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yaSpMV: Yet Another SpMV Framework on GPUs  

 

Abstract 
SpMV is a key linear algebra algorithm and has been widely 
used in many important application domains. As a result, 
numerous attempts have been made to optimize SpMV on 
GPUs to leverage their massive computational throughput. 
Although the previous work has shown impressive progress, 
load imbalance and high memory bandwidth remain the 
critical performance bottlenecks for SpMV. In this paper, 
we present our novel solutions to these problems. First, we 
devise a new SpMV format, called blocked compressed 
common coordinate (BCCOO), which uses bit flags to store 
the row indices in a blocked common coordinate (COO) 
format so as to alleviate the bandwidth problem. We further 
improve this format by partitioning the matrix into vertical 
slices to enhance the cache hit rates when accessing the 
vector to be multiplied. Second, we revisit the segmented 
scan approach for SpMV to address the load imbalance 
problem. We propose a highly efficient matrix-based 
segmented sum/scan for SpMV and further improve it by 
eliminating global synchronization. Then, we introduce an 
auto-tuning framework to choose optimization parameters 
based on the characteristics of input sparse matrices and 
target hardware platforms. Our experimental results on 
GTX680 GPUs and GTX480 GPUs show that our proposed 
framework achieves significant performance improvement 
over the vendor tuned CUSPARSE V5.0 (up to 229% and 
65% on average on GTX680 GPUs, up to 150% and 42% on 
average on GTX480 GPUs) and some most recently 
proposed schemes (e.g., up to 195% and 70% on average 
over clSpMV on GTX680 GPUs, up to 162% and 40% on 
average over clSpMV on GTX480 GPUs).  

Categories and Subject Descriptors D.1.3 [Concurrent 
Programming]: Parallel programming 

Keywords SpMV, Segmented Scan, BCCOO, OpenCL, 
CUDA, GPU, Parallel algorithms 
 

1. Introduction 
Sparse matrix vector multiplication (SpMV) is a key linear 
algebra algorithm and is heavily used in many important 
application domains. As state-of-art many-core GPUs 
feature remarkably high computational throughput and 
memory access bandwidth, there has been strong interest in 
GPU-accelerated SpMV [1][6][7][12][14][15][16][17][21].  

Although the sequential implementation of SpMV is fairly 
straightforward, its parallel implementation is challenging 
for two main reasons. First, the row-based parallelization, 
i.e., assigning one thread to compute the dot-product 
between one row of the matrix and the multiplied vector, 
although making logical sense, suffers from the load 
imbalance problem as non-zeros in a matrix may not be 
evenly distributed across different rows. Such a load 
imbalance problem is more severe in GPU architectures 
since the threads in a warp operate in the single-instruction 
multiple-data (SIMD) manner. Load imbalance among 
threads in a warp will result in control divergence and the 
execution time of all the threads in a warp will be forced to 
be equal to the longest running one. Second, SpMV puts 
high pressure on the memory hierarchy. The matrix data 
have low reuse as each non-zero element is only used once 
for computing the corresponding dot product. On the other 
hand, although the multiplied vector is reused as each non-
empty row of the matrix will use it to compute a dot-
product, the access pattern is irregular due to irregular 
locations of non-zeros in different rows. Such irregular 
accesses do not meet the GPU memory coalescing 
requirement, which means that different threads in a warp 
need to access the data in the same block, to achieve high 
memory access bandwidth. 

Many approaches have been proposed to optimizing SpMV 
on multi-core CPUs and many-core GPUs. To reduce the 
memory footprint of sparse matrices, different formats have 
been proposed to leverage different characteristics of sparse 
matrices. It has been shown in [16] that among the existing 
formats, no single format can achieve the best performance 
and a cocktail format is proposed to combine the strengths 
of existing formats by partitioning a sparse matrix and 
applying different formats to different partitions. Given the 
different features of target hardware platforms and different 
characteristics of sparse matrices, offline auto-tuning or 
benchmarking is commonly used to improve the 
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performance.  Although previous work has achieved 
impressive performance improvement for SpMV, the load 
imbalance problem and the high memory bandwidth 
requirement remain the fundamental performance 
bottlenecks for SpMV. In this paper, we propose our novel 
solution to SpMV. 

We first propose a new format for sparse matrices to 
alleviate the high memory bandwidth requirement of SpMV. 
Our new format is referred to as blocked compressed 
common coordinate (BCCOO) as it is built upon the 
common coordinate (COO) format. The BCCOO format 
extends the COO format with blocking to reduce the size for 
both row and column index arrays. Then, it uses bit-flags to 
drastically reduce the size of the row index array. To 
improve the cache hit rate for accessing the multiplied 
vector, we partition a sparse matrix into vertical slices and 
align the slices in a top-down manner before applying the 
BCCOO format. Such vertical partition-based BCCOO is 
referred to as the BCCOO+ format. 

To address the load imbalance problem, we revisit the 
matrix-based segmented scan and design a new highly 
optimized segmented scan/sum kernel for SpMV. In our 
approach, each thread processes the same number of 
consecutive non-zero blocks and it performs sequential 
segmented scans/sums to generate partial sum results. This 
way, it avoids the workload imbalance problem and reduces 
the memory requirement on the row information associated 
with each thread. Then, each workgroup/thread block will 
run the parallel segmented scan on the last partial sum 
results computed from each of its threads. When the final 
dot-product results require accumulating partial sums across 
multiple workgroups/thread blocks, adjacent 
synchronization [24] is used to eliminate the overhead of 
global synchronization.  

To further improve the performance of our SpMV kernel, 
we introduce an auto-tuning framework to explore 
optimization parameters for different sparse matrices and 
different platforms. Such optimization parameters include 
whether to use texture cache for multiplied vector, whether 
to perform transpose online or offline, the suitable block 
sizes for our proposed BCCOO/BCCOO+ format, the 
number of non-zero blocks to be processed by each thread, 
the number of threads in a workgroup, the size of shared 
memory (also called local memory in OpenCL [19]) or 
registers to be used for intermediate partial sums, etc. As 
these parameters form a large search space, we introduce a 
set of accelerations to reduce the auto-tuning time to a few 
seconds. 

Our experiments on a set of 20 sparse matrices show that 
our proposed single format fits nearly all of the sparse 
matrices under our study. Compared to the vendor-tuned 
library CUSPARSE V5.0, our proposed scheme achieves 
performance improvement by up to 150% and 42% on 
average on GTX480 GPUs, up to 229% and 65% on average 

on GTX680 GPUs. Compared to the clSpMV [16], which 
combines advantages of many existing formats, our 
proposed scheme achieves a performance gain of up to 162% 
and 40% on average on GTX480 GPUs, up to 195% and 70% 
on average on GTX680 GPUs. 

The remainder of this paper is organized as follows. Section 
2 presents our proposed BCCOO/BCCOO+ format for 
sparse matrices. Section 3 details our proposed customized 
matrix-based segmented scan/sum approach for SpMV. 
Section 4 summarizes our auto-tuning framework. The 
experimental methodology and the results are discussed in 
Sections 5 and 6, respectively. Section 7 addresses the 
related work. Section 8 concludes the paper. 

2. The Block-based Compressed Common 
Coordinate (BCCOO) Format 
Our proposed block-based compressed common coordinate 
format builds upon the common coordinate (COO) format. 
In this section, we first present the COO format as the 
background and then introduce our BCCOO format and its 
extension BCCOO+ format. For illustration, we use the 
matrix in Eq. 1 as a running example. 

 
2.1 COO Format 
The COO format is a widely used format for sparse matrices. 
It has explicit storage for the column and row indices for all 
non-zeros in a sparse matrix. For example, the matrix in 
Eq.1 can be represented with a row index array, a column 
index array, and a data value array, as shown in Figure 1. 

 
Figure 1. The COO format of matrix A.  

The parallelization strategy suitable with COO, as shown in 
previous work [1], is segmented scan/reduction. As 
highlighted in [1][16], the advantage of the COO format is 
that it does not suffer from the load imbalance problem and 
can achieve consistent performance over different types of 
sparse matrices. However, the key problem of the COO 
format is that it needs to explicitly store both the row index 
and the column index for every non-zero data element. 
Therefore, it has the worst memory footprint [16]. 

2.2 BCCOO Format 
Our proposed BCCOO format extends the COO format in 
two ways. First, we incorporate the block-based format to 
the COO format. In block-based formats such as blocked 
ELLPACK and blocked CSR [7], a non-zero block is stored 
consecutively. This way, one block of data values will share 
the same row index and the same column index. Therefore, 

A ൌ ൦

0 0 ܽ 0 0 0 ܾ ܿ
0 0 ݀ ݁ 0 0 ݂ 0
0 0 0 0 ݃ ݄ ݅ ݆
݇ ݈ 0 0 ݉ ݊ ݋ ݌

൪            Eq. 1 

Row_index ൌ ሾ0 0 0		1		1		1		2		2		2		2 3 3 3 3 3 3ሿ 

Col_index ൌ ሾ2 6 7		2		3		6		4		5		6		7 0 1 4 5 6 7ሿ 

Value ൌ ሾa b c		d		e		f			g		h			i			j	 k l m n o pሿ
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the storage overhead of the row index array and the column 
index array can be significantly reduced. For matrix A in Eq. 
1, if a block size of 2x2 is used, the blocked COO (BCOO) 
format has the index arrays and the data value array shown 
in Figure 2. 

 
Figure 2. The blocked COO format of matrix A with the block 

size of 2x2. 

From Figure 2, we can see that there are 5 non-zero blocks. 
Both the row index array and the column index array have 
been reduced significantly. The first non-zero 2x2 block is 

ቀܽ 0
݀ ݁

ቁ and its block-based row index and column index are 

0 and 1, respectively. The next non-zero 2x2 block is 

൬
ܾ ܿ
݂ 0൰ and its blocked-based row index and column index 

are 0 and 3, respectively. Note that in Figure 2, we use two 
data value arrays rather than a single array in Figure 1. The 
reason is that for a block size with the height larger than 1, 
we put different rows in different data value arrays such that 
both the row index and column index can be used directly to 
index the data in each of the value arrays. Such data 
arrangement is also helpful for contiguous memory accesses. 
The overhead of the BCOO format, which is shared among 
all block-based formats, is the zeros in the data value array 
when a non-zero block contains zeros. 

 
Figure 3. The BCCOO format of matrix A with the block size 

of 2x2. 

Our key extension to the COO format is to use a bit flag 
array to compress the row index array in a lossless manner. 
The bit flag array can be viewed simply as the result of a 
difference function being applied to the row index array. For 
a difference value larger than 1, we replace it with multiple 
1s. Then, we flip 1s and 0s such that a bit value of ‘0’ in the 
bit flag array represents a row stop, i.e., the corresponding 
value is the last non-zero in a row. A bit value of ‘1’ 
represents that it is not the last non-zero in a row. The 
reason for such representation is that when we compute the 
partial sums for dot-product result, using the value ‘0’ 
eliminates the condition check on the next non-zero for the 
end of a row (see Section 3.2). As our bit flag array provides 
lossless compression on the row index array, the row index 
information can be reconstructed from the bit flag array by 
accumulating the number of row stops. We refer to this 
format as blocked compressed COO (BCCOO). For matrix 

A in Eq. 1, the BCCOO format is shown in Figure 3 with 
the block size of 2x2. 

Compared to the BCOO format shown in Figure 2, the 
column index array and the data value arrays remain the 
same. The row index array becomes a bit vector of 5 bits. 
Assuming that integers are used for row indices, a 
compression ratio of 32 is achieved for the row index array. 

In our implementation, in order to remove the control flow 
to check the end of the bit flag array, we pad it with bit ‘1’ 
such that the length of the bit flag array is a multiple of the 
working set (i.e., number of non-zero blocks to be processed) 
of a workgroup.  

Similar to row-index arrays, we can also try to reduce data 
transmission required for column index arrays using  
difference functions. In our approach, we first apply a 
segmented difference function on a column index array with 
each segment being the working set of each thread. This 
way, there is no inter-thread dependency when 
reconstructing the column indices. The resulting difference 
array is stored using the short data type instead of the 
regular integer type. If a difference value is beyond the 
range of a signed short, we replace it with a fixed value -1, 
which means that the original column index array needs to 
be accessed for this particular index. 

 
(a) 

 
(b) 

Figure 4. The BCCOO+ format of matrix A in Eq. 1. (a) The 
vertically sliced and rearranged matrix of matrix A. (b) The bit 
flag array, the column index array, and the data value arrays. 

2.3 BCCOO+ Format 
We also propose an extension to our BCCOO format to 
improve the locality of the accesses to the multiplied vector, 
referred to as the BCCOO+ format. In this format, we first 
partition a sparse matrix into vertical slices and then align 
the slices in a top-down manner. Then, we apply the 
BCCOO format on the vertically sliced and rearranged 
matrix with an exception on column indices. The column 
index array is generated based on the block coordinates in 
the original matrix rather than the transformed matrix as we 
need original column indices to locate the corresponding 
elements in the multiplied vector for dot-product operations. 

Row_index ൌ ሾ0		0		1		1		1ሿ 

Col_index ൌ ሾ1		3		0		2		3ሿ 

Value ൌ ൬
ሾܽ		0		ܾ		ܿ		0		0		݃		݄			݅		 	݆ሿ
ሾ݀		݁		݂		0		݇		݈		݉		݊		݋	 ሿ݌

൰ 

Bit	Flag ൌ ሾ1		0		1		1		0ሿ 

Col_index ൌ ሾ1		3		0		2		3ሿ 

Value ൌ ൬
ሾܽ		0		ܾ		ܿ		0		0	݃			݄			݅		 ݆ሿ
ሾ݀		݁		݂		0		݇		݈		݉		݊		݋		݌ሿ

൰ 

B ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 ܽ 0
0 0 ݀ ݁
0 0 0 0
݇ ݈ 0 0
0 0 ܾ ܿ
0 0 ݂ 0
݃ ݄ ݅ ݆
݉ ݊ ݋ ے݌

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Bit Flag ൌ ሾ0 0 0 1 0ሿ 

Value ൌ ൬
ሾܽ 0 0 0 ܾ ܿ ݃ 	݄			݅			݆ሿ
ሾ݀ ݁ ݇ ݈ ݂ 0 ݉ ሿ݌		݋		݊	

൰ 

Col_index ൌ ሾ1 0 3 2 3ሿ    (uncompressed) 
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For matrix A in Eq. 1, the vertically sliced and rearranged 
matrix becomes matrix B in Figure 4a if the number of slice 
is 2 and the slice width is 4. The BCCOO+ format of A is 
shown in Figure 4b when the block size 2x2 is used. 
As shown in Figure 4, the bit flag array encodes that there is 
only one non-zero block in row 0, row 1, and row 2. Row 3, 
in contrast, contains 2 non-zero blocks. The column indices 
of these blocks, however, are determined from matrix A 

rather than matrix B. Taking the 2x2 block ቀ݃ ݄
݉ ݊

ቁ as an 

example, it resides at column 2 in matrix A, which is why 
its column index value is 2 as shown in Figure 4b.  

The benefit of BCCOO+ format can be illustrated with 
matrix-vector multiplication between matrix A and vector y, 
i.e., A*ݕԦ. Different rows in the same vertical slice, e.g., slice 
0, will all use y[0]~y[3]. Similarly, all the rows in slice 1 
will use y[4]~y[7] to compute the dot-product. As the block 

ቀ݃ ݄
݉ ݊

ቁ is in slice 1, it needs to use y[4]~y[7], with the 

block size of 2x2, its column index of 2 provides the 
necessary information for indexing y[4] and y[5] from the 
vector ݕԦ. 

 
Figure 5. Matrix-vector multiplication as a sum of the products 
between its vertical slices and the corresponding vector 
segments. 

Since the BCCOO+ format breaks the original matrix into 
slices, after performing the matrix-vector multiplication on 
each slice, the intermediate results need to be combined to 
generate the final results. Using our running example of 
matrix A in Eq. 1, the derivation of A*ݕԦ is shown in Figure 
5. Therefore, when using the BCCOO+ format, it is 
necessary to use a temporary buffer to store the intermediate 
results and to invoke an additional kernel to combine them. 
Depending on the number of slices, the size of the 
temporary buffer can be large, thereby hurting the 
performance. As a result, the BCCOO+ format is not always 
preferred over the BCCOO format and we resort to auto-
tuning to determine either the BCCOO or BCCOO+ format 
should be used.  

2.4 Auxiliary Information for SpMV 
To facilitate the computation of SpMV, the following 
information is computed and stored along with the 
BCCOO/BCCOO+ format. First, based on the number of 
non-zeros that each thread will process, we compute the 
location of the first result generated by each thread, i.e., the 
row index that the result belongs to. Using matrix C in Eq. 2 

as an example, in which each element is a block of data. To 
simplify the discussion, we assume the block size as nx1. As 
discussed in Section 2.2, for a block size with the height 
larger than 1, each row will be stored in a separate value 
array. The BCCOO format of matrix C is shown in Figure 
6a. As there are 16 non-zero data blocks, assuming each 
thread will process 4 non-zero blocks, we will compute the 
row index that the first result generated by each thread 
belongs to. Such information can be computed with a scan 
operation on the bitwise inverse of the bit flag array in the 
BCCOO format. In this example, thread 0 processes the first 
4 non-zero data blocks A’, B’, C’, and D’ and its first 
computation result, i.e., A’*y’, is part of the final result for 
the dot-product between row 0 and the multiplied vector. So, 
the result entry is set to 0. Similarly, thread 1 processes the 
next four non-zero blocks E’, F’, G’, and H’. As block E’ 
still belongs to row 0, the entry for the first result of thread 1 
is set as 0.   

 

 
(a) 

 
(b) 

Figure 6. (a) The BCCOO format of Matrix C in Eq.2. (b) The 
example of compute the location of the first result generated by 
each thread, assuming that there are four threads and each 
thread processes four non-zero blocks. 

Second, we perform a quick check to see whether we can 
skip the parallel segmented scan operation at the workgroup 
level. It is the case when each thread in a workgroup 
encounters a row stop, which results in the segment size 
being 1 for the parallel segmented scan. 

3. An Efficient Matrix-based Segmented Sum/Scan 
for SpMV 
With a sparse matrix stored in our BCCOO/BCCOO+ 
format, SpMV can be implemented in three logical steps: (1) 
read the data value arrays and multiply them with the 
corresponding vector values indexed by the Col_index array; 
(2) perform a segmented scan using the bit flag array from 
our BCCOO/BCCOO+ format; (3) write back the results to 
global memory. In our proposed scheme, all these three 
steps are implemented in a single kernel so as to minimize 
the kernel invocation overhead. 

ܣ ∗ Ԧݕ ൌ ቎

0 0
0 0

ܽ 0
݀ ݁

0 0
݇ ݈

0 0
0 0

቏ ∗

ۏ
ێ
ێ
ۍ
ሾ0ሿݕ
ሾ1ሿݕ
ሾ2ሿݕ
ےሾ3ሿݕ

ۑ
ۑ
ې
൅ 

										൦

0 0
0 0

ܾ ܿ
݂ 0

݃ ݄
݉ ݊

݅ ݆
݋ ݌

൪ ∗

ۏ
ێ
ێ
ۍ
ሾ4ሿݕ
ሾ5ሿݕ
ሾ6ሿݕ
ےሾ7ሿݕ

ۑ
ۑ
ې
 

C ൌ ൦

′ܣ 0 ′ܤ 0 ′ܥ 0 ′ܦ ′ܧ
0 0 0 ′ܨ 0 0 ′ܩ 0
0 ′ܪ 0 ′ܫ 0 ′ܬ 0 0
0 ′ܭ ′ܮ ′ܯ 0 ܰ′ ܱ′ ܲ′

൪         Eq.2 

Bit Flag ൌ ሾ1 1 1 1 0 1 0 1 1		0		1		1		1		1		1		0ሿ   

Col_index ൌ ሾ0 2 4 6 7 3 6 1		3		5		1		2		3		5		6		7ሿ  (uncompressed) 

Value ൌ
ሾA′ B′ C′ D′ E′ F′ G′ H′	I′	J′	K′	L′M′ N′ O′ P′ሿ

Bit Flag: 1   1   1  1  0  1  0  1   1  0   1  1  1  1  1  0

                                                                 
         Result Entry:   0               0                2              3      
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3.1 Segmented Scans  
The segmented scan primitive scans multiple data segments 
that are stored together. A start flag array is typically used to 
identify the first element of a segment. We show an example 
of the inclusive segmented scan in Figure 7. Its start flag 
array is generated from the bit-flag array of the BCCOO 
format in Figure 6. The output of the inclusive segment scan 
is the ‘Result’ array in Figure 7. Note that for SpMV, the 
complete segmented scan results are not necessary. Instead, 
the last sum of each segment is sufficient, as marked with 
underscores in the ‘Result’ array. In other words, for SpMV, 
the segmented reduction/sum primitive can be used rather 
than the segmented scan primitive. 

 
Figure 7. An inclusive segmented scan with the start flags 

generated from the bit flag array in Figure 6(a). 

 
Figure 8. Even workload distribution: each workgroup/thread 
block works on a workgroup-level tile; each thread works on a 
thread-level tile of non-zero blocks. 

Two main approaches have been proposed to parallelize the 
segmented scan primitive on GPUs. One is a tree-based 
approach [5], which builds a binary tree through different 
processing stages. The tree-based approach suffers from the 
load imbalance problem as different numbers of threads will 
be idle in different processing stages. Furthermore, it 
requires workgroup-level synchronization between stages as 
discussed in [8]. The other is a matrix-based approach, 
which is proposed to improve memory efficiency and 
overcome the load imbalance problem. Our proposed 
BCCOO/BCCOO+ format suits better with the matrix-based 
segmented scan and we further customize it for SpMV.  

3.2 A Customized Matrix-based Segmented Sum/Scan 
for SpMV 
3.2.1 Per-thread and per-workgroup working sets 
In our segmented sum/scan approach for SpMV, the input 
non-zero blocks as well as the corresponding bit-flag array 
and the column index array are divided evenly among 
workgroups. The working set of each workgroup is referred 
to as a workgroup-level tile, which in turn will be divided 
evenly among the threads within the workgroup. The 
working set of a thread is referred to as a thread-level tile, as 
shown in Figure 8. The benefits of using a single thread to 

process multiple consecutive non-zero blocks (e.g., 16) are 
two-folds. First, a single/few load(s) from the bit flag array 
(e.g., loading a single short type of data) will be sufficient to 
provide all the bit flag information. Compared to the 
previous approaches, which load the row index information 
for every non-zero, significant bandwidth will be saved. 
Second, each thread will perform the segmented scan in a 
sequential manner and may use a segmented sum instead of 
a segmented scan, which has fewer intermediate results to 
keep. Also, note that the bit flags in our BCCOO/BCCOO+ 
format are different from the start flags that are used in 
typical segmented scans as shown in Figure 7. Although the 
start flags can be derived from the bit flags, we choose to 
use the bit flags since it is straightforward to tell whether a 
segment ends from the bit flags. If the start flags were used, 
one needs to search for the next start to find the end of the 
current segment. It would be more complex when the non-
zeros in a row span across multiple thread-level or 
workgroup-level tiles. 
Since a thread-level tile may contain row stops, each thread 
will write its last partial sum into a temporary array, called 
‘last_partial_sums’, based on its thread identifier (tid) 
within the workgroup. Then, a parallel scan will be 
performed on this last_partial_sums array. The start flags of 
the last_partial_sums array are generated by each thread as 
well. To handle the case when the non-zeros in a row span 
multiple workgroups/thread blocks, we leverage the recently 
proposed adjacent synchronization [24] to enable inter-
workgroup communication while eliminating global 
synchronization.  
3.2.2 Computing per-thread and per-workgroup partial 
sums 
We design two strategies to compute intra-workgroup 
partial sums from a workgroup-level tile. Either suits for 
different types of sparse matrices. In the first strategy, each 
thread has an array, called ‘intermediate_sums’, to keep all 
the intermediate sums of its thread-level tile. This 
intermediate_sums array can be stored in shared memory, 
registers, or split between shared memory and registers. 
This strategy works well if the lengths of the segments are 
very small, meaning that many rows in a sparse matrix have 
very small numbers of non-zeros. For matrix C in Eq. 2, 
assuming that each thread-level tile contains 4 non-zero 
blocks and there are 4 threads in a workgroup, the 
computation is illustrated in Figure 9. From the figure, we 
can see that each thread performs a sequential segmented 
scan, stores the results in its intermediate_sums array, and 
uses the last partial sum to update the corresponding entry 
of the last_partial_sums array, which locates in shared 
memory and is accessible by all the threads in a workgroup. 
If the last element of a thread-level tile is a row stop, the last 
partial sum of this thread is 0, as shown in thread 3 in Figure 
9. 

To facilitate memory accesses to the data value array, we 
can view it as a 2-dimension array with the width as the 

Input ൌ ሾ3		2		0		2		1		0		4		2		4		3		2		2 0 1 3 1ሿ 

Bit	Flag ൌ ሾ1		1		1		1		0		1		0		1		1		0		1		1 1 1 1 0ሿ 

Start	Flag ൌ ሾ1		0		0		0		0		1		0		1		0		0		1		0		0		0		0		0ሿ 

Result ൌ ሾ3  5  5  7  8  0  4  2  6  9  2  4  4  5  8  9] 

Non-zeros  

...

Workgroup-level tile Workgroup-level tile 

   

... 

Thread-level tile 
Thread-level tile 
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thread-level tile size. Then, with a transpose operation, 
which can be done either on-line or offline, the threads in a 
warp will access the data in a row-by-row manner, thereby 
satisfying the memory coalescing requirement. The same 
also applies to the col_index array. Offline transpose 
removes the need for a share memory buffer which is 
required for transpose. In comparison, with the on-line 
approach, the threads in a warp read one tile at a time in a 
coalesced manner and multiply with the corresponding 
vector elements, then store the results in a shared memory 
buffer still in the row-based manner. Later on, when 
performing the segmented scan, the threads read the buffer 
in a column-based manner. This way, better performance 
may be achieved due to improved locality from accesses to 
the multiplied vector if non-zeros in a row are close to each 
other. 

In our second strategy, we allocate a result cache in shared 
memory to only store the sum of each segment. This 
strategy works better for long segments and also benefits 
from efficient memory writes as we can store the result 
cache to global memory in a coalesced way. With this 
strategy, the offline transpose is used to ensure coalesced 
memory reads from the value array and the col_index array. 
After performing the multiplication with vector elements, 
each thread carries out a segmented sum sequentially on its 
thread-level tile, using the bit flag array as the mask for the 
segments. All the segmented sums will be written to the 

result cache with the help of the first-result-entry 
information generated along with the BCCOO format. The 
process is illustrated in Figure 10 for matrix C in Eq. 2 
assuming that the thread-level tile size is 4 and there are 4 
threads in a workgroup. The first-result-entry information 
shown in Figure 6 is used for updating the result cache. For 
example, as shown in Figure 6 the first-result-entry for 
thread 1 and thread 2 is 0 and 2, respectively. Therefore, 
when thread 1 encounters the first row stop, i.e., the end of 
the first segment, it uses its current sum R4 to update the 
results cache entry 0. When thread 1 encounters the second 
row stop, it uses the sum R5+R6 to update the result cache 
entry 1. In a sense, the first-result-entry information 
computed along the BCCOO format partitions the result 
cache among different threads in a workgroup. In the case 
when the number of row stops in a workgroup-level tile is 
larger than the results cache size, the extra segmented sums 
will be stored in the result array in global memory, which 
will be re-accessed later to generate the final outputs. The 
same as the first strategy, each thread also writes its last 
partial sum to the last_partial_sums array. To generate the 
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Figure 10. Computing segmented scan: strategy 2, which uses 
a per-workgroup result cache to store segmented sums. The 
dashed blocks mean that the intermediate sums are not
stored. 
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Figure 9. Computing segmented scans: strategy 1, which uses
per-thread buffers, i.e., ‘intermediate_sums’ arrays to store
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start flags for the last_partial_sums array, in either strategy, 
each thread performs the simple check on whether its bit 
flags contain a 0. In other words, each thread checks 
whether there is a row stop in its thread-level tile. If so, its 
last partial sum should be a start for a segment in the 
last_partial_sums array. For the example in Figure 9 and 
Figure 10, the start flags are [0, 1, 1, 1] since all threads 
except thread 0 process a tile containing a row stop. After 
all threads in a workgroup update its last partial sum in the 
last_partial_sums array and generate the start flags, which is 
signaled with a workgroup-level synchronization or 
syncthreads(), the threads in the workgroup perform a 
parallel segmented scan using the scan algorithm in [18] and 
the results are also stored in the same last_partial_sums 
array. In our example in Figure 9 or Figure 10, this parallel 
scan can be skipped as all the segment sizes are 1.  
3.2.3 Combining per-thread and per-workgroup partial 
sums  
Next, we need to combine the results in the per-thread 
intermediate_sums arrays, the scanned result for the per-
workgroup last_partial_sums array, and also the results from 
other workgroups to generate the final output of SpMV.  

For our first strategy, each thread will go through its 
intermediate_sums array. For each element, it checks 
whether the corresponding bit flag is a row stop. If not, it 
means the corresponding result has already been 
incorporated into the sum of the segment. For a row stop, a 
thread further checks whether it is the first stop in its thread-
level tile. If not, it means the thread-level tile contains the 

complete segment and the corresponding result is the final 
result. In the example shown in Figure 9, for thread 1, the 
entry in its intermediate_sums array containing (R5+R6) is 
such a case. If a row stop is the first in a thread-level tile 
(e.g., the entry containing R4 for thread 1 in Figure 9), there 
are two possibilities. One is that the segment spans multiple 
threads within a workgroup. Then, the last_partial_sums 
array of the workgroup will be used to retrieve the last 
partial sum of the previous threads. For example, the entry 
containing (R0+R1+R2+R3) in the last_partial_sums array 
will be added to R4 of thread 1 in Figure 9. As the 
last_partial_sums array contains the scanned result of the 
original last partial sums of each thread, the entry 
last_partial_sums[i-1] (i the current thread id) already 
accumulates the partial sums of multiple threads for 
segments spanning multiple threads. The other possibility is 
that the segment spans multiple threads across workgroups. 
In this case, we also need to accumulate previous 
workgroups’ last partial sum results. We resort to adjacent 

intermediate_sums[k] 

Is a row stop? 

Is the first row stop  
in the thread? 

Is the first row stop 
 in the workgroup? 

R =intermediate_sums[k] + 
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Figure 11. A flow chart of combining the partial sums from 
threads and workgroups: strategy 1.  
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synchronization to avoid global synchronization as 
discussed in Section 3.2.4. In Figure 11, a flow chart of the 
kernel program is presented to illustrate the process 
discussed above. 
For our second strategy, there are no per-thread intermediate 
sum arrays. Instead, there is a per-workgroup result cache 
and therefore threads in a workgroup rely on the first result 
location, which is produced along the BCCOO/BCCOO+ 
format, to process the result cache and the flow chart of the 
kernel code is presented in Figure 12. Each thread except 
thread 0 first checks whether there are row stops in its 
thread-level tile. If so, it means that the thread has generated 
some partial sums corresponding to the row stops. Here, 
each thread only needs to process the partial sum at the first 
row stop since it may be a part of a long segment spanning 
multiple thread-level tiles (e.g., R4 in the result cache in 
Figure 10). For subsequent row stops in the thread, the 
partial sums in the result cache are already complete 
segment sums (e.g., R5+R6 in the result cache in Figure 10). 
Then, each thread except thread 0 checks whether its first 
partial sum is written in the result cache or in global 
memory depending on its first result position and the result 
cache size. As the last partial sum corresponding to the 
previous thread in the last_partial_sums array already 
accumulates the partial sums of multiple threads for 
segments spanning multiple threads, it is added to the result 
cache entry (e.g., R0+R1+R2+R3 from the last_partial_sums 
array is added to R4 in the result cache in Figure 10). For 
thread 0, it updates result cache entry 0 with the last partial 
sum from the previous workgroup. To avoid data race at 
result cache entry 0, a workgroup-level synchronization is 
added after thread 0 processes the result cache entry 0. After 
the result cache is processed, it is written to global memory 
in a memory coalesced way by all threads together in a 
workgroup.  
3.2.4 Accumulating partial sums across workgroups 
As discussed in Section 3.2.3, for segments spanning 
multiple workgroups, the last workgroup, which contains 
the row stop, needs to accumulate previous workgroups 
partial sums. Here, we make an implicit assumption that the 
workgroup-level tiles are distributed to workgroups in-order. 
In other words, workgroup 0 processes the first tile; 
workgroup 1 processes the second tile; etc. Current GPUs 
dispatch workgroups in-order. Therefore, we can directly 
use the workgroup ids in the kernel. If a GPU dispatches 
workgroups out-of-order, workgroups can get such ‘logic’ 
workgroup ids from global memory using atomic fetch-and-
add operations. This approach incurs small performance 
overhead, less than 2% in our experiments. To accumulate 
partial sums across workgroups, we use a global memory 
array ‘Grp_sum’. The array is initialized to a special value 
(e.g., maximal floating-point number). This array is updated 
in a sequential manner. Workgroup 0 updates the first entry 
‘Grp_sum[0]’ with its last partial sum. For a subsequent 
workgroup with id X, if it does not contain a row stop, it 
waits for the entry ‘Grp_sum[X-1]’ to be changed from the 

initial value, i.e., updated by workgroup (X-1), and then 
updates ‘Grp_sum[X]’ with the sum of its last partial sum 
and ‘Grp_sum[X-1]’. If a workgroup contains a row stop, it 
breaks such chained updates and directly updates 
‘Grp_sum[X]’ with its last partial sum. This approach is 
called adjacent synchronization in [24]. 

4. Auto-Tuning Framework 
As discussed in Sections 2 and 3, we propose a new format 
BCCOO and its variant BCCOO+ for sparse matrices, and 
two new strategies to compute segmented sums/scans for 
SpMV. To find the optimal solution for a sparse matrix, we 
build an auto-tuning framework to select the format, the 
computing strategy, as well as their associated parameters. 
Then, the OpenCL code is generated according to the 
selected parameters from this auto-tuning framework. We 
also use this framework to exploit the texture cache for the 
multiplied vector. Another optimization is that we use the 
‘unsigned short’ data type for the col_index array if the 
width of a sparse matrix is less than 65535. In this case, 
there is no need to further compress the col_index array 
using the approach discussed in Section 2.2. The parameters 
that this framework explores are listed in Table 1. Note that 
when strategy 1 is used to compute the segmented scan, the 
thread-level tile size is the size of the immediate_sums array, 
which is the sum of the parameters, Reg_size and ShM_size.  

Table 1. Tunable parameters of the auto-tuning framework. 
Parameter Name Possible Values 
Matrix format BCCOO, BCCOO+ 
Col_index compress Yes, No 
Block width 1, 2, 4 
Block height 1, 2, 3, 4 
Data type for the bit flag array Unsigned char, unsigned 

short, unsigned int 
Vertical slice number 1, 2, 4, 8, 16, 32 
Transpose Offline, online 
Texture memory for multiplied vector Yes, No 
Workgroup size 64, 128, 256, 512 
Strategy 
1 

Registers for the per-thread 
intermediate sums array 
(Reg_size) 

0, 8, 16, 32 

Shared memory for the per-
thread intermediate sums 
array (ShM_size) 

0, 8, 16, 32 

Strategy 
2 

Thread-level tile size 8,16,24,32,40,64,96,128 
Result cache size (multiple of 
the workgroup size) 

1,2,3,4 

As shown in Table 1, there are many parameters to tune, 
which form a relatively large search space for a sparse 
matrix on a particular hardware platform. In order to 
accelerate auto-tuning, we perform the following 
optimizations. First, we use GPUs to accelerate the 
translation from the COO format to the BCCOO/BCCOO+ 
format. Second, we cache compiled kernels in a hash table 
so that they can reused for difference matrices. Third, we 
prune the search space using the follow heuristics: since the 
memory footprint is highly dependent on block dimensions, 
we only need to select the block dimensions corresponding 
to the 4 smallest memory footprints. Fourth, we further 
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reduce the search space by: always using the texture 
memory for the multiplied vector, always using offline 
transpose, limiting the result cache size to 1 and 2 for 
strategy 2, and setting the shared memory size as 0 for the 
per-thread intermediate sums array for strategy 1. With 
these optimizations, the average auto-tuning time is 12.8 
seconds among the 20 matrices in our study, running on a 
desktop machine with an Intel(R) Core2 Quad CPU Q9650 
@ 3.00GHz and an NVIDIA GTX680 GPU. Compared to 
the optimal results obtained from an exhaustive search of 
the parameters listed in Table 1, our auto-tuning results are 
identical to the optimal ones on GTX 680 GPUs. On 
GTX480 GPUs, however, the optimal configurations show 
10.5% better performance for the matrix Epidemiology, 
which prefers no texture memory usage, and 11.1% better 
performance for the matrix Circuit, which prefers online 
transpose. Furthermore, a finer grain parameter selection 
may further improve performance. For example, a Thread-
level tile size of 40 yields 5% better performance for the 
matrix Dense than our auto-tuning results on GTX480 
GPUs. 

   Table 2. The sparse matrices used in the experiments. 

 
5. Experimental Methodology 
We implemented our proposed scheme in OpenCL[19]. Our 
experiments have been performed on both an Nvidia 
GTX680 GPU and an Nvidia GTX480 GPU.  

We use a total of 20 sparse matrices, 14 of them are from 
[23] and 6 of them are from [16]. Table 2 summarizes the 

information of the sparse matrices, including the size, total 
number of non-zeros, and number of non-zeros per row. 
These matrices have been widely used in previous works 
[1][7][12][16][23]. 

In our experiments, we also use CUSPARSE V5.0 [13], 
CUSP [1], and clSpMV [16] for performance comparisons. 
CUSPARSE supports three formats HYB, BCSR, and CSR. 
As the HYB format is a hybrid format combining the 
advantages of the ELL and COO formats, the row length of 
the ELL part is configurable. We manually searched the row 
length in a wide range and use the best performing one for 
each matrix. For the BCSR format in CUSPARSE, we also 
searched the block size for the best performance. For 
clSpMV, besides the COCKTAIL format, which uses 
different formats for different partitions of a matrix, we 
tested all the single formats and chose the best performing 
single format for each matrix. The same performance testing 
framework is used as in [16]. The code of our proposed 
framework is available at http://code.google.com/p/yaspmv/. 

6. Experimental Results 
In our first experiment, we evaluate the impact of our 
proposed BCCOO/BCCOO+ format on memory bandwidth. 
Since in our BCCOO/BCCOO+ format, all the information, 
including the bit flag array, the col_index array, the data 
value array, as well as the auxiliary information described in 
Section 2.4, is only read once, we assume that it is also the 
case for all the formats in comparison. Therefore, we can 
simply use the sum of the array sizes to show the memory 
footprint of each format. The results are shown in Table 3. 
As our auto-tuning framework selects the BCCOO+ format 
only for the matrix LP, we do not separate the BCCOO and 
the BCCOO+ format. For some sparse matrices, due to the 
high variance in the number of non-zeros in different row, 
the ELL format is not applicable (labeled ‘N/A’ in Table 3).  
Table 3. The memory footprint size (MB) of different formats. 

Name COO ELL Cocktail Best 
Single 

BCCOO 

Dense 48 32 17 17 17 
Protein 52 59 40 34 21 
FEM/Spheres 72 54 52 51 31 
FEM/Cantilever 48 39 25 25 21 
Wind Tunnel 140 314 78 78 65 
FEM/Harbor 28 54 24 24 14 
QCD 23 15 15 15 9 
FEM/Ship 94 115 56 59 34 
Economics 15 73 14 28 8 
Epidemiology 25 17 17 17 14 
FEM/Accelerator 31 79 26 25 17 
Circuit 12 483 9 23 6 
Webbase 37 N/A 29 138 27 
LP 135 1927 91 91 85 
Circuit5M 714 N/A 578 714 516 
eu-2005 231 N/A 248 209 159 
Ga41As41H72 222 1505 139 170 136 
in-2004 203 N/A 209 203 132 
mip1 124 N/A 66 54 51 
Si41Ge41H72 180 983 118 135 105 
Average 122 N/A 93 106 73 

From Table 3, we can see that our proposed 
BCCOO/BCCOO+ format significantly reduces the storage 
size of various sparse matrices. On average, our proposed 

Spyplot Name Size 
Non-zeros 

(NNZ) 
NNZ/ 
Row 

 Dense 2K * 2K 4000000 2000 

 Protein 36K * 36K 4344765 119 

 FEM/Spheres 83K * 83K 6010480 72 

 FEM/Cantilever 62K * 62K 4007383 65 

 Wind Tunnel 218K*218K 11634424 53 

 FEM/Harbor 47K * 47K 2374001 59 

 QCD 49K * 49K 1916928 39 

 FEM/Ship 141K*141K 7813404 28 

 Economics 207K*207K 1273389 6 

 Epidemiology 526K*526K 2100225 4 

 
FEM/Accelerator 121K*121K 2620000 22 

 Circuit 171K*171K 958936 6 

 
Webbase 1M * 1M 3105536 3 

 LP 4K * 1.1M 11279748 2825 

 
Circuit5M 5.56M* 5.56M 59524291 11 

 eu‐2005 863K*863K 19235140 22 

 
Ga41As41H72 268K*268K 18488476 67 

 in‐2004 
1.38M* 
1.38M 

16917053 12 

 mip1 66K * 66K 10352819 152 

 Si41Ge41H72 186K*186K 15011265 81 
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BCCOO/BCCOO+ format reduces the storage size by 40% 
compared to the COO format, 31% compared to the best 
single format among all the 9 formats included in clSpMV, 
and 21% compared to the COCKTAIL format.  

In the second experiment, we compare the performance of 
our proposed scheme to the state-of-art techniques. The 
results of GTX680 are shown in Figure 13 and the results of 
our proposed approach are labeled ‘yaSpMV’ in the figure. 
From the figure, we can see that our proposed approach 
outperforms the existing schemes for all the matrices except 
Dense. The Dense matrix prefers a block size of 2x8 as used 
in the BCSR format from the ‘clSpMV best single’ results. 
However, our auto-tuning framework limits the maximal 
block height is limited to 4, thereby achieving sub-optimal 
performance. Using the harmonic mean (H-mean) as the 
average throughput, our yaSpMV achieves an average 
performance improvement of 65% over CUSPARSE, 70% 
over clSpMV COCKTAIL, 88% over clSpMV best single, 
and 150% over CUSP. The highest performance 
improvement of yaSpMV achieved over clSpMV 
COCKTAIL is on matrix LP (195%). Compared to 
CUSPARSE, the highest performance gain of yaSpMV is 

from the matrix mip1 (229%).  

In the third experiment, we examine the performance 
contributions from different optimizations in our approach, 
including memory footprint reduction, efficient segmented 
sum/scan, adjacent synchronization to remove global 
synchronization, and fine-grain optimizations, which consist 
of (a) the use of the short data type for the col_index array 
and (b) early check to skip the parallel scan on a 
last_partial_sums array if each thread-level tile in a 
workgroup-level tile contains a row stop. The results are 
shown in Figure 14. We start with the COO format with a 
tree-based segment sum (labeled ‘COO’). Then, we replace 
the COO format with our BCCOO/BCCOO+ format 
(labeled ‘BCCOO’). Next, we replace the tree-based 
segmented sum with our proposed efficient matrix-based 
segment sum/scan (labeled ‘Efficient segmented sum/scan’) 
while using another kernel to accumulate partial sums 
across workgroups. We then use adjacent synchronization to 
replace this kernel (labeled ‘adjacent synchronization’) and 
add the fine-grain optimizations (labeled ‘fine-gain 
optimizations’). From the figure, we can see that the main 
performance gains are from our proposed 
BCCOO/BCCOO+ format and our efficient segmented 

Figure 13. Performance comparison between our proposed scheme (labeled 'yaSpMV') and CUSPARSEV 5.0, CUSP, 
clSpMV-best single, and clSpMV-COCKTAIL on GTX680 GPUs. 

Figure 14. Performance Contributions from different optimization techniques (GTX680) 
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sum/scan for SpMV.  

We also evaluate the performance of SpMV on Nvidia 
GTX480 GPUs. The results are shown in Figure 15. Among 
the 20 sparse matrices, our proposed yaSpMV achieve 
significantly higher performance than existing approaches, 
up to 162% better than clSpMV COCKTAIL and up to 150% 
better than CUSPARSE. The only exception is the matrix 
Epidemiology. It has 4 non-zeros on each row and therefore 
is a perfect fit for the ELL format. For this matrix, our 
yaSpMV has a suboptimal performance of 25.5 GFLOPS. 
The best performing approach for this matrix, CUSPARSE, 
has a throughput of 28.5 GFLOPS. On average using the 
harmonic mean, our proposed yaSpMV achieves a 
performance improvement of 40% than clSpMV 
COCKTAIL, 60% over clSpMV best single, 74% over 
CUSP, and 42% over CUSPARSE.  

7. Related Work 
Sparse matrix-vector multiplication (SpMV) is so important 
that there have been numerous works optimizing its 
performance. We only discuss the most relevant ones here. 
Williams et al. present several optimizations for multicore 
platforms [23]. Kourtis et al. [11] proposed an Extended 
Compression Format (CSX) on shared memory systems. 
OSKI [22] is a library collection which provides low-level 
primitives for automatically tuned kernels on sparse 
matrices. Aydın Buluc et al. [3] introduced a compressed 
sparse blocks (CSB). Among the research works leveraging 
GPUs for SpMV, Bolz et al. first introduced the GPU for 
SpMV [6]. Bell and Garland implemented several well-
known formats on Nvidia GPUs [1]. These formats include 
DIA, ELL, CSR, COO and a new hybrid format HYB, 
which combines the advantage of the ELL and COO formats. 
Vázquez et al. proposed a derivative format of ELLPACK, 
ELL-R [21]. They use an auxiliary array to store the row 
lengths. Alexander et al. proposed the Sliced ELL format 
(SELL) [12]. They horizontally partition the original matrix 
into several slices and different slices use different ELL 
padding lengths to reduce the filling zeros. Compared to the 

ELL format, the ELL-R and SELL formats have less 
padding zeros while the workload may be imbalanced. 
Based on the CSR format, Kozaa et al. [10] proposed a 
Compressed Multiple-Row Storage Format for SpMV on 
GPUs. The advantage of this format is that the adjacent 
rows may be processed by the same thread, so the multiplied 
vector data could be reused. Sun et al. [17] proposed a 
CRSD format for diagonal sparse matrices. Choi et al. 
implemented the BCSR and BELL formats on GPUs [7]. A 
performance model driven framework is also proposed in [7] 
for performance auto-tuning of SpMV on GPUs. Su et al. 
[16] proposed the COCKTAIL format, which uses different 
formats to represent different partitions of a matrix. There 
are some works focusing on compression and reordering 
techniques as well [2][14]. The challenge of compression 
technique is the complexity of the decompression algorithm. 
The problem with the reordering technique is that it changes 
the inherent locality of the original matrix. A recent work by 
Tang et al. [20] studies bit-representations to compress 
index arrays. Similar to our work, a difference function is 
applied to index arrays. The difference from our proposed 
formats is that a bit packing scheme is then used to encode 
the delta values, which makes their decompression scheme 
more complicated than ours and also does not exploit the 
row stop information, when compressing row index arrays. 

Blelloch et al. [4] first introduced the segmented operations 
to SpMV on vector multiprocessors. Harris [9] implemented 
the segmented scan based SpMV in the library CUDPP. 
Because they used a tree based scan algorithm, which has 
been shown to be inefficient [24], the performance is limited. 
Baskaran et al. [15] implemented a more efficient 
segmented scan based SpMV using the matrix based scan 
[8]. However, their scan-based implementation also is 
outperformed by their alternative implementations [15]. Bell 
and Garland implemented their COO format use the 
segmented reduction (scan) algorithm. However, due to the 
disadvantage of the COO format and the two-kernel 
implementation, the performance is not highly competitive. 

 
Figure 15. Performance comparison between our proposed scheme (labeled 'yaSpMV') and CUSPARSEV 5.0, CUSP, 

clSpMV-best single, and clSpMV-COCKTAIL on GTX480 GPUs. 
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Different from the previous works, we design the new 
BCCOO/BCCOO+ format to drastically reduce the 
bandwidth requirement. We also propose an efficient 
matrix-based segmented sum/scan for SpMV to maximize 
the benefit from our new BCCOO/BCCOO+ format on 
GPUs. Our algorithm only needs one kernel and explores a 
number of optimization techniques.  

8. Conclusions 
In this paper, we present yet another framework for SpMV 
on GPUs. First, we propose a new format, called blocked 
compressed common coordinate (BCCOO), for sparse 
matrices. The key idea is to extend the COO format with 
blocking and to use a bit flag array to replace the row index 
array. We also propose to vertically partition a sparse matrix 
before using the BCCOO format so as to improve the 
locality for accesses to the multiplied vector. Second, we 
revisit segmented scans for SpMV. We propose a highly 
efficient matrix-based segmented sum/scan for SpMV. Our 
matrix-based segmented sum/scan is closely coupled to our 
BCCOO/BCCOO+ format to reduce the memory bandwidth 
and achieve load balance. Our performance results from a 
set of 20 sparse matrices show that our proposed framework 
significantly advances the state-of-art of the highly 
important SpMV algorithm. It outperforms the vendor tuned 
CUSPARSE by up to 150% and 42% on average on 
GTX480 GPUs, by up to 229% and 65% on average on 
GTX680 GPUs. Compared to the clSpMV, our proposed 
scheme achieves a performance gain of up to 162% and 40% 
on average on GTX480 GPUs, up to 195% and 70% on 
average on GTX680 GPUs. 
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