
Invited Panel

Language Innovations for HPCS

Katherine Yelick, Chair & Moderator
University of California at Berkeley and Lawrence Berkeley National Laboratory

yelick@eecs.berkeley.edu

As part the DARPA-sponsored High Productivity
Computing Systems (HPCS) program, three new languages
are being designed with the goal of improving programmer
productivity at high performance computing. The
languages are targeting very large-scale parallelism and may
take advantage of features of the systems that are also under
design by each of the three companies involved in this
project. Panelists will give an overview of these new
languages and some ideas about how the language features
will be used in parallel applications. The panelists will be:

Brad Chamberlain from Cray, Inc. on the
Chapel Language

Chapel supports a multithreaded parallel programming
model at a high level by supporting abstractions for data
parallelism, task parallelism, and nested parallelism. It
supports optimization for the locality of data and
computation in the program via abstractions for data
distribution and data-driven placement of subcomputations.
It supports code reuse and generality via object-oriented
concepts and generic programming features. While Chapel
borrows concepts from many preceding languages, its
parallel concepts are most closely based on ideas from
High-Performance Fortran (HPF), ZPL, and the Cray
MTA's extensions to Fortran/C.

Vijay Saraswat from IBM on the X10
Language

X10 is intended for high-performance, high-productivity
programming of high-end computer systems with
hierarchical heterogeneous levels of parallelism (e.g.,
cluster, SMP, co-processors, and SMT levels) that exhibit

large nonuniformities in data-access latency and bandwidth.
Compared to Java, X10 removes threads, lock-based
synchronization, built-in primitive classes and arrays, and
adds places (as a locus for activities operating on local
data), user-definable value types, atomic sections,
asynchronous activities and futures, multidimensional arrays
(over regions and distributions) and clocks for repeated
quiescence detection of dynamically varying, data-
dependent sets of activities. X10 is a strongly typed
language. The X10 type system supports generic type-
abstraction (over value and reference types), is place- and
clock-sensitive and guarantees the absence of deadlock (for
programs without conditional atomic sections), even in the
presence of multiple clocks.

David Chase from Sun Microsystems on
the Fortress Language

The FortressTM Programming Language is a general-
purpose, statically checked, programming language
designed for creating and maintaining robust high-
performance software with high programmer productivity.
To allow growth into new and unanticipated uses, Fortress
provides modular and extensible parsing, and provides
interfaces ("traits") for its own implementation in its library
to allow user extension and replacement. To aid program
reuse, Fortress has a component and contract system that
allows separate program components to be independently
developed, deployed, and linked in a modular and robust
fashion. To simplify concurrent programming, Fortress
provides transactional memory. For performance, Fortress
promotes both scale-independent and data-parallel
programming, and relies on just-in-time compilation to
allow specialization and speculative optimizations.

Copyright is held by the author/owner(s).
PPoPP’05, June 15–17, 2005, Chicago, Illinois, USA.
ACM 1-59593-080-9/05/0006.

119

