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Abstract 

An attempt is made to apply ideas about algebraic 

specification in the context of a programming 
language. Standard ML with modules is extended by 

allowing axioms in module interface specifications 

and in place of code. The resulting specification 

language, called Extended ML, is given a semantics 
based on the primitive specification-building 

operations of the kernel algebraic specification 

language ASL. Extended ML provides a framework for 

the formal development of Programs from 

specifications by stepwise refinement, which is 

illustrated by means of a simple example. From its 

semantic basis Extended ML inherits complete 

independence from the logical system (institution) 
used to write specifications. This allows different 
styles of specification as we!1 as different 

programming languages to be accommodated. 

1 Introduction 

Beginning with [Gut 751 and [ADJ 761. work on 
the algebraic approach to program specification has 
focused on developing techniques of specifying 
programs (abstract data types in particular) and 
more recently on formalising the notion of 

refinement as used in stepwise refinement (see e.g. 
[Ehr 791 and [EKMP 621). The ultimate goal of this 
work is to provide a formal basis for program 
development, which would e.g. support a methodology 
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for systematic development of programs from 

specifications by means of verified refinement steps. 

However, comparatively little work has been done on 

applying the results to programming, with a few 

exceptions such as CIP-L [Bau 611, IOTA [NY 831 and 
Anna [LHKO 641 

This paper represents our first attempt at 
applying our ideas about algebraic specifications in 
the context of a programming language. The 

approach to algebrarc specification this is based on, 
described in [SW 63). [Wir 631. {ST 641 and [ST 651. 
features a specification formalism heavily based on 

the notion of behavioural equivalence, which makes 
it possible to adopt a very simple definition of 

refinement. Another feature of this approach is that 
it is independent of the underlying logical system (or 
institvlion [GB 831). This means that we are not 
bound to using any particular logic in specifications 

and so can readily edapt from the simple world of 
algebraic specifications (wrth total functions, 
equational axioms, etc.) to the more complex world 
of programming languages (with nonterminating 

programs, exceptions, etc.). 

The programming language we choose to work 
with is Standard ML [Mil 841 with modules [MacQ 641. 

ML is a statically-scoped functional language which 
festurcs a flexible but completely secure polymorphic 

type system [Mil 781. Large ML programs can be 

structured into modules with explicitly-specified 
interfaces. 

We begin in section 2 by outlining an algebraic 

semantics of Standard ML modules under some 
simplifying assumptions. We then proceed to extend 

the language by permitting axioms to be used in 

module interface specifications and in place of code; 
this mnkes it possible to use the same language to 
write high-level specrfrcations. programs. and 

everything in between This extended language we 

cull Extended ML. The semantics of Extended ML is 
presented in sections 3 and 4. In section 5 we 
explain how programs may be formally developed in 

Extended ML, and in section 6 a simple example is 
given. In section 7 we briefly explain in what sense 
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Extended ML is independent of the underlying logical 

system, and how this allows us to discharge the 
simplifying assumptions made in section 2. 

Although for readability this paper does not 

contain all the formal details. we would like to 
emphasise that the strength of this work is that it 

rests on mathematically firm foundations as detailed 

in [SW 833. (Wir 631. [ST 641 and [ST 651. We regard 
this as absolutely essential; a theory of formal 

program development does not inspire much 

confidence otherwise. The technical details (mainly 

the formal semantics of Extended ML in terms of the 

specification-building operations described in [ST 641 
and proof rules for refinement in the context of 
behavioural equivalence on the basis of those in 

[ST 851) will appear in a longer version of this paper. 

2 Standard ML with modules 

In this paper, we will restrict our attention to 

the applicative subset of Standard ML (i.e. without 
assignment and exceptions). We will further assume 
that no use is made of polymorphic types and that 

all functions are first-order and total. Except for 
the purpose of simplifying the presentation. none of 

these restrictions are necessary, as discussed in 

section 7. The reader need not be acquainted with 
the particular features and syntactic details of 

Standard ML itself, except to keep in mind the 
assumptions stated above -. IL is sufficient to know 

that a Standard-ML program defines a set of types 

and functions. The examples (particularly the one in 

section 6) will make use of Standard ML as described 

in [Mil 043. 

Of particular interest to us are the extensions to 
Standard ML for modular programming proposed in 

[MacQ 641. The proposal requires that interfaces 
(signat+ures) and their implementations (struct~res~) 
be defined separately. Every structure has a 

signature which gives the names of the types and 
functions defined in the structure. Structures may 
be built on Lop of existing structures. so each one is 

actually a hierarchy of structures. and this is also 

reflected in Its signature Modules are 

“parametcrised” structures; if we apply a module to 

a structure we get a structure A module has an 

input signature describing structures to which it may 

be applied, and an output signature describing the 
result of an application. A module may have several 

parameters, but since this is the same as having a 
single large parameter we will restrict attention when 
convenient to the single-parameter case (the same 

approach is taken in (MacQ 64]), It is possible, and 

sometimes necessary to allow interaction between 

different parts of a program, to declare that certain 
substructures (or just certain types) in the hierarchy 
are identical or shared. 

An example of a simple program in Standard ML 
with modules is the following: 

signature POSig = 
sig fypa elem 

val le: elem x elem + boo1 
and 

signature SorfSig = 
sig st7-ucturo PO: POSig 

val sort: PO.elem list -+ PO.elem fist 
end 

module Sorfhfod (PO: POSig) : SorfSig 
inherit PO 
1 l ** insepf is a local function +** 1 
ual fee insarf(a.nil) = [a] 

1 insorf(a,b::f) = if PO.te(a,b) 
then a::b::l 
else b::inseTf(a.l) 

and ret sort nil = nil 

end 
1 sosf(a::f) = insezf(a.sorf 1) 

structure InfPO: POSig = 
struct type elem is inf 

val le = op <= 
end 

Now, SorfMod(lntPO).sotf [ 11,661 = [5,6.1 l] 

In this example, the types of the functions sort and 
insert in the module SortMod are inferred by the 

typechecker: the type of sort must be as declared in 
the signature SortSig. Note that the “types” (i.e. 

signatures) of structures and modules are given 
explicitly. 

We can describe the semantics of signatures, 

structures and modules in Standard ML in terms of 
the following mathematical objects: 

Definition: An algebraic signature C is a pair (S.D). 
where S is a set of sorts and fl is a set of operations 
in which each WED has a type of the form s,x...‘sw*s, 

for s ,,..., sn.sCS. 

Definition: Let C=(S,fl) be an algebraic signature. A 
E-algebra A consists of a carrier set ]AIJ for every 

sort SCS, and a total function u”:(A], x...x]A], +]A], for 

every operation wCCl of type .s,x...~s~+‘s. n 

A Standard-ML signature Sig denotes an 
algebraic signature C. This may be identified with 

the class of E-algebras which will be denoted 

Mod[Sig] (the models of Sig). A structure Sfr:Sig 

corresponds to a C-algebra A, i.e. an algebra in 

Mod[Sig]. A module M(X:Sigs):Sigr denotes a (total) 
function taking every algebra in Mod[Sigp] to an 

algebra in Mod[Sigr]. From now on we will ignore the 
distinction between a syntactic object (e.g. Sig. Sfr) 
and the mathematical object it denotes (e.g. 2, A), 

referring to both by the same name. 



To make the semantics of modules more precise: 

in the module 

module M(X: Ep) : Er 
<body> 

the code in <body> can make reference to the names 

in Cp (prefixed by X. - see next parograph) and to 
types and operations defined earlier in <body>. This 
code introduces some new types and operations ZIOcol 

and defines them in terms of types and operations 
from Es (and those defined earlier). The resulting 

algebraic signature is ZZpuZ,OsoL. The new types and 

operations must include those of C,. that is D:z~E,OCol. 
If parts of the parameter are to be included in the 

result, then <body> must include the statement 

inherit X which introduces the types and operations 

in Cp to ZZIOcal. Now, for any structure AEMod[Zp], 

<body> defines the expansion of the Cs-algebra A to 

a (EpuCIDc~l)-algebra A,V. M(A) denotes the reduct of 

A to a C;algebra, that is, just AaIP 

a:3 operations not in C, omitted. 
with the types 

We deal with hierarchical structures by allowing 

sorts and operations in algebraic signatures to have 
names like X.name where X is a structure name and 

name is in the signature of X. The statement 

structure X: C 

in a Standard-ML signature introduces X.name to the 
signature for each name in D. The statement 

structure X = Y 

in a Standard-ML structure or module introduces 
X.name for each (type or operation) name in the 
signature of Y, and gives it the same interpretation 

as name had in Y (note that inherit X =dc, 
structure X = X). Moreover, we need to deal with 

equivalence classes of names rather than names 

themselves to handle sharing; for example, the 
sharing declaration 

sharing X = Y 

causes X.name and Y.name to be identified for each 
name in the signature of X (which is required to be 
the same as the signature of Y). This allows us to 

refer to the same object using both names. 

For example, the Standard-ML signature 

signature C = 
sig type t 

val c: t 
end 

denotes the algebraic signature ([[t]],[[c]:[t]]), where 

we use [,,.I to list the elements of an equivalence 
class. 

signature C’ = 
sig structure X: E and Y: C 

sharing X.t = Y.t 
val f: X.t + X.t 

end 

denotes (I[X.t,Y.t]l, 

~[x.c]:[x.t.Y.t],[Y.c]i[x.t,Y.t],[f]:[x.t,Y.t]~[x.t.Y.t]~) 

module M(X: C. 2’: Z sharing X.t = Y t) : E’ 
inherit X, Y 
val f(a) = if a=X.c then Y c else X.c 

end 

denotes a function taking any two Z-algebras A and B 
with the same carrier for sort t to a F-algebra with 
both X.c and Y.c defined as in A and B (respectively) 

and j defined as in the above code. If 

structure A: C = 
stnrct type t is boo1 

val c = true 
end 

structure B: Z = 
struct type t is boo1 

val c = false 
end 

then M(A.E) has X.t = Y t = 6001. X.c = true, Y.c = 

false and f is negation. 

3 Extended ML 

In the previous section we outlined an algebraic 
characterization of the notions of signature, 

structure and module as they appear in Standard ML. 
In this framework a signature may be viewed as a 
specification of a class of structures. However, since 

Standard ML is just a programming language, the 
information provided by a signature is rather limited. 

It is sufficient for complete type checking, which is 

very important and useful in practice to eliminate 
many simple programming errors. but it is not 
sufficient, for example, for proving program 

correctness or for program documentation (except 
for just giving types of operations). To make 
signatures more useful for program development and 

specification we have to extend them to include 

axioms (for now, sentences of first-order logic, but 

see section 7) which put constraints on what the 
operations are supposed to do We propose to make 

this extension with the aim of doing formal 

development and proofs of Standard ML programs. 
We will call the new language Extended ML 

An example of a signature in Extended ML is the 

following (we assume that IntListSig is s signature 
with a type intlist of lists of integers and a 

“membership” operation isin:intxintlist-bool). 

signature IntListChooseSig = 
sig structure List : IntListSig 

val choose: List.intlist + int 
aziom (Vl:List.intlist) 

end 
(t#List nil + List.isin(choose(l).I)) 

Note that the above Extended-ML signature 

corresponds to what is usually (see e.g. [ADJ 761) 
called a specification, i.e. an algebraic signature with 

some axioms. However, in [ADJ 761 and elsewhere, 

e.g. [Ehr 791, [EKMP 621. [ETLZ 621, [GM 631. the 
meaning of a specification was taken to be (up to 
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isomorphism) the initial algebra in the class of 

algebras having the algebraic signature from the 
specification and satisfying the axioms. An algebraic 
approach to program modularisation based on these 

ideas is presented in [Ehrig 841. We want to consider 

a different interpretation here: an Extended-ML 
signature determines a larger class of algebras, all 
with the same algebraic signature but not necessarily 

all isomorphic. We postpone the exact definition of 
this class to the next section. If @ is an Extended- 

ML signature then ZZ denotes its corresponding 
algebraic signature and Mod[@J] denotes its class of 

models (Mod[@i]cMod[C]). 

For any Standard-ML signature we may define a 

Standard-ML structure over this signature by giving 

code which defines the data types and operations 
specified in the signature. The same in Extended ML, 

but note that Standard-ML code is just a special kind 

of specification which happens to be executable. In 

an Extended-ML structure Y over Extended-ML 

signature @ we allow arbitrary axioms (over the 
algebraic signature S) to be used as “code”. This 
again determines a class of algebras which we denote 
by Mod[Y]: namely, Mod[Y] is the class of all models 

of Y. i.e. those E-algebras which satisfy the axioms 

given in Y. For an Extended-ML structure Y to have 
an Extended-ML signature G;, which we denote 9:Q. 

means that Mod[Y]CMod[G]. 

For example, assuming that List is a structure 

with signature IntListSig: 

structure IntListChoose: IntListChooseSig = 
struct 

inherit List 
val choose: List.intlist -) int 
uziom choose(List.niI) = 0 
and (Vl:List.intlist) 

end 
(I#List.nil a List.isin(choose(l),L)) 

The situation with Extended-ML modules is 

similar, although slightly more complicated. Again. 
in place of code we permit arbitrary axioms to be 

used. Recall that in Standard ML a module 

module M(X: Cp) : CT 
<body> 

denotes a function M:Mod[CP]+Mod[Cr] such that for 
any Zv-algebra A, M(A) is the CI-reduct of the 

expansion of A defined by <body>. In Extended ML, 

since <body> contains axioms rather than code, it 

need not define an expansion of A unambigously 
(there may be many different expansions of A which 

satisfy <body>; there may be even none). Thus, in 

Extended ML a module 

module .44(X: ap) : Qr 
<body> 

determines in the same way as in Standard ML a 
function AUbase mapping each Cv-algebra to a class of 

C;algebras. For Extended-ML module Y as above we 

require that for any algebra A~Mod[@s]. 

Jl,.&WW@,l. Aba,. extends in an obvious way to 
a function *u mapping es-structures to @;structures. 
i.e. for any @Is-structure Y, Mod[Y]gh!od[@p], 

u(Y) = uIm,.,.(A)IAEMod[Y]j. It follows from the 
requirement stated above that JU(Y)c_Mod[@r]. 

4 Behavioural equivalence in program 
specification 

Although according to the previous section 
signatures and structures in Extended ML both 

denote classes of algebras (and even have a similar 
syntax), we want to keep them separate because they 
play different roles in the process of program 

development. A signature corresponds to a 
specification of an abstract data type. It provides 

information necessary to use the data type, but says 
nothing about the implementation details. On the 
other hand, a structure is like an “abstract program” 
(in the sense of stepwise refinement [Wirth 711) which 
implements’ an abstract data type; it gives some 

implementation details. although. depending on the 
stage of development, this information need not be 

complete. 

Since a signature in Extended ML is supposed to 

be a specification of an abstract data type, it should 

not distinguish between two algebras which are 
equivalent from the user’s point of view, even if 

these algebras are “internally” different. This 
amounts to the requirement that the class of 

algebras corresponding to a signature should satisfy 
some kind of “abstractness” condition, i.e. that it 

should be closed under the relation “equivalent from 
the user’s point of view”. [ADJ 761 suggests that 
“abstract” in “abstract data type” means “up to 

isomorphism”; however, this is not the abstractness 

condition for us, since it is easy to give an example 
of two algebras which are not isomorphic but still 

are indistinguishable from the user’s point of view 

(e.g. the abstract data type Stack can be represented 

using either a list or else an array with a pointer; 

the corresponding algebras are not isomorphic but 

still have exactly the same properties for a user). 

We argue (see [SW 831, [ST 84, 851; cf. [CCM 761) 

that the appropriate meaning of “abstract” is “up to 
behavioural equivalence”. The idea is that every 
abstract data type includes some external (or 

observable) sorts which are the only ones to which a 
user has direct access: the remaining sorts may only 

be manipulated by a user indirectly, via the 

operations provided by the abstract data type. Two 
algebras are behaviourally equivalent with respect to 

a set of observable sorts if and only if they give the 
same (or, a bit more generally, corresponding) 

answers to every computation taking inputs of 
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observable sorts and yielding a result of an 

observable sort. In the algebraic approach such 
computations correspond to terms of observable 
sorts with variables of observable sorts. Thus, two 

algebras are behaviourally equivalent if and only if 
they satisfy exactly the same equations between such 

terms. For a more precise definition, technical 
details and more discussion see [ST &?I] (cf. [SW 831. 
[ST 841). 

A conclusion from the above argument is that an 
Extended-ML signature denotes the smallest class of 
algebras which is closed under behavioural 

equivalence and which contains all the algebras 
satisfying the axioms given in the signature. Note 
that this corresponds to an abstract model 

specification [LB 771, where we first define something 
concret$ly and then abstract away from the concrete 

details. 

To turn this into a definition we still need to 
indicate which types in an Extended-ML signature we 

are going to regard as observable. The natural 
choice is to take all types which are external to the 
signature in the sense that they come from 

somewhere else. These are exactly those types which 
belong to inherited structures, i.e. in more syntactic 

terms, these are just the types having names of the 
form id.name for arbitrary id and name. Note that 

because of sharing such types may have other names 

which need not all be of this form. Note also that 
the standard types like boo1 have such names as well, 
e.g. InitialEnv.bool. 

Thus. summing up, any Extended-ML signature @ 
determines the class of algebras Mod[@I] consisting of 

those C-algebras which are behaviourally equivalent 
to some X-algebra satisfying the axioms of 8. with 
respect to the types of E belonging to signatures of 

inherited structures. 

For example, assuming that Triv is a trivial 
signature with one type elem only: 

signuture StackSig = 
sig strut ture X: Tsiv 

type stack 
val empty: stack 
and push: X.elem x stack - stack 
cmd pop: stack + stack 
and top: stack + X.elem 
and isempty: stack + boo1 
aziom (Va:X.elem.s:stuck)(pop(push(a.s)) = s) 
wad (Va:X.etem,s:stack)(top(push(a,s)) = a) 
and isemp ty( emp ty) = true 
and (Va:X.elem,s:stack) 

(isempty(push(a.s)) = false) 
end 

Note that the axioms of Stack&g do not specify the 

value of e.g. top(empty), so algebras satisfying the 
axioms need not be isomorphic. Furthermore. 
because Mod[StackSig] is by definition closed under 

behavioural equivalence with respect to the types 
X clem and bool. it contains not only algebras 

satisfying the axioms, like the list representation of 
stacks, but also all algebras which are behaviourally 

equivalent to them, like the array-with-pointer 
representation of stacks, which does not satisfy the 

axiom (Va:X.elem,s:stack)(pop(push(a.s))=s). 

5 Program development 

From our point of view, program development 
should proceed as follows: 

We begin with some high-level user-oriented 
specification: this is an Extended-ML signature, say 

0,. typically with a very large class of models. Then, 

by making a series of design decisions we ultimately 
arrive at an executable Standard-ML structure, say 

9 I which satisfies the initial specification (i.e. 

YI::@J. Typically, fs, has exactly one model. Making 
a design decision is nothing more than restrictmg 

the class of models, e.g. by adding an axiom to a 
specification. 

To formalise this we need a notion of 

implementation: 

Definition: A class of algebras C’ implements a class 

of algebras C if C’C_C. C and C’ must be classes of 
algebras over the same algebraic signature. 

This general definition in a natural way allows us to 
talk about the implementation of a structure by 

another structure, of a signature by a structure 
(which we have been writing as Y:@). of a signature 

by another signature, or even of a structure by a 

signature (although we cannot see any obvious need 
for this last notion). 

This also extends to a definition of what it 
means for a module to implement another module: 
A’(X’:@;):@; implements Y(X:Qp):a7 if 

(1) aP implements a’, (i.e. Y’ accepts any 
argument accepted by A) and 

(2) for any structure 9:Gp, 1(‘(Y) implements A(Y). 

Note that a sufficient condition for (2) is that the 
body of .U’ implements the body of A; this means 

that we can implement a module by refining its body, 

using exactly the same methods as when refining 
Extended-ML structures. 

Now, developing Y3, from Go means constructing 
a series of specifications (signatures or structures) 

sp,, . . . . SP,, all over the same algebraic signature 
such that each one implements the previous one, i.e. 

Mod[O,]>Mod[sp,]>...>Mod[sp,,]2Mod[~s,]. Since the 
implementation relation is transitive (i.e. 

implementations compose vertically in the 
terminology of [GB SO]) the correctness of each 

refinement step guarantees that ~+s, implements B,,. 

In our framework, a refinement step may be of 
one of three forms (the fourth, theoretically possible. 

does not seem very useful as indicated above). The 
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first and simplest case is when we implement a 

structure 9, by another structure Y,+!. To prove the 
correctness of such a refinement (i.e. that Yi+, really 
implements Yi) we need only to show that each axiom 

of Ji is a consequence of the axioms of Y,+i. The 
second case is when we implement a signature t3, by 

a structure Yi+,. To prove the correctness of this 
refinement we need to show that every model of p+, 
is behaviourally equivalent to an algebra satisfying 

the axioms of Gil. This is difficult in general. but in 
the next section we give an example of how in 
practice this may be done. The third case is the 

implementation of a signature Ui by another 
signature @licl. Note that this corresponds to an 

abstract model specification of a refinement step. 
Proving such a refinement correct seems even more 
difficult than in the previous case; note however, 

that the inherited (i.e. observable) types of Oi and 

ui+l 
are the same and so in practice this may be 

reduced to proving that any algebra satisfying the 

axioms of 9ii+, is behaviourally equivalent to an 
algebra satisfying the axioms of Bi. as in the 

previous case. 

Note that all these proofs of correctness may 

and should be supported by a mechanical theorem 

prover such as the one described in [BoM 791 or LCF 

[GMW 791. 

In the development process as described above 

we deal with signatures and structures as indivisible 

entities. We develop a single monolitic structure 

from a single signature: except that the development 

may proceed stepwise, there is no notion of “divide 
and conquer”, i.e. splitting the problem into 

independent subproblems. A way of breaking up the 
problem is to use modules. In the development 
process described above we may present any of the 

specifications shown (Qa and Ys, as well as the 
intermediate specifications) as the result of a module 

application, e.g. Yis=Ac(Y,...). Note that this splits the 
problem of implementing Y,s into the subproblems: 

(1) implementing the module Y itself, 
(2) implementing (separately) each of the 

arguments Y,... 

It is easy to see that implementations compose 
horizontally (in the terminology of [GE 801). i.c. if .!! 
implements Y, . . . . and A’ implements Y then I’(Y’,.,.) 

implements A(Y,...). This allows the developments of 
A( and Y.... to proceed separately, with the guarantee 

that the results may be combined to give an 
implementation of Y,s (and so of Go as well). Cf 
course, these (sub)developments may involve 

themselves further decomposition. 

One issue we have so far omitted is the problem 

of inconsistent specifications It is easy to write a 

specification which has no models, and according to 

our definition such a spccificotion implements any 

specification over the same algebroir signature. 

Note, however. that any executable Standard-ML 
structure is consistent and so if we succeed in 

implementing a specification by an executable 
structure then the original specification must have 

been consistent. This means that checking 
consistency is not necessary in the development 
process to ensure correctness; however, an 

inconsistent specification is a blind alley (worse, it 
can be refined forever) and so to be cautious it is 

advisable to check for consistency as far as possible 

at each stage. Note, however, that even a consistent 
specification may have no executable implementation 

and so we cannot in general avoid blind alleys in 

program development anyway. 

6 An example 

To show what specifications and program 

development in Extended ML look like, we give below 

a perhaps oversimplified but hopefully instructive 
example. We present the specification and partial 
development of an interpreter for a very simple 

programming language with arithmetic expressions, 

assignment and sequential statements. 

We begin with the specification of environments: 

signature Ident = 
sig type elem 

val eq: elem x elem + bool 
ariom (Vz:efem)(eq(z.z) = true) 
and 

I 
Vz,y:elem)(eq(z,y) = eq(y.Z)) 

and Vx,y,z:elem) 
(eq(z.y)=true & eQ(y,z)=twe * 

eq(s.2) = true) 
end 

signature EnvSig = 
sig structure Id: Ident 

type env 
val initial: enu 
and assign: Id.elem x int - env -+ env 
and lookup: Id.elem x env + int 
axiom (Vz:ld.elem.n:int.p:env) 

(lookup(x,assign(z,n,p)) = n) 
and (Vx,x’:Id.elem,n,n’:ilLt.p:env) 

(Id.eq(z.z’)=faZse =S 
assign(x.n,assign(x’,n’,p)) 

= assign(x’,n’,assign(z,n,p))) 
and (Vz,z’:ld.elem,n,n’:int,p:env) 

(Id.eq(z,z’)=true + 

end 

assign(t.n.assign(z’,n’,p)) 
= ussign(z,n,p)) 

EnvSig specifies all algebras which are behaviourally 

equivalent to algebras satisfying the axioms above, 
with respect to Id.elem and int as observable sorts. 
Note that not all algebras in Mod[EnvSig] satisfy the 

second axiom, but they always satisfy e.g. 

(Vy,z,z’:Id.elem,n,n’:int,p:env) 
(Id.eq(z,z’)=false ==s 

lookzLp(y,assign(2,n,assign(l’,n’.p))) 
= lookup(y.assign(+‘.n’.assiSn(l.n.p)))). 

Having specified environments we can specify (a 

scheme for) expressions and commands. 
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signal-me ExpSig = 
sig sfructww Env: EnvSig 

We e=p 
val eval: ezp * Env.env .+ int 

end 

signature ComSig = 
sig structure Ezp: ExpSig 

type corn = 
data assign of Ezp.Env.Id.elem x Ezp.ezp 

1 compose of corn x corn 
val ezecute: con x Exp.Env.env + Ezp.L’nv.enu 
adorn (Vz:Ezp.Env.ld.etem, 

e:Exp.ezp, 
p:Exp.Env.env) 

(ezecute(assign(z,e).p) 
= Esp.Env.assign(z,Ezp.evat(e,p),p)) 

and (Vc,c’:com,p:Ezp.Enu.env) 
(ezecute(compose(c.c’),p) 

= ezecute(c’,ezecute(c,p))) 
end 

The use of data above not only introduces the 

type corn and the operations 

assign: Ezp.Env.Id.elemxEzp.ezp-rcom and 

compose: comxcom-rcom; it also imposes the implicit 

requirement that every value of type corn can be 
conslructed in a unique way using these functions. 
Formally, this requirement amounts to adding an 

appropriate data constraint as an axiom; for details 
see [BG 801 (cf. [Rei BO]). 

ComSig is independent from the actual syntax of 

expressions, and so we defined it in terms of the 
relatively impoverished signature EnvSig. The 

following specification describes a possible syntax for 
exptessions. 

signature EzpSynSig = 
sig structure Env: EnvSig 

type ezp = 
data const of int 

1 var of Env.Id.elem 
1 plus of ezp x ezp 
1 cond of ezp x ezp x etp 

vat eval: ezp x Env.env -) int 
aziom (Vn:int.p:Env.env)(eval(const(n).p) = n) 
and (Vz:Env.ld.elem,p:Env.env) 

(evat(war(z),p) = Env.lookup(z,p)) 
and (Ve,e’:ezp,p:Env.env) 

(evat(plus(e,e’).p) 
= eval(e,p) + eval(e’.p)) 

and (Ve,e’,e”:ezp,p:Env.env) 
(eval(cond(e.e’,a”).p) 

= eval(e”,p) if eval(e,p) = 0 
= eval(e’,p) otherwise) 

end 

(We use an obvious notation to simplify the syntax of 
conditional axioms.) 

We can now put commands and expressions 

together to get the final specification of our 

language. 

signature LangSig = 
sig structure Corn: ComSig and Ezp: EzpSynSig 

sharing Com.Ezp.ezp = Ezp.ezp 
and Com.Exp.Env = E+p.Env 
aziom (Ve:Ezp.ezp,p:Ezp.Env.env) 

(Com.Ezp.eval(e,p) = Ezp.evat(e,p)) 
end 

Now, to implcmcnt LangSig we define: 

module LangMod (Corn: ComSig. Erp: EzpSynSig 
sharing Com.Ezp.ezp = Ezp.ezp 
and Com.Erp.Env = Ezp.Env) 

: 1, ang Sig 
inherit Corn, Exp 
aziom (Ve:Ezp.ezp.p:Ezp.Enu.env) 

(Com.Exp.eval(e,p) = Exp.eval(0.p)) 
end 

It is easy to see that for any structures Com:ComSzg 

and Ezp:EzpSynSig. LangMod(Com.Ezp) implements 

I,angSig. Moreover, this structure is consistent 
provided that Corn and Exp have models sharing the 

lypc ezp, the operation eval and the substructure 

6n.v (all names with appropriate prefixes). Thus, we 
hovr decomposed the problem of implementing 

LangSig into the subproblems of implementing the 

parameter signatures and the module LangMod itself. 
The latter task is in fact trivral, as the module 

inlroduces neither new types nor new operations. An 

obvious implementation of ComSig is 
CoT,ll~od(EzpMod(Env)). where Env:EnvSig and ComMod 
and EzpMod are defined as follows: 

module CornMod (Exp. L’zpSig) : ComSig 
inherit Erp 
type corn - 

data assign of Ezp.Env.ld.elem i Exp.ezp 
1 compose of corn x corn 

val ezecute: corn n Ezp Env.env 4 Ezp.Env.env 
aziom (Vz:Ezp.Env.Id.elem. 

e:Ezp.ezp. 
p:Ezp.Env.env) 

(ezecute(assign(z.e).p) 
= Ezp.Env.nssign(z.~zp.evat(e.p),p)) 

and (Vd.c’:com,p:Ezp.Env.env) 
(ezecute(compose(c,c’),p) 

= ezecute(c’,ezecute(c,p))) 
end 

module Ezphfod (Env: EnvSig) : EzpSig 
inherit Env 
type e=p 
ual eval: exp x Env.enu - int 

end 

Note that ComMod is executable: in the context of 
the sharing declaration in LangSig we can ignore the 
fact that EzpMod is not yet executable. 

We could implement EzpSynSig in a way 
analogous to ComSig above. However, we would like 
to take advantage of the fact that Extended-ML 

signatures specify models up to behavioural 
equivalence and so our implementation of this part 
of the language introduces some simple source-code 

optimisations. 
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module EzpSynMod (Env: EnvSig) : EzpSynSig 
inherit Env 
type exp = 

data constc of int 

I 
varc of Env.Id.elem 
plusc of ezp x ezp 

1 condc of ezp z. ezp x ezp 
val eual: ezp x Env.env -* int 
and const: int + ezp 
and var: Env.Id.etem + ezp 
and plus: ezp x ezp + etp 
and cond: exp x ezp x ezp + erp 
zc;rn (Vn:int,p:Env.env)(eval(constc(n),p) = n) 

(Vx:Env.id.etem,p:Env.env) 
(eval(varc(z).p) = Env.lookup(2.p)) 

and (Ve.e’:ezp,p:Env.env) 
(eval(plusc(e,e’),p) 

= eval(e.p) + eval(e’,p)) 
and (Ve.e’,e”:ezp.p:Enu.enu) 

(eval(condc(e,e’,e”).p) 
= eval(e”,p) if eval(e,p) = 0 
= eval(e’.p) otherruiso) 

I *** optimisations start here **+ 1 
and (Ve.e’:ezp) 

(plus(e.e’) = e’ 
=e 

fs ;, = const(0) 
= const(0) 

and (Ve.e’.e”:e+p) 
= plusc(e,e’) otherwise) 

(cond(e.e’,e”) 
= e’ if e = const(n) and 7~ # 0 
= e” if e = const(0) 
= e’ if e’ = e” 
= condc(e.e’.e”) 

otherwise) 
end 

We claim that EzpSynMod meets its specification, i.e. 

for any Env:EnuSig, EzpSynMod(Env):EzpSynSig; in 

other words EzpSynMod(Env) implements EzpSynSig. 

Sketch of proof: Let AEEzpSynMod(Env). We have to 

show that A is behaviourally equivalent to some 
algebra B satisfying the axioms in EzpSynSig, with 

respect to Env.env. Env.Id.elem and int as observable 
sorts. By the definition of the semantics of a 

module, A is a reduct to the algebraic signature of 

ExpSynSig of some algebra Asrp which extends Env 

and satisfies the axioms given in the body of 
EzpSynMod. Note that A “contains” another 

algebra of the same signl?ure as A: namely, the 
algebra in which the operations const. var. plus and 

cond are interpreted as, respectively, constc, vorc, 
plvsc and condc in A.=s. Call this other algebra B. 

It is easy to see that the axioms in the body of 

EzpSynMod ensure that B satisfies the axioms in 

EzpSynSig. 

Now, to show that A and B are behaviourally 

equivalent it is sufficient to show that the value of 

any term term of an observable sort with variables 

of observable sorts is the same in A and 8. The only 
nontrivial case here is when term is of the form 

eval(e.p), where e is a term of the sort ezp with 

variables of sorts Env.Id.elem and int only. Let e 

denote the term resulting from e by replacing eacCh 

occurence of con&, var etc. by, respectively, constc, 

vurc etc. By an easy induction on the complexity of 

e one may prove that the values of evol(a,p) end 

eval(ec8p) in Arsp are the same. To complete the 

proof it is enough to notice that the value of 

eval(e,p) in A is the same aa in A and its value in 
B is the same as the value of eval e,,p) in A,-. “P 0 

Finally, to complete the development we have to 
implement EnvSig. We can start again with a trivial 
refinement to EnvMod(ld), where Id:Ident and 

module EnvMod (Id: Ident) : EnvSig 
inherit Id 
type env 
val initial: env 
and assign: Id.elem x int x env + env 
and lookup: Id.elem I enw -t int 
aziom (Vx:Id.elem.n:int.p:env) 

(lookup(z.assign(z,n.p)) = n) 
and (Vz,z’:Zd.elem,n,n’:int,p:enu) 

(Id.eq(z,z’)=talse =+ 
assign(z,n,assign(z’.n’.p)) 

= assign(z’,n’,assign(z,n.p))) 
and (Vz,z’:ld.elem,n.n’:int,p:enu) 

(Id.eq(z,z’)=true + 

end 

assign(z,n,assign(z’.n’,p)) 
= assign(z,n,p)) 

This module provides an implementation of 

environments; however, it is clear that this 

implementation is not complete in the sense that it 

does not determine the value of, for example, 
lookup(z,initial). Thus, we can further refine our 

specification and implement the module EnvMod by 

module EnvMod’ (Id: Ident) : EnvSig 
inhosit Id 
typo env 
vu1 initial: env 
and assign: Id.elem * int x env + env 
and lookup: Id.elem x env + int 
adorn (Vz:Id.elem,n:int,p:env) 

(lookup(z,assign(z,n,p)) = n) 
and (Vz,z’:Zd.elem.n.n’:int,p:env) 

(Id.eq(z.z’)=false =+ 
assign(z,n,assign(z’,n’,p)) 

= assign(z’,n’,assi n(z.n.p))) 
and (Vz.z’:Id.elem,n.n’:int.p:env 3 

(Id.eq(s,s’)=ttu.e + 
assign(z,n,assign(z’,n’,p)) 

= assign(2,n.p) 
1 and (Vz:Env.Id.elem)(lookzlp z.initial) = 0) 

end 

It is easy to see that EnvMod’ implements EnvMod. 

and so EnvMod’(Id) implements EnvSig. The next 
refinement of EnvMod would probably be to fix a 

data representation for env. 

The final step of the development, which we are 

going to omit, is to implement the signature Ident by 

defining some structure Id:fdent. 

Summing up, by decomposing our initial 

specification into smaller pieces using modules and 

then implementing each of them separately step-by- 
step we developed an implementation of the signature 

LangSig given by the following structure: 

LangMod(ComMod(EzpMod(EnvMod’(Id))). 
EzpSynMod(EnvHod’(Id))) 

The development presented above is, of course, 

extremely simple. We hope, however. that we have 
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managed to convince the reader that the same ideas 
may be applied in more complicated situations. For 
example, we could easily add more kinds of 
expressions and commands (e.g. while-loops), block 
structure and input/output. We could replace 
integers with an arbitrary primitive domain of 

elementary types and operations. In this more 
elaborate language more interesting optimisations 
would be possible. 

7 Extended ML over an arbitrary 
institution 

In the previous sections we presented Extended 

ML based on the standard algebraic framework: we 

used standard algebraic signatures, standard algebras 

and standard first-order axioms. However, in 
practice we may need to use variations of these 
notions to handle some specific features of ML which 

we have disregarded here, or to make specifications 
of some data types easier. For example, to handle 
polymorphism we would have to deal with 

polymorphic signatures or with order-sorted 
signatures and algebras (see [Cog 781, [Cogolla 83]); 
to handle nontermination we may want to use partial 

(see [BW 821) or continuous (see [ADJ 771) algebras; 

to deal with exceptions we could use error algebras 
(see [Cog 771 or [GDLE 821); finally. we may want to 

allow (or disallow) different kinds of sentences to be 
used as axioms. Each of these leads to a formally 
different logical system for writing specifications in 

Extended ML. 

The notion of institution [GB 831 provides a tool 

for dealing with any of these different logical 

systems. An institution comprises definitions of 
signature, model (algebra), sentence and a 
satisfaction relation satisfying a few consistency 

conditions. (For a similar but more logic-oriented 
approach see [Bar 741.) 

We can base our definitions of Extended-ML 
signatures, structures, modules and their semantics 

on an arbitrary institution, thus avoiding the choice 
of particular definitions of these underlying notions. 
Moreover, our notion of implementation and our 

presentation of program development process remain 
valid in this general framework as well. For the 
technical details which underlie such definitions (in 

particular, a definition of behavioural equivalence in 
an arbitrary institution) see [ST 841 and [ST 851. 
The only concept we used in this paper which did not 

appear in earlier work on algebraic specification in 
an arbitrary institution is the notion of executable 
specification. We can describe this by indicating 
which sentences of the underlying institution are 

ezecutable. In the standard framework of the 

instrtution of first-order logic we use in this paper, 

we may assume that the executable sentences are 
just equations of the form te?-m=term’, where term 

has a certain simple form, as sets of such equations 
correspond directly to programs in pure applicative 

ML. 

We can define an institution with all the features 
necessary to specify Standard-ML programs (we need 

to be able to handle polymorphic higher-order 

functions which may perform assignments and 
generate exceptions and which need not terminate) 
Standard-ML code (or a notational variant) could 
then be included as sentences of this institution. 

Extended ML over this institution would be a 

language suitable for specifying and developing 

programs in full Standard ML. 

8 Conclusions 

In this paper we attempted to apply the 
mathematically well-explored ideas on algebraic 

specification of [SW 831, [Wir 831, [ST 841 and [ST 851 

in the context of the Standard ML programming 
language. We extended Standard ML by allowing 
axioms in module interface specifications (signatures) 

and in place of code; the resulting language is called 
Extended ML. After describing the algebraic 

semantics of Extended ML we discussed how it may 

be used in formal program development. From the 

specification formalism it is based on, Extended ML 
inherits complete independence from the logical 
system (institution) used to write specifications. This 

also amounts to the independence of Extended ML 

from the programming language used to write code. 
With an appropriate change to the underlying 

institution, Extended “ML” becomes Extended Pascal 
(i.e. Pascal + modules + specifications), Extended 

Ada, etc. 

There have been few attempts to apply work on 

algebraic specification to programming in the past. 

Three exceptions are UP-L [Bau 811. IOTA [NY 831 and 
Anna [LHKO 841. The CIP-L wide-spectrum language 

and the IOTA language are, like Extended ML. capable 
of expressing specifications as well as (high- and IOW- 
level) programs. But in both cases the semantics of 
specifications is different. In [Bau 811 although 

there is a notion of refinement discussed, it is not 

described formally. In IOTA the notion of refinement 

is the same as in Extended ML, although because of 
the different semantics of specifications its 

application is more restricted there. Anna is mainly 

oriented towards annotating existing Ada programs, 
although it is also possible to use it to specify 

programs prior to their implementation. There is no 
explicit notion of refinement in Anna. IOTA and Anna 

lack formal semantics, and all three languages are 

dependent on some particular logical system and so 
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e.g. CIP-L cannot fully handle higher-order functions, 
functions with several results, or nondeterministic 

functions. 

One problem with Extended ML is that we have 
made no provision for building structured 

specifications as in e.g. Clear [BG 801. it is possible 
at the level of modules and structures to break large 

specifications/programs into small pieces. but it is 

not possible e.g. to define a signature by means of a 
“hidden function”. This is not a big problem, since 

our specification formalism (see [ST 841) provides a 
rich set of specification-building operations wllich we 

have so far only used in defining the semantics of 
signatures and modules. The only reason at present 
for forbidding their explicit use in specifications is 

that they are probably too low-level to be used 
conveniently. Another point is that in the presence 
of such powerful specification-building operations as 

closure under behavioural equivalence (behavioural 

abstraction) the difference between the notions of 

signature and structure in Extended ML becomes 
rather fuzzy. since for every signature it is easy to 
construct a structure having the same class of 

models. Experience will show if it is worthwhile 

retaining this terminological and methodological 

distinction. On the other hand, it is not yet clear 
whether in practice it is necessary to introduce extra 
specification-building operations in the context of the 

powerful modularisation mechanism in Extended ML. 
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