

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright © 2014 ACM 978-1-4503-2656-8/14/02…$15.00.
http://dx.doi.org/10.1145/2555243.2555255

yaSpMV: Yet Another SpMV Framework on GPUs

Abstract
SpMV is a key linear algebra algorithm and has been widely
used in many important application domains. As a result,
numerous attempts have been made to optimize SpMV on
GPUs to leverage their massive computational throughput.
Although the previous work has shown impressive progress,
load imbalance and high memory bandwidth remain the
critical performance bottlenecks for SpMV. In this paper,
we present our novel solutions to these problems. First, we
devise a new SpMV format, called blocked compressed
common coordinate (BCCOO), which uses bit flags to store
the row indices in a blocked common coordinate (COO)
format so as to alleviate the bandwidth problem. We further
improve this format by partitioning the matrix into vertical
slices to enhance the cache hit rates when accessing the
vector to be multiplied. Second, we revisit the segmented
scan approach for SpMV to address the load imbalance
problem. We propose a highly efficient matrix-based
segmented sum/scan for SpMV and further improve it by
eliminating global synchronization. Then, we introduce an
auto-tuning framework to choose optimization parameters
based on the characteristics of input sparse matrices and
target hardware platforms. Our experimental results on
GTX680 GPUs and GTX480 GPUs show that our proposed
framework achieves significant performance improvement
over the vendor tuned CUSPARSE V5.0 (up to 229% and
65% on average on GTX680 GPUs, up to 150% and 42% on
average on GTX480 GPUs) and some most recently
proposed schemes (e.g., up to 195% and 70% on average
over clSpMV on GTX680 GPUs, up to 162% and 40% on
average over clSpMV on GTX480 GPUs).

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel programming

Keywords SpMV, Segmented Scan, BCCOO, OpenCL,
CUDA, GPU, Parallel algorithms

1. Introduction
Sparse matrix vector multiplication (SpMV) is a key linear
algebra algorithm and is heavily used in many important
application domains. As state-of-art many-core GPUs
feature remarkably high computational throughput and
memory access bandwidth, there has been strong interest in
GPU-accelerated SpMV [1][6][7][12][14][15][16][17][21].

Although the sequential implementation of SpMV is fairly
straightforward, its parallel implementation is challenging
for two main reasons. First, the row-based parallelization,
i.e., assigning one thread to compute the dot-product
between one row of the matrix and the multiplied vector,
although making logical sense, suffers from the load
imbalance problem as non-zeros in a matrix may not be
evenly distributed across different rows. Such a load
imbalance problem is more severe in GPU architectures
since the threads in a warp operate in the single-instruction
multiple-data (SIMD) manner. Load imbalance among
threads in a warp will result in control divergence and the
execution time of all the threads in a warp will be forced to
be equal to the longest running one. Second, SpMV puts
high pressure on the memory hierarchy. The matrix data
have low reuse as each non-zero element is only used once
for computing the corresponding dot product. On the other
hand, although the multiplied vector is reused as each non-
empty row of the matrix will use it to compute a dot-
product, the access pattern is irregular due to irregular
locations of non-zeros in different rows. Such irregular
accesses do not meet the GPU memory coalescing
requirement, which means that different threads in a warp
need to access the data in the same block, to achieve high
memory access bandwidth.

Many approaches have been proposed to optimizing SpMV
on multi-core CPUs and many-core GPUs. To reduce the
memory footprint of sparse matrices, different formats have
been proposed to leverage different characteristics of sparse
matrices. It has been shown in [16] that among the existing
formats, no single format can achieve the best performance
and a cocktail format is proposed to combine the strengths
of existing formats by partitioning a sparse matrix and
applying different formats to different partitions. Given the
different features of target hardware platforms and different
characteristics of sparse matrices, offline auto-tuning or
benchmarking is commonly used to improve the

Shengen Yan

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy
of Sciences Beijing, China

 North Carolina State University
Raleigh, NC

yanshengen@gmail.com

Chao Li

North Carolina State University

Raleigh, NC

cli17@ncsu.edu

Yunquan Zhang

State Key Lab of Computer
Architecture, Institute of

Computing Technology, Chinese
Academy of Sciences

Institute of Software, Chinese
Academy of Sciences

Beijing, China
zyq@ict.ac.cn

Huiyang Zhou

North Carolina State University
Raleigh, NC

hzhou@ncsu.edu

107

performance. Although previous work has achieved
impressive performance improvement for SpMV, the load
imbalance problem and the high memory bandwidth
requirement remain the fundamental performance
bottlenecks for SpMV. In this paper, we propose our novel
solution to SpMV.

We first propose a new format for sparse matrices to
alleviate the high memory bandwidth requirement of SpMV.
Our new format is referred to as blocked compressed
common coordinate (BCCOO) as it is built upon the
common coordinate (COO) format. The BCCOO format
extends the COO format with blocking to reduce the size for
both row and column index arrays. Then, it uses bit-flags to
drastically reduce the size of the row index array. To
improve the cache hit rate for accessing the multiplied
vector, we partition a sparse matrix into vertical slices and
align the slices in a top-down manner before applying the
BCCOO format. Such vertical partition-based BCCOO is
referred to as the BCCOO+ format.

To address the load imbalance problem, we revisit the
matrix-based segmented scan and design a new highly
optimized segmented scan/sum kernel for SpMV. In our
approach, each thread processes the same number of
consecutive non-zero blocks and it performs sequential
segmented scans/sums to generate partial sum results. This
way, it avoids the workload imbalance problem and reduces
the memory requirement on the row information associated
with each thread. Then, each workgroup/thread block will
run the parallel segmented scan on the last partial sum
results computed from each of its threads. When the final
dot-product results require accumulating partial sums across
multiple workgroups/thread blocks, adjacent
synchronization [24] is used to eliminate the overhead of
global synchronization.

To further improve the performance of our SpMV kernel,
we introduce an auto-tuning framework to explore
optimization parameters for different sparse matrices and
different platforms. Such optimization parameters include
whether to use texture cache for multiplied vector, whether
to perform transpose online or offline, the suitable block
sizes for our proposed BCCOO/BCCOO+ format, the
number of non-zero blocks to be processed by each thread,
the number of threads in a workgroup, the size of shared
memory (also called local memory in OpenCL [19]) or
registers to be used for intermediate partial sums, etc. As
these parameters form a large search space, we introduce a
set of accelerations to reduce the auto-tuning time to a few
seconds.

Our experiments on a set of 20 sparse matrices show that
our proposed single format fits nearly all of the sparse
matrices under our study. Compared to the vendor-tuned
library CUSPARSE V5.0, our proposed scheme achieves
performance improvement by up to 150% and 42% on
average on GTX480 GPUs, up to 229% and 65% on average

on GTX680 GPUs. Compared to the clSpMV [16], which
combines advantages of many existing formats, our
proposed scheme achieves a performance gain of up to 162%
and 40% on average on GTX480 GPUs, up to 195% and 70%
on average on GTX680 GPUs.

The remainder of this paper is organized as follows. Section
2 presents our proposed BCCOO/BCCOO+ format for
sparse matrices. Section 3 details our proposed customized
matrix-based segmented scan/sum approach for SpMV.
Section 4 summarizes our auto-tuning framework. The
experimental methodology and the results are discussed in
Sections 5 and 6, respectively. Section 7 addresses the
related work. Section 8 concludes the paper.

2. The Block-based Compressed Common
Coordinate (BCCOO) Format
Our proposed block-based compressed common coordinate
format builds upon the common coordinate (COO) format.
In this section, we first present the COO format as the
background and then introduce our BCCOO format and its
extension BCCOO+ format. For illustration, we use the
matrix in Eq. 1 as a running example.

2.1 COO Format
The COO format is a widely used format for sparse matrices.
It has explicit storage for the column and row indices for all
non-zeros in a sparse matrix. For example, the matrix in
Eq.1 can be represented with a row index array, a column
index array, and a data value array, as shown in Figure 1.

Figure 1. The COO format of matrix A.

The parallelization strategy suitable with COO, as shown in
previous work [1], is segmented scan/reduction. As
highlighted in [1][16], the advantage of the COO format is
that it does not suffer from the load imbalance problem and
can achieve consistent performance over different types of
sparse matrices. However, the key problem of the COO
format is that it needs to explicitly store both the row index
and the column index for every non-zero data element.
Therefore, it has the worst memory footprint [16].

2.2 BCCOO Format
Our proposed BCCOO format extends the COO format in
two ways. First, we incorporate the block-based format to
the COO format. In block-based formats such as blocked
ELLPACK and blocked CSR [7], a non-zero block is stored
consecutively. This way, one block of data values will share
the same row index and the same column index. Therefore,

A

0 0 0 0 0
0 0 0 0 0
0 0 0 0

0 0

 Eq. 1

Row_index 0 0 0		1		1		1		2		2		2		2 3 3 3 3 3 3

Col_index 2 6 7		2		3		6		4		5		6		7 0 1 4 5 6 7

Value a b c		d		e		f			g		h			i			j	 k l m n o p

108

the storage overhead of the row index array and the column
index array can be significantly reduced. For matrix A in Eq.
1, if a block size of 2x2 is used, the blocked COO (BCOO)
format has the index arrays and the data value array shown
in Figure 2.

Figure 2. The blocked COO format of matrix A with the block

size of 2x2.

From Figure 2, we can see that there are 5 non-zero blocks.
Both the row index array and the column index array have
been reduced significantly. The first non-zero 2x2 block is

0 and its block-based row index and column index are

0 and 1, respectively. The next non-zero 2x2 block is

0 and its blocked-based row index and column index

are 0 and 3, respectively. Note that in Figure 2, we use two
data value arrays rather than a single array in Figure 1. The
reason is that for a block size with the height larger than 1,
we put different rows in different data value arrays such that
both the row index and column index can be used directly to
index the data in each of the value arrays. Such data
arrangement is also helpful for contiguous memory accesses.
The overhead of the BCOO format, which is shared among
all block-based formats, is the zeros in the data value array
when a non-zero block contains zeros.

Figure 3. The BCCOO format of matrix A with the block size

of 2x2.

Our key extension to the COO format is to use a bit flag
array to compress the row index array in a lossless manner.
The bit flag array can be viewed simply as the result of a
difference function being applied to the row index array. For
a difference value larger than 1, we replace it with multiple
1s. Then, we flip 1s and 0s such that a bit value of ‘0’ in the
bit flag array represents a row stop, i.e., the corresponding
value is the last non-zero in a row. A bit value of ‘1’
represents that it is not the last non-zero in a row. The
reason for such representation is that when we compute the
partial sums for dot-product result, using the value ‘0’
eliminates the condition check on the next non-zero for the
end of a row (see Section 3.2). As our bit flag array provides
lossless compression on the row index array, the row index
information can be reconstructed from the bit flag array by
accumulating the number of row stops. We refer to this
format as blocked compressed COO (BCCOO). For matrix

A in Eq. 1, the BCCOO format is shown in Figure 3 with
the block size of 2x2.

Compared to the BCOO format shown in Figure 2, the
column index array and the data value arrays remain the
same. The row index array becomes a bit vector of 5 bits.
Assuming that integers are used for row indices, a
compression ratio of 32 is achieved for the row index array.

In our implementation, in order to remove the control flow
to check the end of the bit flag array, we pad it with bit ‘1’
such that the length of the bit flag array is a multiple of the
working set (i.e., number of non-zero blocks to be processed)
of a workgroup.

Similar to row-index arrays, we can also try to reduce data
transmission required for column index arrays using
difference functions. In our approach, we first apply a
segmented difference function on a column index array with
each segment being the working set of each thread. This
way, there is no inter-thread dependency when
reconstructing the column indices. The resulting difference
array is stored using the short data type instead of the
regular integer type. If a difference value is beyond the
range of a signed short, we replace it with a fixed value -1,
which means that the original column index array needs to
be accessed for this particular index.

(a)

(b)

Figure 4. The BCCOO+ format of matrix A in Eq. 1. (a) The
vertically sliced and rearranged matrix of matrix A. (b) The bit
flag array, the column index array, and the data value arrays.

2.3 BCCOO+ Format
We also propose an extension to our BCCOO format to
improve the locality of the accesses to the multiplied vector,
referred to as the BCCOO+ format. In this format, we first
partition a sparse matrix into vertical slices and then align
the slices in a top-down manner. Then, we apply the
BCCOO format on the vertically sliced and rearranged
matrix with an exception on column indices. The column
index array is generated based on the block coordinates in
the original matrix rather than the transformed matrix as we
need original column indices to locate the corresponding
elements in the multiplied vector for dot-product operations.

Row_index 0		0		1		1		1

Col_index 1		3		0		2		3

Value
		0		 		 		0		0		 		 			 		 	
		 		 		0		 		 		 		 		 	

Bit	Flag 1		0		1		1		0

Col_index 1		3		0		2		3

Value
		0		 		 		0		0	 			 			 		
		 		 		0		 		 		 		 		 		

B

0 0 0
0 0
0 0 0 0

0 0
0 0
0 0 0

Bit Flag 0 0 0 1 0

Value
0 0 0 	 			 			

0 	 		 		

Col_index 1 0 3 2 3 (uncompressed)

109

For matrix A in Eq. 1, the vertically sliced and rearranged
matrix becomes matrix B in Figure 4a if the number of slice
is 2 and the slice width is 4. The BCCOO+ format of A is
shown in Figure 4b when the block size 2x2 is used.
As shown in Figure 4, the bit flag array encodes that there is
only one non-zero block in row 0, row 1, and row 2. Row 3,
in contrast, contains 2 non-zero blocks. The column indices
of these blocks, however, are determined from matrix A

rather than matrix B. Taking the 2x2 block as an

example, it resides at column 2 in matrix A, which is why
its column index value is 2 as shown in Figure 4b.

The benefit of BCCOO+ format can be illustrated with
matrix-vector multiplication between matrix A and vector y,
i.e., A* . Different rows in the same vertical slice, e.g., slice
0, will all use y[0]~y[3]. Similarly, all the rows in slice 1
will use y[4]~y[7] to compute the dot-product. As the block

 is in slice 1, it needs to use y[4]~y[7], with the

block size of 2x2, its column index of 2 provides the
necessary information for indexing y[4] and y[5] from the
vector .

Figure 5. Matrix-vector multiplication as a sum of the products
between its vertical slices and the corresponding vector
segments.

Since the BCCOO+ format breaks the original matrix into
slices, after performing the matrix-vector multiplication on
each slice, the intermediate results need to be combined to
generate the final results. Using our running example of
matrix A in Eq. 1, the derivation of A* is shown in Figure
5. Therefore, when using the BCCOO+ format, it is
necessary to use a temporary buffer to store the intermediate
results and to invoke an additional kernel to combine them.
Depending on the number of slices, the size of the
temporary buffer can be large, thereby hurting the
performance. As a result, the BCCOO+ format is not always
preferred over the BCCOO format and we resort to auto-
tuning to determine either the BCCOO or BCCOO+ format
should be used.

2.4 Auxiliary Information for SpMV
To facilitate the computation of SpMV, the following
information is computed and stored along with the
BCCOO/BCCOO+ format. First, based on the number of
non-zeros that each thread will process, we compute the
location of the first result generated by each thread, i.e., the
row index that the result belongs to. Using matrix C in Eq. 2

as an example, in which each element is a block of data. To
simplify the discussion, we assume the block size as nx1. As
discussed in Section 2.2, for a block size with the height
larger than 1, each row will be stored in a separate value
array. The BCCOO format of matrix C is shown in Figure
6a. As there are 16 non-zero data blocks, assuming each
thread will process 4 non-zero blocks, we will compute the
row index that the first result generated by each thread
belongs to. Such information can be computed with a scan
operation on the bitwise inverse of the bit flag array in the
BCCOO format. In this example, thread 0 processes the first
4 non-zero data blocks A’, B’, C’, and D’ and its first
computation result, i.e., A’*y’, is part of the final result for
the dot-product between row 0 and the multiplied vector. So,
the result entry is set to 0. Similarly, thread 1 processes the
next four non-zero blocks E’, F’, G’, and H’. As block E’
still belongs to row 0, the entry for the first result of thread 1
is set as 0.

(a)

(b)

Figure 6. (a) The BCCOO format of Matrix C in Eq.2. (b) The
example of compute the location of the first result generated by
each thread, assuming that there are four threads and each
thread processes four non-zero blocks.

Second, we perform a quick check to see whether we can
skip the parallel segmented scan operation at the workgroup
level. It is the case when each thread in a workgroup
encounters a row stop, which results in the segment size
being 1 for the parallel segmented scan.

3. An Efficient Matrix-based Segmented Sum/Scan
for SpMV
With a sparse matrix stored in our BCCOO/BCCOO+
format, SpMV can be implemented in three logical steps: (1)
read the data value arrays and multiply them with the
corresponding vector values indexed by the Col_index array;
(2) perform a segmented scan using the bit flag array from
our BCCOO/BCCOO+ format; (3) write back the results to
global memory. In our proposed scheme, all these three
steps are implemented in a single kernel so as to minimize
the kernel invocation overhead.

∗

0 0
0 0

0

0 0 0 0
0 0

∗

0
1
2
3

										

0 0
0 0 0

∗

4
5
6
7

C

′ 0 ′ 0 ′ 0 ′ ′
0 0 0 ′ 0 0 ′ 0
0 ′ 0 ′ 0 ′ 0 0
0 ′ ′ ′ 0 ′ ′ ′

 Eq.2

Bit Flag 1 1 1 1 0 1 0 1 1		0		1		1		1		1		1		0

Col_index 0 2 4 6 7 3 6 1		3		5		1		2		3		5		6		7 (uncompressed)

Value
A′ B′ C′ D′ E′ F′ G′ H′	I′	J′	K′	L′M′ N′ O′ P′

Bit Flag: 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0

 Result Entry: 0 0 2 3

110

3.1 Segmented Scans
The segmented scan primitive scans multiple data segments
that are stored together. A start flag array is typically used to
identify the first element of a segment. We show an example
of the inclusive segmented scan in Figure 7. Its start flag
array is generated from the bit-flag array of the BCCOO
format in Figure 6. The output of the inclusive segment scan
is the ‘Result’ array in Figure 7. Note that for SpMV, the
complete segmented scan results are not necessary. Instead,
the last sum of each segment is sufficient, as marked with
underscores in the ‘Result’ array. In other words, for SpMV,
the segmented reduction/sum primitive can be used rather
than the segmented scan primitive.

Figure 7. An inclusive segmented scan with the start flags

generated from the bit flag array in Figure 6(a).

Figure 8. Even workload distribution: each workgroup/thread
block works on a workgroup-level tile; each thread works on a
thread-level tile of non-zero blocks.

Two main approaches have been proposed to parallelize the
segmented scan primitive on GPUs. One is a tree-based
approach [5], which builds a binary tree through different
processing stages. The tree-based approach suffers from the
load imbalance problem as different numbers of threads will
be idle in different processing stages. Furthermore, it
requires workgroup-level synchronization between stages as
discussed in [8]. The other is a matrix-based approach,
which is proposed to improve memory efficiency and
overcome the load imbalance problem. Our proposed
BCCOO/BCCOO+ format suits better with the matrix-based
segmented scan and we further customize it for SpMV.

3.2 A Customized Matrix-based Segmented Sum/Scan
for SpMV
3.2.1 Per-thread and per-workgroup working sets
In our segmented sum/scan approach for SpMV, the input
non-zero blocks as well as the corresponding bit-flag array
and the column index array are divided evenly among
workgroups. The working set of each workgroup is referred
to as a workgroup-level tile, which in turn will be divided
evenly among the threads within the workgroup. The
working set of a thread is referred to as a thread-level tile, as
shown in Figure 8. The benefits of using a single thread to

process multiple consecutive non-zero blocks (e.g., 16) are
two-folds. First, a single/few load(s) from the bit flag array
(e.g., loading a single short type of data) will be sufficient to
provide all the bit flag information. Compared to the
previous approaches, which load the row index information
for every non-zero, significant bandwidth will be saved.
Second, each thread will perform the segmented scan in a
sequential manner and may use a segmented sum instead of
a segmented scan, which has fewer intermediate results to
keep. Also, note that the bit flags in our BCCOO/BCCOO+
format are different from the start flags that are used in
typical segmented scans as shown in Figure 7. Although the
start flags can be derived from the bit flags, we choose to
use the bit flags since it is straightforward to tell whether a
segment ends from the bit flags. If the start flags were used,
one needs to search for the next start to find the end of the
current segment. It would be more complex when the non-
zeros in a row span across multiple thread-level or
workgroup-level tiles.
Since a thread-level tile may contain row stops, each thread
will write its last partial sum into a temporary array, called
‘last_partial_sums’, based on its thread identifier (tid)
within the workgroup. Then, a parallel scan will be
performed on this last_partial_sums array. The start flags of
the last_partial_sums array are generated by each thread as
well. To handle the case when the non-zeros in a row span
multiple workgroups/thread blocks, we leverage the recently
proposed adjacent synchronization [24] to enable inter-
workgroup communication while eliminating global
synchronization.
3.2.2 Computing per-thread and per-workgroup partial
sums
We design two strategies to compute intra-workgroup
partial sums from a workgroup-level tile. Either suits for
different types of sparse matrices. In the first strategy, each
thread has an array, called ‘intermediate_sums’, to keep all
the intermediate sums of its thread-level tile. This
intermediate_sums array can be stored in shared memory,
registers, or split between shared memory and registers.
This strategy works well if the lengths of the segments are
very small, meaning that many rows in a sparse matrix have
very small numbers of non-zeros. For matrix C in Eq. 2,
assuming that each thread-level tile contains 4 non-zero
blocks and there are 4 threads in a workgroup, the
computation is illustrated in Figure 9. From the figure, we
can see that each thread performs a sequential segmented
scan, stores the results in its intermediate_sums array, and
uses the last partial sum to update the corresponding entry
of the last_partial_sums array, which locates in shared
memory and is accessible by all the threads in a workgroup.
If the last element of a thread-level tile is a row stop, the last
partial sum of this thread is 0, as shown in thread 3 in Figure
9.

To facilitate memory accesses to the data value array, we
can view it as a 2-dimension array with the width as the

Input 3		2		0		2		1		0		4		2		4		3		2		2 0 1 3 1

Bit	Flag 1		1		1		1		0		1		0		1		1		0		1		1 1 1 1 0

Start	Flag 1		0		0		0		0		1		0		1		0		0		1		0		0		0		0		0

Result 3 5 5 7 8 0 4 2 6 9 2 4 4 5 8 9]

Non-zeros

...

Workgroup-level tile Workgroup-level tile

...

Thread-level tile
Thread-level tile

111

thread-level tile size. Then, with a transpose operation,
which can be done either on-line or offline, the threads in a
warp will access the data in a row-by-row manner, thereby
satisfying the memory coalescing requirement. The same
also applies to the col_index array. Offline transpose
removes the need for a share memory buffer which is
required for transpose. In comparison, with the on-line
approach, the threads in a warp read one tile at a time in a
coalesced manner and multiply with the corresponding
vector elements, then store the results in a shared memory
buffer still in the row-based manner. Later on, when
performing the segmented scan, the threads read the buffer
in a column-based manner. This way, better performance
may be achieved due to improved locality from accesses to
the multiplied vector if non-zeros in a row are close to each
other.

In our second strategy, we allocate a result cache in shared
memory to only store the sum of each segment. This
strategy works better for long segments and also benefits
from efficient memory writes as we can store the result
cache to global memory in a coalesced way. With this
strategy, the offline transpose is used to ensure coalesced
memory reads from the value array and the col_index array.
After performing the multiplication with vector elements,
each thread carries out a segmented sum sequentially on its
thread-level tile, using the bit flag array as the mask for the
segments. All the segmented sums will be written to the

result cache with the help of the first-result-entry
information generated along with the BCCOO format. The
process is illustrated in Figure 10 for matrix C in Eq. 2
assuming that the thread-level tile size is 4 and there are 4
threads in a workgroup. The first-result-entry information
shown in Figure 6 is used for updating the result cache. For
example, as shown in Figure 6 the first-result-entry for
thread 1 and thread 2 is 0 and 2, respectively. Therefore,
when thread 1 encounters the first row stop, i.e., the end of
the first segment, it uses its current sum R4 to update the
results cache entry 0. When thread 1 encounters the second
row stop, it uses the sum R5+R6 to update the result cache
entry 1. In a sense, the first-result-entry information
computed along the BCCOO format partitions the result
cache among different threads in a workgroup. In the case
when the number of row stops in a workgroup-level tile is
larger than the results cache size, the extra segmented sums
will be stored in the result array in global memory, which
will be re-accessed later to generate the final outputs. The
same as the first strategy, each thread also writes its last
partial sum to the last_partial_sums array. To generate the

 Thread0 Thread1 Thread2 Thread3

		 	 		 ′

↓

	 	 		

0 1 0 1

		 	 		 ′

↓

	 	 		

1 1 1 1

	 	 		 ′

↓

1 1 1 0

		 	 		 	

	 			 		 			 ′

↓

	 	 	

1				0				1				1		

Serial sum Serial sum Serial sum Serial sum

	

0
last_partial_sums array

Result cache

…

Figure 10. Computing segmented scan: strategy 2, which uses
a per-workgroup result cache to store segmented sums. The
dashed blocks mean that the intermediate sums are not
stored.

 Thread0 Thread1 Thread2 Thread3

		 	 		 	

		 	 		 ′

↓

	 	 		

	0			1				0			1	

		 	 		 	

		 	 		 ′

↓

	 	 		

	1			1				1			1		

	 	 		 ′

↓

1		 1 1 0

		 	 		 	

	 			 		 			 ′

↓

	 	 	

1	 		0				1				1		

Serial scan Serial scan Serial scan Serial scan

	

0

last_partial_sums array

intermediate_sums intermediate sums

Figure 9. Computing segmented scans: strategy 1, which uses
per-thread buffers, i.e., ‘intermediate_sums’ arrays to store
intermediate sum results.

112

start flags for the last_partial_sums array, in either strategy,
each thread performs the simple check on whether its bit
flags contain a 0. In other words, each thread checks
whether there is a row stop in its thread-level tile. If so, its
last partial sum should be a start for a segment in the
last_partial_sums array. For the example in Figure 9 and
Figure 10, the start flags are [0, 1, 1, 1] since all threads
except thread 0 process a tile containing a row stop. After
all threads in a workgroup update its last partial sum in the
last_partial_sums array and generate the start flags, which is
signaled with a workgroup-level synchronization or
syncthreads(), the threads in the workgroup perform a
parallel segmented scan using the scan algorithm in [18] and
the results are also stored in the same last_partial_sums
array. In our example in Figure 9 or Figure 10, this parallel
scan can be skipped as all the segment sizes are 1.
3.2.3 Combining per-thread and per-workgroup partial
sums
Next, we need to combine the results in the per-thread
intermediate_sums arrays, the scanned result for the per-
workgroup last_partial_sums array, and also the results from
other workgroups to generate the final output of SpMV.

For our first strategy, each thread will go through its
intermediate_sums array. For each element, it checks
whether the corresponding bit flag is a row stop. If not, it
means the corresponding result has already been
incorporated into the sum of the segment. For a row stop, a
thread further checks whether it is the first stop in its thread-
level tile. If not, it means the thread-level tile contains the

complete segment and the corresponding result is the final
result. In the example shown in Figure 9, for thread 1, the
entry in its intermediate_sums array containing (R5+R6) is
such a case. If a row stop is the first in a thread-level tile
(e.g., the entry containing R4 for thread 1 in Figure 9), there
are two possibilities. One is that the segment spans multiple
threads within a workgroup. Then, the last_partial_sums
array of the workgroup will be used to retrieve the last
partial sum of the previous threads. For example, the entry
containing (R0+R1+R2+R3) in the last_partial_sums array
will be added to R4 of thread 1 in Figure 9. As the
last_partial_sums array contains the scanned result of the
original last partial sums of each thread, the entry
last_partial_sums[i-1] (i the current thread id) already
accumulates the partial sums of multiple threads for
segments spanning multiple threads. The other possibility is
that the segment spans multiple threads across workgroups.
In this case, we also need to accumulate previous
workgroups’ last partial sum results. We resort to adjacent

intermediate_sums[k]

Is a row stop?

Is the first row stop
in the thread?

Is the first row stop
 in the workgroup?

R =intermediate_sums[k] +
last_partial_sums[i-1]+

pre_partial_sum;

Res[res_addr ++]=R;

R=
intermediate_sums[k]+
last_partial_sums[i-1]

Yes

Yes

Yes

No

No

k<thread
work set size

Start

R=
intermediate_sums[k];

res_addr: the first result
location of the current thread.
k: initialized to 0.
i: current thread id.
pre_partial_sum: last partial
sum of the previous workgroup

No

k++;

Figure 11. A flow chart of combining the partial sums from
threads and workgroups: strategy 1.

Start

res_addr -
b res addr<c len?

Res_cache[res_addr -
b_res_addr]+=

last_partial_sums[i-1];

Res[res_addr] +=
last_partial_sums[i-1];

Res_cache[0]+=
pre_partial_sum

No

Yes

No

Yes

Res[i+b_res_addr]=Res_cache[i];
i+=workgroup_size;

No

Yes

Is there row stop in
current thread?

i = 0?

res_addr: the first result location of the
current thread.
i: current thread id.
b_res_addr: the first result location of the
current workgroup.
pre_partial_sum: last partial sum of
previous workgroups
c_len: the length of result cache.
c_end: the number of cached results.

i<c_len&&
i<c_end?

Yes

Workgroup-level barrier

Yes

No

i = 0?

Figure 12. A flow chart of combining the partial sums from
threads and workgroups: strategy 2

113

synchronization to avoid global synchronization as
discussed in Section 3.2.4. In Figure 11, a flow chart of the
kernel program is presented to illustrate the process
discussed above.
For our second strategy, there are no per-thread intermediate
sum arrays. Instead, there is a per-workgroup result cache
and therefore threads in a workgroup rely on the first result
location, which is produced along the BCCOO/BCCOO+
format, to process the result cache and the flow chart of the
kernel code is presented in Figure 12. Each thread except
thread 0 first checks whether there are row stops in its
thread-level tile. If so, it means that the thread has generated
some partial sums corresponding to the row stops. Here,
each thread only needs to process the partial sum at the first
row stop since it may be a part of a long segment spanning
multiple thread-level tiles (e.g., R4 in the result cache in
Figure 10). For subsequent row stops in the thread, the
partial sums in the result cache are already complete
segment sums (e.g., R5+R6 in the result cache in Figure 10).
Then, each thread except thread 0 checks whether its first
partial sum is written in the result cache or in global
memory depending on its first result position and the result
cache size. As the last partial sum corresponding to the
previous thread in the last_partial_sums array already
accumulates the partial sums of multiple threads for
segments spanning multiple threads, it is added to the result
cache entry (e.g., R0+R1+R2+R3 from the last_partial_sums
array is added to R4 in the result cache in Figure 10). For
thread 0, it updates result cache entry 0 with the last partial
sum from the previous workgroup. To avoid data race at
result cache entry 0, a workgroup-level synchronization is
added after thread 0 processes the result cache entry 0. After
the result cache is processed, it is written to global memory
in a memory coalesced way by all threads together in a
workgroup.
3.2.4 Accumulating partial sums across workgroups
As discussed in Section 3.2.3, for segments spanning
multiple workgroups, the last workgroup, which contains
the row stop, needs to accumulate previous workgroups
partial sums. Here, we make an implicit assumption that the
workgroup-level tiles are distributed to workgroups in-order.
In other words, workgroup 0 processes the first tile;
workgroup 1 processes the second tile; etc. Current GPUs
dispatch workgroups in-order. Therefore, we can directly
use the workgroup ids in the kernel. If a GPU dispatches
workgroups out-of-order, workgroups can get such ‘logic’
workgroup ids from global memory using atomic fetch-and-
add operations. This approach incurs small performance
overhead, less than 2% in our experiments. To accumulate
partial sums across workgroups, we use a global memory
array ‘Grp_sum’. The array is initialized to a special value
(e.g., maximal floating-point number). This array is updated
in a sequential manner. Workgroup 0 updates the first entry
‘Grp_sum[0]’ with its last partial sum. For a subsequent
workgroup with id X, if it does not contain a row stop, it
waits for the entry ‘Grp_sum[X-1]’ to be changed from the

initial value, i.e., updated by workgroup (X-1), and then
updates ‘Grp_sum[X]’ with the sum of its last partial sum
and ‘Grp_sum[X-1]’. If a workgroup contains a row stop, it
breaks such chained updates and directly updates
‘Grp_sum[X]’ with its last partial sum. This approach is
called adjacent synchronization in [24].

4. Auto-Tuning Framework
As discussed in Sections 2 and 3, we propose a new format
BCCOO and its variant BCCOO+ for sparse matrices, and
two new strategies to compute segmented sums/scans for
SpMV. To find the optimal solution for a sparse matrix, we
build an auto-tuning framework to select the format, the
computing strategy, as well as their associated parameters.
Then, the OpenCL code is generated according to the
selected parameters from this auto-tuning framework. We
also use this framework to exploit the texture cache for the
multiplied vector. Another optimization is that we use the
‘unsigned short’ data type for the col_index array if the
width of a sparse matrix is less than 65535. In this case,
there is no need to further compress the col_index array
using the approach discussed in Section 2.2. The parameters
that this framework explores are listed in Table 1. Note that
when strategy 1 is used to compute the segmented scan, the
thread-level tile size is the size of the immediate_sums array,
which is the sum of the parameters, Reg_size and ShM_size.

Table 1. Tunable parameters of the auto-tuning framework.
Parameter Name Possible Values
Matrix format BCCOO, BCCOO+
Col_index compress Yes, No
Block width 1, 2, 4
Block height 1, 2, 3, 4
Data type for the bit flag array Unsigned char, unsigned

short, unsigned int
Vertical slice number 1, 2, 4, 8, 16, 32
Transpose Offline, online
Texture memory for multiplied vector Yes, No
Workgroup size 64, 128, 256, 512
Strategy
1

Registers for the per-thread
intermediate sums array
(Reg_size)

0, 8, 16, 32

Shared memory for the per-
thread intermediate sums
array (ShM_size)

0, 8, 16, 32

Strategy
2

Thread-level tile size 8,16,24,32,40,64,96,128
Result cache size (multiple of
the workgroup size)

1,2,3,4

As shown in Table 1, there are many parameters to tune,
which form a relatively large search space for a sparse
matrix on a particular hardware platform. In order to
accelerate auto-tuning, we perform the following
optimizations. First, we use GPUs to accelerate the
translation from the COO format to the BCCOO/BCCOO+
format. Second, we cache compiled kernels in a hash table
so that they can reused for difference matrices. Third, we
prune the search space using the follow heuristics: since the
memory footprint is highly dependent on block dimensions,
we only need to select the block dimensions corresponding
to the 4 smallest memory footprints. Fourth, we further

114

reduce the search space by: always using the texture
memory for the multiplied vector, always using offline
transpose, limiting the result cache size to 1 and 2 for
strategy 2, and setting the shared memory size as 0 for the
per-thread intermediate sums array for strategy 1. With
these optimizations, the average auto-tuning time is 12.8
seconds among the 20 matrices in our study, running on a
desktop machine with an Intel(R) Core2 Quad CPU Q9650
@ 3.00GHz and an NVIDIA GTX680 GPU. Compared to
the optimal results obtained from an exhaustive search of
the parameters listed in Table 1, our auto-tuning results are
identical to the optimal ones on GTX 680 GPUs. On
GTX480 GPUs, however, the optimal configurations show
10.5% better performance for the matrix Epidemiology,
which prefers no texture memory usage, and 11.1% better
performance for the matrix Circuit, which prefers online
transpose. Furthermore, a finer grain parameter selection
may further improve performance. For example, a Thread-
level tile size of 40 yields 5% better performance for the
matrix Dense than our auto-tuning results on GTX480
GPUs.

 Table 2. The sparse matrices used in the experiments.

5. Experimental Methodology
We implemented our proposed scheme in OpenCL[19]. Our
experiments have been performed on both an Nvidia
GTX680 GPU and an Nvidia GTX480 GPU.

We use a total of 20 sparse matrices, 14 of them are from
[23] and 6 of them are from [16]. Table 2 summarizes the

information of the sparse matrices, including the size, total
number of non-zeros, and number of non-zeros per row.
These matrices have been widely used in previous works
[1][7][12][16][23].

In our experiments, we also use CUSPARSE V5.0 [13],
CUSP [1], and clSpMV [16] for performance comparisons.
CUSPARSE supports three formats HYB, BCSR, and CSR.
As the HYB format is a hybrid format combining the
advantages of the ELL and COO formats, the row length of
the ELL part is configurable. We manually searched the row
length in a wide range and use the best performing one for
each matrix. For the BCSR format in CUSPARSE, we also
searched the block size for the best performance. For
clSpMV, besides the COCKTAIL format, which uses
different formats for different partitions of a matrix, we
tested all the single formats and chose the best performing
single format for each matrix. The same performance testing
framework is used as in [16]. The code of our proposed
framework is available at http://code.google.com/p/yaspmv/.

6. Experimental Results
In our first experiment, we evaluate the impact of our
proposed BCCOO/BCCOO+ format on memory bandwidth.
Since in our BCCOO/BCCOO+ format, all the information,
including the bit flag array, the col_index array, the data
value array, as well as the auxiliary information described in
Section 2.4, is only read once, we assume that it is also the
case for all the formats in comparison. Therefore, we can
simply use the sum of the array sizes to show the memory
footprint of each format. The results are shown in Table 3.
As our auto-tuning framework selects the BCCOO+ format
only for the matrix LP, we do not separate the BCCOO and
the BCCOO+ format. For some sparse matrices, due to the
high variance in the number of non-zeros in different row,
the ELL format is not applicable (labeled ‘N/A’ in Table 3).
Table 3. The memory footprint size (MB) of different formats.

Name COO ELL Cocktail Best
Single

BCCOO

Dense 48 32 17 17 17
Protein 52 59 40 34 21
FEM/Spheres 72 54 52 51 31
FEM/Cantilever 48 39 25 25 21
Wind Tunnel 140 314 78 78 65
FEM/Harbor 28 54 24 24 14
QCD 23 15 15 15 9
FEM/Ship 94 115 56 59 34
Economics 15 73 14 28 8
Epidemiology 25 17 17 17 14
FEM/Accelerator 31 79 26 25 17
Circuit 12 483 9 23 6
Webbase 37 N/A 29 138 27
LP 135 1927 91 91 85
Circuit5M 714 N/A 578 714 516
eu-2005 231 N/A 248 209 159
Ga41As41H72 222 1505 139 170 136
in-2004 203 N/A 209 203 132
mip1 124 N/A 66 54 51
Si41Ge41H72 180 983 118 135 105
Average 122 N/A 93 106 73

From Table 3, we can see that our proposed
BCCOO/BCCOO+ format significantly reduces the storage
size of various sparse matrices. On average, our proposed

Spyplot Name Size
Non-zeros

(NNZ)
NNZ/
Row

 Dense 2K * 2K 4000000 2000

 Protein 36K * 36K 4344765 119

 FEM/Spheres 83K * 83K 6010480 72

 FEM/Cantilever 62K * 62K 4007383 65

 Wind Tunnel 218K*218K 11634424 53

 FEM/Harbor 47K * 47K 2374001 59

 QCD 49K * 49K 1916928 39

 FEM/Ship 141K*141K 7813404 28

 Economics 207K*207K 1273389 6

 Epidemiology 526K*526K 2100225 4

FEM/Accelerator 121K*121K 2620000 22

 Circuit 171K*171K 958936 6

Webbase 1M * 1M 3105536 3

 LP 4K * 1.1M 11279748 2825

Circuit5M 5.56M* 5.56M 59524291 11

 eu‐2005 863K*863K 19235140 22

Ga41As41H72 268K*268K 18488476 67

 in‐2004
1.38M*
1.38M

16917053 12

 mip1 66K * 66K 10352819 152

 Si41Ge41H72 186K*186K 15011265 81

115

BCCOO/BCCOO+ format reduces the storage size by 40%
compared to the COO format, 31% compared to the best
single format among all the 9 formats included in clSpMV,
and 21% compared to the COCKTAIL format.

In the second experiment, we compare the performance of
our proposed scheme to the state-of-art techniques. The
results of GTX680 are shown in Figure 13 and the results of
our proposed approach are labeled ‘yaSpMV’ in the figure.
From the figure, we can see that our proposed approach
outperforms the existing schemes for all the matrices except
Dense. The Dense matrix prefers a block size of 2x8 as used
in the BCSR format from the ‘clSpMV best single’ results.
However, our auto-tuning framework limits the maximal
block height is limited to 4, thereby achieving sub-optimal
performance. Using the harmonic mean (H-mean) as the
average throughput, our yaSpMV achieves an average
performance improvement of 65% over CUSPARSE, 70%
over clSpMV COCKTAIL, 88% over clSpMV best single,
and 150% over CUSP. The highest performance
improvement of yaSpMV achieved over clSpMV
COCKTAIL is on matrix LP (195%). Compared to
CUSPARSE, the highest performance gain of yaSpMV is

from the matrix mip1 (229%).

In the third experiment, we examine the performance
contributions from different optimizations in our approach,
including memory footprint reduction, efficient segmented
sum/scan, adjacent synchronization to remove global
synchronization, and fine-grain optimizations, which consist
of (a) the use of the short data type for the col_index array
and (b) early check to skip the parallel scan on a
last_partial_sums array if each thread-level tile in a
workgroup-level tile contains a row stop. The results are
shown in Figure 14. We start with the COO format with a
tree-based segment sum (labeled ‘COO’). Then, we replace
the COO format with our BCCOO/BCCOO+ format
(labeled ‘BCCOO’). Next, we replace the tree-based
segmented sum with our proposed efficient matrix-based
segment sum/scan (labeled ‘Efficient segmented sum/scan’)
while using another kernel to accumulate partial sums
across workgroups. We then use adjacent synchronization to
replace this kernel (labeled ‘adjacent synchronization’) and
add the fine-grain optimizations (labeled ‘fine-gain
optimizations’). From the figure, we can see that the main
performance gains are from our proposed
BCCOO/BCCOO+ format and our efficient segmented

Figure 13. Performance comparison between our proposed scheme (labeled 'yaSpMV') and CUSPARSEV 5.0, CUSP,
clSpMV-best single, and clSpMV-COCKTAIL on GTX680 GPUs.

Figure 14. Performance Contributions from different optimization techniques (GTX680)

G
FL
O
P
S

116

sum/scan for SpMV.

We also evaluate the performance of SpMV on Nvidia
GTX480 GPUs. The results are shown in Figure 15. Among
the 20 sparse matrices, our proposed yaSpMV achieve
significantly higher performance than existing approaches,
up to 162% better than clSpMV COCKTAIL and up to 150%
better than CUSPARSE. The only exception is the matrix
Epidemiology. It has 4 non-zeros on each row and therefore
is a perfect fit for the ELL format. For this matrix, our
yaSpMV has a suboptimal performance of 25.5 GFLOPS.
The best performing approach for this matrix, CUSPARSE,
has a throughput of 28.5 GFLOPS. On average using the
harmonic mean, our proposed yaSpMV achieves a
performance improvement of 40% than clSpMV
COCKTAIL, 60% over clSpMV best single, 74% over
CUSP, and 42% over CUSPARSE.

7. Related Work
Sparse matrix-vector multiplication (SpMV) is so important
that there have been numerous works optimizing its
performance. We only discuss the most relevant ones here.
Williams et al. present several optimizations for multicore
platforms [23]. Kourtis et al. [11] proposed an Extended
Compression Format (CSX) on shared memory systems.
OSKI [22] is a library collection which provides low-level
primitives for automatically tuned kernels on sparse
matrices. Aydın Buluc et al. [3] introduced a compressed
sparse blocks (CSB). Among the research works leveraging
GPUs for SpMV, Bolz et al. first introduced the GPU for
SpMV [6]. Bell and Garland implemented several well-
known formats on Nvidia GPUs [1]. These formats include
DIA, ELL, CSR, COO and a new hybrid format HYB,
which combines the advantage of the ELL and COO formats.
Vázquez et al. proposed a derivative format of ELLPACK,
ELL-R [21]. They use an auxiliary array to store the row
lengths. Alexander et al. proposed the Sliced ELL format
(SELL) [12]. They horizontally partition the original matrix
into several slices and different slices use different ELL
padding lengths to reduce the filling zeros. Compared to the

ELL format, the ELL-R and SELL formats have less
padding zeros while the workload may be imbalanced.
Based on the CSR format, Kozaa et al. [10] proposed a
Compressed Multiple-Row Storage Format for SpMV on
GPUs. The advantage of this format is that the adjacent
rows may be processed by the same thread, so the multiplied
vector data could be reused. Sun et al. [17] proposed a
CRSD format for diagonal sparse matrices. Choi et al.
implemented the BCSR and BELL formats on GPUs [7]. A
performance model driven framework is also proposed in [7]
for performance auto-tuning of SpMV on GPUs. Su et al.
[16] proposed the COCKTAIL format, which uses different
formats to represent different partitions of a matrix. There
are some works focusing on compression and reordering
techniques as well [2][14]. The challenge of compression
technique is the complexity of the decompression algorithm.
The problem with the reordering technique is that it changes
the inherent locality of the original matrix. A recent work by
Tang et al. [20] studies bit-representations to compress
index arrays. Similar to our work, a difference function is
applied to index arrays. The difference from our proposed
formats is that a bit packing scheme is then used to encode
the delta values, which makes their decompression scheme
more complicated than ours and also does not exploit the
row stop information, when compressing row index arrays.

Blelloch et al. [4] first introduced the segmented operations
to SpMV on vector multiprocessors. Harris [9] implemented
the segmented scan based SpMV in the library CUDPP.
Because they used a tree based scan algorithm, which has
been shown to be inefficient [24], the performance is limited.
Baskaran et al. [15] implemented a more efficient
segmented scan based SpMV using the matrix based scan
[8]. However, their scan-based implementation also is
outperformed by their alternative implementations [15]. Bell
and Garland implemented their COO format use the
segmented reduction (scan) algorithm. However, due to the
disadvantage of the COO format and the two-kernel
implementation, the performance is not highly competitive.

Figure 15. Performance comparison between our proposed scheme (labeled 'yaSpMV') and CUSPARSEV 5.0, CUSP,

clSpMV-best single, and clSpMV-COCKTAIL on GTX480 GPUs.

117

Different from the previous works, we design the new
BCCOO/BCCOO+ format to drastically reduce the
bandwidth requirement. We also propose an efficient
matrix-based segmented sum/scan for SpMV to maximize
the benefit from our new BCCOO/BCCOO+ format on
GPUs. Our algorithm only needs one kernel and explores a
number of optimization techniques.

8. Conclusions
In this paper, we present yet another framework for SpMV
on GPUs. First, we propose a new format, called blocked
compressed common coordinate (BCCOO), for sparse
matrices. The key idea is to extend the COO format with
blocking and to use a bit flag array to replace the row index
array. We also propose to vertically partition a sparse matrix
before using the BCCOO format so as to improve the
locality for accesses to the multiplied vector. Second, we
revisit segmented scans for SpMV. We propose a highly
efficient matrix-based segmented sum/scan for SpMV. Our
matrix-based segmented sum/scan is closely coupled to our
BCCOO/BCCOO+ format to reduce the memory bandwidth
and achieve load balance. Our performance results from a
set of 20 sparse matrices show that our proposed framework
significantly advances the state-of-art of the highly
important SpMV algorithm. It outperforms the vendor tuned
CUSPARSE by up to 150% and 42% on average on
GTX480 GPUs, by up to 229% and 65% on average on
GTX680 GPUs. Compared to the clSpMV, our proposed
scheme achieves a performance gain of up to 162% and 40%
on average on GTX480 GPUs, up to 195% and 70% on
average on GTX680 GPUs.

Acknowledgments
We would like to thank the anonymous reviewers for their
insightful comments. This paper is supported in part by the
National High-tech R&D Program of China
(No.2012AA010902), an NSF project CCF-1216569, an
NSF CAREER award CCF-0968667, and NSFC (No.
61272136, No. 61221062, No. 61100072).

References
[1] N. Bell and M. Garland. Implementing Sparse Matrix-Vector

Multiplication on Throughput-Oriented Processors. SC, 2009.

[2] A. Buluç, S. Williams, L. Oliker and J. Demmel. Reduced-
Bandwidth Multithreaded Algorithms for Sparse Matrix-
Vector Multiplication. IPDPS, 2011.

[3] A. Bulu¸c, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E.
Leiserson Parallel sparse matrix-vector and matrix-transpose-
vector multiplication using compressed sparse blocks. SPAA,
2009.

[4] G. E. Blelloch, M. A. Heroux and M. Zagha. Segmented
Operations for Sparse Matrix Computation on Vector
Multiprocessors. Tech. Rep. CMU-CS-93-173, School of
Computer Science, Carnegie Mellon University, Aug 1993.

[5] G. E. Blelloch. Scans as Primitive Parallel Operations. IEEE
Transactions on Computers, 1989.

[6] J. Bolz, I. Farmer, E. Grinspun and P. Schr¨oder. Sparse
Matrix Solvers on the GPU: Conjugate Gradients and
Multigrid. ACM Transactions on Graphics (TOG), July 2003.

[7] J. W. Choi, A. Singh and R. W. Vuduc. Model-driven
Autotuning of Sparse Matrix-Vector Multiply on GPUs.
PPoPP, 2010.

[8] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd and J.
Manferdelli. Fast Scan Algorithms on Graphics Processors.
ICS, 2008.

[9] M. Harris, S. Sengupta, and J. D. Owens. CUDPP:CUDA
Data Parallel Primitives Library.
http://gpgpu.org/developer/cudpp

[10] Z. Koza, M. Matyka, S. Szkoda and L. Miroslaw. Compressed
Multiple-Row Storage Format. CoRR 2008.

[11] K. Kourtis, V. Karakasis, G. Goumas and N. Koziris. CSX:
An Extended Compression Format for SpMV on Shared
Memory Systems. PPoPP, 2011.

[12] A. Monakov, A. Lokhmotov and A. Avetisyan.
Automatically Tuning Sparse Matrix-Vector Multiplication
for GPU Architectures. HiPEAC, 2010.

[13] Nvidia. CUSPARSE. https://developer.nvidia.com/ cusparse.
http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html

[14] J. C. Pichel, F. F. Rivera, M. Fernández and A. Rodríguez.
Optimization of sparse matrix–vector multiplication using
reordering techniques on GPUs. Microprocessors and
Microsystems, 36(2), 65–77, Mar 2012.

[15] M. M. Baskaran and R. Bordawekar. Optimizing Sparse
Matrix-Vector Multiplication on GPUs using Compile-time
and Run-time Strategies. Technical Report RC24704
(W0812-047), IBM, Dec 2008.

[16] B.-Y. Su and K. Keutzer. clSpMV: A Cross-Platform
OpenCL SpMV Framework on GPUs. ICS, 2012.

[17] X. Sun, Y. Zhang, T. Wang, X. Zhang, L. Yuan and L. Rao.
Optimizing SpMV for Diagonal Sparse Matrices on GPU.
ICPP, 2011.

[18] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan
primitives for GPU computing. In Graphics Hardware 2007.

[19] The Khronos OpenCL Working Group OpenCL. The Open
Standard for Parallel Programming of Heterogeneous Systems.
http://www.khronos.org/opencl/

[20] W. Tang et al., Accelerating sparse matrix-vector
multiplication on GPUs using bit-representation-optimized
schemes, SC 2013.

[21] F. Vázquez, J. J. Fernández and E. M. Garzón.	 A new
approach for sparse matrix vector product on NVIDIA GPUs.
Concurrency Computat.: Pract. Exper. Sep 2010.

[22] R. Vuduc, J. W. Demmel and K. A. Yelick. OSKI: A library
of automatically tuned sparse matrix kernels. SciDAC 2005.

[23] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. A. Yelick and J.
W. Demmel. Optimization of Sparse Matrix-Vector
Multiplication on Emerging Multicore Platforms. SC, 2007.

[24] S. Yan, G. Long and Y. Zhang. StreamScan: Fast Scan
Algorithms for GPUs without Global Barrier , PPoPP, 2013.

118

