
X10-FT: Transparent Fault Tolerance for APGAS Language
and Runtime

Chenning Xie† Zhijun Hao ‡ †

Haibo Chen †
† Institute of Parallel and Distributed Systems, School of Software, Shanghai Jiao Tong University

‡ School of Computer Science, Fudan University
xiechenny@sjtu.edu.cn, haozhijun@fudan.edu.cn, haibochen@sjtu.edu.cn

ABSTRACT

The emergence of multicore machines has made exploiting
parallelism a necessity to harness the abundant computing
resources in both a single machine and clusters. This, how-
ever, may hinder programming productivities as threaded
and distributed programming is hard to use correctly and
concurrency/distributed bugs are hard to spot. Asynchronous
partitioned global address space (APGAS) model is a pro-
gramming model aiming at unifying programming for mul-
ticore and clusters at good productivity. Unfortunately,
the current implementation of APGAS programming model
lacks support for fault tolerance and a single transient failure
may render hours to months of computation useless.
In this paper, we make the first attempt to add fault toler-

ance support to APGAS programming models by integrating
advances in fault-tolerant distributed systems to an APGAS
language called X10. We thoroughly analyze the feasibility
of providing fault tolerance for X10. Based on the analysis,
we design and implement a fault-tolerance framework called
X10-FT that leverages advances in distributed systems like
distributed file systems and PAXOS, as well as specific so-
lutions based on the characteristics of the APGAS model to
make checkpoints and consensus, which allows transparently
handling machine failures in different granularities. Using
the features of the APGAS model, we extend the X10 com-
piler to automatically locate execution point to checkpoint
program states without intervention from the user. We also
provide a preliminary evaluation show the cost of providing
fault-tolerance in X10-FT.

Categories and Subject Descriptors

D.1.3 [Software]: Programming Techniques—Concurrent
Programming

General Terms

Languages, Performance, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM ’2013, February 23, 2013, Shenzhen [Guandong, China]
Copyright 2013 ACM 978-1-4503-1908-9/13/02 ...$15.00.

Keywords

X10, Asynchronous Partitioned Global Address Space (AP-
GAS), Fault Tolerance

1. INTRODUCTION
The emergence of multicore machines and multicore-based

clusters has made it vitally important to ease programming
on such platforms. Usually, there are multiple yet likely con-
flicting factors that need to be considered when designing
such a programming model, including performance, expres-
siveness, programmability, and fault tolerance.

An attempt to ease programming on both cluster and mul-
ticore machines is the asynchronous partitioned global ad-
dress space (APGAS) model. APGAS model is an extension
of PGAS. PGAS abstracts a platform as a global yet par-
titioned address space, where each entity (e.g., core or ma-
chine) has its own portion of address space, yet can directly
access other portions of address space using special language
constructs. APGAS extends the PGAS model with concepts
of Place and Async, to overcome two shortcomings: 1) re-
quiring machines with similar hardware configuration and
2) cannot dynamically spawn multiple activities. A recent
embodiment of APGAS model is the X10 language [3]. X10
hides users from underlying machine topology and allows
users to conveniently write multi-threaded programs that
can be executed in cluster environments. X10 uses places
to abstract address spaces and allows users to spawn activ-
ities as the computation units to run on either their home
place or remote places. A number of other programming
models, including MapReduce [6], can be easily expressed in
X10 [17].

Unfortunately, though the APGAS model has the poten-
tial of embracing both performance and productivity, there
is currently no support of fault tolerance in known languages
and runtime based on it. Providing fault tolerance is im-
portant as many current computation tasks usually require
running several days or even months on several thousands
of cores. Not considering fault tolerance may make even a
small failure in a small component render the whole com-
putation task meaningless, requiring a restart of the whole
computation or even recurring restarting the tasks. With
the increasing scale of machines, the potential error rate
grows as well, which makes the problem even more serious.

In this paper, we make the first comprehensive analysis
on how to provide fault tolerance to APGAS-based language
and runtime, by using X10 as an example. The goal is to
see how advances in distributed systems may help to pro-

11

Place 0 Place N

Workers

activity

in queue

Immutable Data

Final variables, value type instances

Async push

a remote activity,

Send a copy of local value

Executing activity

Synchronously

get a remote value

static data/global ref

Get/set global data

static data/global ref
data

Figure 1: X10 Architecture

vide reliable and efficient fault-tolerance computation in the
APGAS model.
As a typical APGAS programming model, X10 has some

features that are related to fault tolerance. First, in each
place, X10 maintains an exception-handling system similar
to Java. Hence, we can mainly focus on fault tolerance of
the remote access model between places. Second, the parti-
tioned global address space model ensures that a global vari-
able should only be accessed through a single agent place,
which is responsible for the global variable during the whole
execution. For other shared variables between tasks of differ-
ent places, the language runtime helps to pass them through
copies. Hence, it is possible to selectively redo activities by
solving limited side effects. Besides, there is a set of explicit
synchronization primitives, such as finish, collecting-finish
and at (P). These primitives help to switch execution flow
between user code and runtime code, so that fault detec-
tion and recovery could be mainly implemented in the X10
runtime with very less modification to user code.
X10-FT leverages the language features of APGAS and

combines them with advances in distributed systems for
fault tolerance. Base on the key primitives such as finish,
we modify the X10 compiler to automatically insert check-
points into user code. X10-FT also implements an analysis
phase in X10 compiler to derive a set of necessary interme-
diate data for recording in each checkpoint. Besides, users
can also declare checkpoints with important intermediate
data by themselves. To durably store checkpoints for fur-
ther recovery, X10-FT seamlessly incorporates a distributed
file system (DFS) to the language runtime of X10. X10-
FT leverages the PAXOS [9] consensus protocol to reliably
detect possible node failures or network partitions. When
possible failures are detected, X10-FT resumes the disrupted
activities by rebuilding the failure nodes (i.e., places), recov-
ering the checkpoints from DFS, and changing the control
flow to the latest valid checkpoint, to continue the execution.
Currently, we have done a preliminary implementation

of X10-FT, including changes to X10 compiler, incorpora-
tion of the Hadoop distributed file systems (HDFS) [13] and
ZooKepper [8] for consensus. This prototype can run simple
programs with fault tolerance support. To evaluate the cost
of providing fault tolerance in X10, we use WordCount [6], a
typical application in distributed systems, and SSCA#1 [2],
the bioinformatics optimal pattern matching that stresses
integer and character operations, which is provided in X10
source code v2.2.1. We measure the performance under
X10-FT. The evaluation result using different configurations

show the overhead is modest.
The rest of this paper is organized as follows. Section 2

introduces some background information related to X10 and
some necessary information regarding fault tolerance. Sec-
tion 3 then presents the design of the X10-FT. Section 4
describes our current implementation status with some nec-
essary supporting techniques to assist fault tolerance. Sec-
tion 5 evaluates the performance overhead of providing fault
tolerance in X10-FT. Finally, we discuss some related work
and then conclude this paper with a brief remark on our
future work.

2. BACKGROUND
In this section, we first present the two key idioms: Place

and Activity in detail. We then illustrate programming us-
ing a APGAS-based language (i.e., X10) through an exam-
ple - WordCount [6] written in X10. We also briefly discuss
fault tolerance techniques in distributed systems and corre-
late them with language features in APGAS.

2.1 Place & Activity

Place3

Place2Place1

Place0

Starting Process

Launcher

Launcher Laucher

Launcher

Runtime

Runtime

Runtime

Runtime

Socket links to

other runtimes

Pipes & socket link

between parent and

child launcher

Figure 2: X10 Place Architecture

The address space model in X10 mainly uses the following
idioms: Place and Activity. Places are independent entities
in the model, and each place is an abstraction composed
of two processes: launcher and runtime. User code will be
wrapped into tasks called Activity, and be distributed to
worker threads of different places partitioned on a cluster.

For a place abstraction, the launcher process is in charge
of managing startup, exit, program output, and establishing
socket links between runtimes. Launchers are built accord-
ing to the structure shown in figure 2. In the full binary tree
structure, parent nodes are responsible for forking launchers
of child nodes. There are a communication socket and two
pipes of standard output and error output between a parent
and its children. The communication socket transfers the
linking initial message to help building links between every
pair of runtime, and control the exit of child nodes. The two
pipes are used to make the output message flow through the
tree structure and finally shown on the stdout. The runtime
process provides the execution environment of the user code,
and is responsible for the variable initialization, configura-
tion broadcast, job tasks scheduling and so on.

Figure 1 illustrates the X10 architecture and the execution
of X10 activities. Each place manages a pool, which contains
some worker threads. According to the APGAS model, ac-
tivities are allowed to be dynamically spawned and get exe-
cuted by a worker thread synchronously or asynchronously.

12

The activity is called a Remote Activity, if it is pushed di-
rectly onto a new place from the other and independently
executed. For instance, the main function of user code will
be pushed onto the main place - place0, and the main func-
tion assigns tasks by pushing a new (remote) activity onto
other places. The activities declared by the remote activi-
ties on the local place can be considered as child activities
of the remote one.
In the APGAS memory model, all shared data is copied

between remote activities from different places as shown in
figure 1, except the GlobalRef data [12], which is in charged
by an owner place. Hence, to access a GlobalRef data, a run-
ning activity should spawn a remote activity on the owner
places. The remote activity helps to read or write the value,
and copy the result back.

2.2 Key Primitives
Here, we use WordCount, a typical data-parallel applica-

tion, as an example to illustrate the primitives in X10. The
following is the pseudo code written in X10:

WordCount Pseudo Code:

1 read(total_input);

2 ###An X10 collecting-finish framework###

3 total_result = finish(Reducer r) {

4 for (p in Places) {

5 place_input = split(total_input);

6 async at(p) {

7 read(place_input);

8 finish for (i in numActivies) {

9 act_input = split(place_input);

10 async {

11 ###count each word per activity###

12 act_result = map(act_input);

13 }

14 }

15 ###merge results between activities###

16 ###asynchronously###

17 place_result = reduce(act_result);

18 ###provide per place reduced result###

19 ###to collecting-finish framework###

20 offer(new ReduceArgs(place_result));

21 }

22 }

23 }###collecting-finish merge the results###

24 print(total_result);

• a) An async {S} is a typical statement in the AP-
GAS model, which launches an activity and executes
statement S without blocking the current activity.

• b) A finish S statement is a barrier that waits for all
asynchronous activities spawned in S to terminate.

• c) An at (p) S statement appoints a specific place
to execute statement S. The PGAS model partitions
the shared address space among distributed machines,
which are abstracted as places in X10. The communi-
cation mechanism between places is message passing.

• d) Collecting-finish , a finish(r) {offer (Interme-
diate result T)} statement is the so-called collecting-
finish framework in X10, which is very similar with

the MapReduce [6] model. This framework is a typi-
cal combination of the statements mentioned above. It
collects the intermediate results in each place, and au-
tomatically reduces them into the final result at Place0
by a user implementation of the Reducible interface.

Figure 3 shows the whole workflow and the internal states
changes when running the WordCount application in the
X10 runtime. First, the Place0 reads the input data, then
splits and dispatches the data to independent places (0...N-
1) to start a remote activity. The remote activity splits
the data in each place and dispatches them to concurrent
activities. The finish barrier ensures the completion of each
map task, then the reduce stage begins, which reads the
intermediate data generated from the map stage and merge
them into the final results. When each place has finished
its reduce stage, the collecting-finish framework will do the
reduce job between places automatically, and will give the
correct WordCount result.

place0

input split

map

map

…map

reduce

reduce

…reduce reduce output

placeN 1

split … …

…

Figure 3: Word Count Execution Flow

2.3 Fault Tolerance in Distributed Systems
A distributed system is complex because of the communi-

cation and the consistency requirements caused by the geo-
graphical distances. Fault tolerance in a distributed system
is even harder, where replication is a general solution to
achieve fault tolerance.

Generally, there are two categories of replication-based
fault tolerance: computation replication and storage replica-
tion. The former may have multiple same computation tasks
executed at the same time, and the manager may choose
a faster one or get a consistent result. It may cause loss
of performance or require many more computing resources.
Storage replication is also popular in many existing systems.

Existing distributed systems mostly have their own recov-
ery model. For instance, the Hadoop MapReduce system
restarts the mapper work or the reducer work if some nodes
have problems. The benefits from its programming model
that divides parallel computing into two explicit stages are
a low coupling degree and no side effect. However, APGAS
model provides a more powerful semantic support for user
to freely construct a program. In spite of the explicit dec-
laration to start new concurrent tasks, the diversity of the
possible parallel structures becomes a challenge when sup-
porting fault tolerance.

3. DESIGN
X10-FT adds fault tolerance to the APGAS model from

several respects. First, it improves fault detection of remote
accesses between places. It incoporates the PAXOS [9] pro-

13

tocol to reach consensus when there is a split-brain condi-
tion due to hardware failures or network partition. Second,
X10-FT uses checkpoints to store computation states into
the distributed file system for further recovery. Besides re-
executing all the unfinished tasks of failed places, X10-FT
also recovers inflight computation by taking checkpoints of
running tasks at proper time. These checkpoints could be
automatically set according to typical X10 structures such
as finish{}, or manually set by user declarations.
X10-FT enables places to communicate with each other

through PAXOS protocol to detect the failures, do the re-
covery when restarting a rebuilt place. It further provides a
library for interfacing with the underlying distributed stor-
age. All these are transparent to users.
At each proper timeline, X10-FT will capture states of

places and the being performed tasks automatically, and
write them into the underlying distributed storage. When
there is a node crash or some other faults that cause the
places on that node aborted, the PAXOS protocol with heart-
beat detection helps to detect this event in time, then the
parent place of the crashed one is notified to rebuild the
crashed place on an available machine. The rebuilt place
will load saved states into memory from the distributed stor-
age, and resume the execution of tasks as captured in the
checkpoint that recorded before the fault happened.

3.1 Failure Model
X10-FT is designed to recover fail-stop failures of any

number of nodes (except the place0 node), without consid-
eration of non-fail-stop errors such as the byzantine faults
or defects in program itself. Further, we mainly focus on
deterministic or idempotent workload, such as the scientific
computation. It means that no matter how many times we
execute the application workload, we will get the same final
result if the input is the same. Most of them have few inter-
actions with the outside world. We believe this assumption
is reasonable, because the APGAS model is mainly used in
the HPC application domain.
In our design, the parent place of a crashed place is re-

sponsible for detecting the failures, rebuilding a new place,
and recovering the states of the crashed one. As in figure
2, the place0 is the root of the tree structure, which is usu-
ally in charge of controlling the other places’ execution. In
our present design, failures of the place0 are unrecoverable.
This can be further fixed using a hot-standby technique that
synchronizes states of place0 in two machines, which will be
our future work. If multiple places crashed simultaneously,
the parent of each one will rebuild them respectively.
We currently do not buffer I/O requests between check-

points. Hence, if one task is rolled back to the checkpoint,
users may observe some output printed again as that have
done before place crashed. However, the output would be
consistent.

3.2 Recording
X10-FT includes the modified X10 compiler and runtime.

The compiler will do liveness analysis and automatically in-
sert the recording code into the user-written X10 programs
at the proper points according to features of the APGAS
model. Meanwhile, the compiler will add labels to branches
(including function calls) of the control flow of the program.
We make different places manage their activities sepa-

rately. For each place, we record every new task (i.e., the

remote activity including its child activities), and save the
global variable states of places after this task completed. In-
side a task, checkpoints are inserted during the sequential
execution of the outermost activity. These checkpoints could
be calculated automatically according to statements async,
finish and collecting-finish, which could create and synchro-
nize the concurrent child activities. During the checkpoint,
all the intermediate data relevant to further computation
will be saved.

Generally, different tasks on the same place should be ex-
ecuted independently. They only affect each other when ac-
cess the same global variable managed. Hence, we maintain
the write versions of a global variable, using sequence num-
bers with their modifiers. Each read access will get a version
for dependency tracking. These versions will be recorded
during the checkpoint, which helps to verify a happen-before
consistency in recovery.

When current execution successfully launches a new task
onto other places, X10-FT will add a record to avoid the new
task to be duplicately declared in case that current execution
rolls back to a previous checkpoint.

3.3 Recovery
Recovery of our X10-FT framework will take place when

a collapse of places occurs, such as a node crash. For user
code or worker thread errors, we leave them to the native
exception system inside each place.

When a place collapses, a change of membership will be
detected through the PAXOS protocol, which helps to get a
new consistency among available places. These places then
suspend communications with the error one. Parent node in
tree structure of figure 2 is responsible to rebuild the crashed
child place. After the failed places are rebuilt successfully,
the new places participate in the PAXOS group and recover
the communication links to others.

The rebuilt place will load unfinished tasks with all of
their checkpoints from the storage. Tasks without a saved
checkpoint are simply re-executed. The others will be re-
covered from a latest valid checkpoint after a consistency
checking. In order to ensure the access consistency of global
variables, for a checkpoint, we should get the version of each
access to a global variable, and check whether the previous
versions before this access have been saved into checkpoints
of their modifiers. If so, it means that we get a consistent
happen-before relationship in these saved checkpoints rel-
evant to same global variables. Then we could recover to
the current valid checkpoint. Otherwise, we will revert to
the previous checkpoint which has less relevant versions of
global variables and check again. In the worst case, it may
be necessary to rerun the whole remote activity.

Fortunately, it rarely appears in APGAS model to deal
with the worst case or to check a complicated version depen-
dencies. Since this kind of version checking only happens if
there are frequent alternate accesses from different concur-
rent tasks to the same global variables and meanwhile these
tasks all have checkpoints inside.

4. PRELIMINARY IMPLEMENTATION
Currently, we have partially implemented X10-FT based

on X10. The current version incorporates Zookeeper [8] to
detect failures, and integrates HDFS [13] under the language
layer of X10 to reliably store the checkpoints for recovery.
We also implement the place rebuilding and modify X10

14

runtime as well as the X10 compiler to support a simple
automatic control flow recording and recovery. For inter-
mediate data recording and recovery, we currently have to
manually modify the application source code written in X10
to interact with HDFS.

4.1 Incorporating HDFS
We have incorporated Hadoop distributed file (HDFS)

into X10, since it is a relatively mature open-source dis-
tributed file system that has been widely used in many fields.
We insert a set of interfaces relating to reading and writing
distributed file system into X10 source code, and use the an-
notation provided in X10 to make X10 functions reference
C++ APIs of HDFS. These functions help to implement
the distributed file system interface, so that HDFS can be
accessed from code of X10 runtime.

4.2 Integrating Zookeeper
Zookeeper is an open source tool that is widely used to

monitor node failures in distributed system. Zookeeper ex-
tends the PAXOS protocol, implements heartbeat detection
and small data sharing through replicas. These features
make it easily adopted to monitor X10 places and share the
place configuration data.
We build directories separately for each running X10 pro-

gram, identified by a starting time. The data structure in the
directory are showed in figure 4. The subdirectory named
“node” is used to store the EPHEMERAL nodes, which are
registered by every existing places. Any disconnection be-
cause of a place failure will result in an automatic removal of
that place’s corresponding node. The content of each node
records the IP address and listening port of the correspond-
ing place. Since each place watches the changes of “node”
directory, the collapse of one place is notified to the others
through regular heartbeat messages, making them choose
appropriate recovery operations. When the rebuilt places
relink to Zookeeper, IP address and listening port are also
updated with registering a new EPHEMERAL node, so that
other places can successfully get this information.

Figure 4: Zookeeper Data Structure

4.3 Place Rebuilding
As mentioned before, a place is an abstraction consist-

ing of two processes: launcher and runtime, and we use
Zookeeper to monitor the normal operations of each place.
Thus, when the collapse of a process or machine causes a
place crash, all the other places will get notifications. Among
them, the parent node of the crashed place will take actions
to rebuild a new Launcher on an available machine; while

the other places suspend all the communication (especially
new tasks assignment) with the crashed one, and wait for a
connection recovery. The rebuilt launcher initiates a connec-
tion to its parent and registers a new EPHEMERAL node.
After that, its previous child nodes will be notified and re-
link to the new launcher. Meanwhile, the rebuilt launcher
will create a new runtime. Then the basic link request be-
comes available, so that other places can rebuild runtime
connections to the new one.

The new runtime should be initialized with a little mod-
ification. Generally, establishing an X10 runtime includes
several stages: initializing basic request handlers, building
links between runtimes, broadcasting configuration, regis-
tering other function handlers and deploying user program
environment according to initial messages sent from main
place. There are barriers to synchronize all places to get
the same stage consistently. However, when rebuilding run-
time, we remove these barriers. The rebuilt one is forced to
send requests to others to get all configurations, and broad-
cast self-configuration at the same time. It will also send
requests to the main place to get initial messages, and then
try to recover memory states and reload uncompleted tasks
saved before. After that, it will send messages to every other
runtime to get the job tasks missed since the crash. To im-
plement this, we need retaining sent messages until target
places complete stages saving data into disk, and the initial
messages should be always retained by the main place. Any
new tasks sent to the rebuilt runtime, such as starting re-
mote activity and put/get remote values, will be suspended
until the initialization is completed. In other words, before
the rebuilt runtime gets all lost tasks, other runtime can
only send basic reply as it required even through connection
is recovered.

When the rebuilt place temporarily has no task communi-
cation with others, rebuilding executes silently without task
suspending. To reduce unnecessary waiting time, if the re-
built runtime receiving an exit message from the main place,
it will abort recovery and finalize the execution immediately.
In current implementation, when a place failure is detected,
parent node just rebuilds the child place on local machine,
which obviously is available. It is not a heavy burden when
the crashes are rare. We will use a more optimized way with
load balancing support in future.

4.4 Checkpointing
Figure 5 illustrates the X10 compilation procedure: For

applications written in X10, the X10 compiler front-end will
first do the parsing and type checking, produce the X10
AST, do the AST optimizations and lowering, and produce
the canonical AST. Then, according to the different backend
(Java or C++), the X10 compiler does the corresponding
code generation (Java or C++), outputs the source code,
and invokes the existing mature compiler (Oracle hotspot
JDK or GNU GCC) to compile the generated source code.
Meanwhile, the underlying library, such as X10 runtime and
some other functional modules, will be linked to the pro-
gram. This will produce the bytecode or the Native code for
Java and C++ backend respectively. Then the binary will
be loaded and run as the normal Java or C++ programs
with the precompiled X10rt library in the system.

We have modified the XRX (X10 Runtime in X10) part
and provide a X10 Fault Tolerant Lib library written in C++
(the red part in figure 5) for the X10 runtime to interact

15

with the HDFS and do the fault tolerance. This library is
mainly for interfaces interacting with the HDFS. We will
also modify the AST optimization stage shown in figure 5,
to do a liveness analysis on the X10 AST and rewrite the
AST to make the program automatically record live data
into HDFS.

X10

Source

Parsing /

Type Check

AST Optimizations

AST Lowering

Rewrite the AST

X10

AST

X10 AST

C++ Code

Generation

Java Code

Generation

C++ Source Java Source

C++

Compiler

Java

Compiler
XRC XRJXRX

Native

Code
Bytecode

X10RT

X10 Compiler Front-End

C++ Back-End Java Back-End

Java VMsNative Env

JNINative X10
Managed X10

X10 Fault

Tolerant Library

Figure 5: X10 Compilation Process

Execution Recovery: In our design, when a task takes
a long time or launches other new tasks into other places,
we should record the execution states to save time in recov-
ery and make sure there is no side effect. Hence, we insert
checkpoint flags into AST during compiling to export some
extra code in generated C++ file.
The following code list is a possible implementation of

the WordCount program, in which the remote activity task
may take a long time. Besides extra codes dealing with
checkpoints, we insert control labels before method calls and
branches, which are in the call path to approach a checkpoint
and will get a sequence number when executing. When call-
ing a method or executing a branch, the corresponding label
information is recorded, including its sequence number and
input arguments. After reaching a checkpoint, we store the
recorded information about rebuilding this task, intermedi-
ate data and the label information related to the call route
into HDFS. In our example of following code list, check-
point1 will record a sequence number queue {seq1, seq1},
while checkpoint2 will record {seq2, seq1}.
To recover execution, we first rebuild the task instance,

and then load the control labels sequence together with in-
put arguments into memory and run it. During re-execution,
the X10 runtime is modified to change control flow of user
code to skip executed code according to the sequence num-
ber queue. Combining with applying the same input in the
calling route, we can get the checkpoint and recover the in-
termediate data.
In current implementation, checkpoints are automatically

set according to finish structure, and re-execution could skip
most code blocks with declaring multiple child activities in-
side. In future, we plan to add a more complicate solution
to get an accurate call path to add checkpointing.

A Possible Implementation of WordCount Program:

at each Place: launch remote activity {

split(input)

label seq1: map result = map() {

#inside map function

finish {map}

#seqnumber start from scratch

#inside function

label seq1: checkpoint1

}

label seq2: reduce result = resuce{

#inside function

finish {reduce}

label seq1: checkpoint2

}

}

5. EVALUATION
This section presents a preliminary evaluation of the per-

formance overhead of adding fault tolerance to X10 in two
levels: Activity level and Place level. At activity level, we
mainly focus on the cases within one place. We record the
intermediate data that are in the form of X10 objects dur-
ing normal execution, inject a transient failure of the remote
activity after a checkpoint, and recover the data from the
checkpoint in HDFS. At place level, we provide a complete
functional test of two applications, on both single machine
and a small cluster with 4 machines. In this case, we kill one
non-leaf node in tree structures of X10 places, and let the
framework automatically recover from failure. The Word-
Count application will recover from the checkpoint, while
the SSCA#1 benchmark will simply restart the failed task.

The WordCount benchmark is written by us according to
the WordCount in the MapReduce paper [6]. The SSCA#1,
a bioinformatics optimal pattern matching, is provided in
the official release of X10 v2.2.1.

5.1 Activity Level Fault Recovery
In the activity level evaluation, our machine configuration

is as follows:

• Hardware: Intel Core 2 Quad Processor Q9300 (6M
Cache, 2.50GHz, 1333MHz FSB), 2G Memory, 1TB
Disk.

• Software: Debian squeeze 64 bits, kernel 2.6. The X10
version is 2.2.1. The HDFS version is 0.20.203.0. The
Zookeeper version is 3.3.5.

We test the cases with different number of activities in a
single place . According to the WordCount Pseudo Code in
section 2, we insert five checkpoints after line number: 3,
6, 14, 17 and 20. The test data set is the WordCount.x10
source file, whose size is 150KB and two randomly generated
word files, with 10M and 1G bytes size respectively.

5.1.1 Test Methodology

Wemanually inject the data recording and recovering code
at each checkpoint in the compiler generated c++ files. At
each checkpoint, the program will first serialize all live ob-
jects at that point, and write the object stream into the
HDFS. Then the objects will be read back from the HDFS

16

immediately and deserialized into memory. The execution
continues using the deserialized objects. After the program
finished, we will validate the result.

5.1.2 Space Overhead

 0

 10

 20

 30

 40

 50

 60

 70

 80

150K 10M 1G

S
p

a
c
e

 o
v
e

rh
e

a
d

 p
e

rc
e

n
ta

g
e

Input size

56.9%

71.9%

1.79%

Figure 6: Space Overhead Relative To The Inputs

Figure 6 shows the space overhead for the three input
sizes. The percentage is calculated as the total data size
recorded during all checkpoints relative to the input size. In
WordCount, the program takes the checkpoints for 5 times.
We only list the result running with one place and one activ-
ity (1p1a). The results of other cases such as one place with
4 activities (1p4a) are similar. Actually, the space overhead
in checkpointing in a place has almost no relationship with
the X10 launcher options (1p1a or 1p4a).
As shown in figure 6, the space overhead becomes neg-

ligible as the input size grows larger. When the input size
reaches 1GB, the total space overhead is just 18MB, which
is only 1.8% of the input. This is mainly due to the re-
ducible characteristics of WordCount. The overhead is also
application specific. We believe that this bound will be fur-
ther decreased as the places number increases (the work-
ers number grows up, while the input data size for each
places decreases). For the smaller input cases, the overhead
is moderate, 56% and 71% for the 150K and 10M input re-
spectively. We believe that applications with small input
and short runtime may not fit X10-FT, as it usually does
not require fault-tolerance support.
Figure 7 shows that the time that WordCount spends in

the 1p1a and 1p4a cases, respectively. The runtime is com-
posed of three parts: 1) the native part; which means the
normal execution: 2) the Record part; which means the time
spent on the checkpoint recording; and 3) the recover part,
which means the time spent when doing the recovery after
failure. The y-axis represents the absolute time, the 1p1a
stands for 1 place with 1 activity, while 1p4a the 1 place
with 4 activities.
As we can see from the figure 7, the native time decreases

almost linearly as the number of worker increases from 1 to 4,
while the record and recover parts are nearly constant. This
is because most of the checkpoints are taken at the sequential
part of execution by the main thread in each place, these two
parts are not parallelized.
The record time and recover time for each running case

are almost the same, because these time portions are only
relative to the intermediate data size needed to be recorded
and recovered.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1p1a 1p4a 1p1a 1p4a 1p1a 1p4a

T
im

e
 (

s
)

150K 10M 1G

Native
Record

Recover

Figure 7: Time Overhead For Different Inputs

The time spent when the input is 150K is too small to
be shown on the figure, but the situation is similar with the
cases of 10M, 1G inputs.

Figure 8 shows the percent of the record time relative to
the native time. In figure 8, the best case is the 1G in-
put one. 13% of the native time for doing checkpoint is
well enough. For the 150K input case, the record time is
360% relative to the native. For the 10M input case, the
1p4a case is obviously worse than the 1p1a case, because the
native time could be speeded up as the number of worker
thread increases, so the ratio will be higher. From figure 8,
we can get the following insights: the X10-FT fault toler-
ant framework is more suitable for long-running, big input
and small output applications. Such application are actually
quite common for scientific applications.

 0

 100

 200

 300

 400

 500

150K 10M 1G

R
e
c
o
rd

 o
v
e
rh

e
a
d
 p

e
rc

e
n
ta

g
e

Input size

440%

360%

319%

85%

49%

13%

1p1a
1p4a

Figure 8: Record Time Overhead Relative To Native

Figure 9 shows the breakdown of the record time when
running WordCount with 10M input size and 1p1a config-
uration. There are 5 bars in the figure, corresponding to

17

the 5 stages in WordCount execution. The native time is
45536 ms, and the total record time for 5 stages is 39027
ms. The record time is composed of two parts, the serializa-
tion time and the HDFS write time. The recovery time is
similar with the record time, and is composed of the HDFS
read time and the deserialization time. We can see from
this figure that the serialization time takes most of the pro-
portion in the total time. The two data labels of each bar
correspond to the absolute time of each part. For example,
in stage 3, the serialization part takes 11071 ms, while the
HDFS write part only 31 ms. The bottleneck of the record
procedure is the serialization protocol we used. Currently,
we used the X10 native serialization protocol. The Google’s
Protocol Buffers may have better performance for doing se-
rialization, which we will test in the future. For the multiple
places case, there may be some contentions when they write
and/or read HDFS simultaneously. The performance of our
APGAS fault tolerant framework will be more dependent on
that of the underlying HDFS.

 0

 2000

 4000

 6000

 8000

 10000

 12000

stage1 stage2 stage3 stage4 stage5

T
im

e
 o

v
e

rh
e

a
d

 (
m

s
)

7633

63

10967

31

11701

63

4600

63

4604

63

Serialization
HDFS-write

Figure 9: Record Time Breakdown for 10M input

With 1P1A

5.2 Place Level Evaluation
In place level evaluation, our machine configuration is as

follows:

• Hardware: one Dell PowerEdge R715 machine, 24 cores,
AMDOpteron 6168, 1900MHZ, 64GMemory, 2T Disk.
The small cluster consists of 4 machines.

• Software: Debian squeeze 64bit, kernel 2.6.38. The
X10 version is 2.2.1. The HDFS version is 0.20.203.0.
The Zookeeper version is 3.3.5.

In this test, we inject failures to make a non-leaf node
of place crash, which has both parent and child nodes in
the tree structure. We provide the complete functional eval-
uation through two different behavior of WordCount and
SSCA#1 after the failure is detected. The recovery result is
compared with a data-record-only execution using X10-FT
without failures and a native x10 v2.2.1 execution.

5.2.1 WordCount

In the test of WordCount, we inject the failure where
the remote activity on a place is about to be completed.

The X10-FT framework will detect this failure, rebuild the
crashed place, and then restart the incomplete activity in
the rebuilt place. The socket links to other places are also
reconstructed. The rebuilt place will skip most of the exe-
cuted procedures to fast-forward to the checkpoint.

 0

 50

 100

 150

 200

 250

1GB 2GB

T
im

e
 o

v
e

rh
e

a
d

 (
s
)

Input size

85.0

148

164

128

163

179

Native
FT-recordonly

FT-recover

Figure 10: WordCount runs on single machine:

4places, 6 map tasks each place, input size: 1GB

and 2GB

 0

 50

 100

 150

 200

 250

 300

8GB 16GB

T
im

e
 o

v
e

rh
e

a
d

 (
s
)

Input size

106

148

198

140

183

238

Native
FT-recordonly

FT-recover

Figure 11: WordCount runs on cluster of 4 ma-

chines: 4 places, 20 map tasks each place, input size:

8GB and 16GB

Figure 10 and figure 11 show the WordCount result for the
place level test. In fact, our framework successfully recovers
the execution from failure and gets the correct result. Over-
head in the record-only test includes heart beat monitored
by Zookeeper, control flow and intermediate data recording,
and the serialization of intermediate data during recording
accounts for the major part. In addition to record-only over-
head, recovery test contains an extra time slot of delay in
failure detection (X10-FT confirms a failure when timeout),
place rebuilding and recorded data recovering from DFS.
Similarly, deserializing recorded data into runtime objects
also accounts for a large proportion of recovery time. Com-
paring to running on single machine, recovery on cluster may
take more time both because of the communication over net-

18

work and the data loading overhead from different data node
of HDFS.
Since the overhead such as failure detection delay and

place rebuilding are relatively in the fixed time. With in-
creasing of input data size, overhead becomes more accept-
able. We will further optimize the data recording and re-
covery in future.

5.2.2 SSCA#1

SSCA#1 is a benchmark of the Scalable Synthetic Com-
pact Applications (SSCA) benchmark suite[2] and it deals
with the bioinformatics optimal pattern matching. It matches
two sequences by splitting the long one into segments and
concurrently comparing the segments with the short one in
one place with a single thread. In the test of SSCA#1, we in-
ject a failure after one of the segments matching in a place is
just started. Since segments matching contains independent
tasks without checkpoint recording, we only inject a fault
in the original code without any other manual changes. We
simply re-execute the unfinished segment matching in the
recovery test.
The results are presented in figure 12 and figure 13. Com-

pared to WordCount, the record-only test in SSCA#1 has a
small overhead without recording intermediate data. Hence,
even though we record the control flow into HDFS, imple-
ment a detection with the Zookeeper, and change the source
code to save communication message and trace program
states, these parts seem not to have much overhead.
With increasing of data size, the execution time of concur-

rent tasks increases. Hence, the recovery overhead is hidden
while other concurrent tasks are executing. Even though the
overhead of detecting failure and rebuilding place increases
on cluster, it is still acceptable especially when input size
grows.

 0

 10

 20

 30

 40

 50

 60

 70

10M 20M 40M 80M

T
im

e
 o

v
e

rh
e

a
d

 (
s
)

Input size

6.16
8.80

18.7

12.4
14.9

22.2
24.6

27.128.1

49.1

53.954.9

Native
FT-recordonly

FT-recover

Figure 12: SSCA#1 runs on single machine: 8

places in all, short sequence is 200 characters, and

long sequence scales from 10M to 80M

In summary, the record overhead in X10-FT is application-
specific. Scientific applications such as SSCA#1 are suitable
for our framework than data-parallel applications like Word-
Count.

6. RELATED WORK
This section briefly relates X10-FT to prior efforts in fault

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

10M 20M 40M 80M

T
im

e
 o

v
e

rh
e

a
d

 (
s
)

Input size

3.59

6.61

22.1

7.16

11.6

22.3

14.2

18.0

25.8

28.4

31.3

34.3

Native
FT-recordonly

FT-recover

Figure 13: SSCA#1 runs on cluster of 4 machines:

16 places in all, short sequence is 200 characters,

and long sequence scales from 10M to 80M

tolerance, and discuss recent advances in APGAS program-
ming model.

There are a few attempt to providing fault tolerance fea-
tures to the PGAS model. For example, Ali et al. [1] lever-
age shadow data structures and redundant remote memory
accesses to tolerant potential faults. Vishnu et al. [16] de-
scribe a fault resilient, one-sided communication runtime
framework, which uses the Global Arrays language and its
communication runtime, ARMCI, for the data-centric pro-
gramming models. In contrast, X10-FT targets the APGAS
programming model, which is with more powerful and flex-
ible language features that challenges fault tolerance. Fur-
ther, X10-FT integrates advances in distributed systems like
PAXOS and distributed file systems for more reliable failure
detection and recovery.

There are also a number of efforts in providing fault tol-
erance in other language and runtime, such as CoCheck [14]
and FT-MPI [7]. However, even though MPI can also be
expressed in X10, the original semantics of X10 language is
more powerful than standard MPI, especially for the address
space and activity models. Hence, X10-FT directly provides
fault tolerance support based on X10 semantics, which essen-
tially add fault tolerance to MPI programs written in X10 as
well. Further, virtualization has also been used in HPC [11,
4] to provide fault tolerance. This, however, is a more in-
trusive solution that requires adding virtualization layer to
the running systems, either constantly or on-demand.

Recently, the X10 language, as a representative of the
APGAS model, has been constantly evolving with growing
performance [15]. There are also a number of applications,
benchmarks and libraries are written in X10 [5, 15, 10].
Hence, adding fault tolerance support would benefit such
work with more reliable execution.

7. CONCLUSION AND FUTURE WORK
In this paper, we analyzed the lanaguage features and ex-

ecution behavior of a typical APGAS language. Based on
the analysis, we described the X10-FT framework that ex-
tends the APGAS model with fault tolerance support. we
proposed a possible design to add fault tolerance features,
including the use of DFS, the PAXOS model and some re-

19

covery solutions based on concepts of Place and Async of
APGAS model.
We described our current implementation of the X10-FT

framework, which used the ZooKeeper for fault detection,
and then rebuilt the crash places including both launcher
process and runtime process. X10-FT also required some
modifications to the X10 compiler to insert checkpoints into
user code. To durably store checkpoint data, X10-FT inte-
grated HDFS as the persistent storage layer.
We have done a preliminary evaluation for both check-

pointing overhead at activity level and a complete func-
tional test of recovering from place failure. Evaluation re-
sults showed that X10-FT can successfully recover program
execution from node failures, with modest overhead for data-
parallel application such as WordCount, and very small over-
head for scientific applications. This naturally fit the ap-
plication domain of X10, indicating the design of X10-FT
would be a right direction of adding fault tolerance to X10.
Our future work includes a further implementation of the

automatic data dependency calculation and data recovery.
We also plan to address issues such as concurrent asyn-
chronous tasks, data consistency, and the failure of main
place with a more complete design and validation.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful

comments. This work was supported by China National
Natural Science Foundation under grant numbered 61003002,
a grant from Shanghai Science and Technology Development
Funds (No. 12QA1401700), a Foundation for the Author of
National Excellent Doctoral Dissertation of PR China and
Fundamental Research Funds for the Central Universities in
China.

9. REFERENCES
[1] N. Ali, S. Krishnamoorthy, N. Govind, and B. Palmer.

A redundant communication approach to scalable
fault tolerance in pgas programming models. In
Parallel, Distributed and Network-Based Processing
(PDP), 2011 19th Euromicro International Conference
on, pages 24–31. IEEE, 2011.

[2] D. Bader, K. Madduri, J. Gilbert, V. Shah, J. Kepner,
T. Meuse, and A. Krishnamurthy. Designing scalable
synthetic compact applications for benchmarking high
productivity computing systems. Cyberinfrastructure
Technology Watch, 2:1–10, 2006.

[3] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. Von Praun, and
V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. In Proceedings of
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 519–538. ACM, 2005.

[4] H. Chen, R. Chen, F. Zhang, B. Zang, and P. Yew.
Mercury: Combining performance with dependability
using self-virtualization. In International Conference
on Parallel Processing. IEEE, 2007.

[5] M. Dayarathna, C. Houngkaew, and T. Suzumura.
Introducing scalegraph: an x10 library for billion scale
graph analytics. In Proceedings of the ACM SIGPLAN
2012 X10 Workshop, page 6. ACM, 2012.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[7] G. Fagg and J. Dongarra. Ft-mpi: Fault tolerant mpi,
supporting dynamic applications in a dynamic world.
In J. Dongarra, P. Kacsuk, and N. Podhorszki,
editors, Recent Advances in Parallel Virtual Machine
and Message Passing Interface, volume 1908 of
Lecture Notes in Computer Science, pages 346–353.
Springer Berlin / Heidelberg, 2000.

[8] P. Hunt, M. Konar, F. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In USENIX ATC, volume 10, 2010.

[9] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18–25, 2001.

[10] J. Milthorpe, V. Ganesh, A. Rendell, and D. Grove.
X10 as a parallel language for scientific computation:
practice and experience. In Parallel & Distributed
Processing Symposium (IPDPS), 2011 IEEE
International, pages 1080–1088. IEEE, 2011.

[11] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L.
Scott. Proactive fault tolerance for hpc with xen
virtualization. In Proceedings of the 21st annual
international conference on Supercomputing, pages
23–32. ACM, 2007.

[12] V. A. Saraswat, B. Bloom, and I. Peshansky. X10
language specification v2.2.
http://dist.codehaus.org/x10/documentation/languagespec/x10-
latest.pdf,
2012.

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1–10. IEEE, 2010.

[14] G. Stellner. Cocheck: checkpointing and process
migration for mpi. In Parallel Processing Symposium,
1996., Proceedings of IPPS ’96, The 10th
International, pages 526 –531, apr 1996.

[15] O. Tardieu, D. Grove, B. Bloom, D. Cunningham, and
B. Herta. X10 for productivity and performance at
scale. In A Submission to the 2012 HPC Class II
Challenge, 2012.

[16] A. Vishnu, H. Van Dam, W. De Jong, P. Balaji, and
S. Song. Fault-tolerant communication runtime
support for data-centric programming models. In High
Performance Computing (HiPC), 2010 International
Conference on, pages 1–9. IEEE, 2010.

[17] C. Zhang, C. Xie, Z. Xiao, and H. Chen. Evaluating
the performance and scalability of mapreduce
applications on x10. Advanced Parallel Processing
Technologies, pages 46–57, 2011.

20

	Introduction
	Background
	Place & Activity
	Key Primitives
	Fault Tolerance in Distributed Systems

	Design
	Failure Model
	Recording
	Recovery

	Preliminary Implementation
	Incorporating HDFS
	Integrating Zookeeper
	Place Rebuilding
	Checkpointing

	Evaluation
	Activity Level Fault Recovery
	Test Methodology
	Space Overhead

	Place Level Evaluation
	WordCount
	SSCA#1

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

