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Abstract
Any expression M in ULC (the untyped λ-calculus) can be com-
piled into a rather low-level language we call LLL, whose pro-
grams contain none of the traditional implementation devices for
functional languages: environments, thunks, closures, etc. A com-
piled program is first-order functional and has a fixed set of work-
ing variables, whose number is independent of M . The generated
LLL code in effect traverses the subexpressions of M .

We apply the techniques of game semantics to the untyped λ-
calculus, but take a more operational viewpoint that uses less math-
ematical machinery than traditional presentations of game seman-
tics. Further, the untyped lambda calculus ULC is compiled into
LLL by partially evaluating a traversal algorithm for ULC.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic

General Terms Theory, languages, algorithms

Keywords Normalisation, traversal, game, untyped lambda calcu-
lus, semantics, partial evaluation, program transformation

1. Context and Contribution
Plotkin posed the problem of existence of a fully abstract semantics
of PCF [1]. Game semantics provided the first solution [2–5].
Subsequent papers devise fully abstract game semantics for a wide
and interesting spectrum of programming languages, and further
develop the field in several directions.

A surprising consequence: it is possible to build a lambda calcu-
lus interpreter with none of the traditional implementation machin-
ery: β-reduction; environments binding variables to values; and
“closures” or “thunks” for function calls and parameters. It looks
promising to apply this new game semantics viewpoint to see its
operational consequences. Further, it may give a new angle of at-
tack on an old topic: semantics-directed compiler generation [6, 7].

Basis: λ-expression syntax is e ::= x | e1@e2 | λx.e. Free and
bound variables are defined as usual. ULC and STLC, respectively,
denote the untyped and the simply typed λ-calculus.

Paper [8] uses the game semantics framework to develop an
STLC normalisation procedure, using the traversal concept from
[9, 10]. We call this procedure STNP for short.

The STNP algorithm in [8] is deterministic, defined by syntax-
directed inference rules. The algorithm is type-oriented. Even
though the rules do not mention types, it requires as first step
the conversion from STLC to η-long form. Further, the state-
ment of correctness involves types in “term-in-context” judgements
κ ⊢ M : A where A is a type and κ is a type environment.

Paper [8] contains a complete correctness proof. The proof
involves types quite significantly, to construct program-dependent
arenas and, as well, a category whose objects are arenas and whose
morphisms are innocent strategies over arenas.

STNP can be seen as an interpreter; it evaluates a given λ-
expression M by managing a list of subexpressions of M , some
with a single back pointer. These notes extend the normalisation-
by-traversals approach to the untyped λ-calculus, giving a new
algorithm called UNP, for Untyped Normalisation Procedure. UNP
correctly evaluates any STLC expression sans types, so it properly
extends STNP since ULC is Turing-complete while STLC is not.

Plan: We develop a traversal-based algorithm for ULC in a
systematic, semantics-directed way. Our approach differs from and
is simpler than [11]. We explain briefly how partial evaluation can
be used to implement ULC, compiling it to a low-level language.

2. Normalisation by Traversal
Perhaps surprisingly, the normal form of an STLC λ-expression
M may be found by simply taking a walk over the subexpressions
of M . As seen in [8–10] there is no need for β-reduction, nor
for traditional implementation techniques such as environments,
thunks, closures, etc. The “walk” is a traversal: a sequential visit to
subexpressions of M . (Some maybe visited more than once, some
not at all.)

2.1 An Example: Multiplication of Church Numerals
The Church-Turing thesis: a function f : Nn ⇀ N is partial
recursive (computable) iff there is a λ-expression M with free
variables S,Z such that for any x1, . . . , xn, x ∈ N

f(x1, . . . , xn) = x ⇔ M(Sx1Z) . . . (SxnZ) reduces to SxZ.

Multiplication is an example:

mul = λm.λn.m(nS)Z

An instance: application mul 2 2 reduces to S4Z.
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Figure 1: Traversal of 2(2S)Z.

The unique traversal of 2 (2S)Z visits each subexpression of
Church numeral1 2 once. However it visits the subexpressions of 2
twice, since in general x ∗ y is computed by adding y together x
times. The normal form of 2 (2S)Z is S4Z: the core of Church
numeral 4.

Figure 1 shows traversal of expression 2 (2S)Z in tree form2.
The labels 1:, 2: etc. indicate the order in which subexpressions are
traversed.

2.2 Computation by Traversal Can Be Seen as a Game
The traversal in Figure 1 can be seen as a play between program
λmλn.(m@ (n@S))@Z and the two data values 2 and 2).

Informally: two program nodes are visited in steps 1, 2; then
data 1’s leftmost branch is traversed from node λs1 until variable
s1 is encountered at step 6. Steps 7-12: data 2’s leftmost branch
is traversed from node λs2 down to variable s2, after which the
program node S is visited (intuitively, the first output is produced).
Steps 13-15: the data 2 nodes @6 and s2 are visited, and the
program: it produces the second output S. Steps 16, 17: z2 is
visited, control is finished (for now) in data 2, and control resumes
in data 1.

Moving faster now: @4 and the second s1 are visited; data 2
is scanned for a second time; and the next two output S’s are
produced. Control finally returns to z1. After this, in step 30 the
program produces the final output Z.

Which traversal? As yet this is only an “argument by example”;
we have not yet explained how to choose among all possible walks
through the nodes of 2(2S)Z to find the correct normal form.

3. Evaluation by Traversal
We now develop a type-free normalisation procedure UNP for
ULC. In brief: UNP is to ULC as STNP is to STLC.

1 The Church numeral of natural number x is x = λs.λz.sxz. Here
sx = s(s(. . . s(z) . . .)) with x occurrences of s, where s represents
“successor” and z represents “zero”.
2 Application operators @i have been made explicit, and indexed for ease
of reference. The two 2 and 2 subtrees are the “data”; their bound variables
have been named apart to avoid confusion. The figure’s “program” is the
top part ( S)Z.

Differences between UNP and STNP as in [8]. 1: the simply
typed λ-calculus is strongly normalising. However an untyped λ-
expression may not have a normal form, in which case UNP eval-
uation does not terminate. 2: the STNP algorithm begins by con-
verting its input λ-expression to η-long form. This is not relevant
to UNP since its input is untyped. 3: STNP chooses the right traver-
sal by using at most one back pointer for each traversed program
node. The extra power of UNP (Turing completeness) comes with
a price: two kinds of back pointer are used, one to manage control,
and one to manage name binding.

For clarity we develop UNP by a series of evaluators. Each
realises a semantics for the λ-calculus. The series starts with a
traditional rewriting semantics, and ends with a traversal semantics
generating the sequence seen in Figure 1. All are supported by
Haskell programs (very similar to the evaluators here, and available
online).

3.1 A Canonical Traversal Order
How did Figure 1 select the right sequence of node visits to evalu-
ate 2(2S)Z? There are a great many possible traversals, mostly not
corresponding to evaluation of M .

Danos and Regnier s head linear reduction yields normal forms
when they exist [12], so we choose this as the canonical traversal
order on input λ-expression M . For brevity we henceforth call a
subexpression of M a token.

The canonical traversal order visit tokens in the order in which
they are seen in complete linear head β-reduction. The example in
Figure 1 has canonical traversal order:

@1,@2, λs1, λz1,@3, s1,@7, λs2, . . . , S, z2, z1, Z

3.2 A Series of Evaluators
We develop several evaluation semantics that all follow the canon-
ical traversal order. Semantics 1 is classical β-reduction (a deter-
ministic version). This is progressively transformed into more op-
erationally interesting versions, ending in Semantics 5.

Semantics 5 is analogous to [8] for STLC, but now for all of
ULC. It has surprisingly little algorithmic machinery, consisting of
two kinds of back pointers, a “cons” operation, and a finite set of
tokens. Only the token set is dependent on input λ-expression M .
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Semantics 5 is the essence of an implementation of a prototyp-
ical functional programming language, and in it one can discern
counterparts of some usual implementation machinery, in particu-
lar static links and dynamic links, and the control stack. Evaluation
by Semantics 5 does not use environments, thunks, or closures.

3.2.1 Semantics-Based Stepping Stones
The first evaluator does (a slightly optimised version of) the usual
leftmost outermost β-reduction. The second is an environment-
based semi-compositional version of the same; and the third, the
result of converting this to continuation-passing style and defunc-
tionalising. The result is tail-recursive. These transformations are
standard.

The next step is to enrich the tail-recursive evaluator by adding
a “history” argument to the evaluation function. This records the
“traversal until now”, and allows removal of the records added
by defunctionalising; each is replaced by a control pointer. The
final step obtains Semantics 5 by removing the recursively-defined
environments; each is replaced by a binder pointer. The resulting
evaluator generates traversals as in Figure 1 with surprisingly little
computational machinery.

3.3 Substitution-Based Semantics
By definition e is in normal form iff it contains no redexes: subex-
pressions of form e1@e2 with e1 = λx.e. A well-known fact : the
normal form (if it exists) can be obtained by leftmost-outermost
reductions [13]. One way to normalise an application e1@e2:
First evaluate e1 using a weak reduction that doesn’t reduce terms
under abstraction; this yields a weak normal form λx.e for e1’a
value. Then apply β, substituting e2 for x in e. See more details in
[13, 14].

The semantics of weak reduction is as follows3 [14]:

x
wnf

⇓ x λx.e
wnf

⇓ λx.e

e1
wnf

⇓ λx.e e[e2/x]
wnf

⇓ e′

e1@e2
wnf

⇓ e′

e1
wnf

⇓ e′ ̸≡ λx.e

e1@e2
wnf

⇓ e′1@e2

Using this basis, strong reduction to normal form can be done by
the following semantic rules [14]:

x
snf

⇓ x

e1
wnf

⇓ λx.e e[e2/x]
snf

⇓ e′

e1@e2
snf

⇓ e′

e
snf

⇓ e′

λx.e
snf

⇓ λx.e′

e1
wnf

⇓ e1′ ̸≡ λx.e e1′
snf

⇓ e1′′ e2
snf

⇓ e′2

e1@e2
snf

⇓ e′′1@e′2

A procedure to implement the rules above follows, using wnf , snf :
Exp ⇀ Exp strongly:

wnf (x) = x, wnf (λx.e) = λx.e,
wnf (e1@e2) = wnf (e[e2/x]) if wnf (e1) = λx.e
wnf (e1@e2) = wnf (e1) @ e2 otherwise

snf (x) = x, snf (λx.e) = λx.snf (e),
snf (e1@e2) = snf (e[e2/x]) if wnf (e1) = λx.e
snf (e1@e2) = snf(e′1) @ snf(e2) otherwise

where wnf(e1) = e′1

This normalisation procedure snf is an effective reduction strategy
(as that term is used in [13]). It is not tail recursive; and evaluation
involves using variable names at run-time. Neither property is good
for compilation.

3 e[e′/x] is the result of replacing all free occurrences of x in e by e′,
renaming as needed to avoid name capture.

3.4 Evaluation with Environments
This evaluator resembles that of Section 3.3, but uses an environ-
ment ρ to maintain a record of substitutions. This and remaining
steps use the style of denotational semantics:

Syntactic arguments of the semantic equations are enclosed in
semantic brackets [[ ]], and ρ is an environment. We write A ⇀ B
for the domain of partial functions from A to B. Usage: R[[e]] = ⊥
if program e does not terminate.

Domains : (and initial environment)
e ∈ Exp = λ− expression
EE = Exp× Env
ρ ∈ Env = V ariable → EE ∪ {Free}
ρ0 = λx.Free
α ∈ Flag = {T, F} (application context)

Semantic functions :
R : Exp ⇀ EE
[[ ]] : Exp → Flag → Env ⇀ EE

Semantic equations:
R[[e]] = [[e]] F ρ0
[[x]] α ρ = case ρ x of (e′, ρ′)⇒ [[e′]] α ρ′

Free ⇒ (x, ρ0)
[[λx.e]] T ρ = (λx.e, ρ)
[[λx.e]] F ρ = [[e]] F ρ[x 7→ Free]

[[e1@e2]] α ρ= let (e′1, ρ
′) = [[e1]] T ρ in

case e′1 of
λx.e0 ⇒ [[e0]] α ρ′[x 7→ (e2, ρ)]
v ⇒ [[e2]] F ρ

The argument α (application context) is a flag, set to T for weak
evaluation, F for strong evaluation.

This semantics is not compositional4 for application @ and for
bound variables: in both cases an argument of [[ ]] is not a syntactic
substructure of the semantic equation’s left side.

On the other hand, this semantics has a semi-compositional
property that is essential for compiling efficient target code. (Ter-
minology from [15]: function [[ ]] is only applied to arguments that
are syntactic substructures of the λ-expression currently being eval-
uated. A consequence: semantic variable e is of “bounded static
variation”.)

Constructing an output λ-expression: Semantics 2 yields as out-
put a pair (e′, ρ) = R[[e]]. For conciseness no output λ-expression
syntax is constructed, i.e., the purpose of Semantics 2 is only to see
whether a normal form exists.

It is not difficult to extend Semantics 2 to actually compute the
normal form, and we have implemented it in Haskell. The result,
however, is more complex, as a result (e′, ρ) has to be converted
into output into a λ-expression by unfolding environments, and
renaming variables where necessary.

3.5 Tail-Recursive Evaluation
The next step is to remove the nested function calls in the above
semantics, yielding a tail recursive version that is closer to low-
level code. To do this: first, add continuation functions in place
of the nested calls. Second, replace the continuation functions by
data structures, using the well-known Reynolds’ defunctionalisa-
tion transformation [16].

Following is the result of defunctionalising a continuation se-
mantics. k ∈ K is a defunctionalised continuation (a data values).

4 Compositionality (as used in denotational semantics): the denotation of
every syntactic construction is a combination of the denotations of its
syntactic substructures.
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Function apk applies k to an expression value. The output (if any)
is Succeed: the input has been successfully traversed. (Again, the
normal form is not constructed.)

Domains :
e ∈ Exp = λ− Expression
EE = Exp× Env
ρ ∈ Env = V ariable ⇀ EE ∪ {Free}
ρ0 = λx.Free
α ∈ Flag = {T, F} (application context)
k ∈ K = {⟨Kend⟩} (continuations)

∪ {⟨Kapp e α ρ k⟩ | e ∈ Exp, ρ ∈ Env, k ∈ K}

Semantic functions :
R : Exp ⇀ {Succeed}
[[ ]] : Exp → Flag → Env → K ⇀ {Succeed}
apk : Exp → K → Env ⇀ {Succeed}

Semantic equations:
R[[e]] = [[e]] F ρ0 ⟨Kend⟩

[[x]] α ρ k = case ρ x of Free ⇒ apk x k ρ0
(e′, ρ′) ⇒ [[e′]] α ρ′ k

[[e1@e2]] α ρ k = [[e1]] T ρ ⟨Kapp e2 α ρ k⟩

[[λx.e]] F ρ k = [[e]] F ρ[x 7→ Free] k
[[λx.e]] T ρ ⟨Kapp e′ α ρ′ k⟩ = [[e]] α ρ[x 7→ (e′, ρ′)] k
[[λx.e]] T ρ ⟨Kend⟩ = Succeed

apk e ⟨Kend⟩ ρ = Succeed
apk e ⟨Kapp e′ α ρ′ k⟩ ρ = case e of

λx.e′′ ⇒ [[e′′]] α ρ[x 7→ (e′, ρ′)] k
⇒ [[e′]] F ρ′ k

Comment: The rule from Section 3.4 for [[e1@e2]] has been split
into two: one part calls [[e1]]; and the other part appears in the
definition of apk. Note that these may have quite different times
of execution. This property is quite visible using continuations, but
is not obvious in Section 3.4.

A consequence of tail recursion and semi-compositionality:
Given an input λ-expression M , the rules above will perform a
sequence of calls

[[e1]]α1 ρ1 k1 → [[e2]]α2 ρ2 k2 → . . . → [[ei]]αi ρi ki → . . .

where e1 = M , each ei is a subexpression of M . Further,
e1, e2, . . . is the canonical traversal order for M . The next eval-
uators further develop a linear evaluation style, so it more closely
resembles target program execution.

3.6 Traversal with History and Environment
The next-last step: replace the continuation values k by back-
pointers to a history h. Corresponding to a Semantics 3 compu-
tation, Semantics 4 performs calls

[[e1]]h1 → [[e2]]h2 → . . . → [[ei]]hi → . . .

A history h is an accumulative trace that remembers which func-
tions of Semantics 3 were called with which arguments.

h ∈ H = (Exp × Flag × Env ×H)∗

Each history hi is a list:5 a record of all calls made to [[ej ]] for
j = 1, . . . , i. For i > 0 history item hi has the form hi =
⟨ei αi ρi chi⟩ : hi−1, where chi represents continuation ki. 6

The idea is to replace a Semantics 3 continuation data structure
such as ⟨(Kapp e2)αρ k⟩ by the the time ti at which the continu-
ation was created. Operationally, time ti is the back pointer com-
ponent chi of the top item in history hi.

Changes from Semantics 3: first, the history is an accumulative
record. Second, each K value ki has been replaced by a control
history chi. This is a prefix of the current history, i.e., a back
pointer to an earlier position in the history. Third, Semantics 4 need
not allocate any continuation records at all, since the information in
them is contained in the history items ⟨e α ρ ch⟩.

Domains :
e ∈ Exp = λ− Expression
EE = Exp× Env
ρ ∈ Env = V ariable ⇀ EE ∪ {Free}
ρ0 = λx . Free
α ∈ Flag = {T, F}
h,∈ H, ch ∈ CH = [ Item ] (History)
it ∈ Item = ⟨Exp F lag Env CH⟩

Semantic functions :
R : Exp ⇀ H
eval : H ⇀ H
apk : Exp → Env → CH → H ⇀ H

Semantic equations:
R[[e]] = eval [ ⟨ e F ρ0 [ ] ⟩ ]

eval h = let it : = h in case it of
⟨ x α ρ ch⟩ ⇒ apk x ρ0 ch h if ρ x = Free
⟨ x α ρ ch⟩ ⇒ eval ⟨e′ α ρ′ ch⟩ : h if ρ x = (e′, ρ′)
⟨ λx.e T ρ ch⟩ ⇒ apk λx.e ρ ch h
⟨ λx.e F ρ ch⟩ ⇒ eval ⟨e F ρ[x 7→ Free] ch⟩ : h
⟨e1@e2 α ρ ch⟩ ⇒ eval ⟨e1 T ρ h⟩ : h

apk e ρ ch h = case ch of
[ ] ⇒ h
(⟨e1@e2 α ρ0 ch′⟩ : ) ⇒ eval (f e) : h
where
f (λx.e0) = ⟨e0 α ρ[x 7→ (e2, ρ)] ch′⟩
f e = ⟨e2 F ρ0 ch′⟩

3.7 UNP: Traversal with Only a History
In this step each environment is replaced by a binder history. This
is a prefix of the current history, and is named bh. A new function
called lookup realises the effect of an environment ρ by tracing
links through bh to find the value of an argument x.7

In addition, in the subsection we assume that the input lambda
expressions contain deBruijn indexes. Usually deBruijn indexes are
used instead of variable names. In our case, we use both deBruijn
indexes and variable names for the sake of readability: the residual
traversal is much easier to be understand if variable names are used.
Thus, we use deBruijn indexes to define semantics and variable
names to appear in the residual traversal.

5 We use a Haskell functional programming notation for sequences, e.g.
[v1, . . . , vn], and v : vs for “cons”.
6 Note that the expression ei in a history item may come either from the
program or from its data. Examples: nodes @1,@2 and λs1, λs2 in Figure
1.
7 An analogy: the links for the binder history bh resemble the static links
used in compiler implementations of block-structured or functional pro-
grams. The control back pointer ch corresponds to the dynamic link, similar
to the return address. More on this in Section 6.
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Below, BV x i denotes bound variable x with deBruijn index i;
and FV x denotes free variable x.

Domains:

e ∈ Exp = λ− Expression

α ∈ Flag = {T, F}
h ∈ H, ch ∈ CH, bh ∈ BH = [Item] (History)

it ∈ Item = ⟨Exp F lag BH CH⟩

Semantic functions:

R : Exp ⇀ H
eval : H ⇀ H
evoperand : Item → H ⇀ H
apk : Exp → CH → H ⇀ H
lookup : Int → Flag → BH → CH → H ⇀ H

Semantic equations:

R[[e]] = eval [ ⟨e F [ ] [ ]⟩ ]

eval h= let it : = h in case it of
⟨ (FV x) α bh ch ⟩ ⇒ apk (FV x) ch h
⟨ (BV x i)α bh ch ⟩ ⇒ lookup i α bh ch h
⟨ λx.e T bh ch ⟩ ⇒ apk λx.e ch h
⟨ λx.e F bh ch ⟩ ⇒ eval ⟨e F bh ch⟩ : h
⟨ e1@e2 α bh ch ⟩ ⇒ eval ⟨e1 T bh h ⟩ : h

lookup 0 α(⟨ T ch′⟩ : ) ch h = case ch′ of
⟨e bh ⟩ : ⇒ evoperand ⟨e α bh ch⟩ h

⇒ case ch of
[ ] ⇒ h
⟨ap bh′′ ch′′⟩ : ⇒ evoperand ⟨ap F bh′′ ch′′⟩ h

lookup 0 (⟨ F ch′⟩ : h′) ch h = apk (BV 0) ch h
lookup i α (⟨ bh′ ⟩ : ) ch h = lookup (i− 1) α bh′ ch h

apk [ ] h = h
apkλx.e(⟨ α ch⟩ : ) h = eval ⟨e α h ch⟩ : h
apk (⟨e α bh ch⟩ : ) h = evoperand ⟨e F bh ch⟩ h

evoperand ⟨e1@e2 α bh ch⟩ h = eval ⟨e2 α bh ch⟩ : h

4. UNP: An Example
We now revisit the multiplication example mul 2 2 from Section
2. We will construct the output traversal as a justified sequence
h = h1h2 . . . h30. Each history node is equipped with two back
pointers: ch for control; and bh for binding. In the following dia-
grams bh is the green lower back pointer and ch is the red upper
back pointer. A token is underlined just in case its flag α has value
T . The initial configuration is a root of the input term with empty
back pointers, i.e. in our example initial h = @1. We apply func-
tion eval to this argument.

The first two steps are similar: the application-case of function
eval is applied, each time we chose the leftmost branch, bh is
the same as in the previous step (i.e. empty), and ch points to the
current history.

@1 @2 λs1

The next two steps are also similar: two lambda nodes are
bound to the corresponding application nodes, i.e., continuation
application function apk is called for both. Function apk adds the
body of the lambda node to the current sequence and equips it
with a binder pointer to the most recently bound lambda node. One

element is “popped” from bh, and the eval function is called with
unchanged flag α.

@1 @2 λs1 λz1 @3

The next steps are similar to the first two; the one after that
is more interesting. In this step a variable is seen (for the first
time). This variable s1 is bound, and one can reach its binder via a
sequence of two bh pointers (this is exactly what function lookup
does). When the binder λs1 is found, the lookup function returns
a right child @7 of the element binder pointed via the red pointer
(ch), together with corresponding environment (i.e., the green bh
pointer (empty in this case). Then eval is called again, on @7.

@1 @2 λs1 λz1 @3 s1 @7

The next interesting case is step number 12, when eval function
calls lookup h1..12 S. Here S is free, so apk (apply continuation)
is called. Since ch is not empty it calls eval on the right child of
the last application whose right child has not yet been traversed,
and which is not bound by some lambda node. This child is @6.

@1 @2 λs1 λz1 @3 s1 @7 λs2 λz2 @5 s2 S @6

Finally, the traversal will end at step 30. The whole traversal is
presented in Figure 2.

5. Syntax of the Low-Level Residual Language
LLL

A consequence of semi-compositionality: it is possible to compile
any λ-expression M into a tiny first-order functional language
that we call LLL. LLL is essentially a machine language with a
heap and recursion, equivalent in power and expressiveness to the
language F in book [17]. Section 6.4 shows how to compile M into
LLL using partial evaluation.

For now, we briefly describe the target language LLL. The fol-
lowing is a tree grammar that generates a subset of LLL, one large
enough to contain the target programs that are the compilations of
lambda expressions. Nonterminal h denotes a history; and item
denotes a history item. A program is a set of first-order function
declarations.

A program variable has a simple type (not in any way depending
on M ). One type is the finite set of tokens, one for each subexpres-
sion of M . The Booleans are another finite type. There are two
infinite types: lists (e.g., histories); and items (e.g., elements of his-
tories).

Constructors [] (0-ary), : (binary) and <...> (4-ary) may form
dynamically constructed values. Deconstruction is done by case.
LLL also supports pattern matching of function arguments. The
formal definition of LLL syntax can be found on Figure 3.

6. Interpreters, Compilers, Compiler Generation
Partial evaluation can be used to specialise a normalisation algo-
rithm to the expression being normalised (see [18]). Applied to
UNP, partial evaluation compiles an ULC expression M into a
low-level equivalent that contains no λ-syntax: The target program
UNPM for a source λ-expression will be a first-order recursive
functional program.
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@1 @2 λs1 λz1 @3 s1 @7 λs2 λz2 @5 s2 S @6 s2 S z2 @4 s1 @7 λs2 λz2 @5 s2 S @6 s2 S z2 z1 Z

Figure 2: Traversal for 2(2S)Z.

program ::= def1 ... defn

def ::= f param1 ... paramn = e

param ::= x | token | b | [] | < tx bx x y > : z

tx ::= x | token

bx ::= x | b

e ::= x | item | h | call

| b | token | e : e | item constructors
| case e of param->e1...param->en destructors

call ::= f e1 ... en

item ::= < token b h h >

x, y, z ::= variables

h ::= [] | item : h

b ::= True | False

token ::= an atomic symbol (from a fixed alphabet)

Figure 3: Syntax of LLL language

6.1 Partial Evaluation (Program Specialisation)
Partial Evaluation, Briefly A partial evaluator is a program spe-
cialiser, called spec. Its defining property:

∀p ∈ Programs . ∀s, d ∈ Data . [[[[spec]](p, s)]](d)
.
= [[p]](s, d)

Net effect: a staging transformation. The run [[p]](s, d) is a 1-stage
computation; but [[[[spec]](p, s)]](d) describe two runs, i.e., a 2-
stage computation.

Precomputation gives program speedup: ps
def
= [[spec]](p, s)

is the residual program output produced by spec, when given a
program p and its known “static” input data s. When run on any
remaining “dynamic” data d, residual program ps computes what p
would have computed, if given both data inputs s and d.

The concept is historically well-known as the S-1-1 theorem in
recursive function theory (though that theory did not study program
speedup). In recent years partial evaluation has emerged as the
practice of engineering the S-1-1 theorem on real programs [18].
One application area is compiling by specialising an interpreter.
The idea is to regard its input program as static, and the input
program’s data as dynamic.

Further, by the Futamura projections, self-application of spec
can achieve compiler generation (from an interpreter), and even
compiler generator generation (details in [18]).

6.2 Transforming a Normaliser into a Compiler
Partial evaluation can transform the ULC (or STLC) normalisation
algorithm NP into a program to compute a semantics-preserving

function

f : ULC → LLL (or f : STLC → LLL)

This follows from the second Futamura projection. In the diagram
notation of [18]:

If NP ∈
L

LC

then [[spec]](spec,NP) ∈
LC LLL

L

-

.

Here LC is ULC or STLC; L is the language in which the partial
evaluator and normaliser are written; and LLL (e.g., as in Section
5) is a sublanguage of L that is large enough to contain all the
dynamic operations done by NP.

Extending this line of thought, one can anticipate its use for a
semantics-directed compiler generator, an aim expressed in [6].
The idea would be to use LLL as a general-purpose intermediate
language to express semantics.

6.3 About the Result of Specialising UNP to M

A partial evaluator will, while specialising UNP to M , perform of
the UNP operations that depend only on M . As a consequence,
UNPM will have no operations at all to decompose or build lambda
expressions while it runs on data d. The residual program UNPM

will contain only operations to extend the current traversal, and
operations to test token values and to follow the back pointers.

Subexpressions of M may appear in the low-level code, but are
only used as indivisible tokens. They are only used for equality
comparisons with other tokens, and so could be replaced by nu-
meric codes – tags to be set and tested.

6.4 How to Specialise UNP with Respect to M?
The first step is binding time analysis: to annotate all parts of
(the program for) UNP in Section 3.7 as either static or dynamic.
(This is done independently of M .) Computations in UNP are
marked to be either unfolded (i.e., done at partial evaluation time)
or residualised: runtime code is generated to do computation in the
output program UNPM (this is the ps seen in the definition of a
specialiser).

Static: some UNP variables of bounded static variation (a term
from [18]) will be annotated as “static”. The main example is e,
ranging over subexpressions of M . This takes on only finitely many
vales for any fixed input M , so it is safe to classify it as static.
Boolean flags are also static.8

Dynamic: Back pointers are not statically computable; so the
traversal (i.e., history) being built is annotated as dynamic. Values

8 In some cases even more can be made static: we will see “The Trick” used
to make static copies of dynamic values of bounded static variation, see
discussion in [18].
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obtained from histories are also annotated as dynamic: their sizes
can be unbounded (for a given M ).

For specialisation we annotate all recursive function calls within
the traversal algorithm that do not progress from one M subexpres-
sion to a proper subexpression as “dynamic”. The aim is both ter-
mination and efficiency: no dynamic recursive calls in the traversal-
builder will be unfolded while specialising; all other calls will be
unfolded.

7. Binding-Time Annotated UNP
We now show the result of a binding-time annotation of UNP.
Assumption: we wish to specialise UNP to a static (fixed, known)
lambda expression M . The following is the result of classifiying
every expression in UNP as static or dynamic. A static value is
constant or computable by the specialiser from (the syntax of) M .
A dynamic value must be computed at run time, so residual code
will be generated.

Further, each function call in M will be classified as either to
be unfolded, i.e., performed at specialisation time; or residual. If
residual, a specialised version of this call will appear in the output
program resulting from specialisation. If a UNP subexpression is
to be residualised, then an underline is added (see below for an
example).

We use a box notation to enclose static information. Exam-
ples:

• Exp is a static type.

• For a bound variable, lookup i α denotes a residual call. It

could be specialised to static values i = 2 and α = T , to yield
a residual function lookup2,T bh ch h.

• The call in the function lookup, i− 1 is a static expression;

and recursive call lookup i α inside lookup is a function
call with two static arguments. (Static, and to be unfolded at
specialisation time.)

7.1 Notations Used for Binding-Time Annotation
Annotation of function definitions and calls: a function type f :
V1 → . . . → Vi → . . . → Vn, where the first i arguments are
static, will be annotated as

f : V1 → . . . Vi → Vi+1 → . . . → Vn

(In Semantics 5 static values occur only as prefixes of argument
lists.)

On the right side of a function definition f v1 . . . vn = e, the
name and the static arguments of a call g e1 . . . em will be enclosed
in a box, i.e., g e1 . . . em . If this part is to be a residual call, then
an underline is added: g e1 . . . ei . If the call in this box is not

underlined, then the call will be unfolded, that is, performed by the
partial evaluator at specialisation time.

In terms of computational content, the following is nearly iden-
tical to UNP (Semantics 5). There is one change, however, better to
separate the binding times: Semantics 5 used function eval : H ⇀
H where H = [Item].

We now retype eval : H ⇀ H by unrolling the H type, and
separating the components of the beginning Item. Steps:

From eval : H ⇀ H
To eval : (Item : H) ⇀ H Isomorphic to:

eval : Item → H ⇀ H which is unrolled to
eval : Exp → Flag → BH → CH → H ⇀ H

The pragmatic reason for unrolling is to make the first two parts
e, α, of the beginning of the history visible, so they can be used for
specialisation.9

7.2 Semantics 6
Domains:

e ∈ Exp = λ− Expression

α ∈ Flag = {T, F}

h ∈ H, ch ∈ CH, bh ∈ BH = [Item] (History)

it ∈ Item = ⟨Exp F lag BH CH⟩

Semantic functions:

traversal : Exp ⇀ H

eval : Exp → Flag → BH → CH → H ⇀ H

apk : Exp → CH → H ⇀ H

evoperand : Exp → Flag → H → H → H ⇀ H

lookup : Int → Flag → BH → CH → H ⇀ H

Semantic equations :(M is the input λ-expression)

traversal = eval M F [ ] [ ] [ ⟨M F [ ] [ ]⟩ ]

eval (FV x) ch h = apk (FV x) ch h

eval (BV x i) α bh ch h = lookup i α bh ch h

eval λx.e T bh ch h= apk λx.e ch h

eval λx.e F bh ch h= eval e F bh ch ⟨e F bh ch⟩ : h

eval (e1@e2) α bh ch h= eval e1 T bh ch ⟨e1 T bh ch⟩ : h

apk [ ] h = h

apk λx.e (⟨ α bh ch′⟩ : ) h = eval e h ch′ ⟨e α h ch′⟩ : h

apk (⟨e α bh ch′⟩ : ) h = evoperand e F bh ch′ h

lookup 0 α (⟨ T ch′⟩ : ) ch h = case ch′ of

⟨e bh ⟩ : ⇒ evoperand e α bh ch h

⇒
case ch of
[ ] ⇒ h

⟨ap bh′′ ch′′⟩ : ⇒ evoperand ap F bh′′ ch′′⟩ h

lookup 0 (⟨ F ch′⟩ : h′) ch h= apk (BV 0) ch h

lookup i α (⟨ bh′ ⟩ : ) ch h = lookup (i− 1) α bh′ ch h

7.3 Need for and Use of The Trick

The equations above lack one for evoperand . This presents a
problem for specialisation: the item argument of evoperand comes
from a history, and histories are dynamic. Fortunately, however,
the expression argument e in an item is BSV: of bounded static

9 Remark: the eval argument is always a nonempty list, so case H = [ ]
need not be dealt with.
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variation. In particular, it must be a subexpression of the original
λ-expression M .

Let the applications present in M be e11@e12, . . . , e
m
1 @em2 . The

following code does the trick. It is a sequence of tests on token
values and branches.

evoperand e11@e12 α bh ch h =

eval e12 α bh ch (⟨e12 α bh ch⟩ : h)
. . .

evoperand em1 @em2 α bh ch h =

eval em2 α bh ch (⟨em2 α bh ch⟩ : h)

The residual program will contain one evoperand definition for
each application e1@e2 that is a subexpression of M . This code
can be generated by the following annotated normaliser:

evoperand e α bh ch h = f M e where

f (e′ : es) e = case e′ of

e1@e2 ⇒ if e = e′ then eval e2 α bh ch h

else f es e

⇒ f es e

7.4 About the Size of the Compiled λ-Expression
A well-known fact: the traversal of M may be much larger than M .
By Statman’s results [19] it may be larger by a “non-elementary”
amount(!)

Nonetheless, by using partial evaluation, the λ-free residual
program UNPM will have size |UNPM | = O(|M |). In words:
M ’s LLL equivalent has size that is only linearly larger than M
itself.

More generally: The size of specialised ps will be linear in |p|
if for any p function f(x1, . . . , xn)

• f has at most one static argument whose size depends on static
input s; and

• each static argument is either completely bounded, or it is of
BSV (bounded static variation).

This follows for UNP as a result of the binding time analysis
described above.

8. Extension to a PCF-Like Language
Lambda-calculus is an elegant and simple Turing-complete lan-
guage, but it is not really well-suited to program even simple func-
tions. It turns out not to be hard to extend UNP to implement
all the PCF operators. We give a glimpse here of how we ex-
tended traversal-based normalisation to handle lambda-calculi plus
the control-flow operator if-then-else, the Y -combinator, numeric
constants, and binary operations.

For the sake of brevity, we will only sketch a few parts of
semantic equations that are related to new language primitives.
Function apk is given additional arguments.

A quick overview, starting with the simplest case, a constant:
call a continuation function.

Next consider the Y -combinator. When evaluated, it continues
with evaluation of its body with an updated environment (binder
pointer bh) without changing the current continuation ch. The
lookup function has to be extended: for function names it has to
return the Y -combinator itself with an initial environment. These

changes correspond strongly to the usual Y -combinator semantics
[[Y M ]] = [[M(Y M)]].

Control-flow operators also fit into the traversal concept: evalu-
ate the condition to be tested to some constant; and then decide, in
the “apply continuation” function, which branch has to be chosen.

Finally, the case of operations on base values: For sake of sim-
plicity, we only consider addition; other operations can be added in
a similar way. There are different ways one can add addition to ex-
tend UNP. One way, is a syntactic extention. That is, addition can
be seen as an alias for λ-term λm.λn.λx.(m@f)@((n@f)@x).
This case nicely fits into the traversal concept since it is usual λ-
term which can be evaluated by a complete head linear reduction.

On the other hand, this means that the results of computations
will not be saved and every time the result needs to be used it
will be recomputed. This is not usual for call-by-value arithmetic
expression semantics which avoids multiple evaluation of the same
arithmetic expression. Thus, the result of evaluation has to be stored
somewhere. In order to be able to store an intermediate result some
more machinery is needed: a token may be dynamic, i.e., a token
may not be a subexpression of the input expression. Moreover, we
allow a continuation function to dynamically change an argument
of a binary operator. This makes it possible to store an intermediate
results inside the traversal. Note that in this case the result is always
a numerical constant.

eval h = let ⟨ e bh α ch ⟩ : = h in
case e of
. . .
Const n ⇒ apk ch e h α
Y f e1 ⇒ eval ⟨ e1 h α ch ⟩:h
If b e1 e2 ⇒ eval ⟨ b bh α ch ⟩:h
Add e1 e2 ⇒ eval ⟨ e1 bh T h ⟩:h

apk ch e h α = case ch of
. . .
⟨ (If e1 e2) bh’ α ch’ ⟩ : ⇒

if e == 0
then eval ⟨ e2 bh’ α ch’ ⟩ : h
else eval ⟨ e1 bh’ α ch’ ⟩ :

⟨ (Add e1 e2) bh’ α ch’ ⟩ : ch’’ ⇒
let Const n = e in if α

then eval ⟨ e2 bh’ F ⟨ (Add e e2) bh’ α ch’) : ch’’ ⟩ ⟩ : h
else let Const n1 = e1

in eval ⟨ (Const (n1 + n)) bh’ α ch’ ⟩ : h

The result of traversing our code for function sum(x) = Σx
i=1i,

i.e., when applied to constant 1

Y sum (λx. if x then x + sum(x− 1) else 0)

is shown in Figure 410.

9. Conclusion
9.1 Time Line of This Research
9.1.1 Start: Work on the Simply-Typed λ-Calculus
We implemented one version of STNP in HASKELL and another in
SCHEME. Experiments used the UNMIX partial evaluator (Roma-
nenko [20]) to do automatic partial evaluation and compiler gen-
eration. A more complete HASKELL version included: typing; con-
version to eta-long form; the traversal algorithm itself; and con-
struction of the normalised term.

We also wrote STNP-gen (i.e., [[spec]](spec, UNP )) by hand
in SCHEME. This generating extension of STNP follows the lines

10 Note that Y sum is one token which denotes a call of recursive function
sum.
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@ Y sum λx If x 1 + x 1 @ sum Y sum λx If x − x 1 1 0 0 1

Figure 4: Traversal for sum 1.

of [21]; the same approach was used in Section 7. Effect: up
NPM = [[STNP-gen]](M). Program STNP-gen is essentially the
compiler generated from STNP as in Section 6.2. STNP-gen yields
output NPM as a scheme program. This program has only surface
differences from LLL as in Section 5.

9.1.2 Work on the Untyped λ-Calculus
An effective normaliser UNP was developed for ULC [22]. A
traversal item has two back pointers (by comparison, STNP uses
one). UNP was written in HASKELL and works on a variety of ex-
amples. A formal correctness proof of UNP is nearing completion,
using the theorem prover COQ [22].

By specialising UNP, an arbitrary untyped λ-expression can be
translated to LLL as in Section 5. A HASKELL generating exten-
sion has been written by hand.No SCHEME version or generating
extension have yet been done, though this may be worthwhile for
experiments using UNMIX.

9.2 Next Steps
• More needs to be done to separate programs from data in ULC.

(Appendix Section A.2 is just a sketch.) A current line is to
express such program-data games in a communicating version
of LLL. Traditional methods for compiling remote function
calls are likely relevant.

• It seems worthwhile to do data-flow analysis of output pro-
grams, e.g., for time and space optimisation of output programs.

• Using separated program and data naturally suggests that one
investigate computational complexity phenomena (e.g., compu-
tational complexity of the λ-calculus).

• Yet another promising possibility is that LLL could serve as an
intermediate language for a semantics-directed compiler gener-
ator [6].

10. Related Works on the Lambda Calculus
There are many works about λ-calculus evaluators that emphasise
efficiency. Following is a brief overview of some of the most rele-
vant approaches:

Many implementations of functional languages use lazy evalu-
ation to ensure efficiency. Nevertheless, Wadsworth’s original form
of lazy evaluation [23] can fail to remove duplicate computations
since it captures only values, but leaves functional terms intact. This
is sometimes not considered a problem, because compilers [24] em-
ploy a fully lazy λ-lifting instead of Wadsworth’s original transfor-
mation.

Sinot [25] extended Launchbury’s [26] semantics for lazy eval-
uation. Sinot increased laziness by also sharing function bodies,
using metavariables to represent open terms. It was also shown that
complete lazy reduction can give exponential speedup in compari-
son with usual lazy evaluation [25].

Lévy [27] introduced the concept of optimal reduction. The
main goal in an optimal reduction is to avoid redex duplications
by adding some mechanisms to obtain redex sharing and parallel
reduction. Moreover, Lévy showed that not only subexpressions,
but closures as well, have to be shared to obtain optimality; and
that among complete reductions, only lazy evaluation (call-by-need
reductions) can optimallly reach the normal form.

In [28] Lamping presents a graph-based reducer that avoids
duplication of work when possible. He represents a lambda term as
a graph with special fan-in and fan-out nodes to model sharing; and
defines a set of local graph rewriting rules. This scheme is shown
to be Lévy-optimal by relating each beta reduction step to a Lévy
parallel reduction step.

A similar approach by Shivers and Wand [29] represents λ-
terms as directed acyclic graphs (DAGs) to allow sharing by means
of back pointers and links. The back pointers are used to efficently
search parents while links are used for efficent construction. The
sharing that arises from β-reduction is efficiently managed by the
DAG representation.

In [30] interaction nets are used as an intermediate representa-
tion for reduction. The name-free deBruijn λ-calculus [31] trans-
forms λ-expressions into interaction nets [32] on which reduction
together with so-called x-rules (rules that simplify interaction nets)
are defined. Finally, a residual term is reconstructed from the result-
ing interaction net. The presented calculi are optimal in the sense
of Lévy.

Lawall and Mairson [33] showed that the sharing graphs of
Lamping and successors require exponentially many bookkeeping
steps. One conclusion is a problem with the Lévy optimality crite-
rion: achieving it (bookkeeping and all) would imply the collapse
of some well-known complexity class containments.

A. Should M Have Separate Input Data?
A.1 Motivations for Giving M Separate Input Data
In the current λ-calculus tradition M is self-contained; there is
no dynamic data. The definition of a specialiser on a normaliser
program UNP:

∀M ∈ Λ . [[ [[spec]](UNP,M)]]() = [[UNP]](M)

While this looks almost trivial, it is not. The left side describes
a two-step process: first, M is translated into LLL (size linear in
|M |). Then that program is run: without input, but perhaps giving
a perhaps very long traversal.

An extension: allow M to have separate input data, e.g., the in-
put value 2 as in the example of Section 2. Assume that UNP is
extended to allow run-time input data.11 The specialisation defini-
tion becomes:

∀M ∈ Λ, d ∈ Data . [[ [[spec]](UNP,M)]](d) = [[UNP]](M,d)

11 Semantics: simply apply M to Church numeral d before normalisation
begins.
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Is adding separate input data a good idea? Let the specialiser output
be UNPM = [[spec]](UNP,M).

1. One motivation is that UNPM can be in a much simpler lan-
guage than the λ-calculus. Our candidate: the “low-level lan-
guage” LLL of Section 5.

2. A next step: it becomes natural to consider the computational
complexity of normalising M , if it is applied to an external input
d. For example the Church numeral multiplication algorithm
runs in time of the order of the product of the sizes of its two
inputs.

3. Further, two stages are natural for semantics-directed compiler
generation.

A.2 Loops from out of Nowhere
Consider again the Church numeral multiplication (as in Figure
1), but with a difference: suppose the data input values for m,n
are given separately, at the time when program UNPmul is run.
Expectations:

• Neither mul nor the data contain any loops or recursion. How-
ever mul will be compiled into an LLL -program UNPmul with
two nested loops.

• Applied to two Church numerals m,n, UNP mul computes their
product by doing one pass over the Church numeral for m,
interleaved with m passes over the Church numeral for n. (One
might expect this intuitively, and the pattern can be seen in
Figure 1.)

• These appear as an artifact of the specialisation process. The
reason the loops appear: While constructing UNPmul (i.e., dur-
ing specialisation of UNP to its static input mul), the specialiser
will encounter the same static values (subexpressions of M )
more than once.
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