
PROGRAM SPEClFICATION AND DIWELOPMEN'I

IN STANDARD ML

Donald Sannello and Andrzej Torlecki’

Department of Computer Science
University of Edinburgh

Abstract

An attempt is made to apply ideas about algebraic

specification in the context of a programming
language. Standard ML with modules is extended by

allowing axioms in module interface specifications

and in place of code. The resulting specification

language, called Extended ML, is given a semantics
based on the primitive specification-building

operations of the kernel algebraic specification

language ASL. Extended ML provides a framework for

the formal development of Programs from

specifications by stepwise refinement, which is

illustrated by means of a simple example. From its

semantic basis Extended ML inherits complete

independence from the logical system (institution)
used to write specifications. This allows different
styles of specification as we!1 as different

programming languages to be accommodated.

1 Introduction

Beginning with [Gut 751 and [ADJ 761. work on
the algebraic approach to program specification has
focused on developing techniques of specifying
programs (abstract data types in particular) and
more recently on formalising the notion of

refinement as used in stepwise refinement (see e.g.
[Ehr 791 and [EKMP 621). The ultimate goal of this
work is to provide a formal basis for program
development, which would e.g. support a methodology

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

“1984 ACM O-89791-147-4/85/001/0067 $00.75

for systematic development of programs from

specifications by means of verified refinement steps.

However, comparatively little work has been done on

applying the results to programming, with a few

exceptions such as CIP-L [Bau 611, IOTA [NY 831 and
Anna [LHKO 641

This paper represents our first attempt at
applying our ideas about algebraic specifications in
the context of a programming language. The

approach to algebrarc specification this is based on,
described in [SW 63). [Wir 631. {ST 641 and [ST 651.
features a specification formalism heavily based on

the notion of behavioural equivalence, which makes
it possible to adopt a very simple definition of

refinement. Another feature of this approach is that
it is independent of the underlying logical system (or
institvlion [GB 831). This means that we are not
bound to using any particular logic in specifications

and so can readily edapt from the simple world of
algebraic specifications (wrth total functions,
equational axioms, etc.) to the more complex world
of programming languages (with nonterminating

programs, exceptions, etc.).

The programming language we choose to work
with is Standard ML [Mil 841 with modules [MacQ 641.

ML is a statically-scoped functional language which
festurcs a flexible but completely secure polymorphic

type system [Mil 781. Large ML programs can be

structured into modules with explicitly-specified
interfaces.

We begin in section 2 by outlining an algebraic

semantics of Standard ML modules under some
simplifying assumptions. We then proceed to extend

the language by permitting axioms to be used in

module interface specifications and in place of code;
this mnkes it possible to use the same language to
write high-level specrfrcations. programs. and

everything in between This extended language we

cull Extended ML. The semantics of Extended ML is
presented in sections 3 and 4. In section 5 we
explain how programs may be formally developed in

Extended ML, and in section 6 a simple example is
given. In section 7 we briefly explain in what sense

67

Extended ML is independent of the underlying logical

system, and how this allows us to discharge the
simplifying assumptions made in section 2.

Although for readability this paper does not

contain all the formal details. we would like to
emphasise that the strength of this work is that it

rests on mathematically firm foundations as detailed

in [SW 833. (Wir 631. [ST 641 and [ST 651. We regard
this as absolutely essential; a theory of formal

program development does not inspire much

confidence otherwise. The technical details (mainly

the formal semantics of Extended ML in terms of the

specification-building operations described in [ST 641
and proof rules for refinement in the context of
behavioural equivalence on the basis of those in

[ST 851) will appear in a longer version of this paper.

2 Standard ML with modules

In this paper, we will restrict our attention to

the applicative subset of Standard ML (i.e. without
assignment and exceptions). We will further assume
that no use is made of polymorphic types and that

all functions are first-order and total. Except for
the purpose of simplifying the presentation. none of

these restrictions are necessary, as discussed in

section 7. The reader need not be acquainted with
the particular features and syntactic details of

Standard ML itself, except to keep in mind the
assumptions stated above -. IL is sufficient to know

that a Standard-ML program defines a set of types

and functions. The examples (particularly the one in

section 6) will make use of Standard ML as described

in [Mil 043.

Of particular interest to us are the extensions to
Standard ML for modular programming proposed in

[MacQ 641. The proposal requires that interfaces
(signat+ures) and their implementations (struct~res~)
be defined separately. Every structure has a

signature which gives the names of the types and
functions defined in the structure. Structures may
be built on Lop of existing structures. so each one is

actually a hierarchy of structures. and this is also

reflected in Its signature Modules are

“parametcrised” structures; if we apply a module to

a structure we get a structure A module has an

input signature describing structures to which it may

be applied, and an output signature describing the
result of an application. A module may have several

parameters, but since this is the same as having a
single large parameter we will restrict attention when
convenient to the single-parameter case (the same

approach is taken in (MacQ 64]), It is possible, and

sometimes necessary to allow interaction between

different parts of a program, to declare that certain
substructures (or just certain types) in the hierarchy
are identical or shared.

An example of a simple program in Standard ML
with modules is the following:

signature POSig =
sig fypa elem

val le: elem x elem + boo1
and

signature SorfSig =
sig st7-ucturo PO: POSig

val sort: PO.elem list -+ PO.elem fist
end

module Sorfhfod (PO: POSig) : SorfSig
inherit PO
1 l ** insepf is a local function +** 1
ual fee insarf(a.nil) = [a]

1 insorf(a,b::f) = if PO.te(a,b)
then a::b::l
else b::inseTf(a.l)

and ret sort nil = nil

end
1 sosf(a::f) = insezf(a.sorf 1)

structure InfPO: POSig =
struct type elem is inf

val le = op <=
end

Now, SorfMod(lntPO).sotf [11,661 = [5,6.1 l]

In this example, the types of the functions sort and
insert in the module SortMod are inferred by the

typechecker: the type of sort must be as declared in
the signature SortSig. Note that the “types” (i.e.

signatures) of structures and modules are given
explicitly.

We can describe the semantics of signatures,

structures and modules in Standard ML in terms of
the following mathematical objects:

Definition: An algebraic signature C is a pair (S.D).
where S is a set of sorts and fl is a set of operations
in which each WED has a type of the form s,x...‘sw*s,

for s ,,..., sn.sCS.

Definition: Let C=(S,fl) be an algebraic signature. A
E-algebra A consists of a carrier set]AIJ for every

sort SCS, and a total function u”:(A], x...x]A], +]A], for

every operation wCCl of type .s,x...~s~+‘s. n

A Standard-ML signature Sig denotes an
algebraic signature C. This may be identified with

the class of E-algebras which will be denoted

Mod[Sig] (the models of Sig). A structure Sfr:Sig

corresponds to a C-algebra A, i.e. an algebra in

Mod[Sig]. A module M(X:Sigs):Sigr denotes a (total)
function taking every algebra in Mod[Sigp] to an

algebra in Mod[Sigr]. From now on we will ignore the
distinction between a syntactic object (e.g. Sig. Sfr)
and the mathematical object it denotes (e.g. 2, A),

referring to both by the same name.

To make the semantics of modules more precise:

in the module

module M(X: Ep) : Er
<body>

the code in <body> can make reference to the names

in Cp (prefixed by X. - see next parograph) and to
types and operations defined earlier in <body>. This
code introduces some new types and operations ZIOcol

and defines them in terms of types and operations
from Es (and those defined earlier). The resulting

algebraic signature is ZZpuZ,OsoL. The new types and

operations must include those of C,. that is D:z~E,OCol.
If parts of the parameter are to be included in the

result, then <body> must include the statement

inherit X which introduces the types and operations

in Cp to ZZIOcal. Now, for any structure AEMod[Zp],

<body> defines the expansion of the Cs-algebra A to

a (EpuCIDc~l)-algebra A,V. M(A) denotes the reduct of

A to a C;algebra, that is, just AaIP

a:3 operations not in C, omitted.
with the types

We deal with hierarchical structures by allowing

sorts and operations in algebraic signatures to have
names like X.name where X is a structure name and

name is in the signature of X. The statement

structure X: C

in a Standard-ML signature introduces X.name to the
signature for each name in D. The statement

structure X = Y

in a Standard-ML structure or module introduces
X.name for each (type or operation) name in the
signature of Y, and gives it the same interpretation

as name had in Y (note that inherit X =dc,
structure X = X). Moreover, we need to deal with

equivalence classes of names rather than names

themselves to handle sharing; for example, the
sharing declaration

sharing X = Y

causes X.name and Y.name to be identified for each
name in the signature of X (which is required to be
the same as the signature of Y). This allows us to

refer to the same object using both names.

For example, the Standard-ML signature

signature C =
sig type t

val c: t
end

denotes the algebraic signature ([[t]],[[c]:[t]]), where

we use [,,.I to list the elements of an equivalence
class.

signature C’ =
sig structure X: E and Y: C

sharing X.t = Y.t
val f: X.t + X.t

end

denotes (I[X.t,Y.t]l,

~[x.c]:[x.t.Y.t],[Y.c]i[x.t,Y.t],[f]:[x.t,Y.t]~[x.t.Y.t]~)

module M(X: C. 2’: Z sharing X.t = Y t) : E’
inherit X, Y
val f(a) = if a=X.c then Y c else X.c

end

denotes a function taking any two Z-algebras A and B
with the same carrier for sort t to a F-algebra with
both X.c and Y.c defined as in A and B (respectively)

and j defined as in the above code. If

structure A: C =
stnrct type t is boo1

val c = true
end

structure B: Z =
struct type t is boo1

val c = false
end

then M(A.E) has X.t = Y t = 6001. X.c = true, Y.c =

false and f is negation.

3 Extended ML

In the previous section we outlined an algebraic
characterization of the notions of signature,

structure and module as they appear in Standard ML.
In this framework a signature may be viewed as a
specification of a class of structures. However, since

Standard ML is just a programming language, the
information provided by a signature is rather limited.

It is sufficient for complete type checking, which is

very important and useful in practice to eliminate
many simple programming errors. but it is not
sufficient, for example, for proving program

correctness or for program documentation (except
for just giving types of operations). To make
signatures more useful for program development and

specification we have to extend them to include

axioms (for now, sentences of first-order logic, but

see section 7) which put constraints on what the
operations are supposed to do We propose to make

this extension with the aim of doing formal

development and proofs of Standard ML programs.
We will call the new language Extended ML

An example of a signature in Extended ML is the

following (we assume that IntListSig is s signature
with a type intlist of lists of integers and a

“membership” operation isin:intxintlist-bool).

signature IntListChooseSig =
sig structure List : IntListSig

val choose: List.intlist + int
aziom (Vl:List.intlist)

end
(t#List nil + List.isin(choose(l).I))

Note that the above Extended-ML signature

corresponds to what is usually (see e.g. [ADJ 761)
called a specification, i.e. an algebraic signature with

some axioms. However, in [ADJ 761 and elsewhere,

e.g. [Ehr 791, [EKMP 621. [ETLZ 621, [GM 631. the
meaning of a specification was taken to be (up to

69

isomorphism) the initial algebra in the class of

algebras having the algebraic signature from the
specification and satisfying the axioms. An algebraic
approach to program modularisation based on these

ideas is presented in [Ehrig 841. We want to consider

a different interpretation here: an Extended-ML
signature determines a larger class of algebras, all
with the same algebraic signature but not necessarily

all isomorphic. We postpone the exact definition of
this class to the next section. If @ is an Extended-

ML signature then ZZ denotes its corresponding
algebraic signature and Mod[@J] denotes its class of

models (Mod[@i]cMod[C]).

For any Standard-ML signature we may define a

Standard-ML structure over this signature by giving

code which defines the data types and operations
specified in the signature. The same in Extended ML,

but note that Standard-ML code is just a special kind

of specification which happens to be executable. In

an Extended-ML structure Y over Extended-ML

signature @ we allow arbitrary axioms (over the
algebraic signature S) to be used as “code”. This
again determines a class of algebras which we denote
by Mod[Y]: namely, Mod[Y] is the class of all models

of Y. i.e. those E-algebras which satisfy the axioms

given in Y. For an Extended-ML structure Y to have
an Extended-ML signature G;, which we denote 9:Q.

means that Mod[Y]CMod[G].

For example, assuming that List is a structure

with signature IntListSig:

structure IntListChoose: IntListChooseSig =
struct

inherit List
val choose: List.intlist -) int
uziom choose(List.niI) = 0
and (Vl:List.intlist)

end
(I#List.nil a List.isin(choose(l),L))

The situation with Extended-ML modules is

similar, although slightly more complicated. Again.
in place of code we permit arbitrary axioms to be

used. Recall that in Standard ML a module

module M(X: Cp) : CT
<body>

denotes a function M:Mod[CP]+Mod[Cr] such that for
any Zv-algebra A, M(A) is the CI-reduct of the

expansion of A defined by <body>. In Extended ML,

since <body> contains axioms rather than code, it

need not define an expansion of A unambigously
(there may be many different expansions of A which

satisfy <body>; there may be even none). Thus, in

Extended ML a module

module .44(X: ap) : Qr
<body>

determines in the same way as in Standard ML a
function AUbase mapping each Cv-algebra to a class of

C;algebras. For Extended-ML module Y as above we

require that for any algebra A~Mod[@s].

Jl,.&WW@,l. Aba,. extends in an obvious way to
a function *u mapping es-structures to @;structures.
i.e. for any @Is-structure Y, Mod[Y]gh!od[@p],

u(Y) = uIm,.,.(A)IAEMod[Y]j. It follows from the
requirement stated above that JU(Y)c_Mod[@r].

4 Behavioural equivalence in program
specification

Although according to the previous section
signatures and structures in Extended ML both

denote classes of algebras (and even have a similar
syntax), we want to keep them separate because they
play different roles in the process of program

development. A signature corresponds to a
specification of an abstract data type. It provides

information necessary to use the data type, but says
nothing about the implementation details. On the
other hand, a structure is like an “abstract program”
(in the sense of stepwise refinement [Wirth 711) which
implements’ an abstract data type; it gives some

implementation details. although. depending on the
stage of development, this information need not be

complete.

Since a signature in Extended ML is supposed to

be a specification of an abstract data type, it should

not distinguish between two algebras which are
equivalent from the user’s point of view, even if

these algebras are “internally” different. This
amounts to the requirement that the class of

algebras corresponding to a signature should satisfy
some kind of “abstractness” condition, i.e. that it

should be closed under the relation “equivalent from
the user’s point of view”. [ADJ 761 suggests that
“abstract” in “abstract data type” means “up to

isomorphism”; however, this is not the abstractness

condition for us, since it is easy to give an example
of two algebras which are not isomorphic but still

are indistinguishable from the user’s point of view

(e.g. the abstract data type Stack can be represented

using either a list or else an array with a pointer;

the corresponding algebras are not isomorphic but

still have exactly the same properties for a user).

We argue (see [SW 831, [ST 84, 851; cf. [CCM 761)

that the appropriate meaning of “abstract” is “up to
behavioural equivalence”. The idea is that every
abstract data type includes some external (or

observable) sorts which are the only ones to which a
user has direct access: the remaining sorts may only

be manipulated by a user indirectly, via the

operations provided by the abstract data type. Two
algebras are behaviourally equivalent with respect to

a set of observable sorts if and only if they give the
same (or, a bit more generally, corresponding)

answers to every computation taking inputs of

70

observable sorts and yielding a result of an

observable sort. In the algebraic approach such
computations correspond to terms of observable
sorts with variables of observable sorts. Thus, two

algebras are behaviourally equivalent if and only if
they satisfy exactly the same equations between such

terms. For a more precise definition, technical
details and more discussion see [ST &?I] (cf. [SW 831.
[ST 841).

A conclusion from the above argument is that an
Extended-ML signature denotes the smallest class of
algebras which is closed under behavioural

equivalence and which contains all the algebras
satisfying the axioms given in the signature. Note
that this corresponds to an abstract model

specification [LB 771, where we first define something
concret$ly and then abstract away from the concrete

details.

To turn this into a definition we still need to
indicate which types in an Extended-ML signature we

are going to regard as observable. The natural
choice is to take all types which are external to the
signature in the sense that they come from

somewhere else. These are exactly those types which
belong to inherited structures, i.e. in more syntactic

terms, these are just the types having names of the
form id.name for arbitrary id and name. Note that

because of sharing such types may have other names

which need not all be of this form. Note also that
the standard types like boo1 have such names as well,
e.g. InitialEnv.bool.

Thus. summing up, any Extended-ML signature @
determines the class of algebras Mod[@I] consisting of

those C-algebras which are behaviourally equivalent
to some X-algebra satisfying the axioms of 8. with
respect to the types of E belonging to signatures of

inherited structures.

For example, assuming that Triv is a trivial
signature with one type elem only:

signuture StackSig =
sig strut ture X: Tsiv

type stack
val empty: stack
and push: X.elem x stack - stack
cmd pop: stack + stack
and top: stack + X.elem
and isempty: stack + boo1
aziom (Va:X.elem.s:stuck)(pop(push(a.s)) = s)
wad (Va:X.etem,s:stack)(top(push(a,s)) = a)
and isemp ty(emp ty) = true
and (Va:X.elem,s:stack)

(isempty(push(a.s)) = false)
end

Note that the axioms of Stack&g do not specify the

value of e.g. top(empty), so algebras satisfying the
axioms need not be isomorphic. Furthermore.
because Mod[StackSig] is by definition closed under

behavioural equivalence with respect to the types
X clem and bool. it contains not only algebras

satisfying the axioms, like the list representation of
stacks, but also all algebras which are behaviourally

equivalent to them, like the array-with-pointer
representation of stacks, which does not satisfy the

axiom (Va:X.elem,s:stack)(pop(push(a.s))=s).

5 Program development

From our point of view, program development
should proceed as follows:

We begin with some high-level user-oriented
specification: this is an Extended-ML signature, say

0,. typically with a very large class of models. Then,

by making a series of design decisions we ultimately
arrive at an executable Standard-ML structure, say

9 I which satisfies the initial specification (i.e.

YI::@J. Typically, fs, has exactly one model. Making
a design decision is nothing more than restrictmg

the class of models, e.g. by adding an axiom to a
specification.

To formalise this we need a notion of

implementation:

Definition: A class of algebras C’ implements a class

of algebras C if C’C_C. C and C’ must be classes of
algebras over the same algebraic signature.

This general definition in a natural way allows us to
talk about the implementation of a structure by

another structure, of a signature by a structure
(which we have been writing as Y:@). of a signature

by another signature, or even of a structure by a

signature (although we cannot see any obvious need
for this last notion).

This also extends to a definition of what it
means for a module to implement another module:
A’(X’:@;):@; implements Y(X:Qp):a7 if

(1) aP implements a’, (i.e. Y’ accepts any
argument accepted by A) and

(2) for any structure 9:Gp, 1(‘(Y) implements A(Y).

Note that a sufficient condition for (2) is that the
body of .U’ implements the body of A; this means

that we can implement a module by refining its body,

using exactly the same methods as when refining
Extended-ML structures.

Now, developing Y3, from Go means constructing
a series of specifications (signatures or structures)

sp,, SP,, all over the same algebraic signature
such that each one implements the previous one, i.e.

Mod[O,]>Mod[sp,]>...>Mod[sp,,]2Mod[~s,]. Since the
implementation relation is transitive (i.e.

implementations compose vertically in the
terminology of [GB SO]) the correctness of each

refinement step guarantees that ~+s, implements B,,.

In our framework, a refinement step may be of
one of three forms (the fourth, theoretically possible.

does not seem very useful as indicated above). The

71

first and simplest case is when we implement a

structure 9, by another structure Y,+!. To prove the
correctness of such a refinement (i.e. that Yi+, really
implements Yi) we need only to show that each axiom

of Ji is a consequence of the axioms of Y,+i. The
second case is when we implement a signature t3, by

a structure Yi+,. To prove the correctness of this
refinement we need to show that every model of p+,
is behaviourally equivalent to an algebra satisfying

the axioms of Gil. This is difficult in general. but in
the next section we give an example of how in
practice this may be done. The third case is the

implementation of a signature Ui by another
signature @licl. Note that this corresponds to an

abstract model specification of a refinement step.
Proving such a refinement correct seems even more
difficult than in the previous case; note however,

that the inherited (i.e. observable) types of Oi and

ui+l
are the same and so in practice this may be

reduced to proving that any algebra satisfying the

axioms of 9ii+, is behaviourally equivalent to an
algebra satisfying the axioms of Bi. as in the

previous case.

Note that all these proofs of correctness may

and should be supported by a mechanical theorem

prover such as the one described in [BoM 791 or LCF

[GMW 791.

In the development process as described above

we deal with signatures and structures as indivisible

entities. We develop a single monolitic structure

from a single signature: except that the development

may proceed stepwise, there is no notion of “divide
and conquer”, i.e. splitting the problem into

independent subproblems. A way of breaking up the
problem is to use modules. In the development
process described above we may present any of the

specifications shown (Qa and Ys, as well as the
intermediate specifications) as the result of a module

application, e.g. Yis=Ac(Y,...). Note that this splits the
problem of implementing Y,s into the subproblems:

(1) implementing the module Y itself,
(2) implementing (separately) each of the

arguments Y,...

It is easy to see that implementations compose
horizontally (in the terminology of [GE 801). i.c. if .!!
implements Y, and A’ implements Y then I’(Y’,.,.)

implements A(Y,...). This allows the developments of
A(and Y.... to proceed separately, with the guarantee

that the results may be combined to give an
implementation of Y,s (and so of Go as well). Cf
course, these (sub)developments may involve

themselves further decomposition.

One issue we have so far omitted is the problem

of inconsistent specifications It is easy to write a

specification which has no models, and according to

our definition such a spccificotion implements any

specification over the same algebroir signature.

Note, however. that any executable Standard-ML
structure is consistent and so if we succeed in

implementing a specification by an executable
structure then the original specification must have

been consistent. This means that checking
consistency is not necessary in the development
process to ensure correctness; however, an

inconsistent specification is a blind alley (worse, it
can be refined forever) and so to be cautious it is

advisable to check for consistency as far as possible

at each stage. Note, however, that even a consistent
specification may have no executable implementation

and so we cannot in general avoid blind alleys in

program development anyway.

6 An example

To show what specifications and program

development in Extended ML look like, we give below

a perhaps oversimplified but hopefully instructive
example. We present the specification and partial
development of an interpreter for a very simple

programming language with arithmetic expressions,

assignment and sequential statements.

We begin with the specification of environments:

signature Ident =
sig type elem

val eq: elem x elem + bool
ariom (Vz:efem)(eq(z.z) = true)
and

I
Vz,y:elem)(eq(z,y) = eq(y.Z))

and Vx,y,z:elem)
(eq(z.y)=true & eQ(y,z)=twe *

eq(s.2) = true)
end

signature EnvSig =
sig structure Id: Ident

type env
val initial: enu
and assign: Id.elem x int - env -+ env
and lookup: Id.elem x env + int
axiom (Vz:ld.elem.n:int.p:env)

(lookup(x,assign(z,n,p)) = n)
and (Vx,x’:Id.elem,n,n’:ilLt.p:env)

(Id.eq(z.z’)=faZse =S
assign(x.n,assign(x’,n’,p))

= assign(x’,n’,assign(z,n,p)))
and (Vz,z’:ld.elem,n,n’:int,p:env)

(Id.eq(z,z’)=true +

end

assign(t.n.assign(z’,n’,p))
= ussign(z,n,p))

EnvSig specifies all algebras which are behaviourally

equivalent to algebras satisfying the axioms above,
with respect to Id.elem and int as observable sorts.
Note that not all algebras in Mod[EnvSig] satisfy the

second axiom, but they always satisfy e.g.

(Vy,z,z’:Id.elem,n,n’:int,p:env)
(Id.eq(z,z’)=false ==s

lookzLp(y,assign(2,n,assign(l’,n’.p)))
= lookup(y.assign(+‘.n’.assiSn(l.n.p)))).

Having specified environments we can specify (a

scheme for) expressions and commands.

72

signal-me ExpSig =
sig sfructww Env: EnvSig

We e=p
val eval: ezp * Env.env .+ int

end

signature ComSig =
sig structure Ezp: ExpSig

type corn =
data assign of Ezp.Env.Id.elem x Ezp.ezp

1 compose of corn x corn
val ezecute: con x Exp.Env.env + Ezp.L’nv.enu
adorn (Vz:Ezp.Env.ld.etem,

e:Exp.ezp,
p:Exp.Env.env)

(ezecute(assign(z,e).p)
= Esp.Env.assign(z,Ezp.evat(e,p),p))

and (Vc,c’:com,p:Ezp.Enu.env)
(ezecute(compose(c.c’),p)

= ezecute(c’,ezecute(c,p)))
end

The use of data above not only introduces the

type corn and the operations

assign: Ezp.Env.Id.elemxEzp.ezp-rcom and

compose: comxcom-rcom; it also imposes the implicit

requirement that every value of type corn can be
conslructed in a unique way using these functions.
Formally, this requirement amounts to adding an

appropriate data constraint as an axiom; for details
see [BG 801 (cf. [Rei BO]).

ComSig is independent from the actual syntax of

expressions, and so we defined it in terms of the
relatively impoverished signature EnvSig. The

following specification describes a possible syntax for
exptessions.

signature EzpSynSig =
sig structure Env: EnvSig

type ezp =
data const of int

1 var of Env.Id.elem
1 plus of ezp x ezp
1 cond of ezp x ezp x etp

vat eval: ezp x Env.env -) int
aziom (Vn:int.p:Env.env)(eval(const(n).p) = n)
and (Vz:Env.ld.elem,p:Env.env)

(evat(war(z),p) = Env.lookup(z,p))
and (Ve,e’:ezp,p:Env.env)

(evat(plus(e,e’).p)
= eval(e,p) + eval(e’.p))

and (Ve,e’,e”:ezp,p:Env.env)
(eval(cond(e.e’,a”).p)

= eval(e”,p) if eval(e,p) = 0
= eval(e’,p) otherwise)

end

(We use an obvious notation to simplify the syntax of
conditional axioms.)

We can now put commands and expressions

together to get the final specification of our

language.

signature LangSig =
sig structure Corn: ComSig and Ezp: EzpSynSig

sharing Com.Ezp.ezp = Ezp.ezp
and Com.Exp.Env = E+p.Env
aziom (Ve:Ezp.ezp,p:Ezp.Env.env)

(Com.Ezp.eval(e,p) = Ezp.evat(e,p))
end

Now, to implcmcnt LangSig we define:

module LangMod (Corn: ComSig. Erp: EzpSynSig
sharing Com.Ezp.ezp = Ezp.ezp
and Com.Erp.Env = Ezp.Env)

: 1, ang Sig
inherit Corn, Exp
aziom (Ve:Ezp.ezp.p:Ezp.Enu.env)

(Com.Exp.eval(e,p) = Exp.eval(0.p))
end

It is easy to see that for any structures Com:ComSzg

and Ezp:EzpSynSig. LangMod(Com.Ezp) implements

I,angSig. Moreover, this structure is consistent
provided that Corn and Exp have models sharing the

lypc ezp, the operation eval and the substructure

6n.v (all names with appropriate prefixes). Thus, we
hovr decomposed the problem of implementing

LangSig into the subproblems of implementing the

parameter signatures and the module LangMod itself.
The latter task is in fact trivral, as the module

inlroduces neither new types nor new operations. An

obvious implementation of ComSig is
CoT,ll~od(EzpMod(Env)). where Env:EnvSig and ComMod
and EzpMod are defined as follows:

module CornMod (Exp. L’zpSig) : ComSig
inherit Erp
type corn -

data assign of Ezp.Env.ld.elem i Exp.ezp
1 compose of corn x corn

val ezecute: corn n Ezp Env.env 4 Ezp.Env.env
aziom (Vz:Ezp.Env.Id.elem.

e:Ezp.ezp.
p:Ezp.Env.env)

(ezecute(assign(z.e).p)
= Ezp.Env.nssign(z.~zp.evat(e.p),p))

and (Vd.c’:com,p:Ezp.Env.env)
(ezecute(compose(c,c’),p)

= ezecute(c’,ezecute(c,p)))
end

module Ezphfod (Env: EnvSig) : EzpSig
inherit Env
type e=p
ual eval: exp x Env.enu - int

end

Note that ComMod is executable: in the context of
the sharing declaration in LangSig we can ignore the
fact that EzpMod is not yet executable.

We could implement EzpSynSig in a way
analogous to ComSig above. However, we would like
to take advantage of the fact that Extended-ML

signatures specify models up to behavioural
equivalence and so our implementation of this part
of the language introduces some simple source-code

optimisations.

73

module EzpSynMod (Env: EnvSig) : EzpSynSig
inherit Env
type exp =

data constc of int

I
varc of Env.Id.elem
plusc of ezp x ezp

1 condc of ezp z. ezp x ezp
val eual: ezp x Env.env -* int
and const: int + ezp
and var: Env.Id.etem + ezp
and plus: ezp x ezp + etp
and cond: exp x ezp x ezp + erp
zc;rn (Vn:int,p:Env.env)(eval(constc(n),p) = n)

(Vx:Env.id.etem,p:Env.env)
(eval(varc(z).p) = Env.lookup(2.p))

and (Ve.e’:ezp,p:Env.env)
(eval(plusc(e,e’),p)

= eval(e.p) + eval(e’,p))
and (Ve.e’,e”:ezp.p:Enu.enu)

(eval(condc(e,e’,e”).p)
= eval(e”,p) if eval(e,p) = 0
= eval(e’.p) otherruiso)

I *** optimisations start here **+ 1
and (Ve.e’:ezp)

(plus(e.e’) = e’
=e

fs ;, = const(0)
= const(0)

and (Ve.e’.e”:e+p)
= plusc(e,e’) otherwise)

(cond(e.e’,e”)
= e’ if e = const(n) and 7~ # 0
= e” if e = const(0)
= e’ if e’ = e”
= condc(e.e’.e”)

otherwise)
end

We claim that EzpSynMod meets its specification, i.e.

for any Env:EnuSig, EzpSynMod(Env):EzpSynSig; in

other words EzpSynMod(Env) implements EzpSynSig.

Sketch of proof: Let AEEzpSynMod(Env). We have to

show that A is behaviourally equivalent to some
algebra B satisfying the axioms in EzpSynSig, with

respect to Env.env. Env.Id.elem and int as observable
sorts. By the definition of the semantics of a

module, A is a reduct to the algebraic signature of

ExpSynSig of some algebra Asrp which extends Env

and satisfies the axioms given in the body of
EzpSynMod. Note that A “contains” another

algebra of the same signl?ure as A: namely, the
algebra in which the operations const. var. plus and

cond are interpreted as, respectively, constc, vorc,
plvsc and condc in A.=s. Call this other algebra B.

It is easy to see that the axioms in the body of

EzpSynMod ensure that B satisfies the axioms in

EzpSynSig.

Now, to show that A and B are behaviourally

equivalent it is sufficient to show that the value of

any term term of an observable sort with variables

of observable sorts is the same in A and 8. The only
nontrivial case here is when term is of the form

eval(e.p), where e is a term of the sort ezp with

variables of sorts Env.Id.elem and int only. Let e

denote the term resulting from e by replacing eacCh

occurence of con&, var etc. by, respectively, constc,

vurc etc. By an easy induction on the complexity of

e one may prove that the values of evol(a,p) end

eval(ec8p) in Arsp are the same. To complete the

proof it is enough to notice that the value of

eval(e,p) in A is the same aa in A and its value in
B is the same as the value of eval e,,p) in A,-. “P 0

Finally, to complete the development we have to
implement EnvSig. We can start again with a trivial
refinement to EnvMod(ld), where Id:Ident and

module EnvMod (Id: Ident) : EnvSig
inherit Id
type env
val initial: env
and assign: Id.elem x int x env + env
and lookup: Id.elem I enw -t int
aziom (Vx:Id.elem.n:int.p:env)

(lookup(z.assign(z,n.p)) = n)
and (Vz,z’:Zd.elem,n,n’:int,p:enu)

(Id.eq(z,z’)=talse =+
assign(z,n,assign(z’.n’.p))

= assign(z’,n’,assign(z,n.p)))
and (Vz,z’:ld.elem,n.n’:int,p:enu)

(Id.eq(z,z’)=true +

end

assign(z,n,assign(z’.n’,p))
= assign(z,n,p))

This module provides an implementation of

environments; however, it is clear that this

implementation is not complete in the sense that it

does not determine the value of, for example,
lookup(z,initial). Thus, we can further refine our

specification and implement the module EnvMod by

module EnvMod’ (Id: Ident) : EnvSig
inhosit Id
typo env
vu1 initial: env
and assign: Id.elem * int x env + env
and lookup: Id.elem x env + int
adorn (Vz:Id.elem,n:int,p:env)

(lookup(z,assign(z,n,p)) = n)
and (Vz,z’:Zd.elem.n.n’:int,p:env)

(Id.eq(z.z’)=false =+
assign(z,n,assign(z’,n’,p))

= assign(z’,n’,assi n(z.n.p)))
and (Vz.z’:Id.elem,n.n’:int.p:env 3

(Id.eq(s,s’)=ttu.e +
assign(z,n,assign(z’,n’,p))

= assign(2,n.p)
1 and (Vz:Env.Id.elem)(lookzlp z.initial) = 0)

end

It is easy to see that EnvMod’ implements EnvMod.

and so EnvMod’(Id) implements EnvSig. The next
refinement of EnvMod would probably be to fix a

data representation for env.

The final step of the development, which we are

going to omit, is to implement the signature Ident by

defining some structure Id:fdent.

Summing up, by decomposing our initial

specification into smaller pieces using modules and

then implementing each of them separately step-by-
step we developed an implementation of the signature

LangSig given by the following structure:

LangMod(ComMod(EzpMod(EnvMod’(Id))).
EzpSynMod(EnvHod’(Id)))

The development presented above is, of course,

extremely simple. We hope, however. that we have

74

managed to convince the reader that the same ideas
may be applied in more complicated situations. For
example, we could easily add more kinds of
expressions and commands (e.g. while-loops), block
structure and input/output. We could replace
integers with an arbitrary primitive domain of

elementary types and operations. In this more
elaborate language more interesting optimisations
would be possible.

7 Extended ML over an arbitrary
institution

In the previous sections we presented Extended

ML based on the standard algebraic framework: we

used standard algebraic signatures, standard algebras

and standard first-order axioms. However, in
practice we may need to use variations of these
notions to handle some specific features of ML which

we have disregarded here, or to make specifications
of some data types easier. For example, to handle
polymorphism we would have to deal with

polymorphic signatures or with order-sorted
signatures and algebras (see [Cog 781, [Cogolla 83]);
to handle nontermination we may want to use partial

(see [BW 821) or continuous (see [ADJ 771) algebras;

to deal with exceptions we could use error algebras
(see [Cog 771 or [GDLE 821); finally. we may want to

allow (or disallow) different kinds of sentences to be
used as axioms. Each of these leads to a formally
different logical system for writing specifications in

Extended ML.

The notion of institution [GB 831 provides a tool

for dealing with any of these different logical

systems. An institution comprises definitions of
signature, model (algebra), sentence and a
satisfaction relation satisfying a few consistency

conditions. (For a similar but more logic-oriented
approach see [Bar 741.)

We can base our definitions of Extended-ML
signatures, structures, modules and their semantics

on an arbitrary institution, thus avoiding the choice
of particular definitions of these underlying notions.
Moreover, our notion of implementation and our

presentation of program development process remain
valid in this general framework as well. For the
technical details which underlie such definitions (in

particular, a definition of behavioural equivalence in
an arbitrary institution) see [ST 841 and [ST 851.
The only concept we used in this paper which did not

appear in earlier work on algebraic specification in
an arbitrary institution is the notion of executable
specification. We can describe this by indicating
which sentences of the underlying institution are

ezecutable. In the standard framework of the

instrtution of first-order logic we use in this paper,

we may assume that the executable sentences are
just equations of the form te?-m=term’, where term

has a certain simple form, as sets of such equations
correspond directly to programs in pure applicative

ML.

We can define an institution with all the features
necessary to specify Standard-ML programs (we need

to be able to handle polymorphic higher-order

functions which may perform assignments and
generate exceptions and which need not terminate)
Standard-ML code (or a notational variant) could
then be included as sentences of this institution.

Extended ML over this institution would be a

language suitable for specifying and developing

programs in full Standard ML.

8 Conclusions

In this paper we attempted to apply the
mathematically well-explored ideas on algebraic

specification of [SW 831, [Wir 831, [ST 841 and [ST 851

in the context of the Standard ML programming
language. We extended Standard ML by allowing
axioms in module interface specifications (signatures)

and in place of code; the resulting language is called
Extended ML. After describing the algebraic

semantics of Extended ML we discussed how it may

be used in formal program development. From the

specification formalism it is based on, Extended ML
inherits complete independence from the logical
system (institution) used to write specifications. This

also amounts to the independence of Extended ML

from the programming language used to write code.
With an appropriate change to the underlying

institution, Extended “ML” becomes Extended Pascal
(i.e. Pascal + modules + specifications), Extended

Ada, etc.

There have been few attempts to apply work on

algebraic specification to programming in the past.

Three exceptions are UP-L [Bau 811. IOTA [NY 831 and
Anna [LHKO 841. The CIP-L wide-spectrum language

and the IOTA language are, like Extended ML. capable
of expressing specifications as well as (high- and IOW-
level) programs. But in both cases the semantics of
specifications is different. In [Bau 811 although

there is a notion of refinement discussed, it is not

described formally. In IOTA the notion of refinement

is the same as in Extended ML, although because of
the different semantics of specifications its

application is more restricted there. Anna is mainly

oriented towards annotating existing Ada programs,
although it is also possible to use it to specify

programs prior to their implementation. There is no
explicit notion of refinement in Anna. IOTA and Anna

lack formal semantics, and all three languages are

dependent on some particular logical system and so

75

e.g. CIP-L cannot fully handle higher-order functions,
functions with several results, or nondeterministic

functions.

One problem with Extended ML is that we have
made no provision for building structured

specifications as in e.g. Clear [BG 801. it is possible
at the level of modules and structures to break large

specifications/programs into small pieces. but it is

not possible e.g. to define a signature by means of a
“hidden function”. This is not a big problem, since

our specification formalism (see [ST 841) provides a
rich set of specification-building operations wllich we

have so far only used in defining the semantics of
signatures and modules. The only reason at present
for forbidding their explicit use in specifications is

that they are probably too low-level to be used
conveniently. Another point is that in the presence
of such powerful specification-building operations as

closure under behavioural equivalence (behavioural

abstraction) the difference between the notions of

signature and structure in Extended ML becomes
rather fuzzy. since for every signature it is easy to
construct a structure having the same class of

models. Experience will show if it is worthwhile

retaining this terminological and methodological

distinction. On the other hand, it is not yet clear
whether in practice it is necessary to introduce extra
specification-building operations in the context of the

powerful modularisation mechanism in Extended ML.

Acknowledgements

The idea of adding axioms to a programming

language was suggested by Rod Burstall; this feature
was added to the HOPE language [EMS SO] in 1982 for
teaching purposes. The present work was stimulated

by Robin Milner’s work on Standard ML and by David
MacQueen’s work on modules. Our thanks to Rod
Burstall for his constant support and encouragement

and to Martin Wirsing for helping to develop the

foundations on which Extended ML rests. Support

was provided by Edinburgh University and the Science
and Engineering Research Council.

9 References

[ADJ 761 Goguen, J.A., Thatcher, J.W. and Wagner,
E.G. An initial algebra approach to the
specification, correctness. and

implementation of abstract data types.
IBM research report RC 6487. Also in:
Current Trends in Programming

Methodology, Vol. 4: Data Structuring
(R.T. Yeh. ed.). Prentice-Hall, pp. 80-149

(1978).

[ADJ 771 Goguen, J.A., Thatcher, J.W., Wagner. E.G.

and Wright, J B. Initial algebra

[Bar 741

[Bau 811

[BoM 791

[BW 821

[BG 801

[BMC 801

[Ehr 791

[Ehrig 841

[EKMP 821

[ETLZ 821

[GGM 761

semantics and continuous algebras.

JACM 24. 1. pp. 68-95.

Barwise, .I. Axioms for abstract model

theory. Annals of Math Logic 7.
pp. 221-285.

Bauer. F.L. et al (the CIP Language
Group) Report on a wide spectrum

language for program specification and
development (tentative version). Report

TUM-I8 104, Technische Univ. Miinchen.

Bayer. R.S. and Moore, J.S. A
Computational Logic. Academic Press.

Broy, M. and Wirsing. M. Partial abstract
types. Acta Informatica 18, pp. 47-84.

Burstall, R.M. and Goguen, J.A. The

semantics of Clear, a specification
language. Proc. of Advanced Course on

Abstract Software Specifications,

Copenhagen. Springer LNCS 86,
pp. 292-332.

Burstall, R.M., MacQueen. D.B. and
Sannella, D.T. HOPE: an experimental

applicative language. Proc. 1980 LISP

Conference, Stanford, California,
pp. 138-143.

Ehrich, H.-D. On the theory of

specification, implementation, and

parametrization of abstract data types.
Report 82, Abteilung Informatik, Univ. of
Dortmund. Also in: JACM 29, 1.
pp, 208-227 (1982).

Ehrig. H. An algebraic specification
concept for modules (draft version).

Report 84-04, Institut fiir Software und
Theoretische Informatik, Technische
Univ. Berlin.

Ehrig, H., Kreowski, H.-J., Mahr. B. and

Padawitz. P. Algebraic implementation
of abstract data types. Theoretical

Computer Science 20. pp. 209-263.

Ehrig, H.. Thatcher, J.W., Lucas, P. and

Zilles, S.N. Denotational and initial

algebra semantics of the algebraic
specification language LOOK. Draft

report, IBM research.

Giarratana. V.. Cimona, F. and
Montanari, U. Observability concepts in
abstract data type specification. Proc.

5th MFCS, Gdansk. Springer LNCS 45.

[Gogolla 831 Gogolla, M. Algebraic specifications with
partially ordered sorts and declarations.
Fb. 169, Abteilung Informatik. Univ. of

Dortmund.

[GDLE 821

If-h3 771

[cog 781

[GE 801

[CB 831

[GM 831

[GMW 791

[Cut 751

[LB 771

[LHKO 841

[MacQ 84)

[Mil 781

Gogolla. hf.. Drosten. K.. Lipeck. U. and
Ehrich. H.D. Algebraic and operational

semantics of specifications allowing
exceptions and errors. Fb. 140,

Abteilung Informatik. Univ. of Dortmund.

Goguen, J.A. Abstract errors for

abstract data types. Proc. IFIP Working
Conf. on the Formal Description of

Programming Concepts, New Brunswick,
New Jersey.

Goguen, J.A. Order sorted algebras:
exceptions and error sorts, coercions

and overloaded operators. Semantics
and Theory of Computation Report No.
14, Dept. of Computer Science, UCLA.

Goguen, J.A. and Burstall. R.M. CAT, a
system for the structured elaboration of

correct programs from structured
specifications. Technical report CSL-118.
Computer Science Laboratory, SRI

International.

Goguen. J.A. and Burstall. R.M.
Introducing institutions. Proc. Logics of

Programming Workshop (E. Clarke, ed.).
Carnegie-Mellon. University.

Coguen, J.A. and Meseguer, J. An

initiality primer. Draft report, SRI
International.

Gordon, M.J., Milner, A.J.R. and
Wadsworth, C.P. Edinburgh LCF.
LNCS 78.

Cuttag, J.V. The specification and
application to programming of abstract
data types. Ph.D. thesis, University of

Toronto.

Liskov, B.H. and Berzins. V. An appraisal
of program specifications. Computation

Structures Group memo 141-1,
Laboratory for Computer Science, MIT.

Luckham, D.C., van Henke, F.W..

Krieg-Bruckner. B. and Owe, 0. Anna: a
language for annotating Ada programs
(preliminary reference manual).

Technical report 84-248. Computer
Systems Laboratory, Stanford University.

MacQueen. D.B. Modules for Standard
ML. Research report, Bell Laboratories;
an earlier version appeared in Proc.

1984 ACM Symp. on LISP and Functional

Programming, Austin, Texas.

Mimer, R.G. A theory of type
polymorphism in programming. Journal
of Computer and System Sciences 17,

[hlil 841

[NY 831

[Rei 801

[ST 841

[ST 851

[SW 831

[Wir 831

pp. 348-375.

Mimer. R.G. A proposal for Standard ML

Proc. 1984 ACM Symp. on LISP and
Functional Programming, Austin, Texas.

Nakajima, R and Yuasa. T. (eds.) The

IOTA Programming System: A Modular
Programming Environment. Springer
LNCS 180.

Reichel, H. Initially restricting algebraic

theories. Proc. 9th MFCS, Rydzyna.
Springer LNCS 88, pp. 504-514.

Sannella. D.T. and Tarlecki, A. Building
specifications in an arbitrary institution
Proc. lntl. Symp. on Semantics of Data

Types. Sophia-Antipolis, France.
Springer LNCS 173. pp. 337-356.

Sannella. D.T. and Tarlecki, A. On

observational equivalence and algebraic
specification. To appear in: Proc. 10th
Colloq. on Trees in Algebra and

Programming, Berlin (March 1985).

Sannella, D.T. and Wirsing. M. A kernel
language for algebraic specification and

implementation. Report CSR-131-83,
Dept. of Computer Science, Univ. of
Edinburgh; extended abstract in: Proc.

Intl. Conf. on Foundations of
Computation Theory, Borgholm. Sweden.

Springer LNCS 158, pp. 413-427.

Wirsing. M. Structured algebraic
specifications: a kernel language.

Habilitation thesis, Technische Univ.
Mtinchen.

[Wirlh 711 Wirth, N. Program development by
stepwise refinement. CACM 14.

pp. 221-227

77

