars G 1 and G 2 

belong to G i f o r  every i : l  . . . . .  14. 

So l e t  us assume that  fo r  some i ,  where 

1 ~ i  ~14, G i is  a fami ly  of grammars, i . e .  there 

ex is ts  a grammar G such that  G(G) =G i .  Hence 

G 1 and G 2 belong to G(G) and L(Gi) and L(G2) 

belong to the grammatical fami ly  L(G). Since L(G) 

is  closed under union, i t  fo l lows that  L 1 uL 2 is  

also in L(G) and hence there ex is ts  a grammar G I 

which is an i n te rp re ta t i on  grammar of  the grammar 

G such that  L 1 uL 2=L (G I ) .  Hence G I belongs to 

G(G) and thus to G i .  Since L 1 uL 2 is not a 

de te rm in is t i c  con tex t - f ree  language [7] we obtain a 

con t rad ic t ion .  D 

I t  is therefore reasonable to assume that  fo r  

a l l  the above mentioned grammar types there does not 

ex i s t  any natural way to def ine them in terms of 

productions. 

We would be misleading the reader i f  we did not 

inves t iga te  the prev ious ly  asked question from a 



s l i g h t l y  d i f f e ren t  point of  view: There are con- 

tex t - f ree  grammars which generate LL(k) languages, 

but which themselves are not LL(k) grammars. Thus 

the fami ly  of LL(k) grammars is a proper subset of 

the fami ly  of a l l  grammars that generate exact ly the 

LL(k) languages. Simi lar  s i tua t ions occur for  the 

other types of grammars l i s t ed  above. Thus our 

claim that res t r i c t i ons  on productions and res t r i c -  

t ions on der ivat ions have very l i t t l e  connection 

would be only p a r t i a l l y  true i f  one could charac- 

te r i ze ,  for  example, a l l  grammars that generate 

LL(k) languages for  a given k in terms of a pro- 

duction type. However, a t r i v i a l  change of the 

proof of theorem 11.5 shows that ,  even from th is  

modified point of view, there is only l i t t l e  con- 

nection between productions and der ivat ions.  We 

therefore l i s t  as a coro l la ry :  

Corol lary:  Each of the fo l lowing classes of lan- 

guages does not const i tu te a grammatical fami ly ,  

i . e . ,  there is no grammar form F such that a l l  

i n te rp re ta t ion  grammars of F generate exact ly  any 

one of the fo l lowing classes of languages: 

I )  LL(k) languages for  a rb i t r a ry  k 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

lO) 

ll) 

12) 

LR(k) languages for  a rb i t r a r y  k 

LL(k) languages for  any given k 

LR(k) languages for  any given k 

Strong LL(k) languages for  any given 

Simple LR(k) languages for  any given 

S t r i c t  determin is t ic  languages 

Simple precedence languages 

Uniquely i nve r t i b l e  extended precedence 

languages 

Uniquely i n v e r t i b l e  weak precedence lan- 

guages 

Simple mixed strategy precedence languages 

Mixed strategy precedence languages 

13) ( I , I )  bounded r i gh t  context languages 

14) Bounded r igh t  context languages. 

Other classes of grammars and languages that have 

in teres t ing  parsing propert ies are the unambiguous 

grammars and languages of ambiguity degree k. The 

de f i n i t i on  of unambiguity and ambiguity of degree 

k is based on the concept of der ivat ions.  Here 

too, we can eas i l y  show that there seems to be no 

way to "grasp" the concept of unambiguity so le ly  in 

terms of productions. 

Theorem 11.6: Each of the fo l lowing classes of 

grammars does not const i tu te a fami ly  of grammars: 

I )  Unambiguous context- f ree grammars 

2) Ambiguous context- f ree grammars 

3) Context-free grammars with ambiguity de- 

gree ~k for  any given k 

4) Context-free grammars with ambiguity de- 

gree ~k for  any given k 

Proof: to I )  Assume that there is a grammar G 

such G(G) equals the class of a l l  unambiguous con- 

tex t - f ree  grammars. Then the grammar G = (V,Z,P,S) 

has to be unambiguous since G is c lea r l y  an in te r -  

pretat ion grammar of i t s e l f .  Furthermore, L(G) has 

to be an i n f i n i t e  language, since otherwise a l l  

grammars in G(G) and thus a l l  unambiguous context- 

free grammars could generate only f i n i t e  languages 

which c lea r l y  is a contradict ion.  Hence there 

ex is ts  a symbol AE (V-Z) such that S ~ u A z  

u v A y z ~  uvxyz for  some u , v , x , y , z ~  We define 

an in te rpre ta t ion  of G as fol lows: 

~(~) = {~} for  every ~ V - { A }  

~(A)= {A,A'}  where A '~V.  

Then G I = (Vu {A' } ,Z,~(P),S)  is an in te rpre ta t ion  

of G. Hence G I should be an unambiguous grammar. 

However G I is a grammar with an i n f i n i t e  degree of 

ambiguity. The s t r ing  uvkxykz has 2 k÷l leftmost 



der iva t ions ,  fo r  every k ~ l .  

to 2) Assume that  there is a grammar G 

such that  G(G) equals the class of  a l l  ambiguous 

grammars. Then G has to be ambiguous. I t  fs t r i -  

v ia l  to f ind  an unambiguous i n te rp re ta t i on  of G 

and thus a r r i ve  at a con t rad ic t ion .  

to 3 and 4) S imi lar  to cases I )  and 2). D 

The class of grammars that  generate unambiguous con- 

t ex t - f r ee  languages is s t r i c t l y  larger  than the 

class of  unambiguous grammars. So again we have to 

address the question whether a l l  grammars generating 

unambiguous contex t - f ree languages can be character- 

ized in terms of productions. The answer is  again 

"no". 

Theorem I I .7:  Each of the following families of 

languages does not constitute a grammatical family: 

l )  Unambiguous context-free languages, and 

2) inherently ambiguous context-free langu- 

ages. 

Proof: To l)  I t  is well known that there are in- 

herently ambiguous context-free languages [ I l l .  

So i f  there exists a grammar G such that L(G) 

equals the set of al l  unambiguous context-free 

languages then L(G) contains al l  context-free 

languages since L(G) is closed under homomor- 

phism and since every context-free language L l 

can be expressed as h(L 2) with h a homomorphism 

and L 2 an unambiguous context-free language. 

Thus we obtain a contradiction. 

To 2) Similar to proof of part two of 

Theorem II .6. 

I I I ,  THE INFLUENCE OF PRODUCTIONS ON 
PARS I NG 

In [3] Bertsch has shown that  so-cal led s t r i c t  

i n t e rp re ta t i ons [3 ,5 ]  of  unambiguous grammar forms 

can be parsed in  essen t i a l l y  the same time (up to a 

m u l t i p l i c a t i v e  constant c) as the under ly ing unam- 

biguous form grammar. One of the cond i t ions ,  which 

is  qu i te  r e s t r i c t i v e  and essent ia l  fo r  a proof in 

[3] (c f .  Theorem l l l . 3 ) , i s  missing in the d e f i n i t i o n  

of a s t r i c t  i n t e rp re ta t i on  in [3] .  So the fo l low ing  

question ar ises:  "How r e s t r i c t i v e  are s t r i c t  i n t e r -  

pretat ions?" We w i l l  show tha t  grammars given by 

s t r i c t  i n te rp re ta t i ons  of an unambiguous form gram- 

mar generate only unambiguous languages. S i m i l a r l y ,  

s t r i c t  i n te rp re ta t i ons  of an LR(k) grammar gene- 

rate only LR(k) languages. This is not so in the 

LL case. F i n a l l y ,  we w i l l  prove that  i t  is  de- 

c idable fo r  a given unambiguous grammar form whether 

a s t r i c t  i n t e rp re ta t i on  is unambiguous or not. I t  

is also decidable for  two "compatible" s t r i c t  i n t e r -  

pretat ions G 1 and G 2 of an unambiguous form 

grammar whether L(G I ) ~  L(G2), L(G I )  =L(G2), and 

whether L(G I )  nL(G 2) is  empty, f i n i t e ,  or i n f i n i t e .  

The formal framework used in [3] is tha t  of  

x-categor ies and x - func tors .  The reader is  re fe r -  

red to [ 2 ] , [ 3 ] , [ 1 2 ] , [ 1 3 ] , [ 1 7 ] ,  and [20] fo r  f u r the r  

de ta i l s  on these concepts. The d e f i n i t i o n  of  a 

s t r i c t  i n t e rp re ta t i on  given in [3] is  as fo l lows:  

An i n te rp re ta t i on  I = (~ ,V i ,Z i ,P I ,S  I )  (of  a grammar 

form F= (V,S,V,Z,P,S)) is a s t r i c t  i n t e rp re ta t i on  

i f  

~(a) is  a f i n i t e  subset of  S where a~Z .  

We quote the fo l low ing  theorem from [3] .  

Theorem I I I . I :  Let G F be the form grammar of a 

contex t - f ree  grammar form F. Then G I is the 

grammar of  a s t r i c t  i n t e rp re ta t i on  of F i f  and 

only i f  there ex is ts  a length-preserv ing x- func-  

to r  @: G I + G F- 

One can immediately show that  i f  u(a) n~(b)P 

for  two symbols a. and b~Z (a case that  is  a l -  



]owed under the def in i t ion of a s t r i c t  interpreta- 

t ion in [3]) then one cannot construct the length- 

preserving x.-functor @: G I÷G F. The additional 

condition needed is one that requires ~(a) n~(b) = 

for a l l  a, bES. Thus we need to add this condi- 

t ion to the def in i t ion of a s t r i c t  interpretat ion. 

(Defini t ion I I I . 2  was also used in [5] .)  

Defini t ion I l l . 2 :  An interpretation I= 

(u,Vi,Ei,Pi,S I) (of a grammar form F= (v,s,V,S,P,S)) 

is a s t r i c t  interpretation i f  

l )  ~(a) is a f i n i t e  subset of S Vat 

(length-preserving property) and 

2) ~(a) n~(b)=~ Va, b~ 

(disjoint-images property). 

With this def in i t ion of a s t r i c t  interpretat ion 

Theorem I I I . I  holds. 

We would l i ke  to quote the following Theorem 

from [3]: 

Theorem I l l . 3 :  Let @: G l÷G 2 be a length-preser- 

ving functor, where G l and G 2 are context-free 

grammars and G 2 is unambiguous. Suppose there is 

an algorithm which w i l l  construct a parse for 

w~L(G 2) and reject w~L(G 2) in less than 

f ( lw l )  steps. Then there is a constant c and an 

algorithm which w i l l  accept w~L(Gl) and reject 

w~L(Gl) in less than c f ( lw l )  steps. 

An obvious consequence, as stated in [3], is: 

Corollary: Let G F be an unambiguous form grammar 

of a grammar form F. Then strings in L(GI) for 

a s t r i c t  interpretation G I of G F can be parsed 

in essential ly the same time (up to a mul t ip l ica t ive  

constant c) as strings in L(GF). 

One of the reasons for mentioning the above 

facts is that s t r i c t  interpretations are more re- 

str icted than one might suspect. And as we w i l l  

now show, i t  is the d is jo in t  images property, and 

not so much the length-preserving property, that 

l im i ts  the app l icab i l i t y  of Theorem I l l . 3  and i ts  

Corollary. Most of the proofs in the remainder are 

only sketched, and the interested reader is refer- 

red to [14]. 

Theorem I l l . 4 :  For every form grammar G F of a 

grammar form F there exists a grammar form F 

such that L(GF) is equal to the class of al l  lan- 

guages that can be generated by grammars given by 

length-preserving interpretations of F. I f  G F is 

unambiguous then G~ can be made unambiguous. 

In order to show that the context-free langu- 

ages can be generated by grammars given by length- 

preserving interpretations of an unambiguous gram- 

mar form, we state the following theorem: 

Theorem I l l . 5 :  There is an unambiguous form grammar 

G F of a grammar form F such that L(G F) is equal 

to the class of context-free languages. 

The proof of Theorem I l l . 5  uses the following 

facts: 

l )  There is an unambiguous grammar G which gene- 

rates the Dyck-language over two letters [6]. 

2) L(G) is i n f i n i t e .  

3) L(G) is closed under homomorphism, inverse 

homomorphism, and intersection with regular sets. 

4) Every context-free language L can be expressed 

as L=hl(h21(D) n R) with h I and h 2 being 

homomorphisms, R a regular set, and D = L(G). 

Combining Theorems I l l . 4  and I l l . 5  we obtain 

the following corollary: 

Corollary: There is an unambiguous form grammar G F 

such that the grammars given by length-preserving 

interpretations of G F generate exactly the con- 

text- free languages. 

Hence, the length-preserving property is not 



very s t r ingent  and i t  does not l i m i t  the app l i cab i l -  

i t y  of  Theorem 111.3. However, the case is qui te 

d i f f e ren t  with respect to the disjoint- images pro- 

perty which l im i ts  the a p p l i c a b i l i t y  of  Theorem 

111.3. But th is  also has an advantage in that  s t r i c t  

in te rp re ta t ions  are more "s t ructure preserving" than 

unrest r ic ted in te rp re ta t ions .  

Notation: Henceforth we w i l l  use the fo l lowing no- 

ta t ion :  

GS(GF)= {GIG is a s t r i c t  i n te rp re ta t ion  of 

GF}, and 

LS(g g)= {L(G) IGEGS(GF)}. 

Theorem 111.6: I f  G F is an unambiguous form gram- 

mar with L(GF) i n f i n i t e  then there are s t r i c t  

in te rpre ta t ions  of G F that are ambiguous. 

However, the existence of a length-preserv ing 

functor ¢: G I÷G F for  a s t r i c t  i n te rp re ta t ion  G I 

of an unambiguous grammar G F t e l l s  us that ,  a l -  

though there might be many d i s t i nc t  lef tmost der i -  

vations for  a s t r ing  wEL(GI) ,  that  the corre- 

sponding der ivat ion trees look the same. They 

might d i f f e r  only in t he i r  labels for  the non- 

terminal nodes. Thus one suspects that s t r i c t  in- 

te rpre ta t ions of  unambiguous form grammars generate 

only unambiguous languages. This is proven by the 

fo l lowing theorem: 

Theorem 111.7: Let 

grammar and l e t  G 

G F be an unambiguous form 

be an a rb i t ra ry  s t r i c t  i n te r -  

pretat ion of G F. Then there exists ( e f f ec t i ve l y )  

an unambiguous grammar G' such that L(G) = L(G').  

The proof of Theorem 111.7, which is based on 

Def in i t ions  111.8 and I I I . I 0 ,  Lemma 111.9, and 

Algorithm D, fol lows from Lemma I I I . I I  and Lemma 

111.12. 

Def in i t ion  111.8: Let G= (V,%,P,S) be a context- 

free grammar. Let Gi= ( V i , Z i , P i , S i )  be a s t r i c t  

in te rp re ta t ion  grammar of G given by ~. A merge 

set for  G I is MEu(B) such that  BEV-~, and 

such that (VB' ~M)(VB"EVi -Z l )  

[(B' ~M and B"~M) i f f  ( 3~V I * )  

[ B ' ÷ a ~ P  I and B " ÷ ~ E P i ] ] .  

Lemma 111.9: Let G = (V,Z,P,S) be a context - f ree 

grammar. Let G I = (V i ,~ I ,P I ,S I )  be a s t r i c t  i n te r -  

pretat ion given by ~. I f  G is unambiguous but 

G I is ambiguous, then there ex is ts  a merge set for  

G I • 

Def in i t ion  I I I . I 0 :  Let G~GS(GF ) under ~. Then 

M(G) = {MIM is a merge set for  G under ~}. 

Algorithm D: Let G F= (VF,SF,PF,SF) be an unambi- 

guous context - f ree grammar. Let 

G= (V,S,P,S)cGS(GF ) via the mapping ~. 

Output: A CFG G' such that L(G') =L(G) and G' 

is unambiguous. 

Procedure: 

i )  

2) 

Construct the merge sets M(G). 

I f  G is ambiguous then, by Lemma 111.9, 

IM(G)J _>I. Thus i f  JM(G) I =0,  l e t  

G' =G and ha l t .  

3) Let B={BxlX_CM and M~M(G)} be a set 

of  new symbols mutually d i s j o i n t  from V. 

Let M={BIB~M and M~M(G)}. 

Let V '=V -MuB  i f  S~M 

o r = V - M u B u { S }  i f  S~M. 

4) Let P i : P -  ( (MxV* )u (VxV*MV* ) ) .  

5) Let P2 {Bx 0 . . . .  aml = aoBx1 a 1 Bx2a 2 
Bo÷aoBlC~lB2a 2 . . .  a m~p, 

(Vi)o_< i <m(Bi ~M and a i ~ (V-M)* and 

B i ~X i ) ,  and X O= {Bo}}. 

6) Let P3 = {Bx÷~I3MEM(G) such that 

X_~M and X= {BoIB{Bo}÷aEP2}} .  



7) Let P4 = {A÷moBXlmlBx2m2 . . .  mml 

A÷moBlmlB2m2 . . .  a meP, 

( V i ) o ~ i ~ m ~ i  ~ (V-M)*, 

(V i ) l  ~ i~m(B i  e ~ and B i eX i ) ,  and 

A~B}. 

8) Let P5 = {S÷aoBXlal . . .  BXmaml 
S÷~oBial . . .  Bma m E P, 

(Vi)o ~ i ~ m~i E (V-M)*, 

(V i ) l  ~ i~m(B i  ~Mi and B i ~ X i ) } .  

9) Let P ' : P I  uP3uP4(uP5 i f  SE~). 

Let G'= (V ' ,Z,P ' ,S)  andha l t .  

In the algorithm above, nonterminal symbols of G 

that may be a source of ambiguity, i . e .  symbols in M, 

are el iminated. They are replaced by new nontermi- 

nal symbols based on subsets of the merge sets. B x 

generates ( in P') exact ly  that  which the nonterminal 

symbols in X generate in common (in P). This 

leads to the fo l lowing lemma: 

Lemma I I I . I I :  The grammar produced as output by 

Algorithm D is unambiguous. 

Lemma 111.12: Let G be the input to Algorithm D 

and G' be the output of the algorithm. Then 

L(G) =L(G') .  

Corol lary (to Theorem 111.7): I f  G F is an unambi- 

form grammar then LS(GF ) contains only guous un- 

ambiguous languages. 

There are context- f ree languages ;that are in-  

herent ly ambiguous. Hence we obtain: 

Theorem 111.13: There is no unambiguous form gram- 

mar G F such that the grammars given by s t r i c t  

in terpre ta t ions of G F generate exact ly  the con- 

tex t - f ree  languages. 

The technique used in the proof of Theorem 

111.7 can also be used to prove the fo l lowing 

theorem. 

Theorem 111.14: I f  G F is an LR(k) form grammar 

then LS(GF ) contains only LR(k) languages. 

However, a s im i l a r  statement for  the LL(k) case 

is not true. Not only are there unambiguous LL(k) 

grammars whose s t r i c t  in te rpre ta t ion  grammars can 

be unambiguous and non-LL(k), there are unambiguous 

LL(k) grammars whose s t r i c t  in terpre ta t ions can 

y ie ld  grammars which generate non-LL languages. 

Summarizing the f i r s t  part of th is  section we 

can state that s t r i c t  in terpre ta t ions subs tan t ia l l y  

l i m i t  the a p p l i c a b i l i t y  of Theorem 111.3. However, 

s t r i c t  in terpre ta t ions have an advantage over unre- 

s t r i c ted  in terpre ta t ions since they are more struc- 

ture preserving. 

We w i l l  conclude th is  section with a few deci- 

d a b i l i t y  resu l ts .  

Theorem 111.15: I t  is  decidable whether a s t r i c t  

in te rpre ta t ion  of an unambiguous grammar form is 

unambiguous. 

The proof of  th is  l as t  theorem is based on the 

observation that for  a s t r i c t  in te rpre ta t ion  G in 

reduced form one can establ ish a number k such 

that G is ambiguous i f  and only i f  there ex is t  

sentent ia l  forms uAv and uA'v with 

luAvl = luA'vl ~k such that  A and A' are members 

of the same merge set. 

Theorem 111.15 can be used to prove the fo l low- 

ing dec idab i l i t y  resul ts  for  "compatible" s t r i c t  

in terpre ta t ions of an unambiguous grammar form. 

Def in i t ion  111.16: Two s t r i c t  in terpre ta t ions 

I 1 = (u i ,V i ,% i ,P i ,S I )  and 12= (u2,V2,Z2,P2,S2) of 

a given grammar form are compatible i f  

(Pl(a) uP2(a)) n (P2(b) u~2(b)) = 

for  any two elements a, b in E. 



Theorem 111.17: I t  is  decidable for  any two com- 

pat ib le  s t r i c t  i n te rp re ta t ions  G 1 and G 2 of an 

unambiguous form grammar whether 

I )  L(G I )  ~ L(G2), 

2) L(Gi)= L(G2), 

3) L(G I )  nL(G2) is  empty, 

f i n i t e  or i n f i n i t e .  

IV, COMPARISON OF STRICT INTERPRETATIONS 

In section I l l  we have seen that there exists 

an unambiguous form grammar G F such that L(G F) 

is equal to the family of context-free languages 

(Thoerem I l l . 3 ) ,  but that there is no unambiguous 

form grammar G F such that LS(GF) equals the 

class of context-free languages (Theorem I l l .13) .  

So we want to investigate the question of whether 

grammar forms with s t r ic t  interpretation are as 

"powerful" as grammar forms with unrestricted in- 

terpretations i f  we do not consider the ambiguity 

or unambiguity of the form grammar. First we ob- 

tain: 

Theorem IV.l: There are grammar forms F with 

form grammar G F such that there does not exist 

any grammar form F w i t h  form grammar G F such 

that GS(G~) = G(GF). 

So with respect to the interpretation gram- 

mars s t r ic t  interpretations are not as powerful 

as unrestricted interpretations. The situation is 

different though, i f  one looks at the classes of 

languages which can be generated by the interpre- 

tation grammars. 

Theorem IV.2: For every form grammar G F there 

exists a form grammar G~ such that LS(G~) = L(GF). 

V, CONCLUSION 

We have seen that grammar forms with unrestric- 

ted interpretations do not provide a characteriza- 

tion of many grammar types that are used in parsing. 

Strict interpretations of unambiguous grammar 

forms are structure preserving. They preserve un- 

ambiguity and LR(k)-ness of the generated languages. 

They also provide us with some interesting decid- 

ab i l i ty  results. There is a relation between the 

parsing time for the interpretation grammars and 

the parsing time for the underlying unambiguous 

form grammar. 

Several questions arise naturally from these 

observations: 

l Is there a "universal" parser for al l  

LL(k) languages? 

2) Is there a "universal" parser for al l  

LR(k) languages? 

3) I f  the answer to questions l )  and 2) is 

"no", are there "universal" parsers for 

"reasonably" large subclasses of the LR(k) 

languages, LL(k) languages, and other 

classes of languages? 

4) Is there a master grammar which we know to 

be amenable to a fast parse technique but 

which generates a much larger class of 

grammars which have not been suspected be- 

fore of having a fast parse technique? 

The results given in this paper constitute an 

in i t i a l  step in this direction and we encourage 

further research along these lines. 
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