
An Interval Constrained Memory
Allocator for the Givy GAS Runtime

François Gindraud
UJF

francois.gindraud@inria.fr

Fabrice Rastello Albert Cohen
Inria

{fabrice.rastello,albert.cohen}@inria.fr

François Broquedis
Grenoble INP

francois.broquedis@imag.fr

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; E.1 [Data Structures]: concur-
rent slab

Keywords memory allocation, global address space, distributed
shared memory

1. Introduction
The shared memory model helps parallel programming productiv-
ity, but it also has a high hardware cost and imposes scalability con-
straints. Ultimately, higher performance will use distributed mem-
ories, which scales better but requires programmers to manually
transfer data between local memories, which is a complex task.
Distributed memories are also more energy efficient than shared
memories, and are used in a family of embedded computing solu-
tions called multi processor system on chip (MPSoC).

Many solutions to manage and abstract memory transfers have
been proposed. Among them, distributed shared memories (DSMs)
aim to implement a software-defined virtual shared memory over a
distributed architecture. Such virtually shared memory spaces im-
plement offer a Global Address Space (GAS) accessible from all
nodes of the system. We study the memory allocation considera-
tions of a new DSM implementation, representative of the general
challenges in the field, called Givy.

2. DSM
Some NUMA architectures implement a DSM with hardware sup-
port. In these machines, dedicated hardware intercept the loads and
stores, determines whether the target is in local or distant memory,
and triggers network memory transfers in the distant case. They
offer the same semantics as shared memory machines (GAS point-
ers are real pointers, transparent load/stores), but performance can
degrade a lot if too many accesses are remote. These architecture
suffer from low flexibility (memory transfers at fixed granularity
which may cause false sharing, simple data movement patterns),
due to their generic hardware implementation, although they some-
times provide specific APIs to perform bulk communications (a
pattern that might not be easily recognized by the hardware).

On the opposite side, software-defined DSMs, like Stanford Le-
gion [7] or Grappa [5] require heavy programmer intervention (an-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

PPoPP ’16 March 12-16, 2016, Barcelona, Spain
Copyright c© 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2851141.2851195

notating possibly distant load/store, or managing all data through
their framework). They are more flexible due to the software im-
plementation, being able to handle application-specific, structured
data transfer, and to use programmer hints to place data. However
these solutions usually replace C pointers with richer fat pointers,
or with keys in abstracts spaces (tables indexed by tuples). This
makes it difficult to interact with high performance C libraries us-
ing raw pointer structures, as the interface with the DSM may need
copies. It may be difficult to control the data layout in memory,
with respect to alignment and cache properties.

As a middle ground, language/compiler based DSM exists, like
UPC [2] or Legion [7] (which has a compiled DSL). In these DSM,
the compiler replaces load/stores by more complex calls which will
determine whether this is a distant access or not. Most of these
strategies will compile the provided language to a runtime target
(GASNet library for UPC, Realm for Legion). The compiler will
lift some of the programmer’s burden, as it automatically generates
calls to the runtime API and manages fat pointers, but it relies on
fragile static analyses and remains limited in applicability.

3. Givy
The Givy runtime is a software DSM solution, which uses raw
pointers to index memory. Using raw pointers means that any local
distributed memory will contain a subset of existing GAS memory
blocks, always placed at the same virtual addresses (see Figure 1).

addr

GAS } virtual address
spaces

GAS
Origin
Copy

N1

N1

N2

N2

N3

N3

Figure 1. Example of GAS organization with 3 nodes (N1,N2,N3)
and some GAS memory blocks (origin is the first copy that was
created by malloc())

The goal is to have the flexibility of a software DSM implemen-
tation, while allowing programmers to carefully control the mem-
ory layout of their data (doesn’t change between nodes), and use

C libraries without having to convert data at the interface. Using
real pointers, and no data layout conversion restricts Givy to dis-
tributed systems with the same architecture (types with the same
memory layout, size, endianness, ...), but removes network over-
head (no conversion needed). Efficient RDMA one-sided commu-
nications are a natural match as the remote memory address is al-
ways the same as the source address. We also require virtual mem-
ory support, as it is needed to freely setup the GAS memory area in
each process address space. All of these constraints and properties
fit well with MPSoC’s high degree of parallelism, high-bandwidth
network with RDMA support, and in the case of our target (the
Kalray MPPA[1, 3]), virtual memory support.

The Givy DSM handles memory transfers between nodes by
copying data at the exact same position every time. The copies are
managed by a software cache coherence protocol (named OWM),
which is similar to protocols used in hardware caches.

4. Allocator
Due to the choice of raw pointers as GAS keys, every addressable
block of memory is technically in the GAS and could be copied
to other nodes. As we need to be able to provide coherence meta-
data to every block, we restrict GAS behavior to memory blocks
allocated by malloc() (it excludes stack and static variables). It is
then the job of the malloc() implementation to provide the fol-
lowing properties:

1. avoid any address collision in the GAS;

2. retrieve coherence metadata of any block from its pointer.

The first property is a consequence of the raw pointer choice:
in Givy, malloc() allocates in the GAS space. Thus we must
guarantee that any malloc() call in one node will never return
a block overlapping with any alive malloc’ed block from any node.
In addition to that, we do not want malloc() to generate network
traffic if possible. The solution is to split the GAS into logical
node intervals, like in figure 1 (red lines are limits). A node can
access any interval; however only the interval owner can allocate
in its interval. This strategy does not waste memory because of
the virtual memory support; the area just need to be big enough
to fit any node memory, but in practice will be sparsely used. This
also avoids any communication for allocation, and any node-local
malloc()/free() generates no network communication.

All malloc() implementation act as a cache for memory
blocks; they ask memory from the system in chunks called pages,
and deliver blocks carved into these pages to achieve a small
memory usage. So controlling the placement of memory to al-
locate in our interval means asking the system for pages in
that interval. The only way to choose a placement is to use the
mmap(addr,size,MAP FIXED) system call; it asks the system to
make available the [addr, addr + size[memory block.

The current Givy malloc() implementation relies on this sys-
tem call to only allocate memory in the right interval. As there is
no fast way to get the state of virtual memory from the system (in
order to drive the system call), we have to store this information
ourselves in a structure called page mapper. The page mapper con-
tains a list of unmapped sequence of pages of each size in the node
interval; this allow to serve page request in the interval easily, by
taking one of these sequence and giving it to mmap().

The second required property is to find a block coherence meta-
data as quickly as possible (or to detect the absence of it in the
case of a fully local block). As meta-data is accessed through page
headers, we need to check if the page can be accessed before trying
to access the header and metadata: it would cause a segmentation
fault on failure. The page mapper also contains a concurrent hash-

table which is used to quickly test if a page is mapped, solving the
problem.

To finally carve allocated blocks from VM pages, the allocator
uses standard high performance allocator techniques [6], including
sizeclass bins, thread local heaps, highly concurrent malloc/free.

5. Performance
To the best of our knowledge, no allocator provides this specific
interval property in addition to the fast testing. A GAS runtime
name Myrmics [4] contains an allocator, which uses network traffic
to allocate areas to nodes, allowing more flexibility at the cost of
bandwidth.

We decided to test the performance of our allocator against
current high performance allocators (Hoard, TcMalloc, JeMalloc,
Streamflow, SFMalloc, SSMalloc). As all other allocator only sup-
ports shared memory, we compared HPC allocators to one node
instance of the Givy allocator. The goal was to measure the pos-
sible computation and memory cost of providing the GAS proper-
ties. The tests were run on shared memory x86 hardware as porting
other allocators to the MPPA would have been too complicated. Re-
sults confirmed that adding our property has no significant impact
on performance. It also confirms our choice to replace the default
malloc() implementation with the Givy allocator for every situa-
tion, simplifying the user interface to Givy.

6. Conclusion
We designed an allocator for a GAS runtime. It provides the re-
quired address space overlap prevention and highly efficient access
to coherence meta-data, while still having node-local performance
similar to other state-of-the-art memory allocators, both in memory
usage and speed.

The Givy runtime is designed to have a task graph data-flow
execution model in the future; it would allow to hide latency from
the GAS transfers and load balance both computation and memory
usage by making the scheduler aware of the allocator status.

References
[1] Kalray. http://www.kalrayinc.com.
[2] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and

K. Warren. Introduction to UPC and language specification. Center for
Computing Sciences, Institute for Defense Analyses, 1999.

[3] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo,
J. Reybert, and T. Strudel. A distributed run-time environment for the
kalray mppa R©-256 integrated manycore processor. Procedia Computer
Science, 18:1654–1663, 2013.

[4] S. Lyberis, P. Pratikakis, D. S. Nikolopoulos, M. Schulz, T. Gamblin,
and B. R. de Supinski. The myrmics memory allocator: hierarchical,
message-passing allocation for global address spaces. ACM SIGPLAN
Notices, 47(11):15–24, 2013.

[5] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Os-
kin. Latency-tolerant software distributed shared memory. Technical
report, Technical Report UW-CSE-14-05-03, Univeristy of Washing-
ton, 2014.

[6] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. Scalable
locality-conscious multithreaded memory allocation. In Proceedings of
the 5th international symposium on Memory management, pages 84–
94. ACM, 2006.

[7] S. Treichler, M. Bauer, and A. Aiken. Realm: An event-based low-level
runtime for distributed memory architectures. In Proceedings of the
23rd international conference on Parallel architectures and compila-
tion, pages 263–276. ACM, 2014.

